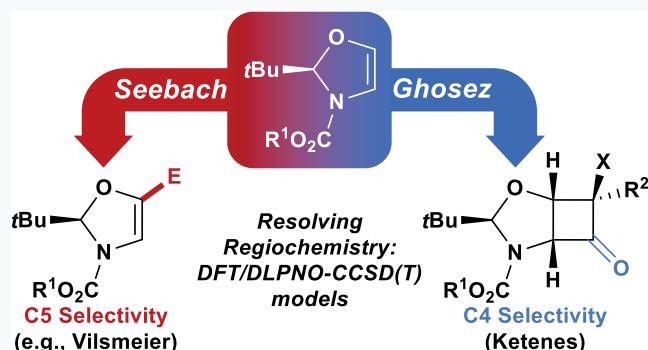


Computational Exploration of Anomalous Regioselectivities in Cycloadditions of Ketenes to Oxazolines

Ledong Zhu Mark A. Maskeri Melissa Ramirez F. Le Bideau Léon Ghosez and K. N. Houk

Cite This: *J Org Chem* 2022 87 3613 3622

Read Online


CCESS |

Metrics More

Article Recommendations

Supporting Information

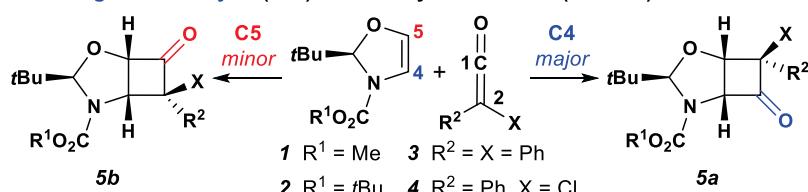
ABSTRACT: Thermal (2 + 2) cycloadditions of several *N*-carboalkoxy (*R*)-2-*tert*-butyldihydrooxazoles with ketenes have been studied experimentally by the Ghosez group. Contrary to results from Seebach and co-workers that the electrophilic addition of acylating agents occurs to dihydrooxazole nitrogen, Ghosez found major cycloadducts resulting from an attack of ketene carbonyl carbon to oxygen. We investigate the potential energy surface for the cycloaddition of diphenyl- and phenylchloroketenes to two (*R*)-2-*tert*-butyldihydrooxazoles with ω B97X-D and mPW1PW91 density functional theory and DLPNO-CCSD(T) wave function theory. These (2 + 2) cycloadditions are concerted but highly asynchronous, and the selectivity trends in ketene addition cases are in good agreement with the experiment. We propose a model based on the buildup of charge in oxazoline to reconcile the regiochemical differences between Ghosez and Seebach's observations.

INTRODUCTION

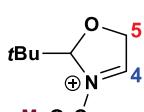
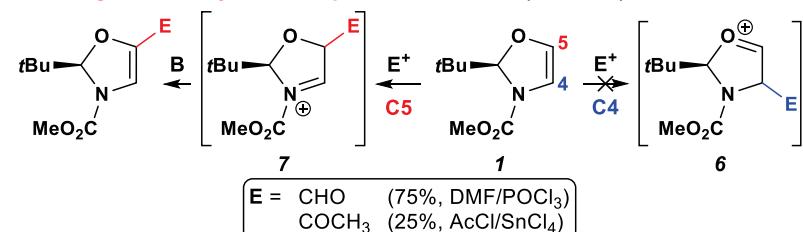
In 1905 1907, long before the discovery of the Diels Alder reaction, Hermann Staudinger reported the isolation of diphenylketene and its unique ability to form a four-membered ring by addition to cyclopentadiene.¹ At the time, this pioneering work remained of little synthetic value due to the rapid dimerization of most alkyl and aryl ketenes that favorably competed with the desired alkene cycloaddition. It took about 50 years to witness a real renaissance of ketene cycloaddition chemistry, with ketenes rendered synthetically useful by observations of their facile cycloadditions with newly available activated olefins such as enamines,² and the development of highly electrophilic haloketenes that enabled stereospecific cycloadditions to a wide variety of olefins.³ In the ensuing decades, this reaction has become undoubtedly one of the most important methods for the generation of four-membered rings.⁴

During the renaissance era of ketene chemistry, Woodward and Ho mann emphasized the role of the π orbital of the ketene C=O bond as the "spearhead" of its reactivity.⁵ They described these reactions as $[\pi_{2s} + \pi_{2a}]$ cycloadditions, driven by the perpendicular interaction of the alkene π orbital with the ketene C=O π orbital. Early computational studies showed that thermal (2 + 2) cycloadditions of ketenes and alkenes proceeded via either a stepwise or concerted, asynchronous mechanism.⁶ In 1990, Wang and Houk performed theoretical investigations on the reaction of ketenes with alkenes utilizing the *ab initio* SCF method with STO-3G, 3-21G, and 6-31G basis sets and correlation energy

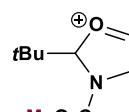
corrections at the MP2 level.⁷ These studies concluded that the reactions are (2 + 2 + 2) cycloadditions, another way that ketene cycloadditions had been analyzed by Woodward and Ho mann.⁵ Yamabe et al. further investigated the frontier molecular orbital (FMO) interactions involved in ketene (2 + 2) cycloadditions using *ab initio* methods.⁸ These results demonstrated that the (2 + 2) cycloadditions proceed via a concerted, asynchronous mechanism involving two independent FMO interactions: the first FMO interaction involves an overlap of a π orbital or a nonbonding orbital of the ketenophile with the LUMO of the ketene, while the second interaction implicates overlap of the π orbital of the ketenophile with the HOMO of the ketene.⁸ By 2006, Singleton utilized density functional theory (DFT) to study the reaction of cyclopentadiene with diphenylketene and dichloroketene using the ω B97X-D and mPW1K functionals.^{6c} Singleton's results demonstrated that the carbonyl group of the ketene can participate in both (4 + 2) and (2 + 2) cycloadditions. More recently, Tang and co-workers studied the mechanism of Lewis acid-promoted (2 + 2) cycloadditions of ketenes and alkenes DFT.⁹ Despite the progress made


Received: January 1, 2022

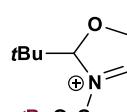
Published: January 25, 2022



Scheme 1. Divergent Regioselectivities in the Reaction of (R)-2-*tert*-Butyldihydrooxazoles with Ketenes and Acylating Agents^{10,12}

a. **C4 regioselectivity of (2+2) ketenes cycloadditions (Ghosez)**



		Yield (%)	Ratio 5a/5b
$R^1 = Me$	$R^2 = X = Ph$	80	5.1
$R^1 = tBu$	$R^2 = X = Ph$	37	4.0
$R^1 = Me$	$R^2 = Me, X = Cl$	80	>30.0
$R^1 = Me$	$R^2 = Ph, X = Cl$	87	10.0
$R^1 = tBu$	$R^2 = Ph, X = Cl$	60	5.9


b. **C5 regioselectivity in electrophilic substitution (Seebach)**


$\Delta\Delta G = 0.0$

$\Delta\Delta G = 3.6$

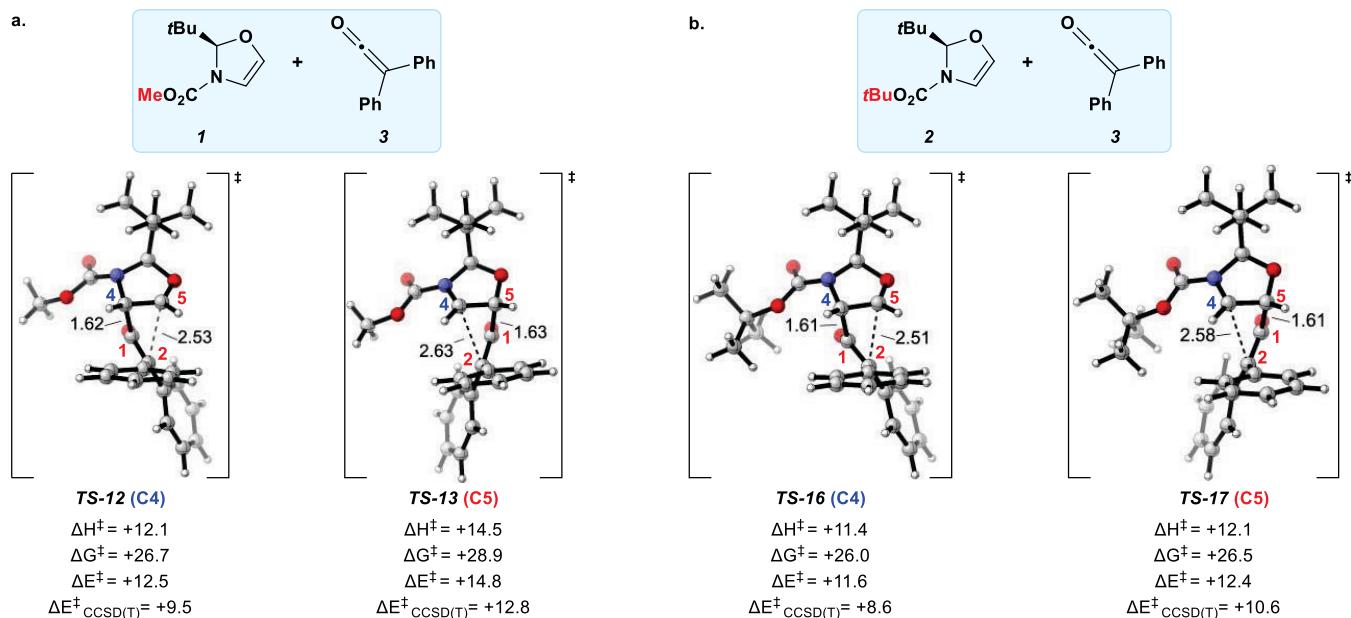
$\Delta\Delta G = 0.0$

$\Delta\Delta G = 6.6$

Figure 1. Relative energies of the iminium and oxonium ions of oxazolines **1** and **2**. Energies are provided in units of kcal/mol at the ω B97X-D/6-311++G(d,p) level.

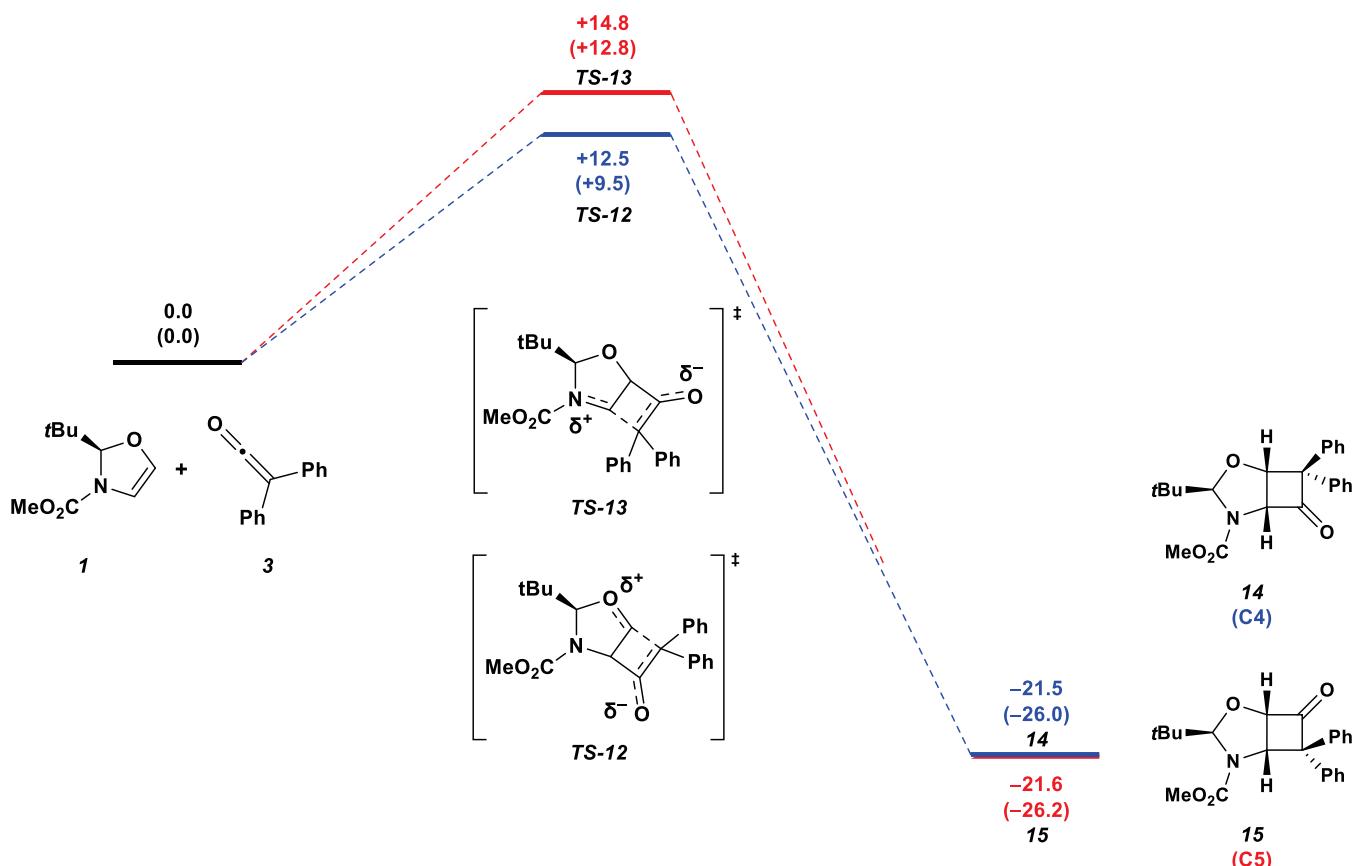
toward understanding the reactivity of ketenes using computations, no theoretical studies have been performed to elucidate substituent effects on regioselectivity in the thermal (2 + 2) cycloadditions of ketenes with nonsymmetric alkenes such as dihydrooxazoles (oxazolines) studied by Ghosez et al.

The regioselectivity of these ketene-plus-alkene cycloadditions was expected to be that observed for the addition of electrophilic reagents to alkenes, i.e., the electrophilic central atom of the ketene should bind to the more nucleophilic carbon atom of olefin.⁴ We were therefore intrigued by the unprecedented regioselectivity trend observed in Ghosez's work on ketene/oxazoline (2 + 2) cycloadditions.¹⁰ Ghosez and co-workers observed that a variety of ketenes reacted with oxazolines **1** and **2** to give preferentially (2 + 2) cycloadducts **5a**, resulting from an attack of C4 of oxazolines **1** and **2** on the electrophilic C=O of the ketene (30–79% yields, Scheme 1a) with only minor yields of the previously “expected” regioisomers **5b**.¹¹ These oxazolines had been shown by Seebach et al. to be versatile synthons containing a highly reactive electron-rich C=C bond amenable to significant elaboration.¹² Acylating reagents utilized in Seebach's studies (Vilsmeier reagent and acetyl chloride) were added at the C5 position selectively on the face opposite to the *tert*-butyl


substituent. This regioselectivity has been explained on the basis of the preferential formation of acyliminium ion intermediate **7**, which is more stable than the oxonium ion **6** resulting from an attack at C4.¹³

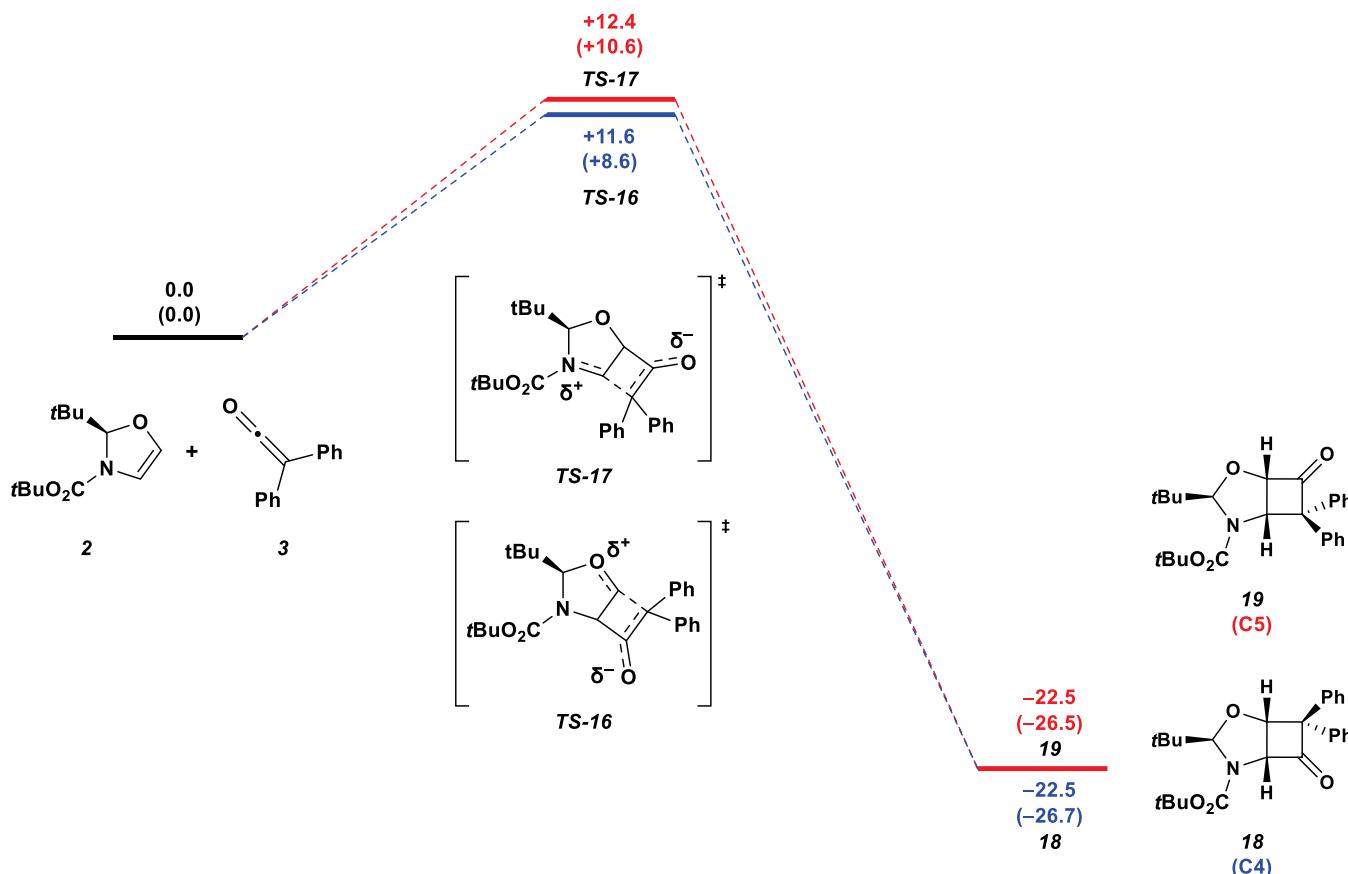
Seeking to rationalize this disparity in regioselectivity, we undertook a computational study of the thermal (2 + 2) cycloadditions between (R)-2-*tert*-butyldihydrooxazoles and diphenyl- and phenylchloroketenes.

RESULTS AND DISCUSSION


We began our investigation with Seebach's proposal that regiochemistry of electrophilic addition to oxazolines is dictated by the stability of the resulting heteroatom-stabilized carbocation.¹³ The oxonium and iminium ions of oxazolines **1** and **2** are shown in Figure 1. Relative to iminium ions **8** and **10**, the oxonium ions **9** and **11** are destabilized by several kcal/mol, even though the iminium ions are substituted by electron-withdrawing esters. This is consistent with Seebach's proposal and earlier calculations: the greater stability of intermediates **8** and **10** suggests the preferential attack of electrophiles at C5 of oxazolines.

However, these data are inconsistent with Ghosez's regiochemical observations, and we continued to a complete

Figure 2. Regioisomeric transition-state structures and calculated energies for the (2 + 2) cycloadditions of diphenylketene 3 with oxazolines (a) 1 and (b) 2. Geometry optimization was conducted at the ω B97X-D/6-311++G(d,p) level of theory. Single-point energies were calculated with ω B97X-D/6-311++G(2d,2p) and DLPNO-CCSD(T)/cc-pVTZ. Energies are provided in units of kcal/mol.


Scheme 2. Energy Profile for the Reaction of Carbomethoxy-Substituted Oxazoline 1 and Ketene 3^a

^aGeometry optimization was conducted at the ω B97X-D/6-311++G(d,p) level of theory. Single-point energies were calculated with both ω B97X-D/6-311++G(2d,2p) (shown in plain text) and DLPNO-CCSD(T)/cc-pVTZ (shown in parentheses). Energies are provided in units of kcal/mol.

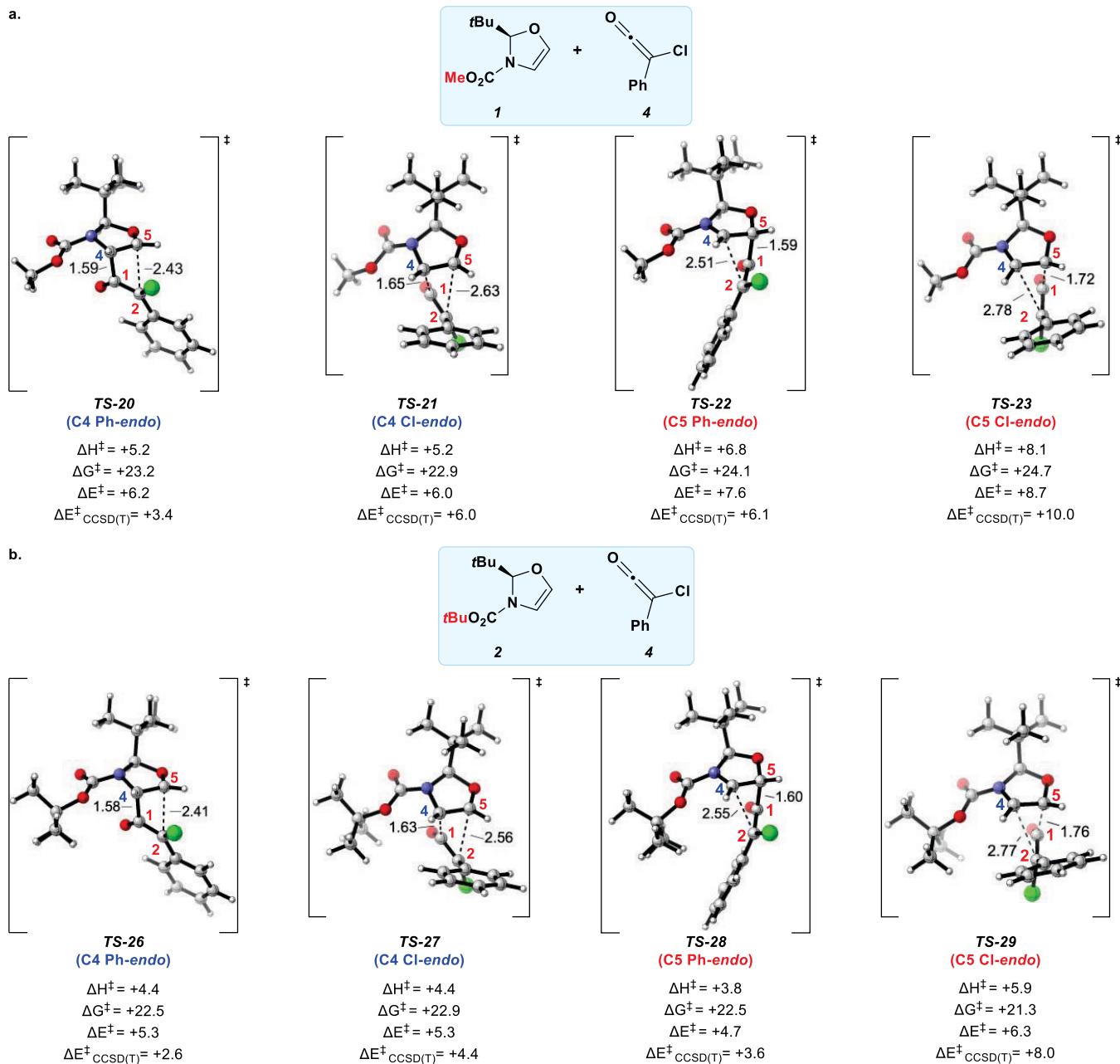
examination of the potential energy surface of ketene (2 + 2) cycloaddition with oxazolines. Figure 2 shows transition-state structures for the (2 + 2) cycloaddition of oxazolines 1 and 2

with diphenylketene 3. The carbomethoxy-substituted oxazoline 1 gives rise to transition states TS-12 and TS-13, proceeding from initial electrophilic addition to C4 and C5,

Scheme 3. Energy Profile for the Reaction of *tert*-Butoxycarbonyl-Containing Oxazoline 2 and Ketene 3^a

^aGeometry optimization was conducted at the ω B97X-D/6-311++G(d,p) level of theory. Single-point energies were calculated with both ω B97X-D/6-311++G(2d,2p) (shown in plain text) and DLPNO-CCSD(T)/cc-pVTZ (shown in parentheses). Energies are provided in units of kcal/mol.

respectively. Oxazoline **2**, carrying a *tert*-butoxycarbonyl group, similarly proceeds to transition states **TS-16** and **TS-17**. Structures **TS-12** and **TS-16**, leading to cycloadducts containing a carbonyl group α to the oxazoline nitrogen atom, were calculated to be more stable than their regioisomeric counterparts. Our investigation additionally found that the (2 + 2) cycloaddition advances through a highly asynchronous, concerted mechanism, where the length of the first formed bond varies substantially. Single-point energies calculated with ω B97X-D/6-311++G(2d,2p) generally agree with those obtained with DLPNO-CCSD(T)/cc-pVTZ. These data are consistent with the preferential formation of the initial oxazoline ketene bond at C4, as observed by Ghosez (Scheme 1).


The energy profiles for the cycloaddition of oxazolines **1** and **2** with diphenylketene **3** are shown in Schemes 2 and 3, respectively. Cycloadditions occurring via **TS-12** and **TS-16** are shown to be kinetically favored, and despite little to no energy difference between diastereomeric products, they yield the C4-(α -keto) adducts **14** and **18**, respectively. In these diagrams, we show the highest energy point along the reaction coordinate as the transition state of the reaction.

We proceeded to examine the (2 + 2) cycloaddition of oxazoline **1** with the asymmetrically substituted phenylchloroketene **4**. Due to the asymmetry, the cycloaddition can proceed with either chloro-*endo* or phenyl-*endo* diastereoselectivity; the corresponding transition states (**TS-20**–**TS-23**) are shown in Figure 3a. Similar to the cycloaddition of **1** and **3**,

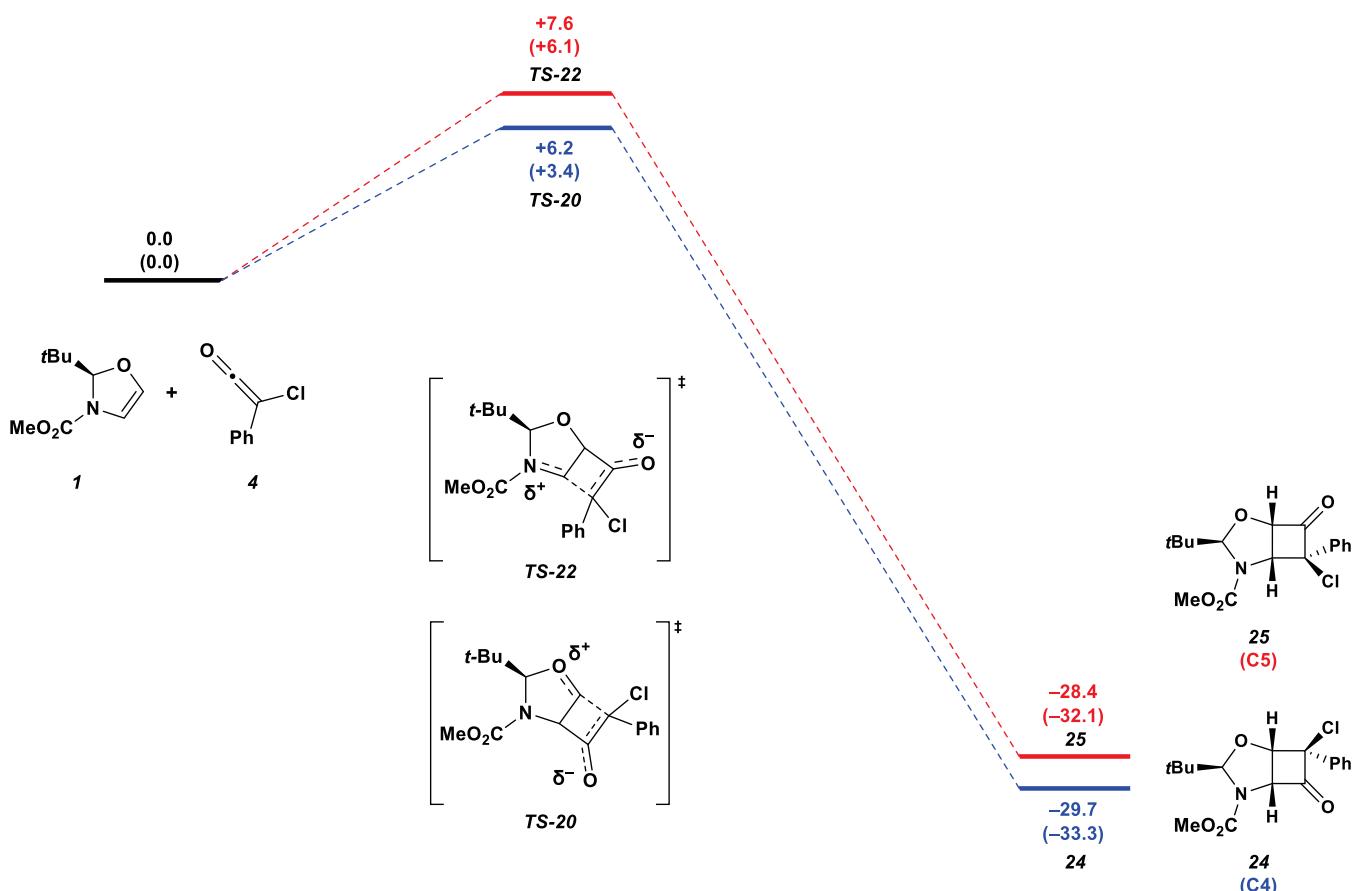
the major transition states involve an attack of the central carbon of the ketene on C4 of the oxazoline, to the oxygen atom. This cycloaddition has a 7 kcal/mol lower barrier than that of diphenylketene, as expected due to the inductive electron withdrawal and smaller steric effect of the Cl. Single-point energy calculations at the ω B97X-D/6-311++G(2d,2p) and DLPNO-CCSD(T)/cc-pVTZ levels confirmed that these reactions also proceeded via a highly asynchronous mechanism. Careful optimization yielded an extremely shallow intermediate along the reaction coordinate, representing an energy plateau on the ascent to transition states homologous to those of the diphenylketene case (see the SI). We hypothesize that this structure is indicative of a highly asynchronous cycloaddition for phenylchloroketene, as the free-energy difference between the initial bond-forming transition structure and the intermediate is essentially zero.

Calculations at the ω B97X-D/6-311++G(2d,2p) level of theory suggest no difference in activation energy between Ph-*endo* and Cl-*endo* transition structures, though single-point energy corrections at the higher DLPNO-CCSD(T)/cc-pVTZ theory level demonstrate a strong preference for the Ph-*endo* TS in accord with experimental observations (TS-20,

$E_{\text{CCSD(T)}} = 2.6$ kcal/mol relative to Cl-*endo* transition state **TS-21**). While the corresponding Ph-*endo* product is more crowded than the Cl-*endo*, the product is favored because it actually has a sterically less congested transition state where the phenyl substituent is oriented away from the alkene (Figure 3).

Figure 3. Regioisomeric transition structures and calculated energies for the (2 + 2) cycloadditions of phenylchloroketene 4 with oxazolines (a) 1 and (b) 2, respectively. Geometry optimization was conducted at the ω B97X-D/6-311++G(d,p) level of theory. Single-point energies were calculated with ω B97X-D/6-311++G(2d,2p) and DLPNO-CCSD(T)/cc-pVTZ. Energies are provided in units of kcal/mol.

For the regioisomeric addition of the electrophilic carbon to the oxazoline C5 (to the nitrogen), DLPNO-CCSD(T)/cc-pVTZ single-point energies again suggest that the reaction occurs selectively via the Ph-*endo* transition state TS-22 ($E_{CCSD(T)} = 3.9$ kcal/mol relative to Cl-*endo*). Between the favored Ph-*endo* cycloadditions, the activation energy of the major reaction at the C4 position (TS-20) is several kcal/mol lower than that of the minor reaction at the C5 position ($E_{CCSD(T)} = 2.7$ kcal/mol, $E_{\omega B97X-D} = 1.4$ kcal/mol, Scheme 4).


We also investigated the (2 + 2) cycloaddition of *tert*-butyloxycarbonyl-substituted oxazoline 2 with phenylchloroketene 4 (Figure 3b, Scheme 5). According to the experimental investigation by the Ghosez group, the reactions with the oxazoline containing a *tert*-butyloxycarbonyl protecting group

are less regioselective and lower yielding than the methylated analogue. Figure 3b shows that transition states TS-26 (Ph-*endo*) and TS-27 (Cl-*endo*) involve the addition of the central carbon of ketene 4 onto C4 of oxazoline 2. DLPNO-CCSD(T)/cc-pVTZ single-point energies suggest that the reaction occurs selectively via the Ph-*endo* transition state TS-26 ($E_{CCSD(T)} = 1.8$ kcal/mol vs Cl-*endo*).

The regioisomeric attack onto C5 of the oxazoline occurs similarly via transition states with Cl-*endo* or Ph-*endo* (TS-28, TS-29, respectively; Figure 3). DLPNO-CCSD(T)/cc-pVTZ single-point energies again suggest that cycloaddition favors the Ph-*endo* transition state TS-28 ($E_{CCSD(T)} = 4.4$ kcal/mol relative to Cl-*endo*).

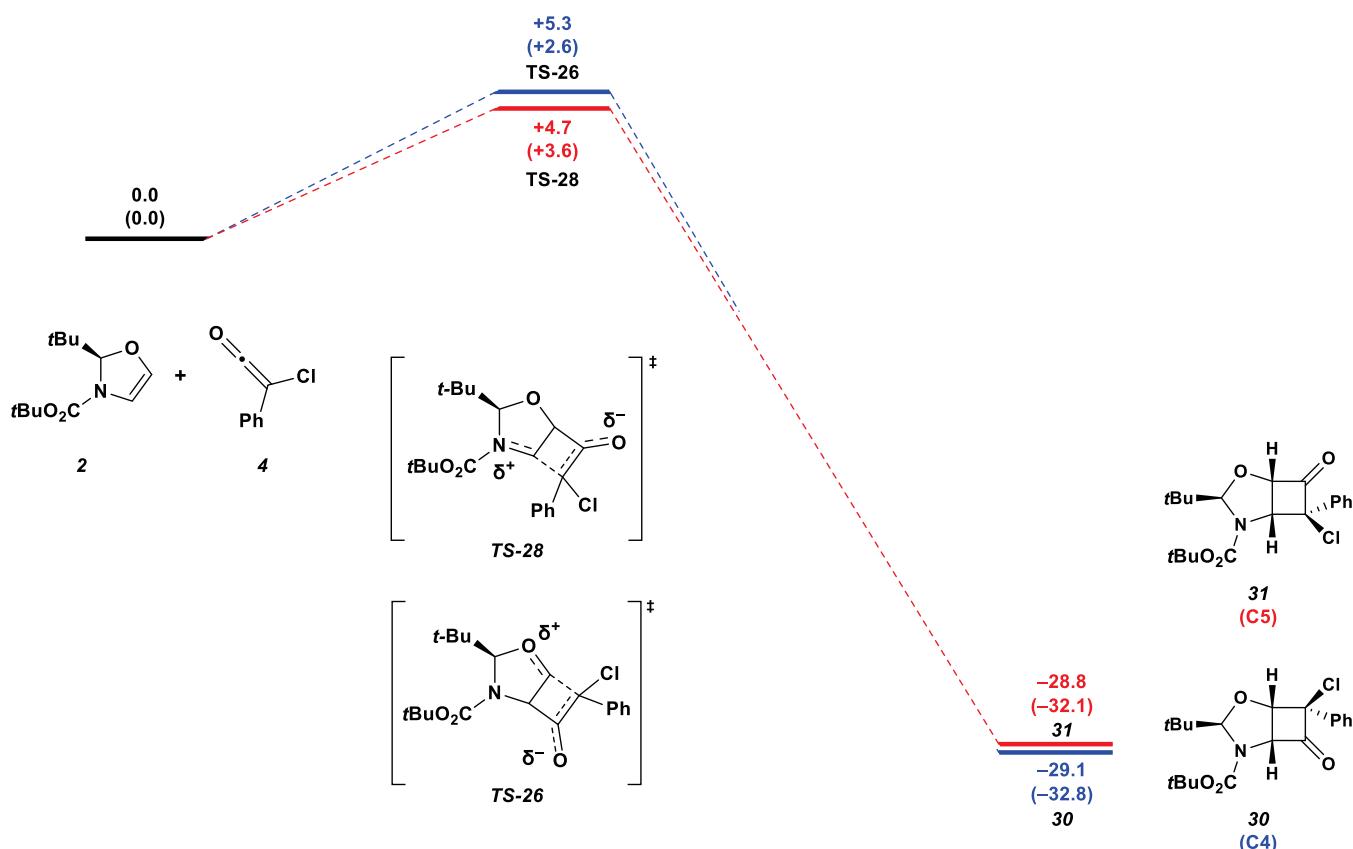
For Ph-*endo* cycloadditions, DLPNO-CCSD(T)/cc-pVTZ single-point energy of the major reaction at the C4 position

Scheme 4. Energy Profile for the Reaction of Carbomethoxy-Containing Oxazoline 1 and Chlorophenylketene 4 Leading to Regioisomeric Ph-*endo* Adducts 24 and 25^a

^aGeometry optimization was conducted at the ω B97X-D/6-311++G(d,p) level of theory. Single-point energies were calculated with ω B97X-D/6-311++G(2d,2p) (shown in plain text) and DLPNO-CCSD(T)/cc-pVTZ (shown in parentheses). Energies are in units of kcal/mol.

(TS-26) is 1.0 kcal/mol lower than that of the minor reaction at the C5 position (TS-28). However, ω B97X-D/6-311++G(2d,2p) single-point energies suggest that cycloaddition favors the formation of TS-28 reaction by 0.6 kcal/mol. Both methods predict lower selectivity as found experimentally for the *tert*-butyl compound, although the ω B97X-D/6-311++G(2d,2p) results predict the wrong major regioisomer. Gratifyingly, the higher level of theory predicts the regioisomer consistent with experimental observation.

Intriguingly, our calculations on Ghosez's ketene cycloadditions to oxazolines all support the addition of the ketene electrophilic carbon to the oxazoline C4 in contradiction to Seebach's acylation results. To further investigate the electronic profile of these cycloadditions, we performed a natural population analysis (NPA). The FMOs of oxazolines 1 and 2 and ketenes 3 and 4 were obtained and are shown in Figure 4. The thermal (2 + 2) cycloadditions of ketenes and alkenes should involve the interaction of the π orbital of the alkene C=C bond (i.e., the oxazoline HOMO) and the π orbital of the ketene C=O bond (i.e., the ketene LUMO). The π orbitals of oxazolines 1 and 2 have larger MO coefficients at C4: for oxazoline 1, the HOMO coefficients in the NAO basis of C4 and C5 are 0.28 and 0.25, respectively, and for oxazoline 2, the HOMO coefficients of C4 and C5 are 0.27 and 0.25, respectively. Similarly, the π orbitals of ketenes 3 and 4 exhibit larger MO coefficients on the central carbon. While the difference in C4/C5 HOMO coefficients is small in


both oxazolines, the larger coefficients suggest that reactivity at C4 should be favored as observed.

We also investigated the natural bond order (NBO) charges of oxazolines 1 and 2 to better understand the origins of regioselectivity (Table 1). For the reactants, the NBO charges of oxazoline 1 at C4 and C5 are 0.10 and 0.13, respectively. Similarly, the NBO charges of oxazoline 2 at C4 and C5 are 0.10 and 0.12, respectively. Unlike the oxazoline orbital coefficients, here there are rather dramatic differences; the charges predict that C4 is more nucleophilic (more negative) than C5, again consistent with Ghosez's results. This is likely an inductive effect rising from the ethereal oxygen withdrawing electron density from C5.

Therefore, C=C bond formation between C1 of ketene 3 or 4 and C4 of oxazolines occurs more readily than that between C1 of the ketenes and C5 of oxazolines. At the transition state, the NBO charge of the C4 of the minor pathway is 0.19 or 0.20, while that of the C5 carbon atom of major pathway is 0.36 or 0.37. Thus, the computational results demonstrate that the HOMO coefficients and NBO charges of oxazolines 1 and 2 correlate with experimental regioselectivities in the (2 + 2) cycloaddition with ketenes 3 and 4.

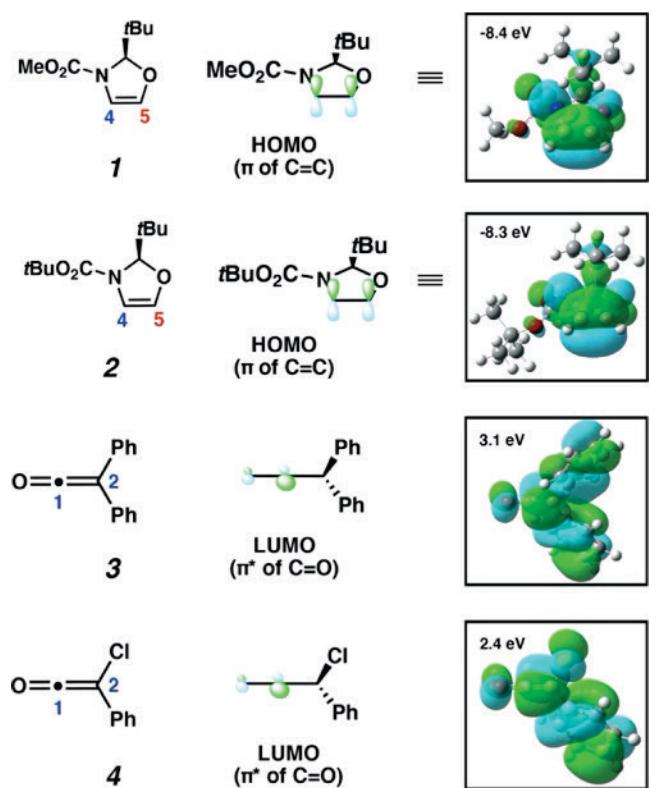
Our calculations of the full ketene/oxazoline (2 + 2) cycloaddition, NPA, and NBO analyses all suggest that electrophilic addition to C4 should be favored. Indeed, viewing ketene as an acylating agent alone, there is little immediate difference between the substrate Vilsmeier and Friedel

Scheme 5. Energy Profile for the Reaction of *tert*-Butoxycarbonyl-Containing Oxazoline 2 and Chlorophenylketene 4 Leading to Regioisomeric Ph-*endo* Adducts 30 and 31^a

^aGeometry optimization was conducted at the ω B97X-D/6-311++G(d,p) level of theory. Single-point energies were calculated with ω B97X-D/6-311++G(2d,2p) (shown in plain text) and DLPNO-CCSD(T)/cc-pVTZ (shown in parentheses). Energies are in units of kcal/mol.

Crafts reagents employed by Seebach for oxazoline acylation. Yet, the Vilsmeier and Friedel Crafts starting reagents are cationic species, while the ketenes studied by Ghosez are neutral. These charges may influence the buildup of charge in the transition structure and have direct implications for Seebach's stabilization model (Figure 1) relative to the ketene additions studied here.

Seeking comparison between these reagents—and therefore the disparate regiochemical outcome—we expanded our study to include the transition structures of the Vilsmeier reagent cation with oxazoline 1 (Figure 5). In accordance with Seebach's results, the C5 addition TS is found to be more stable than the corresponding C4 addition ($E_{CCSD(T)} = 2.3$ kcal/mol vs C4). An NBO charge analysis of the two transition structures, TS-V-C4 and TS-V-C5, demonstrates the influence of the starting material charge on the selectivity (Table 1). In comparison to the ketene + oxazoline system (e.g., 1 + 3), Vilsmeier reagent addition to C4 builds up more positive charge density on C4 and the oxazoline oxygen than the corresponding ketene addition. This is consistent with the polarizing effect of a cationic electrophile on the donor oxygen: as oxygen is a poorer electron donor than nitrogen (Figure 1), the buildup of positive charge in transition structure TS-V-C4 reflects an increased energy barrier. Therefore, cationic acylating agents such as the Vilsmeier reagent are expected to react primarily at C5, as demonstrated by Seebach.


In contrast, the ketenes do not induce as much positive charge due to their highly asynchronous, concerted inter-

actions with the oxazoline π -system. The four-membered character of the transition structure precludes the formation of a true, heteroatom-stabilized carbocation. Therefore, regioselectivity reflects the most nucleophilic center, which as shown is C4, as observed by Ghosez.

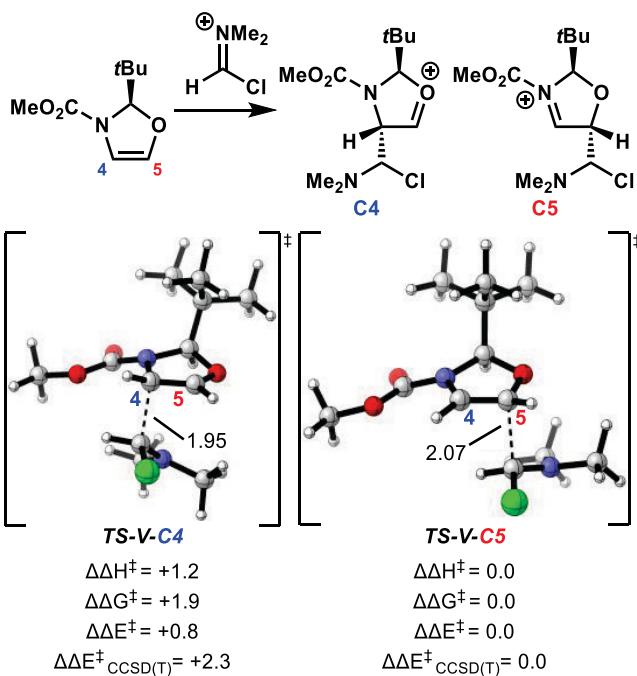
CONCLUSIONS

These DFT calculations elucidate the concerted, highly asynchronous, mechanism for the thermal (2 + 2) cycloadditions of oxazolines 1 and 2 with diphenyl- and dichloroketenes 3 and 4. The cycloadditions involve regioselective addition of the central carbon of the ketene π -system onto C4 of oxazolines, which is consistent with experimental results obtained by the Ghosez group. In addition, we explore Cl-*endo* and Ph-*endo* stereoselectivities in the (2 + 2) cycloadditions of oxazolines with phenylchloroketene. The DLPNO-CCSD(T)/cc-pVTZ single-point energies suggest that cycloaddition favors the Ph-*endo* reaction in agreement with the experimental results.

These results, together with a study of Seebach's addition of the Vilsmeier reagent to oxazolines, elucidate the origins of acylating agent regioselectivity with oxazolines. Due to the buildup of charge in the oxazoline, charged electrophiles are expected to react at C5, to the nitrogen, to produce the more stabilized acyl-amino cation system, as predicted by Seebach. The corresponding ketene addition is expected to proceed at the more nucleophilic C4, to the oxygen, as the

Figure 4. FMOs of oxazolines **1** and **2** and ketenes **3** and **4**. FMOs were generated at the HF/6-31G(d)// ω B97X-D/6-311++G(d,p) level.

Table 1. NBO Charges of the Reactants and Transition States for the 2 + 2 Cycloadditions of Oxazolines **1 and **2** with Ketenes and Oxazoline **1** with Vilsmeier Reagent at the B97X-D/6-311++G 2d,2p) Level^a**


ketenes	C4	C5	N	O	R
1	0.10	0.13	0.56	0.57	0.35
2	0.10	0.12	0.55	0.57	0.39
3	0.00				
4	0.00				
TS-12	0.41	0.15	0.37	0.57	0.49
TS-13	0.45	0.19	0.04	0.51	0.58
TS-16	0.41	0.14	0.37	0.57	0.49
TS-17	0.45	0.20	0.04	0.51	0.58
TS-20	0.40	0.14	0.36	0.58	0.50
TS-22	0.44	0.19	0.04	0.52	0.58
TS-26	0.37	0.16	0.36	0.58	0.50
TS-28	0.49	0.20	0.04	0.51	0.58
TS-V-C4	0.11	0.38	0.58	0.46	
TS-V-C5	0.13	0.08	0.51	0.58	

^aR = remaining atoms on ketenophile.

asynchronous, concerted mechanism reduces charge buildup, preventing the formation of a full carbocation.

COMPUTATIONAL METHODS

Quantum mechanical calculations were performed with Gaussian 16.¹⁴ Geometry optimization was completed using the mPW1PW91¹⁵ and ω B97X-D¹⁶ functionals with the 6-311++G(d,p) basis set. Reactions of oxazolines with diphenylketene and phenylchloroketene were studied both in the gas phase and using the SMD solvation model¹⁷ for toluene at 298 K and cyclohexane at 333 K. Frequency

Figure 5. Regiospecific transition structures and calculated energies for the addition of Vilsmeier reagent cation to oxazoline **1**. Geometry optimization was conducted at the ω B97X-D/6-311++G(d,p) level of theory. Single-point energies were calculated with ω B97X-D/6-311++G(2d,2p) and DLPNO-CCSD(T)/cc-pVTZ. Energies are provided in units of kcal/mol relative to the energies of TS-V-CS.

calculations were performed at the same theoretical level as that used for geometry optimizations to verify the stationary points as either minima or first-order saddle points on the potential energy surface. Intrinsic reaction coordinate (IRC) calculations were performed to confirm that saddle points corresponded to the desired transition states. A quasiharmonic Grimme correction with a frequency cutoff value of 100 cm⁻¹ was applied for ions **8**–**11** using Paton's Goodvibes software.¹⁸ DLPNO-CCSD(T)¹⁹ single-point energy calculations were performed with a cc-pVTZ²⁰ basis set and the SMD solvation model on ORCA 4.0.1.²¹ Additional single-point calculations were carried out at the ω B97X-D/6-311++G(2d,2p) level. Natural atomic orbitals (NAO) were calculated using Multiwfn.²² Detailed energies, enthalpies, and free energies of stationary points, as well as the results from mPW1PW91 calculations, are provided in the Supporting Information. Molecular structures were illustrated using CYLview.²³

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.joc.2c00001>.

Computational analysis of the addition reaction with phenylchloroketene **4**, tabulated energies, and Cartesian coordinates of all optimized structures (PDF)

AUTHOR INFORMATION

Corresponding Authors

Léon Ghosez *Laboratoire ORSY UCLouvain 1348*

Louvain-la-Neuve Belgium; Present Address: European Institute of Chemistry and Biology (IECB), University of Bordeaux, CNRS, CBMN 5248, Bordeaux INP, 2 Rue Robert Escarpit, FR-33607 Pessac, France; Email: l.ghosez@iecb.u-bordeaux.fr

K N Houk *Department of Chemistry and Biochemistry University of California Los Angeles California 90095*

United States; orcid.org/0000-0002-8387-5261;
Email: houk@chem.ucla.edu

Authors

Ledong Zhu Department of Chemistry and Biochemistry
University of California Los Angeles California 90095
United States

Mark A Maskeri Department of Chemistry and
Biochemistry University of California Los Angeles
California 90095 United States; orcid.org/0000-0002-
2630-8930

Melissa Ramirez Department of Chemistry and
Biochemistry University of California Los Angeles
California 90095 United States; orcid.org/0000-0002-
4038-2029

F Le Bideau Laboratoire ORSY UCLouvain 1348
Louvain-la-Neuve Belgium; Present Address: Université de
Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry,
France

Complete contact information is available at:
<https://pubs.acs.org/10.1021/acs.joc.2c00001>

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors are grateful to the National Science Foundation for financial support of this research (CHE-1764328). Computations were performed on the Ho man2 cluster at UCLA and the Expanse cluster available from the NSF XSEDE program under grant OCI-1053575. The authors belatedly dedicate this manuscript to the memory of our dear friend and fantastic scientist Bernd Giese, on the occasion of his 80th birthday.

REFERENCES

- (a) Staudinger, H. Ketene, eine neue Körperklasse. *Ber. Dtsch. Chem. Ges.* **1905**, *38*, 1735–1739. (b) Staudinger, H. Über ketene. 4. Mitteilung: Reaktionen des diphenylketens. *Ber. Dtsch. Chem. Ges.* **1907**, *40*, 1145–1148.
- (a) Hasek, R.; Martin, J. Communications-Cycloaddition of Ketenes to Enamines. *J. Org. Chem.* **1961**, *26*, 4775–4776. (b) Berchtold, G.; Harvey, G.; Wilson, J.G. Communications-The Reaction of Enamines with Ketene. *J. Org. Chem.* **1961**, *26*, 4776. (c) Opitz, G.; Kleemann, M.; Zimmermann, F. Abfangen von Ketenen durch Cycloaddition an Enamine. *Angew. Chem.* **1962**, *74*, 32.
- (a) Stevens, H. C.; Reich, D. A.; Brandt, D. R.; Fountain, K. R.; Gaughan, E. J. A New Tropolone Synthesis via Dichloroketene. *J. Am. Chem. Soc.* **1965**, *87*, 5257–5259. (b) Ghosez, L.; Montaigne, R.; Mollet, P. Cycloadditions with dichloroketene. *Tetrahedron Lett.* **1966**, *7*, 135–139. (c) Montaigne, R.; Ghosez, L. Stereospecific cis Addition of Dichloroketene to cis-and trans-Cyclooctenes. *Angew. Chem. Int. Ed.* **1968**, *7*, 221. (d) Ghosez, L.; Montaigne, R.; Roussel, A.; Vanlierde, H.; Mollet, P. Cycloadditions of dichloroketene to olefins and dienes. *Tetrahedron* **1971**, *27*, 615–633.
- (a) Fu, N.; Tidwell, T. T. Cycloaddition and electrocyclic reactions of vinylketenes, allenylketenes, and alkynylketenes. *Org. React.* **2015**, *87*, 257–506. (b) Heravi, M. M.; Talaei, B. Ketenes as Privileged Synthons in the Syntheses of Heterocyclic Compounds. Part 1: Three- and Four-Membered Heterocycles. In *Advances in Heterocyclic Chemistry*; Elsevier, 2014; Vol. 113, pp 143–244. (c) Alcaide, B.; Aragoncillo, C.; Almendros, P. 5.02 Thermal Cyclobutane Ring Formation. In *Comprehensive Organic Synthesis*; Elsevier, 2014; Vol. 5, pp 66–84. (d) Nelson, S. G.; Dura, R. D.; Peelen, T. J. Catalytic Asymmetric Ketene [2+2] and [4+2] Cycloadditions. *Org. React.* **2012**, *82*, 471–621. (e) Pellissier, H. Formation of 3-, 4-and 5-Membered Cycles by Intermolecular Reactions. In *Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions and Applications*; Wiley-VCH, 2013; pp 1091–1130. (f) Allen, A. D.; Tidwell, T. T. Ketenes and other cumulenes as reactive intermediates. *Chem. Rev.* **2013**, *113*, 7287–7342.
- Woodward, R. B.; Hoffmann, R. The conservation of orbital symmetry. *Angew. Chem. Int. Ed.* **1969**, *8*, 781–853.
- (a) Allen, A. D.; Tidwell, T. T. Structure and Mechanism in Ketene Chemistry. In *Advances in Physical Organic Chemistry*; Elsevier, 2014; Vol. 48, pp 229–324. (b) Machiguchi, T.; Hasegawa, T.; Ishiwata, A.; Terashima, S.; Yamabe, S.; Minato, T. Ketene Recognizes 1, 3-Dienes in Their s-Cis Forms through [4+2](Diels Alder) and [2+2](Staudinger) Reactions. An Innovation of Ketene Chemistry. *J. Am. Chem. Soc.* **1999**, *121*, 4771–4786. (c) Ussing, B. R.; Hang, C.; Singleton, D. A. Dynamic effects on the periselectivity, rate, isotope effects, and mechanism of cycloadditions of ketenes with cyclopentadiene. *J. Am. Chem. Soc.* **2006**, *128*, 7594–7607.
- (7) Wang, X.; Houk, K. N. Carboid character in transition structures for reactions of ketenes with alkenes. *J. Am. Chem. Soc.* **1990**, *112*, 1754–1756.
- (a) Yamabe, S.; Minato, T.; Osamura, Y. Dual one-centre frontier-orbital interactions in [2+2] cycloadditions of ketenes. *J. Chem. Soc. Chem. Commun.* **1993**, *5*, 450–452. (b) Yamabe, S.; Kuwata, K.; Minato, T. Frontier-orbital analyses of ketene [2+2] cycloadditions. *Theor. Chem. Acc.* **1999**, *102*, 139–146.
- (9) Wang, Y.; Wei, D.; Li, Z.; Zhu, Y.; Tang, M. DFT study on the mechanisms and diastereoselectivities of Lewis acid-promoted ketene alkene [2+2] cycloadditions: what is the role of Lewis acid in the ketene and C=X (X=O, CH₂, and NH)[2+2] cycloaddition reactions? *J. Phys. Chem. A* **2014**, *118*, 4288–4300.
- (10) (a) Cagnon, J.; Le Bideau, F.; Marchand-Brynaert, J.; Ghosez, L. Unusual regiochemistry of cycloaddition of ketenes to (R)-2-tert-butylidihydrooxazole derivatives. A simple route towards enantiomerically pure functionalised α -aminocyclobutanones. *Tetrahedron Lett.* **1997**, *38*, 2291–2294. (b) Ghosez, L.; Yang, G.; Cagnon, J. R.; Le Bideau, F.; Marchand-Brynaert, J. Synthesis of enantiomerically pure α -amino- β -hydroxy-cyclobutanone derivatives and their transformations into polyfunctional three- and five-membered ring compounds. *Tetrahedron* **2004**, *60*, 7591–7606.
- (11) (a) Tinant, B.; Declercq, J.-P.; Le Bideau, F.; Ghosez, L. Crystal structures of adducts of in situ generated phenylchloroketene to oxazoline (major isomer). *Bull. Soc. Chim. Belg.* **1997**, *106*, 233–234. (b) Tinant, B.; Declercq, J.-P.; Le Bideau, F.; Ghosez, L. Crystal structures of adducts of in situ generated phenylchloroketene to oxazoline (minor isomer). *Bull. Soc. Chim. Belg.* **1997**, *106*, 231–232.
- (12) (a) Stucky, G.; Seebach, D. Substitutionen und Additionen an (R)-2-tert-Butyl-4-1, 3-oxazolin-3-carbonsäure-methylester. *Chem. Ber.* **1989**, *122*, 2365–2375. (b) Seebach, D.; Stucky, G.; Pfammatter, E. Cycloadditionen an die Doppelbindung von (R)-2-tert-Butyl-4-1, 3-oxazolin-3-carbonsäure-methylestern. *Chem. Ber.* **1989**, *122*, 2377–2389. (c) Seebach, D.; Stucky, G. Reactivity of (R)-2-tert-Butylidihydrooxazole Derivatives Prepared from Serine and Threonine: Novel, Versatile Chiral Building Blocks. *Angew. Chem. Int. Ed.* **1988**, *27*, 1351–1353. (d) Renaud, P.; Seebach, D. Preparation of Chiral Building Blocks from Amino Acids and Peptides via Electrolytic Decarboxylation and TiCl₄-Induced Aminoalkylation. *Angew. Chem. Int. Ed.* **1986**, *25*, 843–844.
- (13) Lamatsch, B.; Seebach, D.; Ha, T. K. Ab-initio-Studien an N-Acyliminium-Ionen. *Helv. Chim. Acta* **1992**, *75*, 1095–1110.
- (14) Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. *Gaussian 16*; Gaussian, Inc.: Wallingford, CT, 2016.
- (15) Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. *Phys. Rev.* **1964**, *136*, No. B864.
- (16) Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom atom dispersion corrections. *Phys. Chem. Chem. Phys.* **2008**, *10*, 6615–6620.

- (17) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Supporting Information (PART I) Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions Contents. *J. Phys. Chem. B* **2009**, *113*, 6378–6396.
- (18) Luchini, G.; Alegre-Requesta, J. V.; Funes-Ardoiz, I.; Paton, R. S. GoodVibes: automated thermochemistry for heterogeneous computational chemistry data. *F1000Research* **2020**, *9*, 291.
- (19) Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. *J. Chem. Phys.* **2013**, *139*, No. 134101.
- (20) Dunning, T. H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. *J. Chem. Phys.* **1989**, *90*, 1007–1023.
- (21) Neese, F. Software update: the ORCA program system, version 4.0. *WIREs Comput. Mol. Sci.* **2018**, *8*, No. e1327.
- (22) (a) Lu, T.; Chen, F. Calculation of molecular orbital composition. *Acta Chim. Sin.* **2011**, *69*, 2393. (b) Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. *J. Comput. Chem.* **2012**, *33*, 580–592.
- (23) Legault, C. Y. *CYLview20*; Université de Sherbrooke, 2020.

□ Recommended by ACS

A Mechanistic Switch from Homoallylation to Cyclopropylcarbinylation of Aldehydes

Woojin Lee, Isaac J. Krauss, *et al.*

JUNE 23, 2022

ORGANIC LETTERS

READ

Experimental and Computational Mechanistic Study of Carbonazide-Initiated Cascade Reactions

Qinxuan Wang, Jeremy A. May, *et al.*

JUNE 25, 2022

THE JOURNAL OF ORGANIC CHEMISTRY

READ

π-Facial Stereoselectivity in Acyl Nitroso Cycloadditions to 5,5-Unsymmetrically Substituted Cyclopentadienes: Computational Exploration of Origins of Selectivity a...

Fengye Zhao, K. N. Houk, *et al.*

NOVEMBER 16, 2021

THE JOURNAL OF ORGANIC CHEMISTRY

READ

The Role of Through-Bond Stereoelectronic Effects in the Reactivity of 3-Azabicyclo[3.3.1]nonanes

Croix J. Laconsay, Dean J. Tantillo, *et al.*

FEBRUARY 22, 2022

THE JOURNAL OF ORGANIC CHEMISTRY

READ

[Get More Suggestions >](#)