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ABSTRACT: Thermal (2 + 2) cycloadditions of several N-
carboalkoxy (R)-2-tert-butyldihydrooxazoles with ketenes have
been studied experimentally by the Ghosez group. Contrary to
results from Seebach and co-workers that the electrophilic addition
of acylating agents occurs  to dihydrooxazole nitrogen, Ghosez
found major cycloadducts resulting from an attack of ketene
carbonyl carbon  to oxygen. We investigate the potential energy
surface for the cycloaddition of diphenyl- and phenylchloroketenes
to two (R)-2-tert-butyldihydrooxazoles with ®B97X-D and
mPWI1PW91 density functional theory and DLPNO-CCSD(T)
wave function theory. These (2 + 2) cycloadditions are concerted
but highly asynchronous, and the selectivity trends in ketene
addition cases are in good agreement with the experiment. We
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propose a model based on the buildup of charge in oxazoline to reconcile the regiochemical di erences between Ghosez and

Seebach s observations.

INTRODUCTION

In 1905 1907, long before the discovery of the Diels Alder
reaction, Hermann Staudinger reported the isolation of
diphenylketene and its unique ability to form a four-membered
ring by addition to cyclopentadiene." At the time, this
pioneering work remained of little synthetic value due to the
rapid dimerization of most alkyl and aryl ketenes that favorably
competed with the desired alkene cycloaddition. It took about
50 years to witness a real renaissance of ketene cycloaddition
chemistry, with ketenes rendered synthetically useful by
observations of their facile cycloadditions with newly available
activated olefins such as enamines,” and the development of
highly electrophilic haloketenes that enabled stereospecific
cycloadditions to a wide variety of olefins.’ In the ensuing
decades, this reaction has become undoubtedly one of the
most important methods for the generation of four-membered
rings.4

During the renaissance era of ketene chemistry, Woodward
and Ho mann emphasized the role of the 7 orbital of the
ketene C O bond as the “spearhead” of its reactivity.” They
described these reactions as [,2; + ,2,] cycloadditions, driven
by the perpendicular interaction of the alkene 7z orbital with
the ketene C O 7z orbital. Early computational studies
showed that thermal (2 + 2) cycloadditions of ketenes and
alkenes proceeded via either a stepwise or concerted,
asynchronous mechanism.’® In 1990, Wang and Houk
performed theoretical investigations on the reaction of ketenes
with alkenes utilizing the ab initio SCF method with STO-3G,
3-21G, and 6-31G  basis sets and correlation energy
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corrections at the MP2 level.” These studies concluded that
the reactions are (2 + 2 + 2) cycloadditions, another way that
ketene cycloadditions had been analyzed by Woodward and
Ho mann.” Yamabe et al. further investigated the frontier
molecular orbital (FMO) interactions involved in ketene (2 +
2) cycloadditions using ab initio methods.” These results
demonstrated that the (2 + 2) cycloadditions proceed via a
concerted, asynchronous mechanism involving two independ-
ent FMO interactions: the first FMO interaction involves an
overlap of a 7 orbital or a nonbonding orbital of the
ketenophile with the LUMO of the ketene, while the second
interaction implicates overlap of the z orbital of the
ketenophile with the HOMO of the ketene.® By 2006,
Singleton utilized density functional theory (DFT) to study
the reaction of cyclopentadiene with diphenylketene and
dichloroketene using the ®B97X-D and mPW1K functionals.®®
Singleton s results demonstrated that the carbonyl group of the
ketene can participate in both (4 + 2) and (2 + 2)
cycloadditions. More recently, Tang and co-workers studied
the mechanism of Lewis acid-promoted (2 + 2) cycloadditions
of ketenes and alkenes DFT.” Despite the progress made
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Scheme 1. Divergent Regioselectivities in the Reaction of
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Figure 1. Relative energies of the iminium and oxonium ions of oxazolines 1 and 2. Energies are provided in units of kcal/mol at the @wB97X-D/6-

311++G(d,p) level.

toward understanding the reactivity of ketenes using
computations, no theoretical studies have been performed to
elucidate substituent e ects on regioselectivity in the thermal
(2 + 2) cycloadditions of ketenes with nonsymmetric alkenes
such as dihydrooxazoles (oxazolines) studied by Ghosez et al.

The regioselectivity of these ketene-plus-alkene cyclo-
additions was expected to be that observed for the addition
of electrophilic reagents to alkenes, i.e., the electrophilic central
atom of the ketene should bind to the more nucleophilic
carbon atom of olefin.* We were therefore intrigued by the
unprecedented regioselectivity trend observed in Ghosezs
work on ketene/oxazoline (2 + 2) cycloadditions.” Ghosez
and co-workers observed that a variety of ketenes reacted with
oxazolines 1 and 2 to give preferentially (2 + 2) cycloadducts
Sa, resulting from an attack of C4 of oxazolines 1 and 2 on the
electrophilic C O of the ketene (30 79 yields, Scheme 1a)
with only minor yields of the previously “expected”
regioisomers Sb.'' These oxazolines had been shown by
Seebach et al. to be versatile synthons containing a highly
reactive electron-rich C C bond amenable to significant
elaboration.'” Acylating reagents utilized in Seebach s studies
(Vilsmeier reagent and acetyl chloride) were added at the CS
position selectively on the face opposite to the tert-butyl
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substituent. This regioselectivity has been explained on the
basis of the preferential formation of acyliminium ion
intermediate 7, which is more stable than the oxonium ion 6
resulting from an attack at C4."

Seeking to rationalize this disparity in regioselectivity, we
undertook a computational study of the thermal (2 + 2)
cycloadditions between (R)-2-tert-butyldihydrooxazoles and
diphenyl- and phenylchloroketenes.

RESULTS AND DISCUSSION

We began our investigation with Seebachs proposal that
regiochemistry of electrophilic addition to oxazolines is
dictated by the stability of the resulting heteroatom-stabilized
carbocation."” The oxonium and iminium ions of oxazolines 1
and 2 are shown in Figure 1. Relative to iminium ions 8 and
10, the oxonium ions 9 and 11 are destabilized by several kcal/
mol, even though the iminium ions are substituted by electron-
withdrawing esters. This is consistent with Seebach s proposal
and earlier calculations: the greater stability of intermediates 8
and 10 suggests the preferential attack of electrophiles at CS of
oxazolines.

However, these data are inconsistent with Ghosez s
regiochemical observations, and we continued to a complete

https://doi.org/10.1021/acs.joc.2c00001
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Figure 2. Regioisomeric transition-state structures and calculated energies for the (2 + 2) cycloadditions of diphenylketene 3 with oxazolines (a) 1
and (b) 2. Geometry optimization was conducted at the ®B97X-D/6-311++G(d,p) level of theory. Single-point energies were calculated with
®B97X-D/6-311++G(2d,2p) and DLPNO-CCSD(T)/cc-pVTZ. Energies are provided in units of kcal/mol.

Scheme 2. Energy Pro le for the Reaction of Carbomethoxy-Substituted Oxazoline 1 and Ketene 3
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“Geometry optimization was conducted at the @B97X-D/6-311++G(d,p) level of theory. Single-point energies were calculated with both ®B97X-
D/6-311++G(2d,2p) (shown in plain text) and DLPNO-CCSD(T)/cc-pVIZ (shown in parentheses). Energies are provided in units of kcal/mol.

examination of the potential energy surface of ketene (2 + 2)
cycloaddition with oxazolines. Figure 2 shows transition-state
structures for the (2 + 2) cycloaddition of oxazolines 1 and 2
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with diphenylketene 3. The carbomethoxy-substituted oxazo-
line 1 gives rise to transition states TS-12 and TS-13,
proceeding from initial electrophilic addition to C4 and CS,

https://doi.org/10.1021/acs.joc.2c00001
J Org Chem 2022 87 3613 3622



The Journal of Organic Chemistry

pubs acs org/joc

Scheme 3. Energy Pro le for the Reaction of tert-Butoxycarbonyl-Containing Oxazoline 2 and Ketene 3“
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“Geometry optimization was conducted at the @B97X-D/6-311++G(d,p) level of theory. Single-point energies were calculated with both ®B97X-
D/6-311++G(2d,2p) (shown in plain text) and DLPNO-CCSD(T)/cc-pVIZ (shown in parentheses). Energies are provided in units of kcal/mol.

respectively. Oxazoline 2, carrying a tert-butoxycarbonyl group,
similarly proceeds to transition states TS-16 and TS-17.
Structures TS-12 and TS-16, leading to cycloadducts
containing a carbonyl group @ to the oxazoline nitrogen
atom, were calculated to be more stable than their
regioisomeric counterparts. Our investigation additionally
found that the (2 + 2) cycloaddition advances through a
highly asynchronous, concerted mechanism, where the length
of the first formed bond varies substantially. Single-point
energies calculated with @B97X-D/6-311++G(2d,2p) gener-
ally agree with those obtained with DLPNO-CCSD(T)/cc-
pVTZ. These data are consistent with the preferential
formation of the initial oxazoline ketene bond at C4, as
observed by Ghosez (Scheme 1).

The energy profiles for the cycloaddition of oxazolines 1 and
2 with diphenylketene 3 are shown in Schemes 2 and 3,
respectively. Cycloadditions occurring via TS-12 and TS-16
are shown to be kinetically favored, and despite little to no
energy di erence between diastereomeric products, they yield
the C4-(a-keto) adducts 14 and 18, respectively. In these
diagrams, we show the highest energy point along the reaction
coordinate as the transition state of the reaction.

We proceeded to examine the (2 + 2) cycloaddition of
oxazoline 1 with the asymmetrically substituted phenyl-
chloroketene 4. Due to the asymmetry, the cycloaddition can
proceed with either chloro-endo or phenyl-endo diastereose-
lectivity; the corresponding transition states (TS-20 TS-23)
are shown in Figure 3a. Similar to the cycloaddition of 1 and 3,

3616

the major transition states involve an attack of the central
carbon of the ketene on C4 of the oxazoline, to the oxygen
atom. This cycloaddition has a 7 kcal/mol lower barrier than
that of diphenylketene, as expected due to the inductive
electron withdrawal and smaller steric e ect of the Cl. Single-
point energy calculations at the ®B97X-D/6-311++G(2d,2p)
and DLPNO-CCSD(T)/cc-pVTZ levels confirmed that these
reactions also proceeded via a highly asynchronous mecha-
nism. Careful optimization yielded an extremely shallow
intermediate along the reaction coordinate, representing an
energy plateau on the ascent to transition states homologous to
those of the diphenylketene case (see the SI). We hypothesize
that this structure is indicative of a highly asynchronous
cycloaddition for phenylchloroketene, as the free-energy
di erence between the initial bond-forming transition structure
and the intermediate is essentially zero.

Calculations at the wB97X-D/6-311++G(2d,2p) level of
theory suggest no di erence in activation energy between Ph-
endo and Cl-endo transition structures, though single-point
energy corrections at the higher DLPNO-CCSD(T)/cc-pVTZ
theory level demonstrate a strong preference for the Ph-endo
TS in accord with experimental observations (TS-20,

Eccspr) = 2.6 kcal/mol relative to Cl-endo transition
state TS-21). While the corresponding Ph-endo product is
more crowded than the Cl-endo, the product is favored because
it actually has a sterically less congested transition state where
the phenyl substituent is oriented away from the alkene
(Figure 3).

https://doi.org/10.1021/acs.joc.2c00001
J Org Chem 2022 87 3613 3622



The Journal of Organic Chemistry

pubs acs org/joc

a.

TS-20 TS-21
(C4 Ph-endo) (C4 Cl-endo)
AH¥= +52 AH¥=+52
AG¥=+23.2 AG¥=+22.9
AE*=+6.2 AE*= +6.0

AE* gospry= +3.4 AE* ¢ospry= +6.0

tBu

TS-26 TS-27
(C4 Ph-endo) (C4 Cl-endo)
AH*=+4.4 AH*= +4.4
AGF=+225 AG*=+22.9
AE*=+53 AE¥=+53

AE* cospm)= +2.6 AE* cegp(n)= +4.4

TS-22

TS-23
(C5 Ph-endo) (C5 Cl-endo)
AH*=+6.8 AH*=+8.1
AGE= +24.1 AGH=+24.7
AE*=+7.6 AE*= +8.7

AE* cespm= +6.1 AE* cespmy= +10.0

TS-28

TS-29
(C5 Ph-endo) (C5 Cl-endo)
AH¥=+3.8 AH*= +59
AGE=+225 AGH=+213
AE*=+4.7 AE*=+6.3

AE?* cogpry= +3.6 AE* cegpry= +8.0

Figure 3. Regioisomeric transition structures and calculated energies for the (2 + 2) cycloadditions of phenylchloroketene 4 with oxazolines (a) 1
and (b) 2, respectively. Geometry optimization was conducted at the ®B97X-D/6-311++G(d,p) level of theory. Single-point energies were
calculated with @B97X-D/6-311++G(2d,2p) and DLPNO-CCSD(T)/cc-pVTZ. Energies are provided in units of kcal/mol.

For the regioisomeric addition of the electrophilic carbon to
the oxazoline C5 ( to the nitrogen), DLPNO-CCSD(T)/cc-
pVTZ single-point energies again suggest that the reaction
occurs selectively via the Ph-endo transition state TS-22
( Eccspery = 3.9 keal/mol relative to Cl-endo). Between
the favored Ph-endo cycloadditions, the activation energy of the
major reaction at the C4 position (TS-20) is several kcal/mol
lower than that of the minor reaction at the CS5 position

( Eccspery = 2.7 keal/mol,  E,pgrxp = 1.4 keal/mol,
Scheme 4).

We also investigated the (2 + 2) cycloaddition of tert-
butyloxycarbonyl-substituted oxazoline 2 with phenylchloro-
ketene 4 (Figure 3b, Scheme $). According to the experimental
investigation by the Ghosez group, the reactions with the

oxazoline containing a tert-butyloxycarbonyl protecting group
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are less regioselective and lower yielding than the methylated
analogue. Figure 3b shows that transition states TS-26 (Ph-
endo) and TS-27 (Cl-endo) involve the addition of the central
carbon of ketene 4 onto C4 of oxazoline 2. DLPNO-
CCSD(T)/cc-pVTZ single-point energies suggest that the
reaction occurs selectively via the Ph-endo transition state TS-
26 ( Eccspr) = 1.8 keal/mol vs Cl-endo).

The regioisomeric attack onto CS of the oxazoline occurs
similarly via transition states with Cl-endo or Ph-endo (TS-28,
TS-29, respectively; Figure 3). DLPNO-CCSD(T)/cc-pVTZ
single-point energies again suggest that cycloaddition favors
the Ph-endo transition state TS-28 ( 4.4 kcal/
mol relative to Cl-endo).

For Ph-endo cycloadditions, DLPNO-CCSD(T)/cc-pVTZ
single-point energy of the major reaction at the C4 position

ECCSD(T) =

https://doi.org/10.1021/acs.joc.2c00001
J Org Chem 2022 87 3613 3622
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Scheme 4. Energy Pro le for the Reaction of Carbomethoxy-Containing Oxazoline 1 and Chlorophenylketene 4 Leading to

Regioisomeric Ph-endo Adducts 24 and 25
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“Geometry optimization was conducted at the ®B97X-D/6-311++G(d,p) level of theory. Single-point energies were calculated with ©B97X-D/6-
311++G(2d,2p) (shown in plain text) and DLPNO-CCSD(T)/cc-pVTZ (shown in parentheses). Energies are in units of kcal/mol.

(TS-26) is 1.0 kcal/mol lower than that of the minor reaction
at the CS position (TS-28). However, wB97X-D/6-311+
+G(2d,2p) single-point energies suggest that cycloaddition
favors the formation of TS-28 reaction by 0.6 kcal/mol. Both
methods predict lower selectivity as found experimentally for
the tert-butyl compound, although the wB97X-D/6-311+
+G(2d,2p) results predict the wrong major regioisomer.
Gratifyingly, the higher level of theory predicts the regioisomer
consistent with experimental observation.

Intriguingly, our calculations on Ghosezs ketene cyclo-
additions to oxazolines all support the addition of the ketene
electrophilic carbon to the oxazoline C4 in contradiction to
Seebach s acylation results. To further investigate the
electronic profile of these cycloadditions, we performed a
natural population analysis (NPA). The FMOs of oxazolines 1
and 2 and ketenes 3 and 4 were obtained and are shown in
Figure 4. The thermal (2 + 2) cycloadditions of ketenes and
alkenes should involve the interaction of the 7 orbital of the
alkene C C bond (i.e., the oxazoline HOMO) and the 7
orbital of the ketene C O bond (i.e, the ketene LUMO).
The n orbitals of oxazolines 1 and 2 have larger MO
coefficients at C4: for oxazoline 1, the HOMO coefficients in
the NAO basis of C4 and C5 are 0.28 and 0.25, respectively,
and for oxazoline 2, the HOMO coefficients of C4 and CS are
0.27 and 0.25, respectively. Similarly, the 7 orbitals of ketenes
3 and 4 exhibit larger MO coefficients on the central carbon.
While the di erence in C4/CS HOMO coeflicients is small in

3618

both oxazolines, the larger coefficients suggest that reactivity at
C4 should be favored as observed.

We also investigated the natural bond order (NBO) charges
of oxazolines 1 and 2 to better understand the origins of
regioselectivity (Table 1). For the reactants, the NBO charges
of oxazoline 1 at C4 and CS are 0.10 and 0.13, respectively.
Similarly, the NBO charges of oxazoline 2 at C4 and CS are

0.10 and 0.12, respectively. Unlike the oxazoline orbital
coefficients, here there are rather dramatic di erences; the
charges predict that C4 is more nucleophilic (more negative)
than CS, again consistent with Ghosez s results. This is likely
an inductive e ect rising from the ethereal oxygen withdrawing
electron density from CS.

Therefore, C C bond formation between C1 of ketene 3 or
4 and C4 of oxazolines occurs more readily than that between
C1 of the ketenes and CS of oxazolines. At the transition state,
the NBO charge of the C4 of the minor pathway is 0.19 or
0.20, while that of the CS carbon atom of major pathway is
0.36 or 0.37. Thus, the computational results demonstrate that
the HOMO coeflicients and NBO charges of oxazolines 1 and
2 correlate with experimental regioselectivities in the (2 + 2)
cycloaddition with ketenes 3 and 4.

Our calculations of the full ketene/oxazoline (2 + 2)
cycloaddition, NPA, and NBO analyses all suggest that
electrophilic addition to C4 should be favored. Indeed, viewing
ketene as an acylating agent alone, there is little immediate
di erence between the substrate the Vilsmeier and Friedel

https://doi.org/10.1021/acs.joc.2c00001
J Org Chem 2022 87 3613 3622
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Scheme S. Energy Pro le for the Reaction of tert-Butoxycarbonyl-Containing Oxazoline 2 and Chlorophenylketene 4 Leading

to Regioisomeric Ph-endo Adducts 30 and 31
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“Geometry optimization was conducted at the @B97X-D/6-311++G(d,p) level of theory. Single-point energies were calculated with @B97X-D/6-
311++G(2d,2p) (shown in plain text) and DLPNO-CCSD(T)/cc-pVTZ (shown in parentheses). Energies are in units of kcal/mol.

Crafts reagents employed by Seebach for oxazoline acylation.
Yet, the Vilsmeier and Friedel Crafts starting reagents are
cationic species, while the ketenes studied by Ghosez are
neutral. These charges may influence the buildup of charge in
the transition structure and have direct implications for
Seebach s stabilization model (Figure 1) relative to the ketene
additions studied here.

Seeking comparison between these reagents—and therefore
the disparate regiochemical outcome—we expanded our study
to include the transition structures of the Vilsmeier reagent
cation with oxazoline 1 (Figure S). In accordance with
Seebach s results, the CS addition TS is found to be more
stable than the corresponding C4 addition (  Eccsp(r) =

2.3 kcal/mol vs C4). An NBO charge analysis of the two
transition structures, TS-V-C4 and TS-V-CS, demonstrates the
influence of the starting material charge on the selectivity
(Table 1). In comparison to the ketene + oxazoline system
(e.g, 1 + 3), Vilsmeier reagent addition to C4 builds up more
positive charge density on C4 and the oxazoline oxygen than
the corresponding ketene addition. This is consistent with the
polarizing e ect of a cationic electrophile on the donor oxygen:
as oxygen is a poorer electron donor than nitrogen (Figure 1),
the buildup of positive charge in transition structure TS-V-C4
reflects an increased energy barrier. Therefore, cationic
acylating agents such as the Vilsmeier reagent are expected
to react primarily at C5, as demonstrated by Seebach.

In contrast, the ketenes do not induce as much positive
charge due to their highly asynchronous, concerted inter-
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actions with the oxazoline m-system. The four-membered
character of the transition structure precludes the formation of
a true, heteroatom-stabilized carbocation. Therefore, regiose-
lectivity reflects the most nucleophilic center, which as shown
is C4, as observed by Ghosez.

CONCLUSIONS

These DFT calculations elucidate the concerted, highly
asynchronous, mechanism for the thermal (2 + 2) cyclo-
additions of oxazolines 1 and 2 with diphenyl- and
dichloroketenes 3 and 4. The cycloadditions involve
regioselective addition of the central carbon of the ketene 7-
system onto C4 of oxazolines, which is consistent with
experimental results obtained by the Ghosez group. In
addition, we explore Cl-endo and Ph-endo stereoselectivities
in the (2 + 2) cycloadditions of oxazolines with phenyl-
chloroketene. The DLPNO-CCSD(T)/cc-pVTZ single-point
energies suggest that cycloaddition favors the Ph-endo reaction
in agreement with the experimental results.

These results, together with a study of Seebach s addition of
the Vilsmeier reagent to oxazolines, elucidate the origins of
acylating agent regioselectivity with oxazolines. Due to the
buildup of charge in the oxazoline, charged electrophiles are
expected to react at C5, to the nitrogen, to produce the more
stabilized acyl-amino cation system, as predicted by Seebach.
The corresponding ketene addition is expected to proceed at
the more nucleophilic C4, to the oxygen, as the

https://doi.org/10.1021/acs.joc.2c00001
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Figure 4. FMOs of oxazolines 1 and 2 and ketenes 3 and 4. FMOs
were generated at the HF/6-31G(d)//a)B97X-D/6-311++G(d,p)
level.

Table 1. NBO Charges of the Reactants and Transition

States for the 2 + 2) Cycloadditions of Oxazolines 1 and 2

with Ketenes and Oxazoline 1 with Vilsmeier Reagent at the
B97X-D/6-311++G 2d,2p) Level”

ketenes C4 Cs N O R

1 0.10 0.13 0.56 0.57 0.35
2 0.10 0.12 0.55 0.57 0.39
3 0.00

4 0.00

TS-12 0.41 0.15 0.37 0.57 0.49 0.36
TS-13 0.45 0.19 0.04 0.51 0.58 0.37
TS-16 0.41 0.14 0.37 0.57 0.49 0.40
TS-17 0.45 0.20 0.04 0.51 0.58 0.42
TS-20 0.40 0.14 0.36 0.58 0.50 0.36
TS-22 0.44 0.19 0.04 0.52 0.58 0.37
TS-26 0.37 0.16 0.36 0.58 0.50 0.40
TS-28 0.49 0.20 0.04 0.51 0.58 0.43
TS-V-C4 0.11 0.38 0.58 0.46

TS-V-C§ 0.13 0.08 0.51 0.58

“R = remaining atoms on ketenophile.

asynchronous, concerted mechanism reduces charge buildup,
preventing the formation of a full carbocation.

COMPUTATIONAL METHODS

Quantum mechanical calculations were performed with Gaussmn
164 Geometry optlmlzatlon was completed using the mPW1PW91"3

and ®B97X-D'® functionals with the 6-311++G(d,p) basis set.
Reactions of oxazolines with diphenylketene and phenylchloroketene
were studied both in the gas phase and using the SMD solvation
model'” for toluene at 298 K and cyclohexane at 333 K. Frequency
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Figure 5. Regioisomeric transition structures and calculated energies
for the addition of Vilmeier reagent cation to oxazoline 1. Geometry
optimization was conducted at the @B97X-D/6-311++G(d,p) level of
theory. Single-point energies were calculated with @B97X-D/6-311+
+G(2d,2p) and DLPNO-CCSD(T)/cc-pVTZ. Energies are provided
in units of kcal/mol relative to the energies of TS-V-CS.

calculations were performed at the same theoretical level as that used
for geometry optimizations to verify the stationary points as either
minima or first-order saddle points on the potential energy surface.
Intrinsic reaction coordinate (IRC) calculations were performed to
confirm that saddle points corresponded to the desired transition
states. A qua51harmon1c Grimme correction with a frequency cuto

value of 100 cm ' was applied for ions 8 11 using Paton s Goodvibes
software.'® DLPNO-CCSD(T)" smgle point energy calculations
were performed with a cc-pVTZ? basis set and the SMD solvation
model on ORCA 4.0.1.>' Additional single-point calculations were
carried out at the ®B97X-D/6-311++G(2d,2p) level. Natural atomic
orbitals (NAO) were calculated using Multiwfn.** Detailed energies,
enthalpies, and free energies of stationary points, as well as the results
from mPWIPW91 calculations, are provided in the Supporting
Information. Molecular structures were illustrated using CYLview.”
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