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ABSTRACT
This paper investigates the problem of subgraph query generation
with output that satisfies both diversity and fairness constraints.
Given a set of groups with associated cardinality requirements, it
is to compute subgraph queries with diversified output that mean-
while covers the groups with the desired cardinality. Such need
is evident in web and social search with fairness constraints. We
formalize subgraph query generation as a bi-criteria optimization
problem on the diversity and fairness properties of queries, and
verify its hardness and approximability. We show that the problem
is in Σ𝑃2 , and remainsNP-complete even for single-node queries. De-
spite the hardness, (1) we show that approximations exist whenever
a corresponding subset selection process provides good solutions,
and provide feasible algorithms with performance guarantees for
two practical query generation scenarios. We also present a fast
heuristic algorithm for the general problem, which early terminates
without enumerating queries. We experimentally verify that our
algorithms can efficiently generate queries with desired diversity
and coverage properties for targeted groups.
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• Information systems → Query suggestion; Query reformu-
lation; Information retrieval diversity.
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1 INTRODUCTION
Subgraph queries have been routinely used to retrieve entities
from real-world graphs (e.g., social networks [24], knowledge
graphs [33]). Several algorithms [7] have been developed that, given
a subgraph query 𝑄 (𝑢𝑜 ) with a designated output node 𝑢𝑜 and a
graph 𝐺 , compute a set of nodes (matches) of 𝑢𝑜 in 𝐺 in terms of
subgraph isomorphism or its approximate variants [33].
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Figure 1: Query suggestion with Fairness: Talent search.

The emerging need for Web search that requires both result
diversity and fairness [2, 5, 12, 26] poses new challenges to graph
search. In such scenarios, queries are expected to return diversified
matches that meanwhile ensure a suitable coverage of designated
groups (node sets) of interests from 𝐺 . Such groups may refer
to the population of vulnerable individuals in terms of sensitive
attributes (e.g., gender, race, professions) in social networks [15, 16],
relevant articles yet with diversified labels for Web exploration [1],
or designated columns for query benchmark [4].

Example 1: Consider talent search over a collaboration network
𝐺 [16], where each node in𝐺 denotes a user with attributes such as
title, skill, profession, or an organization with attributes such as the
number of employees. Each edge indicates affiliation (worksAt) of a
user or recommendation (recommend) between users. A recruiter
issues a graph search query 𝑞 (illustrated in Fig. 1) to find managers
𝑢𝑜 who have expertise in managing IT business, and moreover,
recommended by two IT managers from large companies. In our
test (Section 6), this query returns a set of qualified candidates 𝑞(𝐺)
with a skewed distribution of 375 male users and 173 female users.

The recruiter pursues the desired gender distribution and diver-
sity of the candidates, and wonders how to query𝐺 such that (1) the
new answer can equally cover the male and female candidates from
𝑞(𝐺), both with 200 candidates (“Equal opportunity” [16]); and (2)
the candidates are also more diversified in their majors. A query
𝑞1 with a more desirable answer can be suggested, which contains
202 male and 198 female candidates that spans 30 different majors.
The difference between 𝑞 and 𝑞1 indicates that a relaxed condition
on recommendation community (removing the edge from 𝑢2 to 𝑢4)
and changed skills (from “business” to “market”) help to achieve
the desired answer with proper coverage of the gender groups. □

The above examples highlight the need to suggest subgraph
queries with diversified matches that can also cover designated
groups with desired cardinality. We study a new problem called
subgraph query generation with group fairness (SQG):

◦ Input: graph 𝐺 , an initial query 𝑄 (𝑢𝑜 ), a set of groups P,
where each group 𝑃𝑖 ∈ P is associated with an integer 𝑐𝑖 (a
cardinality constraint);
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◦ Output: a set of subgraph queries Q obtained by revising
𝑄 (𝑢𝑜 ), which can retrieve a set of diversified matches (“Di-
versity”) from 𝐺 that also cover each group 𝑃𝑖 with desired
cardinality 𝑐𝑖 (“Group fairness”).

Such need is evident in social search [16], query benchmark [4],
and query optimization [21]. Existing query generation approaches
[3, 19, 22, 25, 27, 30] revise queries towards specific properties
rather than ensuring both group coverage and answer diversity,
thus cannot be directly applied to our problem.

Contributions & organization. This paper formally analyzes the
subgraph query generation problemwith group fairness constraints.
We propose both feasible a approximation scheme as well as practi-
cal exact algorithms for large graphs. We refer to subgraph query
simply as “query” in the rest of the paper.
A formal analysis. We formalize SQG (Section 3) as a bi-criteria
optimization problem defined on a parameterized query. A parame-
terized query 𝑄 (𝑢𝑜 ) carries variables defined on search predicates
and edges yet to be instantiated. Given a parameterized query 𝑄 ,
and targeted groups P with cardinality constraints from graph
𝐺 , SQG is to instantiate 𝑄 (𝑢𝑜 ) with proper search predicates and
edge constraints to a set of queries Q, to approach an output (the
union of the matches of queries in Q) with maximized diversity and
minimized distance to the desired cardinality requirements. We
show that SQG is in Σ𝑃2 and remains to be NP-complete for queries
with a single-node pattern. This verifies the hardness of SQG even
when the queries can be evaluated in PTIME.
Query generation with performance guarantees (Section 4). Despite
the hardness, we present a general approximation scheme for SQG.
In a nutshell, our scheme first computes a representative pivot
set from the groups with exact coverage and maximized diversity.
Treating the pivot set as a desired “answer”, we then generate Q
with answers that approach the pivot set.

We investigate two specifications of SQG. The first addresses
“equal opportunity”, by enforcing the coverage of an equal number
of nodes from each group. The second specifies cardinality con-
straint on the query output. For both cases, we develop feasible
approximation algorithms with a factor that are only determined
by the number of groups |P | and the size of promising queries.
Fast heuristic with early termination (Section 5). We follow up the
analysis by introducing a fast heuristic algorithm. It dynamically
relaxes the instances that best improve the coverage at runtime,
and early terminates without enumerating all queries.

Using real-life graphs, we verify the effectiveness and efficiency
of our algorithms (Section 6). Our algorithms can generate subgraph
queries with both desired diversity and small errors in covering
designated groups. These algorithms are also feasible. For exam-
ple, it takes up to 370 seconds to produce instances with desired
coverage in real-life graphs with 4.9𝑀 nodes and 45.6𝑀 edges.

Related Work. We categorize the related work as follows.
Graph query suggestion. Several methods have been studied to sug-
gest subgraph queries towards answers with various desired prop-
erties. Graph query by example [19] induces subgraph queries
from subgraphs that contain similar nodes to specified examples.
Diversified query suggestion [25] expands an initial query with

Figure 2: Parameterized Query and Query Instances

new edges that can lead to relevant and diversified matches. Why-
questions [27, 30] suggest queries with both relaxation and refine-
ment operators towards exact or similar matches. These methods
either cope with diversity or similarity alone or enforce size con-
straints on the entire match set. In contrast, we study subgraph
query generation with both diversity and fairness constraints.
Set selection. Subset selection with diversity and fairness constraints
has been studied [26, 31]. Given a universal set and a set of groups
(subsets), it computes a diverse subset that can cover each group
with individual cardinality constraints. Approximation algorithms
have been studied to generate subsets for max-sum and max-min
diversification [26]. Although these methods cannot be directly
used to suggest queries, we verify that these approximability re-
sults provide useful intermediate results that can be leveraged to
guide the query generation with bounded errors on the cardinality
constraints. Our formal analysis verifies the range of approximation
ratios one can expect for the query generation problem, determined
by the approximation factor of “yardstick” subset selection problem.
Query generation. Query generation with output cardinality con-
straints and distribution properties have been investigated for
graphs. [3] generates regular path queries from given graph schema
that can output node set with different cardinalities over certain at-
tributes. [21] exploits query rewriting to generate SPARQL queries
that can cover the answer of given queries with cheaper plans for
multi-query optimization. In contrast to these work, (1) we study
query generation with fairness constraints on general groups; (2)
We consider queries defined in terms of subgraph isomorphism
rather than regular path queries; and (3) we do not assume pre-
defined graph schema. Our algorithms can be readily applied to
generate subgraph queries for benchmarking graph databases.

2 PRELIMINARIES

Graphs. We consider directed graphs 𝐺 = (𝑉 , 𝐸, 𝐿,𝑇 ), where (1) 𝑉
is a finite set of nodes, (2) 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges, (3) each node
𝑣 ∈ 𝑉 (resp. edge 𝑒 ∈ 𝐸) carries a label 𝐿(𝑣) (resp. 𝐿(𝑒)); and (4)
each node 𝑣 carries a tuple 𝑇 (𝑣) = < (𝐴1, 𝑎1),. . . ,(𝐴𝑛, 𝑎𝑛) >, where
each 𝐴𝑖 (𝑖 ∈ [1, 𝑛]) is a distinct node attribute with a value 𝑎𝑖 .

We denote the finite set of all the node attributes in𝐺 as A. The
active domain adom(𝐴) of an attribute 𝐴 ∈ A refers to the set of
values of 𝑣 .𝐴 as the node 𝑣 ranges over 𝑉 .

We next introduce a notion of parameterized queries. A param-
eterized query allows “placeholders” in search predicates which
can be bound to specific values when executed [9]. We extend this
notion for graph search to characterize query generation problem.
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Paramterized Queries. A parameterized query 𝑄 (𝑢𝑜 ) is a graph
(𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄 ,𝑇𝑄 ). (1) 𝑉𝑄 (resp. 𝐸𝑄 ⊆ 𝑉𝑄 × 𝑉𝑄 ) is a set of query
nodes (resp. query edges). Specifically, 𝑢𝑜 ∈ 𝑉𝑄 is a designated
output node. (2) Each query node 𝑢 ∈ 𝑉𝑄 (resp. query edge 𝑒 ∈ 𝑉𝐸 )
has a label 𝐿𝑄 (𝑢) (resp. 𝐿𝑄 (𝑒)). (3) For each node𝑢 ∈ 𝑉𝑄 ,𝑇𝑄 (𝑢) is a
set of literals. A literal 𝑙 is in the form of𝑢.𝐴 op 𝑥𝑙 , where op is from
{>, >=,=, <=, <}, and 𝑥𝑙 is a range variable that can be assigned to
a constant. For each edge 𝑒 ∈ 𝐸𝑄 ,𝑇𝑄 (𝑒) is a binary edge variable 𝑥𝑒
that can be either “0” or “1”. The set of all the variables in 𝑄 (𝑢𝑜 ) is
denoted as 𝑋 = 𝑋𝐿 ∪𝑋𝐸 , the union of the range and edge variables.
Query instances. Given a parameterized query 𝑄 (𝑢𝑜 ), an instanti-
ation of 𝑄 (𝑢𝑜 ) is a function 𝐼 that maps a set of variables in 𝑋=
𝑋𝐿 ∪ 𝑋𝐸 to constants. A query instance 𝑞(𝑢𝑜 ) of 𝑄 (𝑢𝑜 ) induced
by an instantiation 𝐼 is a graph (𝑉𝑄 , 𝐸𝑞, 𝐿𝑄 ,𝑇𝑞) with the same 𝑉𝑄 ,
output node 𝑢𝑜 and 𝐿𝑄 , and moreover,

◦ for each node 𝑢 ∈ 𝑉𝑄 and each literal 𝑙 ∈ 𝑇𝑄 (𝑢) in 𝑄 (𝑢𝑜 ),
there is a literal 𝑙 = 𝑢.𝐴 op 𝐼 (𝑥𝑙 ) in 𝑇𝑞 (𝑢); and

◦ there is an edge 𝑒 ∈ 𝐸𝑄 if and only if 𝐼 (𝑥𝑒 ) = ’1’.
In other words, a query instance (or simply “instance”) 𝑞 has no
variables but literals and the edges induced by the value binding 𝐼 .
We denote the set of all the possible instances of 𝑄 (𝑢𝑜 ) as I(𝑄).
Matching. Given an instance 𝑞(𝑢𝑜 ) and a graph𝐺 , a matching from
𝑞(𝑢𝑜 ) to𝐺 is a function ℎ ⊆ 𝑉𝑞 ×𝑉 , where (1) for each node𝑢 ∈ 𝑉𝑄 ,
𝐿𝑄 (𝑢) = 𝐿(ℎ(𝑢)), and for each literal 𝑢.𝐴 op 𝑐 in 𝐿𝑞 , ℎ(𝑢) .𝐴 op 𝑐;
(2) for each edge 𝑒 = (𝑢,𝑢 ′) in 𝑞(𝑢𝑜 ), ℎ(𝑒) = (ℎ(𝑢), ℎ(𝑢 ′)) is an edge
in 𝐺 , and 𝐿𝑄 (𝑒) = 𝐿(ℎ(𝑒)).

The matches of a query node 𝑢 of 𝑞(𝑢𝑜 ) in𝐺 , denoted as 𝑞(𝑢,𝐺),
refers to the set of all the nodes in 𝐺 that can match node 𝑢 via a
matching ℎ(𝑢) from 𝑞 to 𝐺 . The result of 𝑞 in 𝐺 , denoted as 𝑞(𝐺),
refers to the match set 𝑞(𝑢𝑜 ,𝐺). Given a set of instances Q ⊆ I(𝑄),
the result of Q in 𝐺 , denoted as Q(𝐺), is defined as

⋃
𝑞∈Q 𝑞(𝐺).

Example 2: A parameterized query 𝑄 (𝑢𝑜 ) that searches for actors
in a knowledge graph 𝐺 [23] is illustrated in Fig. 2. (1) 𝑄 (𝑢𝑜 ) has
three variables𝑋 = {𝑥𝑜 , 𝑥1, 𝑥 (𝑢𝑜 ,𝑢2) }, with two range variables in lit-
erals 𝑢𝑜 .age > 𝑥𝑜 and 𝑢1 .genre = 𝑥1, respectively, and an edge vari-
able 𝑥 (𝑢𝑜 ,𝑢2) . (2) A corresponding instantiation {35, ‘𝐴𝑐𝑡𝑖𝑜𝑛′, ‘1′}
(resp. {20, ‘𝐶𝑜𝑚𝑒𝑑𝑦′, ‘0′}) of 𝑋 induces an instance 𝑞2 (resp. 𝑞3) of
𝑄 (𝑢𝑜 ). (3) Given 𝐺 , 𝑞2 (𝐺) = {𝑣4, 𝑣8, 𝑣10}, and 𝑞3 (𝐺) = {𝑣4, 𝑣6}. Let
Q = {𝑞2, 𝑞3}, then Q(𝐺) = {𝑣4, 𝑣6, 𝑣8, 𝑣10}. □

Remarks. The query instances are well-defined for a “partial” in-
stantiation 𝐼 in which not all the variables of 𝑄 (𝑢𝑜 ) are assigned a
constant. For such cases, 𝑞 is induced by removing any remaining
variables in 𝑄 (𝑢𝑜 ) to ensure valid 𝑞(𝐺). Note that a given “initial”
query (e.g., 𝑞1 in Example 1) can be readily captured by a parame-
terized query with a partial instantiation.
3 QUERY GENERATION PROBLEM
Given a parameterized query𝑄 (𝑢𝑜 ), graph𝐺 and𝑚 disjoint groups
P, where each group 𝑃𝑖 ∈ P has a cardinality constraint 𝑐𝑖 ∈
[1, |𝑃𝑖 |], the query generation problem aims to compute a set of
query instances Q ⊆ I(𝑄) of 𝑄 with maximized diversity and
required coverage properties.

To quantify the quality of query instances, we consider two
classes of functions. For simplicity, (1) we define a constant 𝐶 =∑ |P |
1 𝑐𝑖 , and (2) we use

⋃(𝑆) to denote
⋃

𝑠∈𝑆 𝑠 for a set 𝑆 .

Max-sum Diversification. We consider Max-sum diversification
as a natural objective for result diversification. The function mea-
sures the weighted sum of a relevance measure and pairwise dis-
similarity of the matches [17], and is defined as follows:

𝑓 (Q(𝐺)) = (1 − 𝜆)
∑︁

𝑣∈Q(𝐺)
𝑟 (𝑢𝑜 , 𝑣) +

2𝜆
|𝑉𝑢𝑜 | − 1

∑︁
𝑣,𝑣′∈Q(𝐺)

𝑑 (𝑣, 𝑣 ′)

where (1) 𝜆 ∈ [0, 1] is a constant to balance relevance and diversity;
(2) the function 𝑟 (𝑢𝑜 , 𝑣) ∈ [0, 1] (resp. 𝑑 (𝑣, 𝑣 ′) ∈ [0, 1]) computes a
relevance score between 𝑢𝑜 and a match 𝑣 (resp. difference between
two matches 𝑣 and 𝑣 ′). In practice, 𝑑 (𝑣, 𝑣 ′) can be the edit distance
between tuples𝑇 (𝑣) and𝑇 (𝑣 ′), and 𝑟 (𝑢𝑜 , 𝑣) can be an entity linkage
score or impact of 𝑣 in social networks [14], among others [20].

Here 𝑉𝑢𝑜 is the set {𝑣 |𝐿(𝑣) = 𝐿(𝑢𝑜 ), 𝑣 ∈ 𝑉 }, i.e., the nodes in 𝐺

with the same label of 𝑢𝑜 . Given𝐺 , the pairwise dissimilarity is nor-
malized with a constant |𝑉𝑢𝑜 |−1

2 , as there are at most |𝑉𝑢𝑜 | ( |𝑉𝑢𝑜 |−1)
2

pairs but |𝑉𝑢𝑜 | relevance numbers. That is, 𝑓 (Q(𝐺)) ∈ [0, |𝑉𝑢𝑜 |].

Relative Coverage Error. To characterize the coverage property
of Q(𝐺) over groups P, we introduce a relative error function,
that accumulates normalized errors of the coverage cardinality
constraints, which is defined as follows:

𝛿 (Q(𝐺),P) =
∑
𝑃𝑖 ∈P ( |Q(𝐺) ∩ 𝑃𝑖 | − 𝑐𝑖 )

|⋃(P)|
The function 𝛿 (Q,P) penalizes the differences between each cardi-
nality 𝑐𝑖 posed on 𝑃𝑖 ∈ P and the size of the fraction of 𝑃𝑖 covered
by Q(𝐺). The smaller, the better.

We next state the problem of diversified query generation
with group fairness, denoted as SQG. We simplify 𝑓 (Q(𝐺)) (resp.
𝛿 (Q, (𝐺)P)) as 𝑓 (Q) (resp. 𝛿 (Q,P)) when 𝐺 is given.

Problem statement. Given 𝐺 , 𝑄 (𝑢𝑜 ), and a set of disjoint groups
P with cardinality constraints, the SQG problem is to compute a
set of query instances Q of 𝑄 (𝑢𝑜 ), such that (1) |Q(𝐺) ∩ 𝑃𝑖 | ≥ 𝑐𝑖
(𝑃𝑖 ∈ P), and moreover (2):

𝑓 (Q) = argmax
Q′⊆I(𝑄)

𝑓 (Q ′); 𝛿 (Q,P) = argmin
Q′⊆I(𝑄)

𝛿 (Q ′,P)

The bi-objective optimization problem SQG aims to discover a set
of instances Q with most diversified answers that can meanwhile
properly cover each group with a minimized relative coverage error.
Note that 𝑓 (Q) ∈ [0, |𝑉𝑢𝑜 |], and 𝛿 (Q,P) ∈ [0, 1].

Although desirable, SQG remains intractable even for cases
when subgraph isomorphism is in PTIME, as verified below.

Theorem 1: The SQG problem is (a) in Σ2
𝑃
and (b)NP-complete even

when 𝑄 (𝑢𝑜 ) contains a single node with only range variables. □

Proof sketch: The decision problem of SQG is to decide whether
there exists a set of instances Q of𝑄 (𝑢𝑜 ) and two thresholds 𝑓𝑏 and
𝛿𝑏 , such that 𝑓 (Q) ≥ 𝑓𝑏 and 𝛿 (Q) ≤ 𝛿𝑏 . For (a), SQG is solvable in
Σ2
𝑃
. Here Σ2

𝑃
is the class of problems in NPNP. Since the verification

of subgraph isomorphism is in NP, a Σ2
𝑃
algorithm first guesses a

set of instances Q. For each instance, it consults an NP oracle to
compute the coverage over P and verifies 𝑓 (Q) and 𝛿 (Q).

We next prove (b). When 𝑄 (𝑢𝑜 ) contains a single node 𝑢𝑜 and
range variables, anNP algorithm first guesses a set of instances and

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

688



verifies the answers in PTIME. To see the hardness, we construct
a PTIME reduction from the subset sum problem (known to be
NP-complete). Given a bag of integers 𝑆 , subset sum is to decide
whether there is a non-empty subset 𝑆 ′ ⊆ 𝑆 that is summed to
be a target value 𝑐 . Given 𝑆 = {𝑠1, . . . , 𝑠𝑛} and 𝑐 , we construct an
instance of SQG with a single-node parameterized query 𝑄 (𝑢𝑜 ) as
follows. (1) For each integer 𝑠𝑖 ∈ 𝑆 , there are |𝑠𝑖 | nodes 𝑣𝑖 𝑗 in 𝐺

(𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑠𝑖 ]) in 𝑉 and 𝐸 = ∅. Each node 𝑣𝑖 𝑗 has a label 𝑙 ,
and a tuple 𝑇 (𝑣) defined on |𝑆 | Boolean attributes 𝐴𝑘 (𝑘 ∈ [1, 𝑛]),
where 𝑣𝑖 𝑗 .𝐴𝑖 = 1, and 𝑣𝑖 𝑗 .𝐴𝑘 = 0 for 𝑘 ≠ 𝑖 . (2) 𝑄 (𝑢𝑜 ) has a single
output node 𝑢𝑜 with label 𝑙 , and 𝑛 literals 𝑢𝑜 .𝐴𝑘 = 𝑥𝑘 , with 𝑛 range
variables 𝑋𝑅 {𝑥1, . . . , 𝑥𝑛}. (3) P contains a single group 𝑉 with
cardinality constraint 𝑐 . We set threshold 𝑓𝑏 = 0 and 𝛿𝑏 = 0. We can
verify that there is a set of instances Q with results that precisely
cover 𝑐 nodes in 𝑉 (𝑓 (Q) ≥ 𝑏=1) if and only if there is a subset 𝑆 ′
with integers that are summed to be 𝑐 . This completes the proof. □

4 APPROXIMATING QUERY GENERATION
An “optimal” solution of SQG Q∗ should ensure

𝑓 (Q∗) = argmax
𝛿 (Q,P)=0

𝑓 (Q)

That is, among all instances that cover P with exactly the required
cardinality, Q∗ has the maximized diversity (i.e., a Pareto optimal
solution). While desirable, such an “ideal” solution may not always
exist as diversity and fairness can be in conflict. On the other hand,
it is still desirable to use 𝑓 (Q∗) and 𝛿 (Q∗,P) as “reference points”
to measure the quality of solutions [13, 18].

(𝛼, 𝛽)-approximation. Following the reference approach of bi-
objective optimization [13, 18], we characterize a desirable quality
guarantee. A solution Q𝑟 is a reference solution if (1) 𝑓 (Q𝑟 ) ≥
𝛼 · 𝑓 (Q∗) (𝛼 ∈ [0, 1]), and (2) 𝛿 (Q𝑟 ,P) = argmin𝑓 (Q) ≥𝛼 ·𝑓 (Q∗)
𝛿 (Q,P). That is, Q𝑟 ensures a bounded gap between diversity and
an ideal counterpart with the smallest coverage error.

We say an algorithm is an (𝛼, 𝛽)-approximation for SQG (𝛼 ∈
[0, 1], 𝛽 > 1), if for any non-empty solutions Q it generates, (1)
𝑓 (Q) ≥ 𝛼 · 𝑓 (Q∗), and (2) 𝛿 (Q) ≤ 𝛽 · 𝛿 (Q𝑟 ). In other words, it
generates Q with guaranteed diversity as any reference solutions,
and ensures a bounded gap in the minimum coverage error they can
achieve. This guarantee is weaker yet remains desirable, especially
when a single Pareto optimal solution Q∗ may not exist [13, 18].

We next show that there exists feasible (𝛼, 𝛽)-approximations for
SQG. We introduce a general strategy (Section 4.1), and investigate
two practical approximable cases (Section 4.2).

4.1 A General Approximation Scheme
We present a general approximation scheme, denoted as APXQGen.
In a nutshell, APXQGen exploits a “pivot-and-cover” strategy to
compute a set of instances Q as follows.
(1) Pivoting. The pivoting step finds an optimal set 𝑆∗ ⊆ 𝑉𝑢𝑜 of size
𝐶 , such that 𝑆∗ covers each 𝑃𝑖 ∈ P exactly with 𝑐𝑖 nodes, and has
the maximized diversity. We refer to the output of pivoting step,
denoted as 𝑆𝑝 , as a pivot set (ideally, 𝑆𝑝 = 𝑆∗).
(2) Covering. The covering step aims to compute Q that ensures (a)
𝑆𝑝 ⊆ Q(𝐺), and (b) |Q(𝐺) ∩ (𝑉𝑢𝑜 \ 𝑆𝑝 ) | is minimized.

Algorithm APXQGen

Input: graph𝐺 , parameterized query𝑄 (𝑢𝑜 ) ,
groups P with cardinality constraints.

Output:a set of instances Q.
1. set 𝑆𝑝 := ∅; set Q:= ∅; queue S𝑄 := ∅;
2. set𝑉𝑢𝑜 := {𝑣 |𝐿 (𝑣) = 𝐿𝑄 (𝑢𝑜 ) ; 𝑣 ∈ 𝑉 };
3. 𝑆𝑝 := Pivot(P) ; 𝑆𝑛 :=𝑉𝑢𝑜 \ 𝑆𝑝 ;
4. S𝑄 := MatchGen(𝐺,𝑄, 𝑆𝑝 , 𝑆𝑛) ;
5. Q := Cover(𝑆𝑝 , 𝑆𝑛, S𝑄 ) ;
6. return Q;

Figure 3: Algorithm APXQGen

Intuitively, the pivoting step computes a most diversified subset
𝑆𝑝 of size 𝐶 , which ensures the exactly required coverage of P
as a hard constraint (thus ensures 𝛿 (𝑆𝑝 ,P) = 0). The pivot set 𝑆𝑝
hence serves as a desired diversified answer to be approached.
The covering step then aims to “recovers” a reference solution Q
that approaches 𝑆𝑝 . By ensuring the containment of 𝑆𝑝 as hard
constraint, Q preserves the diversity (as 𝑓 (·) is non-decreasing)
and ideally with a bounded coverage error.

Algorithm. The algorithm APXQGen, outlined in Fig. 3, maintains
a queueS𝑄 to store a set of query instances to be verified (line 1). (1)
In the pivoting step, it invokes a procedure Pivot to compute a pivot
set 𝑆𝑝 (line 3). (2) For the covering step, APXQGen first initializes a
set 𝑆𝑛 =𝑉𝑢𝑜 \𝑆𝑃 to track the nodes that are not to be covered by the
desired instances Q (line 3). It then invokes a procedureMatchGen
(line 4) to generate a set of instances S𝑄 , where each individual
instancemay havematches to cover a fraction of 𝑆𝑝 (to be discussed).
It then invokes procedure Cover (line 5) to further refine S𝑄 to Q
towards a complete coverage of 𝑆𝑝 with minimized nodes from 𝑆𝑛 .

We next introduce procedures Pivot, MatchGen and Cover.

Procedure Pivot. The procedure Pivot is “plug-able” to specify
APXQGen to (𝛼, 𝛽)-approximations. Given P, it returns a pivot
set 𝑆𝑝 of size 𝐶 with maximized diversity, and covers each group
𝑃𝑖 ∈ P with exactly 𝑐𝑖 nodes. To this end, it solves a class of
diversified subset selection problems, with variants depending on
the specific cardinality constraints [1, 6, 26]. This partly ensures
the general performance guarantees of APXQGen as long as Pivot
approximates optimal 𝑆𝑝 (see “Analysis”). We defer the discussion
by providing two such approximations in Section 4.2.

Example 3: Recall 𝐺 and 𝑄 (𝑢𝑜 ) in Fig. 2, and consider the gender
groups P with 𝑃1 = {𝑣4, 𝑣6} (female actors) and 𝑃2 = {𝑣2, 𝑣8, 𝑣10}
(male actors). Given a function 𝑓 (·) that aims to diversify the age
differences and a coverage measure that enforces 𝑐1 = 𝑐2 = 2 (“equal
opportunity”), a proper pivot set 𝑆𝑝 is {𝑣4, 𝑣6, 𝑣8, 𝑣10}, which satis-
fies 𝛿 (𝑆𝑝 ,P) = 0 with maximized age diversity. □

Procedure MatchGen. Given pivot set 𝑆𝑝 , 𝑆𝑛 , 𝑄 (𝑢𝑜 ) and 𝐺 , the
procedureMatchGen (not shown) generates a small set of “promis-
ing” instances that may likely to output 𝑆𝑝 . It maintains a priority
queue. S𝑄 , where each entry of S𝑄 records an instance 𝑞, match
set 𝑞(𝐺) (initialized as ∅), and an integer 𝑞.𝑟 to track |𝑞(𝐺) ∩ 𝑆𝑛 |).
The goal is to retain all instances of 𝑄𝑢𝑜 that contribute to cover
𝑆𝑝 (which in turn properly covers P) and avoids the generation of
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Procedure Cover

Input: pivot set 𝑆𝑝 , set 𝑆𝑛 , queue S𝑄 .
Output:a set of instances Q.
1. set Q := ∅; set 𝑆∗ := ∅; integer 𝐵:= max(𝑞.𝑟 |𝑞 ∈ S𝑄 .Q) ;
2. for integer 𝑖 = 1 to 𝐵 do
3. 𝑆𝑖 := {𝑞 (𝐺) |𝑞 ∈ S𝑄 .Q, 𝑞.𝑟 ≤ 𝑖 };
4. if 𝑆𝑝 ⊈

⋃(𝑆𝑖 ) then continue ;
5. set 𝑆𝐻𝑛 := {𝑣 ∈ 𝑆𝑛 |𝑣 occurs in at least

√︁
|S𝑄 |/log𝐶 sets in 𝑆𝑖 };

6. set 𝑆𝑖 := Refine(𝑆𝑖 ) ; update S𝑄 .S;
7. 𝑆𝑐

𝑖
:= GreedySC(𝑆𝑖 , 𝑆𝑝 , 𝑆𝐻𝑛 ) ;

8. restore 𝑆𝑐
𝑖
to original match sets in S𝑄 .S;

9. if 𝛿 (𝑆∗, P) > 𝛿 (⋃(𝑆𝑐
𝑖
), P) then 𝑆∗ := 𝑆𝑐

𝑖
;

10. Induce Q from 𝑆∗; return 𝑆∗;

Figure 4: Procedure Cover

an excessive number of instances. To this end, it exploits the data
locality of subgraph isomorphism without expensive verification.
Constraining 𝑄𝑢𝑜 . MatchGen first rewrites 𝑄 (𝑢𝑜 ) and its literals
by “narrowing down” the values the variables may take towards
targeted answer 𝑆𝑝 . It induces a set of subgraphs 𝑁 (𝑆𝑝 ) of𝐺 , where
each subgraph 𝐺𝑣 contains a node 𝑣 ∈ 𝑆𝑝 and its 𝑛-hop neighbors
in 𝐺 (𝑛 is the diameter of 𝑄 (𝑢𝑜 )).
(1) For each range variable 𝑥𝑙 in the literal 𝑢.𝐴 op 𝑥𝑙 , MatchGen
constrains a set of possible values of 𝑥𝑙 as {𝑇 (𝑣) .𝐴}, where 𝑣 ranges
over the nodes in 𝑁 (𝑆𝑝 ) with 𝐿(𝑣) = 𝐿(𝑢). If 𝑥𝑙 has no proper value,
it removes the literal 𝑢.𝐴 op 𝑥𝑙 from 𝑄 (𝑢𝑜 ).
(2) For each edge variable 𝑥𝑒 defined on an edge 𝑒 = (𝑢,𝑢 ′), it
“presets” 𝑥𝑒 = 0, if there exists no subgraph of 𝑁 (𝑆𝑝 ) that contain a
path from 𝑣𝑜 ∈ 𝑉𝑝 with an edge (𝑣, 𝑣 ′) such that 𝐿𝑄 (𝑒) = 𝐿((𝑣, 𝑣 ′)).
If 𝑥𝑒 = 0 and 𝑒 is a bridge of 𝑄 (𝑢𝑜 ), i.e., removing 𝑒 leads to two
connected components in 𝑄 (𝑢𝑜 ), MatchGen removes 𝑒 and the
entire connected component that does not contain 𝑢𝑜 .
Instance generation. Given the constrained 𝑄𝑢𝑜 (denoted as 𝑄 ′

(𝑢𝑜 )),
MatchGen then instantiates 𝑄 ′

(𝑢𝑜 ) with constrained values. For
each instance 𝑞,MatchGen overestimates 𝑞(𝐺) as 𝑞(𝐺) =⋂

𝑞𝑖 (𝐺),
where each 𝑞𝑖 is a path query from 𝑢𝑜 to a distinct node in 𝑞. If
𝑞(𝐺) ∩ 𝑆𝑝 ≠ ∅, it inserts 𝑞, 𝑞(𝐺) and 𝑞.𝑟 = |𝑞(𝐺) ∩ 𝑆𝑛 | into S𝑄 .

It suffices to instantiate the constrained 𝑄 ′
𝑢𝑜
, as verified below.

Lemma 2: For any instance 𝑞 ∈ I(𝑄𝑢𝑜 ) where 𝑞(𝐺) ∩ 𝑆𝑝 ≠ ∅,
MatchGen guarantees that 𝑞 ∈ S𝑄 ⊆ I(𝑄 ′

𝑢𝑜
). □

Procedure Cover. Given S𝑄 generated by MatchGen, we refer to
the set of instances (resp. corresponding match sets) as S𝑄 .Q (resp.
S𝑄 .S). The procedure (given in Fig. 4) solves a red-blue set cover
problem [8, 28]. Given a collection of sets with “blue” and “red”
elements, the red-blue set cover problem computes a sub-collection
of sets that covers all “blue” elements and the minimum number of
“red” elements. We map 𝑆𝑝 to “blue” elements, 𝑆𝑛 to “red” elements,
and the match sets S𝑄 .S to the sets.

Procedure Cover follows a greedy approximation [28]. It opti-
mizes the process with a “late verification” strategy, which exploits
the overestimated match sets and defers unnecessary verification
to reduce cost. It conducts 𝐵 rounds of computation, where 𝐵 is the
maximum number of nodes in 𝑆𝑛 contained in a single match set
in S𝑄 .S. At the 𝑖-th round, it performs the following (lines 3-9).

(1) It first verifies if 𝑆𝑖 ⊆ S𝑄 .S can cover 𝑆𝑝 (lines 3-4). Here 𝑆𝑖 is
induced by the overestimated match sets 𝑞(𝐺) ∈ S𝑄 .S, where 𝑞.𝑟
= |𝑞(𝐺) ∩ 𝑆𝑛 | ≤ 𝑖 , i.e., each 𝑞(𝐺) contains no more than 𝑖 nodes
from 𝑆𝑛 . It early terminates if no cover can be found for 𝑖 (line 4).
(2) Cover then refines 𝑆𝑖 to a minimum weighted set cover 𝑆𝑐

𝑖
of 𝑆𝑝

(lines 5-6). Intuitively, it favors the match sets that cover 𝑆𝑝 and
also repeatedly cover the same set of nodes in 𝑆𝑛 . (controlled by
a threshold). The weighted set cover leads to a bounded coverage
error for 𝑆𝑝 , as the repeatedly covered nodes are counted once in
the induced answer Q(𝐺) (see “Analysis”).
(a) It updates each 𝑞(𝐺) ∈ 𝑆𝑖 to 𝑞(𝐺) by verifying if each node
𝑣 ∈ 𝑞(𝐺) remains a match of 𝑞, by invoking established subgraph
isomorphism algorithm (e.g., VF2 [10]) over 𝑞 and a subgraph 𝑁𝑛 (𝑣)
induced by the 𝑛-hop neighbors of 𝑣 (𝑛 is the diameter of 𝑞). This
refines 𝑆𝑟 to 𝑆𝑖 . S𝑄 .S is updated accordingly (line 6).
(b)Cover then constructs an instance ofweighted set cover. It “trims”
𝑞(𝐺) to𝑞(𝐺)\𝑆𝑛 and assigns a weight |𝑞(𝐺)∩𝑆𝐻𝑛 |), where 𝑆𝐻𝑛 refers
to a set of nodes in 𝑆𝑛 such that each node occurs in more than√︁
|S𝑄 |/𝑙𝑜𝑔𝐶 match sets in 𝑆𝑖 . It invokes a greedy approximation

GreedySC [32] to compute the weighted set cover 𝑆𝑐
𝑖
⊆ 𝑆𝑖 of 𝑆𝑝

(line 7). It then “restores” 𝑆𝑐
𝑖
to be the set of original match sets 𝑞(𝐺)

by augmenting their trimmed counterparts in 𝑆𝑐 , and computes
𝛿 (⋃𝑞 (𝐺) ∈𝑆𝑐

𝑖
𝑞(𝐺),P) (lines 8-9).

(3) Cover keeps track of the best 𝑆𝑐
𝑖
as 𝑆∗ with the smallest

𝛿 (⋃𝑞 (𝐺) ∈𝑆𝑐
𝑖
𝑞(𝐺),P) (line 9). It finally sets Q as the instances in

S𝑄 .Q whose match set is in 𝑆∗, and returns Q (line 10).

Example 4: We continue with Example 3. Given the pivot set 𝑆𝑝 =
{𝑣4, 𝑣6, 𝑣8, 𝑣10},MatchGen yields a set of instances including 𝑞2 and
𝑞3. Cover then verifies 𝑞2 (𝐺)={𝑣4, 𝑣8, 𝑣10} and 𝑞3 (𝐺) = {𝑣4, 𝑣6} as a
minimum weighted set cover for 𝑆𝑝 (with no additional nodes), and
returns Q = {𝑞2, 𝑞3} as a solution. This suggests a proper gender
coverage with equal opportunity by considering both “Action” and
“Comedy” movie actors. □

Analysis. We show thatAPXQGen ensures the following guarantee
for SQG with the condition below.

Theorem 3: APXQGen is an (𝛼, 2
√︁
|S𝑄 | log𝐶-approximation for

SQG, for any Pivot that approximates the optimal pivot set with
approximation ratio 𝛼 . □

Proof sketch: Let the ideal solution be Q∗. A reference solution
Q𝑟 ensures 𝑓 (Q𝑟 ) ≥ 𝛼 𝑓 (Q∗) with minimized relative coverage
error 𝛿 (Q𝑟 ,P). Consider Q (Q ≠ ∅) computed by APXQGen.
(1) 𝑓 (Q) ≥ 𝑓 (Q𝑟 ) ≥ 𝛼 · 𝑓 (Q∗). As Pivot is an 𝛼-approximation of
the subset selection problem with output 𝑆𝑝 from 𝑉𝑢𝑜 , we have
𝑓 (𝑆𝑝 ) ≥ 𝛼 𝑓 (𝑆∗) ≥ 𝛼 𝑓 (Q∗). Given that 𝑆𝑝 ⊆ Q(𝐺), we have
𝑓 (Q) ≥ 𝑓 (𝑆𝑝 ). Thus 𝑓 (Q) ≥ 𝛼 𝑓 (Q∗).
(2) 𝛿 (Q,P) ≤ 2

√︁
|S𝑄 | log |𝐶𝛿 (Q𝑟 ,P). For any set 𝑆 ⊆ 𝑉𝑢𝑜 , 𝛿 (𝑆,P) ·

|⋃(P)| = ∑
𝑃𝑖 ∈P ( |𝑆 ∩ 𝑃𝑖 | - 𝑐𝑖 ) =

∑
𝑃𝑖 ∈P (𝑆 ∩ 𝑃𝑖 ) - 𝐶 = |𝑆 ∩ ⋃P|

- 𝐶 . Assume 𝑆𝑝 ⊆ 𝑆 , we have 𝛿 (𝑆,P) · |⋃(P)| = |𝑆𝑝 ∩ ⋃(P)| +
| (𝑆 \ 𝑆𝑝 ) ∩ P| - 𝐶 = | (𝑆 \ 𝑆𝑝 ) ∩ P| = |𝑆 ∩ 𝑆𝑛 |. Denote the optimal
weighted set cover of 𝑆𝑝 as 𝑆∗𝑐 . As Cover simulates the greedy
approximation in [28] without missing instances (Lemma 2), we
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Procedure PivotEq

Input: groups P with equal cardinality constraint 𝑐 .
Output:a pivot set 𝑆𝑝 ;
1. set 𝑆𝑝 := ∅;
2. for each 𝑃𝑖 ∈ 𝑃 do
3. initializes 𝑆𝑖𝑝 with 𝑐 random nodes in 𝑃𝑖 ;
4. while 𝑆𝑖𝑝 changes do
5. for each pair of nodes (𝑣, 𝑣′) ∈ 𝑆𝑖𝑝 × (𝑃𝑖 \ 𝑆𝑖𝑝 ) do
6. if 𝑓 ( (𝑆𝑖𝑝 \ {𝑣 }) ∪ {𝑣′ }) > (1 + 𝜖

|⋃(P) | ) 𝑓 (𝑆
𝑖
𝑝 ) ;

7. 𝑆𝑖𝑝 := 𝑆𝑖𝑝 \ {𝑣 } ∪ {𝑣′ };
8. 𝑆𝑝 := 𝑆𝑝 ∪ 𝑆𝑖𝑝 ;
9. return 𝑆𝑝 ;

Figure 5: Procedure PivotEq

have |Q(𝐺) ∩ 𝑆𝑛 | ≤ 2
√︁
|S𝑄 | log𝐶 | |⋃(𝑆∗𝑐 ) ∩ 𝑆𝑛 |. Hence, 𝛿 (Q,P) ·

|⋃(P)| ≤ 2
√︁
|S𝑄 | log𝐶𝛿 (𝑆∗𝑐 ,P)·|⋃(P)| ≤ 2

√︁
|S𝑄 | log𝐶𝛿 (Q𝑟 ,P)·

|⋃(P)|. This completes the proof of Theorem 3. □

Time cost. There are at most |𝑄 (𝑢𝑜 ) | variables. Let 𝑚𝑑 be
max( |adom(𝐴) |) where adom(A) is the active domain of a node
attribute. Thus procedure MatchGen takes in total 𝑂 ( |𝑁𝑛 (𝑆𝑝 ) | +
𝑚𝑑 · |𝑄 (𝑢𝑜 ) | + |S𝑄 |) time to generate instances S𝑄 (𝑛 is the diame-
ter of 𝑄 (𝑢𝑜 )). Procedure Cover takes at most 𝐵 rounds, and each
round takes 𝑂 ( |𝐶 | |S𝑄 |) time to compute the set cover. It takes in
total |S𝑄 | ·𝑇 time to verify the exact matches, where 𝑇 is the time
cost of verifying the matches of a single instance. Let 𝑇 (𝑆𝑝 ) be the
time cost of the procedure Pivot on computing 𝑆𝑝 . The total time
cost is thus in 𝑂 ((𝐵 ·𝐶 +𝑇 ) |S𝑄 | + 𝑇𝑆𝑝 ). We found that |S𝑄 | is not
large in practice (a few hundreds after pruning), and APXQGen is
feasible for large graphs due to late verification (see Section 6).

We next investigate two practical scenarios for diversified query
generation, and provide approximations ensured by specific Pivot.

4.2 Diversified Query Generation

Query Generation with Equal opportunity. SQG with equal
opportunity computesQ with answers that (1) maximize amax-sum
diversity in terms of pairwise distances (𝜆 = 1), and (2) retrieves
equally 𝑐 nodes from each group (e.g., gender, topics), as seen in
social [5, 16, 26] or Web search[1]. We show the following result.

Theorem 4: The SQG problem with equal opportunity has an ( 12 −
𝜖

|⋃(P) | , 2
√︁
|S𝑄 | log 𝑐 |P |)-approximation in time𝑂 ((𝐵 ·𝐶+𝑇 ) |S𝑄 |+

|P| ∥
⋃(P) |
𝜖 log( |P|)). □

Given Theorem 3, it suffices to show that SQG permits an 1
2 −

𝜖
|⋃(P) | -approximation for pivot sets with equal opportunity. We
present such a procedure., denoted as PivotEq.

Procedure PivotEq. The procedure (illustrated in Fig. 5) computes
𝑆𝑝 as the union of |P | diversified sets. Each set 𝑆𝑖𝑝 ⊆ 𝑃𝑖 ∈ P
contains 𝑐 nodes that are picked with a local search strategy as
follows. (1) PivotEq initializes 𝑆𝑖𝑝 with 𝑐 randomly selected nodes
(line 3). (2) It verifies if “swapping” of a pair (𝑣, 𝑣 ′) where 𝑣 ∈ 𝑆𝑖𝑝 and
𝑣 ′ in 𝑃𝑖 \ 𝑆𝑖𝑝 improves the diversity, and if so, updates 𝑆𝑖𝑝 (lines 5-7).
This repeats until 𝑓 (𝑆𝑖𝑝 ) can no longer be locally improved (line 4).
It finally returns 𝑆𝑝 as the union of all 𝑆𝑖𝑝 (line 9).

Algorithm HeuQGen

Input: graph𝐺 , parameterized query𝑄 (𝑢𝑜 ) , integer 𝑘 ,
groups P with cardinality constraints.

Output:a set of instances Q.
1. set Q:= ∅; queue S𝑄 := ∅; set P′:=P;
2. while |Q | < 𝑘 do
3. Q := Q ∪ { getNext (P′Q, S𝑄 ) };
4. set P′ := {𝑃 ′

𝑖
|𝑃 ′
𝑖
:= 𝑃𝑖 \ Q(𝐺) ;𝑃𝑖 ∈ P) };

5. 𝑐′
𝑖
:= |𝑃 ′

𝑖
| for each 𝑃 ′

𝑖
∈ P′;

6. while ℎ𝑎𝑠𝑁𝑒𝑥𝑡 (Q) do
7. 𝑞 := 𝑔𝑒𝑡𝑁𝑒𝑥𝑡 (P′, Q, S𝑄 ) ;
8. update P′ and each 𝑐𝑖 of 𝑃𝑖 ∈ P with 𝑞 (𝐺) ;
9. if (min(𝑓 (𝑞′) |𝑞′ ∈ Q)> 𝑓 (𝑞 (𝐺))

or no 𝑃 ′
𝑖
∈ P′ has 𝑐′

𝑖
> 0 then return Q;

10. if there is no change in P′ then continue ;
11. find 𝑞′ ∈ Q with maximum 𝑓 (Q \ {𝑞′ } ∪ 𝑞) - 𝑓 (Q)

or maximum 𝛿 (Q, P) - 𝛿 (Q \ {𝑞′ } ∪ 𝑞, P)) ;
12. Q := Q \ {𝑞′ } ∪ 𝑞) ;
13. return Q;

Figure 6: Algorithm HeuQGen
Correctness & Complexity. PivotEq returns a pivot set 𝑆𝑝 with
size 𝑐 |P |, and ensures a coverage of each group P𝑖 with 𝑐 nodes.
We show that it approximates an optimal pivot set 𝑆∗ with ratio
1
2−

𝜖
|⋃(P) | for a small constant 𝜖 . To see this, we perform an approx-

imation preserving reduction to clustered diversity maximization
with matroid constraints (CDM) [1]. Given a set 𝐷 and a set of
subsets D = (𝐷1 . . . , 𝐷𝑘 ) of 𝐷 , a matroid is a pair (⋃(D),M),
where M is a set of independent sets with certain matroid con-
straints. An instance of CDM (DM, 𝑝) is to select a set of subsets
R = {𝑅1, . . . , 𝑅𝑘 }, such that 𝑅𝑖 ⊆ 𝐷𝑖 , 𝑅𝑖 ∈ M, and |𝑅𝑖 | = 𝑝 , with
maximized diversity 𝑓 ′(⋃(R)) (𝑓 ′ is a special case of 𝑓 (·) with 𝜆

= 1). By setting P = D, 𝑐 = 𝑝 , and M as the subsets of
⋃(P) with

size up to 𝑐 , we can verify that PivotEq simulates a local search
approximation [1] with approximation ratio 1

2 - 𝜖
|⋃(P) | .

For time cost, PivotEq takes at most |P | rounds. In each round,
it takes in total 𝑂 ( |

⋃(P) |
𝜖 log( |P|)) time (lines 4-8) for a small

constant 𝜖 , as PivotEq only triggers a bounded number of swapping
upon a factor of (1+ 𝜖

|⋃(P) | ) incremental improvement from any
random selection to optimal diversity. The total cost of PivotEq is
thus in 𝑂 ( |P||⋃(P)|𝜖 log( |P|)). Theorem 4 thus follows.

Generate Queries with Cardinality Constraints. We next inves-
tigate SQG with cardinality constraints, which sets P = {𝑉𝑢𝑜 } (a
single group). This allows us to generate Q with diversified answers
that also has a desired output size 𝑐 as needed in query benchmark-
ing and database tests [3–5]. We show the following result.

Theorem 5: The SQG problem with cardinality constraints has
a ( 12 , 2

√︁
|S𝑄 | log 𝑐)-approximation in time 𝑂 ((𝐵 · 𝐶 + 𝑇 ) |S𝑄 | +

𝑐 |⋃(P|)). □

Procedure PivotC. In this case, Pivot solves a max-sum diversifica-
tion problem. Given a set𝑉𝑢𝑜 , it aims to select a subset 𝑆𝑝 with size
𝑐 and maximizes 𝑓 (𝑆𝑝 ). Procedure PivotC adopts a greedy strategy
to iteratively enlarge 𝑆𝑝 (initialized as ∅) by selecting a node 𝑣 ′
from 𝑉𝑢𝑜 \ 𝑆𝑝 , with the maximal marginal gain, i.e., 𝑓 (𝑆𝑝 ∪ {𝑣 ′}) -
𝑓 (𝑆𝑝 ) is maximized. This step repeats until |𝑆𝑝 | = 𝑐 . It is known that
the above greedy selection strategy yields a 1

2 -approximation for
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Figure 7: Effectiveness of Query Generation

Max-Sum Diversification [17]. The procedure Cover then generates
Q with answers that covers 𝑆𝑝 and minimizes additional nodes
from 𝑉𝑢𝑜 \ 𝑆𝑝 . The time cost of PivotC is in 𝑂 (𝑐 |⋃(P)|). Putting
these and Theorem 3, Theorem 5 follows.
5 EARLY TERMINATION HEURISTICS
Algorithm APXQGen requires a “batch” generation of promising
instances and may return an excessive number of instances. It is
also desirable to find Q with 𝑘 high-quality instances as soon as
possible [22]. We present a heuristic algorithm for SQG, denoted
as HeuQGen, that early terminates without enumerating instances.

Algorithm. Similar to APXQGen, HeuQGen uses a priority queue
S𝑄 to maintain Q up to 𝑘 instances, with an additional pair
(𝑓 (𝑞(𝐺)), 𝛿 (𝑞(𝐺))) per instance 𝑞. It populates Q by invoking a
procedure getNext (lines 2-5), and greedily update Q by replacing
an instance 𝑞′ with a next new instance from getNext that can max-
imally improve 𝑓 (Q) or 𝛿 (Q) (lines 11-12). In this process, it (1)
ensure that 𝑞 covers new nodes in P by retaining uncovered nodes
in groups P ′ (initialized as P; lines 4-5; line 8); and (2) skips un-
necessary verification if 𝑞 has no contribution to 𝑓 (Q) or 𝛿 (Q,P)
(line 10). It early terminateswhen (a) no instance can improve 𝑓 (Q),
or (b) all nodes in P are covered (thus 𝛿 (Q,P) converges).
Procedure hasNext. The procedure (1) generates and puts the first
instance to S𝑄 .Q with “most constrained” predicates (e.g., setting
all edge variables to 1, and range variables to minimum or maxi-
mum values); and (2) ensures to generate a next instance by relaxing
the latest one in S𝑄 .Q, one variable and one “step” at a time (e.g.,
changing a range variable value to the next smaller or larger coun-
terpart). It also skips instances that cannot cover any nodes in the
input P, similar to MatchGen (details omitted due to space limit).

Analysis. Algorithm HeuQGen correctly identifies Q with 𝑘 in-
stances. The early termination property is ensured by hasNext,
which produces a sequence of instances by keep “relaxing” the
search predicates. This ensures an invariant that Q has monotoni-
cally increasing min(𝑓 (𝑞) |𝑞 ∈ Q), and a monotonically decreasing
𝛿 (Q,P) before termination. As each iteration covers at least one
node in P, it takes up to |⋃(P)| rounds of replacement with veri-
fication (line 11). The time cost is thus in 𝑂 ( |⋃(P)|(𝑘 +𝑇 )).
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Figure 8: Efficiency of Query Generation

6 EXPERIMENTS
Based on real-world attributed graphs, we experimentally verify
the effectiveness and efficiency of our algorithms for SQG.

Experiment Setting. We used the following setting.
Datasets. We use three real-life data graphs. (1) DBP is a movie
knowledge graph induced from DBpedia [23] with 1𝑀 entities
(e.g., movies, directors, actors) and 3.18𝑀 relations (e.g., directed,
collaboration). Each node has attributes such as title, genre. We
induce movie groups based on their genres or countries. (2) LKI [34]
contains 3𝑀 nodes (users, organizations) with labels (professions,
skills) and 26𝑀 edges (e.g., co-review). We induce gender groups P
with synthetic genders generated by gender inference tools [11].
(3)Cite [29] contains 4.9 nodes (e.g., papers, authors) with labels
(e.g., topics) and 46𝑀 edges (e.g., citations, authorship). We induce
groups P of papers having different topics.
Queries. We developed a generator to produce parameterized
queries with practical search conditions, controlled by the number
of variables, query size |𝑄 (𝑢𝑜 ) | and topologies.
Algorithms. We implemented the following algorithms in Java.:
(1) algorithms QGenEq for SQG with equal opportunity, and
QGenC for SQG with cardinality constraints, which specifies
APXQGen with procedures PivotEq and PivotC, respectively; (2)
algorithms QGenEq𝑛 (resp. QGenC𝑛), a counterpart of QGenEq
(resp. QGen) without the late verification strategies; (3) the early
terminating algorithm HeuQGen, and (4) an exact algorithm
EnumGen that enumerates all instances and their sets, and ter-
minates once the reference solution Q𝑓 is found.
Reference solutions. For a fair comparison, we use EnumGen to en-
sure the existence of a “yardstick” reference solution Q𝑓 , by setting
a long running time (2 hours) unless it terminates with all possi-
ble enumerations. exhausted. We track the solution Q𝑓 with the
smallest coverage error, and ensure a local optimal diversity by
“perturbing” the instances in Q𝑓 with other domain values.
Experimental results. We next present our findings.

Exp-1: Effectiveness.We first evaluated the effectiveness of our
algorithms. QGenEq𝑛 (resp. QGenC𝑛) report the same results as
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QGenEq (resp. QGenC), thus are omitted. We quantify the effec-
tiveness with a normalized 𝑀1 score [35] between the returned
Q and reference solution Q𝑓 . Specifically, 𝑀1 is a pair (𝑀𝑓 , 𝑀𝛿 ),
where 𝑀𝑓 = 𝑓 (Q)

𝑓 (Q𝑓 ) , and 𝑀𝛿 = 𝛿 (Q𝑓 ,P)
𝛿 (Q,P) (if 𝛿 (Q,P) = 0 then 𝑀𝛿 =

1), both in [0, 1]. This measure also indicates the ratios in (𝛼, 𝛽)-
approximations: the closer to 1, the better.
Equal Opportunity. We compare the performance of EnumGen,
QGenEq and HeuQGen for SQG with equal opportunity over the
three real life datasets (Fig. 7(a)). We set |𝑄 | = 3 with 3 variables
(1 edge variables, and 2 range variables), and |P | = 2. We set 𝑘 =
50 for HeuQGen, which is calibrated with the output size from
QGenEq. (1) QGenEq achieves high scores, at least 0.69 and 0.8 in
both diversity and coverage, respectively, over all the datasets. (2)
HeuQGen has comparable quality. While it terminates early, we
found that it achieves 𝑀𝑓 = 0.52 and 𝑀𝛿 = 0.79 and inspects 20%
less instances compared with QGenEq.
Cardinality Constraints. Using the same setting as in Fig. 7(a) while
fixing |P | = 1 (P = {𝑉𝑢𝑜 }), and 𝑘 = 50 forHeuQGen, we next report
the performance of EnumGen,QGenEq,QGenC andHeuQGen for
SQGwith cardinality constraints in Fig. 7(b). To applyQGenEq, we
set 𝜆 = 1. While QGenC and QGenEq have comparable scores in
both diversity and coverage, QGenC achieves better ratios, and in
general inspects fewer instances due to a simpler greedy strategy.
HeuQGen can achieve 0.54 and 0.78 in diversity and coverage by
further inspecting less instances compared withQGenC, due to the
early termination strategy.
Varying |𝑋 |. Fixing |𝑄 | = 4, |P | = 200,𝑘= 50 forHeuQGen, we varied
the number of range variables from 1 to 3 and enlarge to five by
allowing two additional edge variables, and evaluated the impact to
the performance of QGenEq and HeuQGen for equal opportunity.
Fig. 7(c) shows that the 𝑀𝛿 score of QGenEq is more sensitive to
the number of variables. As |𝑋 | increases, more instances need to
be inspected in S𝑄 . This makes it more difficult for the greedy
set cover strategy (Cover) to find Q with good coverage, which is
consistent with our analysis in Theorem 3.HeuQGen reports lower
scores, but is less sensitive, as it incurs less verification cost.
Varying |P |. Fixing |𝑄 | = 3, |𝑋 | = 3 (with 1 range variables and
2 edge variables), and 𝑘= 50 for HeuQGen, we varied |P | from 1
to 6 by fixing

⋃(P) and cardinality constraints, but only change
its partitions). As shown in Fig. 7(d), QGenEq achieves a higher
ratio than HeuQGen, and reports𝑀𝑓 that is less sensitive than𝑀𝛿 .
Indeed, it is harder to generate Q that can properly cover all the
groups as the number of groups increases. On the other hand, the
performance of HeuQGen is less sensitive to |P |.

Exp-2: Efficiency.We next evaluate the efficiency of the algorithms
QGenEq, QGenEq𝑛 , QGenC, QGenC𝑛 , HeuQGen, and EnumGen.

Efficiency over real-life graphs (Equal opportunity). Fig. 8(a) reports
the performance of QGenEq, QGenEq𝑛 , and HeuQGen over the
real datasets. For all the datasets, HeuQGen achieves the best per-
formance. On average, it outperforms QGenEq by 2.4 times due
to the early termination property. The late verification strategy
of QGenEq improves the efficiency of QGenEq𝑛 by 1.65 times. In
general, QGenEq and HeuQGen are feasible. For example, while
EnumGen takes more than 2 hours over DBP, it takes QGenEq
(resp. HeuQGen) 187s (resp. 129s) over LKI with 3𝑀 nodes and
26𝑀 edges to generate queries with comparable quality.
Varying |𝑋 | (Equal opportunity). Using the same setting as in
Fig. 7(c), we reported the performance of QGenEq, QGenEq𝑛 ,
HeuQGen and EnumGen over DBP in Fig. 8(b). (1) All the al-
gorithms take longer time for larger |𝑋 | due to that more in-
stances need to be inspected, as expected. (2) QGenEq outperforms
QGenEq𝑛 by 1.88 times, and improves the latter better for larger |𝑋 |
due to the late verification strategy. It inspects 10% less instances
than QGenEq𝑛 . (3) HeuQGen outperforms all the algorithms due
to the early termination strategy, and remains least sensitive.
Varying |𝑋 | (Cardinality constraint). Using the same setting as in
Fig. 7(b) over DBP, while varying |𝑋 | from 1 to 5 we verify the per-
formance of all the algorithms in Fig. 8(c). (1) HeuQGen achieves
the best performance among all the algorithms, and is less sensi-
tive compared with others. QGenC (resp. QGenEq) outperforms
QGenC𝑛 (resp. QGenEq𝑛) by 1.9 times (resp. 2) on average. On the
other hand, QGenC is less sensitive compared with QGenEq with
a simpler greedy strategy.
Varying |⋃(P)| (Equal opportunity). Fig. 8(d) reports the efficiency
in the same setting as in Fig. 7(d), while keeping |P | unchanged.
All the algorithms take more time to compute Q when |⋃(P)| is
larger. QGenEq outperforms QGenEq𝑛 by 1.5 times on average.
Exp-3: Case Study.We also manually verified 𝑘=2 instances found
by HeuQGen for talent search with fairness constraints, and report
a case in Fig. 9. The parameterized query 𝑄 (not shown) contains
a range variable on skills and an edge variable between two users
(𝑢3, 𝑢1). An initial query with an instantiation {∅, ‘1′} returns a
set of 62 male and 12 female candidates. Posing a gender equality
requirement, 𝑞4 and 𝑞5 are suggested, resulting a balanced set of 30
female and 30 male. The queries suggest to relax long “co-review”
chains while specifying two different skillsets.

7 CONCLUSIONS
We have introduced and studied the diversified query generation
with group fairness problem. We verified the hardness of the prob-
lem. We have provided both feasible approximation algorithms (for
equal opportunity and cardinality constraint on output sizes) and
fast heuristics (for the general problem) with optimization strate-
gies such as late verification and properties of early termination. As
verified analytically and experimentally, our methods are feasible
for large graphs, and can achieve desirable diversity and coverage
properties over targeted groups.
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