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ABSTRACT: Density functional theory calculations ( B97X-D)
are reported for the reactions of methoxy, tert-butoxy, trichlor-

oethoxy, and tri uoroethoxy radicals with a series of 26 C H * thermodynamics ..

bonds in different environments characteristic of a variety of /IS\ * o-unsaturation

hydrocarbons and substituted derivatives. The variations in yARN polar effects

activation barriers are analyzed with modified Evans Polanyi / \ d

treatments to account for polarity and unsaturation effects. The / AHY \'\_ E ‘RMSE-1.06
treatments by Roberts and Steel and by Mayer have inspired the  / | Y = MAE-0.86
development of a simple treatment involving the thermodynamics g_y+R’0s \"\____ : < R2=0.89

of reactions, the difference between the reactant radical and \ AH L
product radical electronegativities, and the absence or presence of R'O-H + Re <l AH*(pred.)

a-unsaturation. The three-parameter equation ( H =
0.52 H,(1 d) 035 yip+ 10.0, where d = 0.44 when there is a-unsaturation to the reacting C H bond), correlates well
with quantum mechanically computed barriers and shows the quantitative importance of the thermodynamics of reactions (dictated
by the reactant and the product bond dissociation energies) and polar effects.

1T INTRODUCTION Table 1. Photocatalytic HAT Based Amination of Alkanes

The reactivities and selectivities of radicals in hydrogen Catalyzed by Cerium Chloride and Alcohols

abstraction reactions determine the utility of radical-induced cerium time  yield

C H functionalization reactions.” * Understanding the alkane  entry catalyst” alcohol catalyst” (h) ()  1°/2°
reaction mechanisms, reactivities, and selectivities has been propane 1 CeCl, CClL,CH,0H 9 70 1:1
an important goal of physical organic and theoretical 2 CeCly CF,CH,0H 12 61 1:1
chemistry,” and being able to predict these by empirical 3 CeCly CH,0H 19 39 1:39
equations or theoretical calculations should assist the design butane 4 CeCly CCl,CH,0H 6 76 1:1.7
and application of C H functionalization reactions.® '° 5 CeCl, (CH,),CHOH 18 40 1:4
Although density functional theory is now capable of accurate 6 CeCl, CH,OH 18 72 1:8
predictions of reaction rates, there is still a strong interest in “Data from ref 17. “CeCl, loading 0.5 mol . “Alcohol catalyst
quantitative understanding of factors that control these rates. loading 20 mol

Many studies show that the reactivities and selectivities of
C H activation can be adjusted using the various nonmetal

hydrogen atom transfer (HAT) radicals and catalysts."' '® For alkylation via polarity-matched HAT to the quinuclidine
example, Zuo et al. showed that gaseous alkanes could react in radical cation, where the polarity of the substrate and the
the presence of visible light, cerium salts, and alcohol catalysts catalyst was shown to impact both the HAT reactivity and

under mild experimental conditions. They proposed 1 7th211; selectivity.

alkoxy radicals, R CH,O , are the active HAT agents.

Zuo s work showed that the polarity of the alcohol catalysts =TAICIS
Received: January 11, 2022 ‘J

in uences the reactivities and selectivities with various ! : b i
hydrocarbons (Table 1). The reactivity and selectivity are Published: April 5, 2022 B
both in uenced by the structure of the alcohol catalyst, with
the regioselectivity increasing from CCL;CH,OH to CH;OH,
as the reactivity decreases.'” Similar phenomena were observed
by MacMillan et al,>® who achieved selective sp® C H

© 2022 American Chemical Society https://doi.org/10.1021/jacs.2c00389
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Figure 1. Energy diagram of HAT from the primary C(sp*)-H bond of (a) 2 in Table 2 and (b) 13 in Table 2 to alkoxy radicals in acetonitrile
using U B97X-D/6-311++G(d, p)//U B97X-D/6-31G(d)/SMD(MeCN). All the energy terms are given in kcal/mol.

Many empirical methods for estimating the activation energy
have been developed. One of the most venerable is the Bell
Evans Polanyi (BEP) correlation, also referred to more simply
as the Evans Polanyi relationship or sometimes the
Bronsted Evans Polanyi relationship.”>"** This relationship
indicates that as a reaction becomes more exothermic, it
becomes faster. The decrease in selectivity accompanying an
increase in the reaction rate is expressed through related
concepts such as the Hammond Postulate.”’ In 1982, Tedder
proposed Evans Polanyi relationships for HAT reactions,
showing a correlation between the rate and the reaction
energy.” Later, Mayer proved that this correlation is quite
general.”* In the past few decades, BEP-type relationships have
become a widely used method for evaluating the activation
energy of numerous reactions. Such an approach has
contributed to the establishment of rate-determining steps in
reaction mechanisms.”® *°

In 1956, Marcus proposed what is now known as the Marcus
theory” to explain the rates of electron transfer reactions. The
Marcus theory is widely used to predict the reaction barriers
from the reaction driving forces and intrinsic barriers. Mayer
applied the Marcus cross relationship (MCR) to a wide range
of HAT reactions and found that it holds very well with only a
few outliers.”’ Shaik et al. have explored HAT reac-
tions,”'*** 3° and they proposed several approximate
equations based on the valence bond (VB) model (“VB state
correlation diagrams” and “VB configuration mixing dia-
grams”) to predict and explain the reactivities and selectivities.
Using the promotion energy gap G, the resonance energy of
the transition state (TS) B, and the reaction energy E,,
these equations give good correlations with high-level
computational data and experimental data for many reactions
and can be applied to different reaction types, not only H-
abstractions. The VB model creates a natural bridge to the
Marcus equation.”?*

In addition to the thermodynamic effects, a number of
studies showed that polar effects can play an important role in
HAT processes.37 *> In the reactions of neutral free radicals,
the term polar effect is used to describe the in uence on the
activation energy of any charge transfer which may occur on
going from the reactant(s) to the transition state.”* This has
been interpreted by both VB and molecular orbital (MO)
theories. In VB theory, an activation energy is lowered by the
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contribution of a zwitterionic VB structure,” while in MO
theory, the non-bonding MO of the transition state is stabilized
when one terminus is more electronegative than the other.***°
In 1994, Roberts and Steel indicated that along with the overall
enthalpy change H,,, polar effects, steric and stereo-
electronic effects, as well as the degree of unsaturation should
also be taken into consideration when discussing the reactivity.
They proposed a modified form of the Evans Polanyi
equation (that we call here the “Roberts relationship”) to
correlate and predict the activation energies for HAT
reactions.”” In previous work, we and others observed bimodal
BEPs between activation barriers and bond dissociation
energies (related to the reaction energy of a hydrogen
abstraction) depending on whether the radical generated is
adjacent only to saturated carbons (“saturated”) or is stabilized
by resonance due to adjacent 7 bonds (“unsaturated”).*”**
There have been reactivity and selectivity studies of related
oxidants,””"*** such as dioxiranes*”*° and metal oxo species
such as the iron- and manganese-oxo reagents popularized by
White and Costas®"**> and Du Boiss ruthenium-oxo
catalysts.”® Baran et al. have explored a variety of oxidants
for selective syntheses.”* *° We have now explored reactivity
relationships for various types of C H bonds in hydrocarbons
and heterosubstituted compounds in HAT to alkoxy radicals
with differing polarities (R H + R'O R + R'OH). Four
radicals were investigated: methoxy (CH;O ), fert-butoxy
(tBuO ), and the more electronegative trichloroethoxy
(CCLLCH,O ) and tri uoroethoxy (CF;CH,0O ). We have
explored the in uence of thermodynamic, polarity, and
unsaturation effects on the reactivity and selectivity. Our goal
is to gain understanding and to develop a simple model to
interpret and predict selectivities in terms of the reactivities
(thermodynamics) and radical and substrate structures
(electronegativity differences and unsaturation).

2 COMPUTATIONAL METHODS

The geometries of minima and transition states were optimized using
unrestricted B97X-D with the 6-31G (d)*”*® basis set. The keyword
“stable = opt” was set to guarantee the stability of the wavefunction.
Frequency analyses were performed to verify that these structures
correspond to energy minima or saddle points (transition states).
Single-point energies with a more extensive basis set were carried out
with U B97X-D/6-311++G (d, p) on the optimized geometries. The
solvent effects of CH;CN on the reaction were taken into account by

https://doi.org/10.1021/jacs.2c00389
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Table 2. C H Bonds for HAT to Alkoxy Radicals Studied in This Work
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Figure 2.

H for HAT from the C H bonds of the substrates shown in Table 2 to the four alkoxyl radicals: CH;O (blue), fBuO (orange),

CCLCH,O (red), and CF;CH,0O (green). Calculations are based on U B97X-D/6-311++G(d, p)//U B97X-D/6-31G(d) with the SMD

model in CH;CN. Energies are given in kcal/mol.

using the solvation model based on density (SMD model).* All
calculations were carried out with Gaussian 16.°° The effectiveness of
U B97X-D for §eometries and energies has been demonstrated by
many studies.®"”®

3 RESULTS AND DISCUSSION

Figure lab shows the enthalpy diagrams for reactions of
substrates 2 (1° C H of 3-methylpentane) and 13 (a« C H of
propene) in Table 2, with the four alkoxy radicals (CH;0 , t-
BuO , CCL,CH,O , and CF;CH,0 ). They are selected as the
representative “saturated” and “unsaturated” C Hs, respec-
tively. For both 2 and 13, HAT to CH;O shows the lowest
reactivity corresponding to the lowest reaction enthalpy. This
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is consistent with the BEP relationship that is, the more
exoergic the reaction, the lower the activation barrier.
However, for the other three radicals, the BEP relationship
did not hold anymore: the changes in reactivity are associated
with very similar reaction enthalpies. The differences in the
reaction enthalpy between 2 and 13 are greater than 13 kcal/
mol, while the differences in the activation enthalpy are within
3.5 kcal/mol for all four radicals. This shows the important
contribution of unsaturation. For 3-methylpentane, which was
taken as the representative of primary, secondary, and tertiary
“saturated C Hs”, the activation energy decreases with the
increase of exothermicity as expected from the BEP relation-
ship or simple considerations of bond dissociation energies/

https://doi.org/10.1021/jacs.2c00389
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enthalpies (BDEs) (Tables S1 S4). The results confirm that
unsaturation and polar effects are important factors for the
reactivities in HAT processes.

In order to explore the reactivity prediction model for HAT
to alkoxy radicals, we studied HAT using the four alkoxy
radicals from all of the sp®> C Hs indicated in Table 2. Both
“saturated” C Hs (1 12 in Table 2) and “unsaturated” C Hs
(13 26 in Table 2, containing C Hsato C=C , C=O0,

CN, or benzene, so that delocalized radicals are generated)
have been studied. CH;0, tBuO, CCL,CH,0O, and
CF;CH,0 are the HAT agents. Tables S1 S4 present the
activation energy (' E ), activation enthalpy ( H ), activation
free energy ( G ), reaction enthalpy ( H,,), reaction free
energy ( G,,), and C H BDE (enthalpy) for HAT promoted
by CH;0 , tBuO , CCL;CH,O , and CF;CH,O , respectively.
While C H BDEs range from 79.0 to 104.4 kcal/mol, H
values range from 1.0 to 10.2 kcal/mol for CH;O , 0.4 to 8.7
kcal/mol for tBuO , 3.0 to 8.9 kcal/mol for CCL;CH,O , and

2.6 to 9.1 kcal/mol for CF;CH,O . Overall, the reactivities
for HAT to CCI;CH,O and CF,CH,0O are similar and higher
than those for tBuO . CH;0 is the least reactive radical
(Figure 2). The structure reactivity relationships for each H-
abstractor and how reactivity is in uenced by polar effects and
unsaturation will be discussed.

To test the accuracy of our computational results, single-
point energies were evaluated by unrestricted DLPNO-
CCSD(T)/cc-pVTZ calculations based on the optimized
structures with U B97X-D/6-31G (d) using the ORCA
5.1.0 program.’® ® Figure 3 shows the plot of H

12
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I

12 14
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Figure 3. Plot of H calculated by unrestricted DLPNO-CCSD(T)/
cc-pVTZ vs H calculated using U B97X-D/6-311++G (d, p)
based on the optimized structures with U B97X-D/6-31G (d) for
HAT from the C H bonds of the substrates shown in Table 2 to the
four alkoxyl radicals. Energies are given in kcal/mol.

(DLPNO-CCSD(T)) versus H (U B97X-D) based on
the optimized structures with U B97X-D/6-31G (d) for HAT
from the C H bonds of the substrates shown in Table 2 to the
four alkoxyl radicals, and Table SS lists the H (DLPNO-
CCSD(T)). The correlation is good, indicated by R* = 0.97.
Additionally, we performed calculations for seven HAT
reactions of HO , CH;0 , and tBuO for which experimental
data are available in Roberts and Steel s work®” (see Table S6).
U B97X-D/6-311++G(d, p)//U B97X-D/6-31G(d),
UMO062X/6-311++G(d, p)//UM062X/6-31G(d),*® and
UDLPNO-CCSD(T)/cc-pVTZ//U B97X-D/6-31G(d) were
tested. The calculations are listed in Table S6 along with

E (exp). R* for E (U B97X-D) versus E (exp),

E (U B97X-D) versus E (UMO062X), and

E (U B97X-D) versus E (UDLPNO-CCSSD(T)) are
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0.94, 0.99, and 0.96, respectively (see Figure S1). All these
results indicated that U B97X-D is a reliable method to study
the HAT reactions. Our subsequent discussions are based on
the calculations by U B97X-D. There are other composite
methods such as (RO)CBS-QB3,>”*” Radoms G3(MP2)-
RAD,”® and G4(MP2)-6X* that have also been shown to be
reliable for radical reactions.

31 BEP Correlation The BEP correlation relates the
activation energy to the reaction enthalpy, eq 1

AH* = yAH__ + & (1)
H

where H is the activation enthalpy of the reaction, H,, is
the reaction enthalpy, and y and & are parameters that are
obtained from the linear regression analysis of the data.
Figure 4 shows a plot of H versus H,, for the reactions
of sp> C Hs with all four alkoxy radicals studied here.

15

\H*= 0.88(+0.06)AH,,, + 7.32(+0.32)
R%=0.85

AH? (keal/mol)

28 __"'-'_'“.~2[| v,

* saturated

in

* unsaturated

AH,yy, (keal/mol)

Figure 4. Plot of H vs H,, for HAT from the C H bonds of the
substrates shown in Table 2 to the four alkoxyl radicals. Calculations
are based on U B97X-D/6-311++G(d, p)//U B97X-D/6-31G(d)
with the SMD model in CH;CN. Energies are given in kcal/mol.

Although the correlation is rough, the “saturated” and
“unsaturated” C Hs display different behaviors as in our
previous study of dioxirane reactions*® and in a recent study
from one of us of reactions involving the cumyloxyl radical.””
The linear relationship for the “saturated group” is reasonably
good (R* = 0.85), while it is R*> = 0.76 for the “unsaturated
group”. The “intrinsic barrier” in Marcus language, where

H,, =0, is 7.3 kcal/mol for the saturated and 11.0 kcal/mol
for the unsaturated compounds, while the “saturated” C H is
more sensitive to the H,, These trends are discussed for
cumyloxy in the recent paper.’”

Taking the polarity of the alkoxy radicals into account, we
then inspected BEP plots for three categories of H-abstracting
alkoxy radicals: (1) tBuO , (2) CH;0, and (3) CCL,CH,O
and CF;CH,O taken together as radicals displaying increased
electronegativity. These three correlations are shown in Figure
S. All are improved as compared to the correlation for all four
radicals (Figure 4). This is consistent with the idea that an
intrinsic property of each radical is important, and we take this
to be the radical electronegativity. For all radicals, the
sensitivity of the activation barrier to the reaction exothermic-
ity is larger for the saturated (0.7 0.9) than for the
unsaturated C H bonds (0.4 0.6), consistent with Bernasco-
ni's principle of non-perfect synchronization (NPS).”” 7

https://doi.org/10.1021/jacs.2c00389
J Am Chem Soc 2022 144 6802 6812
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Figure S. Plots of H vs H,, for HAT from the C H bonds of the substrates shown in Table 2. (a) Graphical display of CH;0 . (b) Graphical
display of tBuO . (c) Graphical display of CCLCH,O and CF;CH,O . Calculations are based on U B97X-D/6-311++G(d, p)//U B97X-D/6-
31G(d) with the SMD model in CH;CN. Energies are given in kcal/mol.

3 2 Marcus Cross Relationship The MCR is a corollary
of the Marcus theory of electron transfer,” and it was used
effectively for HAT reactions by Mayer.”' According to the

MCR, the rate constant for a HAT reaction (A H + B A
+ BH) kuy,p can be estimated with eq 2
kan/p = kAH/AkBH/BKeqf (2)

kap/a and kgyp are the rate constants for the respective
hydrogen-atom self-exchange reactions, controlled by the
Marcus intrinsic barriers. The equilibrium constant K, can
be obtained from the reaction driving force G, which is
related to the difference in free energies of reactions of AH and
BH. This is the thermodynamic factor in the Marcus theory.
MCR has the advantage that (in many cases) all of the
parameters can be measured experimentally. Mayer proved
that the MCR can predict within a factor of ~5 the rate
constants for most organic and transition-metal-based HAT
reactions, including those involving substrates with C H, O
H, and N H bonds.”

In this study, we treated the data in terms of the free energy,
as in the usual formulation of the Marcus theory, rather than in
terms of rates
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AG (a6
2 16AGH

int

AG* = AG:, +

int

()

Gy is an average reaction barrier for self-exchange
reactions (A H+A A +A H+andB H+ B B
+B H),and G is the reaction free energy.

Activation free energies for self-exchange reactions ( G,)
are listed in Table S7. Plots of the predicted activation free
energies using eq 3 against those calculated based on transition
state theory are shown in Figure 6. We note that (1) The
activation barriers are systematically overestimated by MCR
for all four alkoxy radicals. (2) The linear relationship between
barriers obtained by the transition state theory and MCR is
poor, especially for CCLCH,0 and CF;CH,O (R = 0.48,
0.52, 0.27, 0.29 for tBuO, CH;0, CCl,CH,0, and
CF,CH,O , respectively). (3) The mean absolute error
(MAE) and root mean square error (RMSE) increase with
increasing electronegativity of the H-abstractors. All of these
observations indicate that the polar effects should be taken into
account when establishing the barrier prediction model and are
not accounted for by intrinsic reaction barriers.

3 3 Roberts Steel Relationship Equation 4 shows the
form of the Roberts Steel relationship, as we call it, which

https://doi.org/10.1021/jacs.2c00389
J Am Chem Soc 2022 144 6802 6812
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Figure 6. Plots of the predicted activation energies using MCR ( G (pred.)) against those calculated for the HAT reactions ( G (calc.)). The

G (pred.) =

straight line corresponds to

G (calc). Energies are given in kcal/mol.

contains the contribution of the strengths of A Hand B H
bonds, which form and break during the reaction (f), the
enthalpy of reaction ( H,, basically the same as the BEP
relationship), along with polar effects ( yiy), unsaturation
effects (d), and the structure factor (S,). E,, a, 5, and y are
parameters obtained from the least-squares regression.

AH = Eif + aAH, (1 — d) + PAyz, + 7(Sy + Sp)
(4)
The f term is related to the energy required to stretch the
AH and BH bonds, calculated from the BDEs, D,y and Dy of
the reactant and the product, and Dy, of H, eq 5

f=

DD
2

Dy, (8)

The higher these dissociation energies, the higher the
activation barrier, and the denominator makes this a
dimensionless quantity.

The d-term represents unsaturation effects when there is a-
unsaturation (e.g, C=C , C=O0, CN, or benzene) with
respect to the reacting C H bond and is an empirical constant
(see Table 3). According to Roberts s work,*” d has two values:
0.44 for “unsaturated” C Hs and 0.0 for “saturated” C Hs.
This means that the breaking of the “unsaturated” C H bonds
is 0.56 times as sensitive as the breaking of “saturated” C H
bonds to the energy of reaction. This was noted earlier in our
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work on Bernasconi s principle of NPS in dioxirane reactions
that also involve C H bond breaking and transient radical
formation.*®

The polar effect can be understood in terms of the
interactions between the Frontier MOs of the reacting partners
or charge-transfer interaction in the transition state using the
VB model (which attempts to give a simple picture of the
transition state itself). It is quantified by the Mulliken-type
electronegativity:  y,p is the electronegativity difference
between the radicals A and B in HA and HB. The
Mulliken-type electronegativity’” of the radical X is defined
ineq6

IE, + EAy
& 2 (6)

IE and EA are the vertical ionization energy and vertical
electron affinity of X , respectively, so that y of a radical is the
average of its IE and EA (or when computed, the negative of
the average of the highest occupied molecular orbital and
lowest unoccupied molecular orbital energies).

The structure factor, S,, represents the changes of the
reactants and the products radical structures during the
reaction, which are given as empirical constants for given
radical types by Roberts and Steel. Generally speaking, the
transition state geometries of the radical moieties, A and B, are
different from those in the reactant states. According to

https://doi.org/10.1021/jacs.2c00389
J Am Chem Soc 2022 144 6802 6812
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Table 3. Computed Data for the Radicals A and B Involved in the HAT Reaction

radical (X ) Dyy/keal-mol ! IE/eV
1 104.4 9.76
2 99.3 8.15
3 96.4 7.42
4 94.8 6.95
S 99.8 8.06
6 96.9 7.42
7 96.9 7.42
8 96.7 7.57
9 98.0 7.92
10 96.7 7.85
11 100.7 8.47
12 93.3 6.94
13 85.6 8.10
14 81.7 7.48
15 79.0 7.12
16 88.8 7.27
17 84.9 6.88
18 84.7 6.58
19 86.8 7.76
20 95.6 9.92
21 88.3 9.07
22 95.6 9.83
23 97.2 9.80
24 96.1 10.33
25 90.5 9.34
26 86.4 8.62
CH;0 100.9 12.59
tBuO 103.2 8.55
CCLCH,0 103.1 1245
CF;CH,0 103.3 13.09
H, 101.7

EA/eV x/eV d Sx
0.15 4.80 0 0.6
0.41 3.87 0 0.6
0.61 341 0 0.6
0.58 3.18 0 0.6
0.27 3.90 0 0.6
0.50 3.46 0 0.6
0.50 3.46 0 0.6
0.28 3.65 0 0.6
0.24 3.84 0 0.6
0.41 3.72 0 0.6
0.13 4.17 0 0.6
0.85 3.05 0 0.6
0.28 4.19 0.44 0.6
0.03 3.75 0.44 0.6
0.06 3.59 0.44 0.6
0.69 3.98 0.44 0.6
0.52 3.70 0.44 0.6
0.41 3.49 0.44 0.6
0.33 4.04 0.44 0.6
1.39 5.65 0.44 0.6
1.10 5.08 0.44 0.6
1.42 5.63 0.44 0.6
1.31 5.55 0.44 0.6
1.51 5.92 0.44 0.6
1.12 5.23 0.44 0.6
091 4.77 0.44 0.6
1.22 6.91 2.5
391 6.23 2.5
245 7.45 2.5
2.43 7.76 2.5

Roberts s work,*” the values are 0.6 and 2.5 for alkyl and alkoxy
radicals, respectively. As noted above, the parameters E,, a, f3,
and y are determined from a multiple regression analysis of the
data. The terms related to the Roberts relationship in this
study are listed in Table 3, Dyy, IE, EA, and y were computed
here since many of these data are not known experimentally.

Xap values are listed in Table S9.

Instead of using the Roberts relationship directly, we have
developed a simplified form (eq 7) containing the reaction
enthalpy ( H,,), the unsaturation term d, and the polar effect
described by a Mulliken-type electronegativity y,g.

AH* = aAH,,(1 — d) + PAyS, + & )

This simplified Roberts relationship obtained from linear
regressions of the data computed here is displayed in eq 8

AH* = 0.52AH,,(1 — d) — 0.35Ax7, + 10.0 )

There is now a good linear relationship between predicted
and calculated activation energies. R* = 0.89 for the whole
series, including all radicals and substrates studied here (see
Figure 7). The MAE and RMSE are 0.86 and 1.06,
respectively, so that the error in the barriers is on average
about 1 kcal/mol, corresponding to better than a 1 order of
magnitude accuracy of rates at room temperature. There is
little improvement of eq 8 by including the f term and
structure factor S, from the original Roberts relationship (see
Figures S2 S3). We also tried other combinations of these
factors. H =023 H,, 044 yis+ 9.77 as obtained when
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AH g = 0.52 AH,(1-d) - 0. 35 Ax,,;2 + 10.0

=

:.‘_:

i3

=

3 RMSE = 1.06
g MAE = 0.86
5 R'=0.89

A

AH* (pred.) / keal/mol

Figure 7. Plot of the predicted activation energies from a simplified
Roberts Steel relationship, eq 8 against those calculated quantum
mechanically for the HAT reactions. Energies are given in kcal/mol.

both the fand d terms were removed, R* = 0.85 was obtained,
see Figure S4. With equation H =0.72 H,,(1 d) + 797
where yip was removed further, R* = 0.59 was obtained, see
Figure SS. The electronegativity factors are clearly important.

Interestingly, the coefficient @, the Evans Polanyi slope, is

0.52 when including the unsaturation factor d into the H,,

https://doi.org/10.1021/jacs.2c00389
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term. This value is close to 0.5, which is frequently the case for
simple BEP plots. This slope, 0.5, is also the slope of the
Marcus equation as long as  H,,, is not too large. The d value
derived by Roberts and Steel of 0.44 means that only about 1/
2 (actually 0.56) of the exothermicity shows up in the
transition state, and this is consistent with Bernasconis
Principle of NPS. The coefficient of 0.35 for y4; means
that as the difference in electronegativity increases, the
activation barrier decreases by about 1/3 of that value. This
is consistent with the polarity-matching effects, large polarity
differences lead to lower barriers.””

The polarity-matching concept (see Figure 8) is that the
activation energy decreases as the electronegativity differences

EI' + H-Nu¢c —— EI-H  + Nuc (a)

Favored
Nuc' + H-El Nuc-H + EI"  (b)
El; + H-EL s ElH + Bl (o)

Disfavored
Nuc; + H-Nuc;— Nucy-H  + Nuc,” (d)

Figure 8. Scheme of polarity-matching effects in HAT reactions.

between the H-abstractor and the product radical increase. If
El and Nuc represent electrophilic and nucleophilic radicals,
respectively, the reactions (a,b) should be favored because of
polar effects, while reactions (c,d), where the polarity of the
two radicals is similar, will be disfavored.

This simplified Roberts relationship also echoes one of the
VB equations proposed by Shaik,”” eq 9.

AE}, ~ 0.5AE_ + 0.3G, — By (9)

where  E_, is the reaction energy, G, is the average
promotion gap (estimated by the sum of the vertical bond
strengths of the bonds under activation in the forward and
reverse directions), and B,y is the transition-state resonance
energy estimated by Byyp = i(BDEA_H + BDE;_,) and is
related to the Bernasconi factor in our equation. The in uence
of yap in the simplified Roberts relationship is replaced by G,
here, as these two terms have similar absolute coefficients (0.35
and 0.3, respectively).””*> The VB and simplified Roberts
Steel approach provide a similar accuracy and alternate ways of
conceptualizing the factors controlling the reactivity.

34 Distortion/Interaction Analysis The distortion/
interaction activation strain analysis that was proposed by
Houk and Ess’* was also used to explore the origins of
reactivity in these HAT reactions. In this model, the activation
energy ( E ) is divided into distortion energy ( E;) and
interaction energy ( E;,). The former is the energy required

to distort the two reactants to their geometries in the transition
state without interacting. The interaction energy refers to the
intermolecular interaction between the two distorted frag-
ments. It can be written in terms of the following eq 10

+ AE?

int

AE* = AE] (10)
where E is the electronic energy.

Activation energies ( E ), distortion energies ( Eg4), and
interaction energies ( E;,) for HAT reactions promoted by
the four alkoxyl radicals are listed in Tables S8 S11. The
position of the TS is related to thermodynamic factors
(exergonic = early; endergonic = late), and these are re ected
in distortion and interaction energies. Both are low for early
transition states and high for late transition states. Figure 9
shows the rather poor correlations between the activation
energies and distortion (R* = 0.75) or interaction energies (R?
= 0.56), respectively. Although in general these both increase
as the TS becomes later and the E increases, the modified
Roberts relationship gives a satisfactory and detailed insight
into the factors controlling the reactivity.

4 CONCLUSIONS

We have studied the origins of reactivity and selectivity of
HAT from sp® C H bonds to different alkoxy radicals. The
BEP, MCR, and Roberts relationship were applied to explore
the reactivity prediction model. A simplified Roberts relation-
ship which contains the reaction energy, unsaturation and
polar effects works reasonably well, with R* = 0.89 and MAE
and RMSE values of 0.9 and 1.1 kcal/mol, respectively. The
average errors in activation energies are about 1 kcal/mol in
this correlation. This relatively simple relationship shows that
the reactivities and selectivities for different alkoxy radicals are
related to (1) BDEs of the C Hs being abstracted and the
OH s being formed the difference between these is H,,,
the basis of the BEP relationship, and the thermodynamic
factor (as G, in the Marcus equation; (2) the difference in
electronegativity between the alkoxy radical and the alkyl
radical formed indicating that ionic
contributions to the transition state wavefunction are
stabilizing; (3) whether or not the carbon centered radical
generated in the reaction is localized (saturated) or delocalized
(unsaturated). While higher-order effects not included in our
three-parameter equation account for precision greater than
the 1 kcal/mol average error, the main features causing a 10
kcal/mol range in barriers are included in these three factors.

in the reaction

(a)

(b)

16 16
B y = 1.40x + 10.52
12 r o o A R?=0.56 ©ote, 129
= . - = ., ..
28| TIPS SOkl g T NS e
= Y g 3 Y
3 co ot . =1.24x-5.92 g ‘e o
Sl ,9/17'# - rilors 2 . e
4 . b 4 Pl i
0 - V.‘- A 1 ] 1 /. .I- 1 C ]
3 ‘s 12 16 -10 & 6 -2 2
4 L
AE,* (keal/mol) AE,,* (keal/mol)
Figure 9. (a) E vs Eg. (b) E vs Ey,. Energies are given in kcal/mol.
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