Research Paper WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Diversified Subgraph Query Generation with Group Fairness

Hanchao Ma, Sheng Guan, Christopher Toomey, Yinghui Wu
Case Western Reserve University
Cleveland, USA
{hxm382,sxg967,ctt16,yxw1650}@case.edu

ABSTRACT query q "

(user) Yo | profession="IT'

query q,

title="manager’
(user) Us | profession="1T"

This paper investigates the problem of subgraph query generation recommend A \ recommend recommend recommend
with output that satisfies both diversity and fairness constraints. (user)u; up (user) (user) u; up (user)
Given a set of groups with associated cardinality requirements, it Sl bsiness! ket —
is to compute subgraph queries with diversified output that mean- workAt workat workat | sHlI=busies
while covers the groups with the desired cardinality. Such need (organization)Us Us (organization) - (organization) Us

is evident in web and social search with fairness constraints. We i’:;‘i‘ﬁff;’ 000 ‘ ;’mxﬁ;moo ‘ i:’;i’fjff;’ 00

formalize subgraph query generation as a bi-criteria optimization
problem on the diversity and fairness properties of queries, and
verify its hardness and approximability. We show that the problem
isin Zg , and remains NP-complete even for single-node queries. De-

Figure 1: Query suggestion with Fairness: Talent search.

spite the hardness, (1) we show that approximations exist whenever The emerging need for Web search that requires both result
a corresponding subset selection process provides good solutions, diversity and fairness [2, 5, 12, 26] poses new challenges to graph
and provide feasible algorithms with performance guarantees for search. In such scenarios, queries are expected to return diversified
two practical query generation scenarios. We also present a fast matches that meanwhile ensure a suitable coverage of designated
heuristic algorithm for the general problem, which early terminates groups (node sets) of interests from G. Such groups may refer
without enumerating queries. We experimentally verify that our to the population of vulnerable individuals in terms of sensitive
algorithms can efficiently generate queries with desired diversity attributes (e.g., gender, race, professions) in social networks [15, 16],
and coverage properties for targeted groups. relevant articles yet with diversified labels for Web exploration [1],

or designated columns for query benchmark [4].

CCS CONCEPTS

« Information systems — Query suggestion; Query reformu-
lation; Information retrieval diversity.

Example 1: Consider talent search over a collaboration network
G [16], where each node in G denotes a user with attributes such as
title, skill, profession, or an organization with attributes such as the
KEYWORDS number of employees. Each edge indicates affiliation (worksAt) of a
user or recommendation (recommend) between users. A recruiter
issues a graph search query q (illustrated in Fig. 1) to find managers
ACM Reference Format: u, who have expertise in managing IT business, and moreover,
Hanchao Ma, Sheng Guan, Christopher Toomey, Yinghui Wu. 2022. Diver- recommended by two IT managers from large companies. In our

sified Subgraph Query Generation with Group Fairness. In Proceedings of test (Section 6), this query returns a set of qualified candidates g(G)
the Fifteenth ACM International Conference on Web Search and Data Mining with a skewed distribution of 375 male users and 173 female users
(WSDM '22), February 21-25, 2022, Tempe, AZ, USA. ACM, New York, NY, The recruiter pursues the desired gender distribution and diver-

USA, 9 pages. hitps://doi.org/10.1145/3488560.5498525 sity of the candidates, and wonders how to query G such that (1) the
1 INTRODUCTION new answer can equally cover the male and female candidates from
q(G), both with 200 candidates (“Equal opportunity” [16]); and (2)
the candidates are also more diversified in their majors. A query
q1 with a more desirable answer can be suggested, which contains
202 male and 198 female candidates that spans 30 different majors.
The difference between g and g; indicates that a relaxed condition
on recommendation community (removing the edge from uy to uy)
and changed skills (from “business” to “market”) help to achieve

Attributed graph, Query suggestion, Fairness

Subgraph queries have been routinely used to retrieve entities
from real-world graphs (e.g., social networks [24], knowledge
graphs [33]). Several algorithms [7] have been developed that, given
a subgraph query Q(u,) with a designated output node u, and a
graph G, compute a set of nodes (matches) of u, in G in terms of
subgraph isomorphism or its approximate variants [33].

Permission to make digital or hard copies of all or part of this work for personal or the desired answer with proper coverage of the gender groups. O
classroom use is granted without fee provided that copies are not made or distributed . .

for profit or commercial advantage and that copies bear this notice and the full citation The above examples highlight the need to suggest subgraph
on the first page. Copyrights for components of this work owned by others than ACM queries with diversified matches that can also cover designated

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a groups with desired CardlnahtY~ We Study anew prOblem called

fee. Request permissions from permissions@acm.org. subgraph query generation with group fairness (SQG):

WSDM ’22, F ?br uary 21-25, 2022, Tempe, AZ, USA o Input: graph G, an initial query Q(uo), a set of groups P,
© 2022 Association for Computing Machinery. h h PcPi iated with int .
ACM ISBN 978-1-4503-9132-0/22/02. .. $15.00 where each group P; € % is associated with an integer ¢; (a
https://doi.org/10.1145/3488560.3498525 cardinality constraint);

686

https://doi.org/10.1145/3488560.3498525
https://doi.org/10.1145/3488560.3498525

Research Paper

o Output: a set of subgraph queries Q obtained by revising
QO(uo), which can retrieve a set of diversified matches (“Di-
versity”) from G that also cover each group P; with desired
cardinality ¢; (“Group fairness”).

Such need is evident in social search [16], query benchmark [4],
and query optimization [21]. Existing query generation approaches
[3, 19, 22, 25, 27, 30] revise queries towards specific properties
rather than ensuring both group coverage and answer diversity,
thus cannot be directly applied to our problem.

Contributions & organization. This paper formally analyzes the
subgraph query generation problem with group fairness constraints.
We propose both feasible a approximation scheme as well as practi-
cal exact algorithms for large graphs. We refer to subgraph query
simply as “query” in the rest of the paper.

A formal analysis. We formalize SQG (Section 3) as a bi-criteria
optimization problem defined on a parameterized query. A parame-
terized query Q(u,) carries variables defined on search predicates
and edges yet to be instantiated. Given a parameterized query Q,
and targeted groups # with cardinality constraints from graph
G, SQG is to instantiate Q(u,) with proper search predicates and
edge constraints to a set of queries Q, to approach an output (the
union of the matches of queries in Q) with maximized diversity and
minimized distance to the desired cardinality requirements. We
show that SQG is in 2123 and remains to be NP-complete for queries
with a single-node pattern. This verifies the hardness of SQG even
when the queries can be evaluated in PTIME.

Query generation with performance guarantees (Section 4). Despite
the hardness, we present a general approximation scheme for SQG.
In a nutshell, our scheme first computes a representative pivot
set from the groups with exact coverage and maximized diversity.
Treating the pivot set as a desired “answer”, we then generate Q
with answers that approach the pivot set.

We investigate two specifications of SQG. The first addresses
“equal opportunity”, by enforcing the coverage of an equal number
of nodes from each group. The second specifies cardinality con-
straint on the query output. For both cases, we develop feasible
approximation algorithms with a factor that are only determined
by the number of groups |#| and the size of promising queries.

Fast heuristic with early termination (Section 5). We follow up the

analysis by introducing a fast heuristic algorithm. It dynamically
relaxes the instances that best improve the coverage at runtime,
and early terminates without enumerating all queries.

Using real-life graphs, we verify the effectiveness and efficiency
of our algorithms (Section 6). Our algorithms can generate subgraph
queries with both desired diversity and small errors in covering
designated groups. These algorithms are also feasible. For exam-
ple, it takes up to 370 seconds to produce instances with desired
coverage in real-life graphs with 4.9M nodes and 45.6M edges.

Related Work. We categorize the related work as follows.

Graph query suggestion. Several methods have been studied to sug-
gest subgraph queries towards answers with various desired prop-
erties. Graph query by example [19] induces subgraph queries
from subgraphs that contain similar nodes to specified examples.
Diversified query suggestion [25] expands an initial query with

687

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Q(uo)

up. age>'35"

(actor) u,

starring collab
u]. genre='Action’
(movie) u, (director) u

directedBy

g age>'20"
(actor) u,

g age>xy
(actor) u,

instance q, instance q,

starring

starring /\ collab

up. genre=x;
(movie) u,

uj. genre='"Comedy’
(movie) uy (director) u;
directedBy

(director) u,
directedBy

name="Elle'
age=".
gender=female'

G

(director) v,

(actor)va

(director) v3

(actor)Vva

(director) Vs (actor)Ve

(movie)v, (actor)vg (movie) v (actor)Vio (movie) Vi

name='Benedict"

name="Now YouSeeMe"

name="WeBoughtAZoo"
(genre="Comedy’

name="Mark’ name="Avengers: Endgame’

genre="Action’

age="45'
gender="male’

genre="Mystery'

age='54'
gender=male’

Figure 2: Parameterized Query and Query Instances

new edges that can lead to relevant and diversified matches. Why-
questions [27, 30] suggest queries with both relaxation and refine-
ment operators towards exact or similar matches. These methods
either cope with diversity or similarity alone or enforce size con-
straints on the entire match set. In contrast, we study subgraph
query generation with both diversity and fairness constraints.

Set selection. Subset selection with diversity and fairness constraints
has been studied [26, 31]. Given a universal set and a set of groups
(subsets), it computes a diverse subset that can cover each group
with individual cardinality constraints. Approximation algorithms
have been studied to generate subsets for max-sum and max-min
diversification [26]. Although these methods cannot be directly
used to suggest queries, we verify that these approximability re-
sults provide useful intermediate results that can be leveraged to
guide the query generation with bounded errors on the cardinality
constraints. Our formal analysis verifies the range of approximation
ratios one can expect for the query generation problem, determined
by the approximation factor of “yardstick” subset selection problem.

Query generation. Query generation with output cardinality con-
straints and distribution properties have been investigated for
graphs. [3] generates regular path queries from given graph schema
that can output node set with different cardinalities over certain at-
tributes. [21] exploits query rewriting to generate SPARQL queries
that can cover the answer of given queries with cheaper plans for
multi-query optimization. In contrast to these work, (1) we study
query generation with fairness constraints on general groups; (2)
We consider queries defined in terms of subgraph isomorphism
rather than regular path queries; and (3) we do not assume pre-
defined graph schema. Our algorithms can be readily applied to
generate subgraph queries for benchmarking graph databases.

2 PRELIMINARIES

Graphs. We consider directed graphs G = (V,E, L, T), where (1) V
is a finite set of nodes, (2) E C V X V is a set of edges, (3) each node
v € V (resp. edge e € E) carries a label L(v) (resp. L(e)); and (4)
each node v carries a tuple T'(v) = < (A1, a1),...,(An, an) >, where
each A; (i € [1,n]) is a distinct node attribute with a value a;.

We denote the finite set of all the node attributes in G as A. The
active domain adom(A) of an attribute A € A refers to the set of
values of v.A as the node v ranges over V.

We next introduce a notion of parameterized queries. A param-
eterized query allows “placeholders” in search predicates which
can be bound to specific values when executed [9]. We extend this
notion for graph search to characterize query generation problem.

Research Paper

Paramterized Queries. A parameterized query Q(u,) is a graph
(Vo,Eg, Lo, Tp). (1) Vg (resp. Eg © Vp X Vp) is a set of query
nodes (resp. query edges). Specifically, u, € Vp is a designated
output node. (2) Each query node u € Vg (resp. query edge e € V)
has a label Lo (u) (resp. Lo (e)). (3) For each node u € Vp, To(u) is a
set of literals. A literal [is in the form of u.A op x;, where op is from
{>,>=,= <=, <}, and x; is a range variable that can be assigned to
a constant. For each edge e € Eg, Tp(e) is a binary edge variable x,
that can be either “0” or “1”. The set of all the variables in Q(u,) is
denoted as X = X; U Xg, the union of the range and edge variables.

Query instances. Given a parameterized query Q(u,), an instanti-
ation of Q(u,) is a function I that maps a set of variables in X=
Xp U Xg to constants. A query instance q(u,) of Q(u,) induced
by an instantiation [is a graph (VQ,Eq, Lo, Tq) with the same Vo,
output node u, and Lo, and moreover,

o for each node u € Vp and each literal I € Tp(u) in Q(u,),

there is a literal I = u.A op I(xy) in Ty(u); and

o there is an edge e € Eg if and only if I(x¢) = '1".
In other words, a query instance (or simply “instance”) q has no
variables but literals and the edges induced by the value binding I.
We denote the set of all the possible instances of Q(u,) as 7 (Q).

Matching. Given an instance q(u,) and a graph G, a matching from
q(uo) to G is a function h C VXV, where (1) for each node u € Vp,
Lo(u) = L(h(u)), and for each literal u.A op ¢ in Lg, h(u).A op c;
(2) for each edge e = (u,u”) in q(uo), h(e) = (h(u), h(u’)) is an edge
in G, and Lp(e) = L(h(e)).

The matches of a query node u of q(u,) in G, denoted as g(u, G),
refers to the set of all the nodes in G that can match node u via a
matching h(u) from q to G. The result of q in G, denoted as q(G),
refers to the match set g(u,, G). Given a set of instances Q € 7 (Q),
the result of Q in G, denoted as Q(G), is defined as Ugeq q(G).

Example 2: A parameterized query Q(u,) that searches for actors
in a knowledge graph G [23] is illustrated in Fig. 2. (1) Q(u,) has
three variables X = {x,, x1, X (1g,112) }, with two range variables in lit-
erals uo.age > x, and uj.genre = xy, respectively, and an edge vari-
able x(y, 1,)- (2) A corresponding instantiation {35, ‘Action’, 1"}
(resp. {20, ‘Comedy’, ‘0’}) of X induces an instance g2 (resp. q3) of
Q(uo). (3) Given G, q2(G) = {v4, 08,010}, and g3(G) = {v4, vs}. Let
Q ={q2, g3}, then Q(G) = {v4,v6, 8,010} o

Remarks. The query instances are well-defined for a “partial” in-
stantiation I in which not all the variables of Q(u,) are assigned a
constant. For such cases, g is induced by removing any remaining
variables in Q(u,) to ensure valid g(G). Note that a given “initial”
query (e.g., g1 in Example 1) can be readily captured by a parame-
terized query with a partial instantiation.

3 QUERY GENERATION PROBLEM

Given a parameterized query Q(u,), graph G and m disjoint groups
P, where each group P; € P has a cardinality constraint ¢; €
[1, |P;]], the query generation problem aims to compute a set of
query instances Q € 7 (Q) of Q with maximized diversity and
required coverage properties.

To quantify the quality of query instances, we consider two
classes of functions. For simplicity, (1) we define a constant C =

lepl ci, and (2) we use | J(S) to denote | s¢s s for a set S.

688

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Max-sum Diversification. We consider Max-sum diversification
as a natural objective for result diversification. The function mea-
sures the weighted sum of a relevance measure and pairwise dis-
similarity of the matches [17], and is defined as follows:

Z d(v,0")

0,0 €Q(G)

fQG)=(1=2)) rugv)+

21
0€Q(G) Vi | =1

where (1) A € [0, 1] is a constant to balance relevance and diversity;
(2) the function r(ue,v) € [0,1] (resp. d(v,0”) € [0, 1]) computes a
relevance score between u, and a match v (resp. difference between
two matches v and v’). In practice, d(v,v”) can be the edit distance
between tuples T(v) and T(v”), and r (o, v) can be an entity linkage
score or impact of v in social networks [14], among others [20].
Here Vy,, is the set {0|L(v) = L(uo),v € V}, i.e, the nodes in G
with the same label of u,. Given G, the pairwise dissimilarity is nor-

. . Vi, | -1 V, Vi, |-1
malized with a constant ‘ "‘:’z‘ , as there are at most M

pairs but |V, | relevance numbers. That is, f(Q(G)) € [0, [Vy,[].

Relative Coverage Error. To characterize the coverage property
of Q(G) over groups P, we introduce a relative error function,
that accumulates normalized errors of the coverage cardinality
constraints, which is defined as follows:

2p,ep(IQ(G) N Pi| —ci)
[UP)I
The function §(Q, P) penalizes the differences between each cardi-

nality ¢; posed on P; € P and the size of the fraction of P; covered
by Q(G). The smaller, the better.

We next state the problem of diversified query generation
with group fairness, denoted as SQG. We simplify f(Q(G)) (resp.
3(Q, (G)P)) as f(Q) (resp. 5(Q, P)) when G is given.

5(Q(G),P) =

Problem statement. Given G, Q(u,), and a set of disjoint groups
% with cardinality constraints, the SQG problem is to compute a
set of query instances Q of Q(u,), such that (1) |Q(G) N P;| = ¢;
(P; €), and moreover (2):

f(Q) = argmax f(Q');
QCI(Q)

3(Q,P) = argmin §(Q’, P)
QcI(Q)

The bi-objective optimization problem SQG aims to discover a set
of instances Q with most diversified answers that can meanwhile
properly cover each group with a minimized relative coverage error.
Note that f(Q) € [0, |V, [], and §(Q, P) € [0,1].

Although desirable, SQG remains intractable even for cases
when subgraph isomorphism is in PTIME, as verified below.

Theorem 1: The SQG problem is (a) in Zf, and (b) NP-complete even
when Q(u,) contains a single node with only range variables. O

Proof sketch: The decision problem of SQG is to decide whether
there exists a set of instances Q of Q(u,) and two thresholds f; and
Op, such that f(Q) > f; and 6(Q) < . For (a), SQG is solvable in
Zf,. Here 2129 is the class of problems in NPNP_ Since the verification
of subgraph isomorphism is in NP, a 2% algorithm first guesses a
set of instances Q. For each instance, it consults an NP oracle to
compute the coverage over P and verifies f(Q) and 6(Q).

We next prove (b). When Q(u,) contains a single node u, and
range variables, an NP algorithm first guesses a set of instances and

Research Paper

verifies the answers in PTIME. To see the hardness, we construct
a PTIME reduction from the subset sum problem (known to be
NP-complete). Given a bag of integers S, subset sum is to decide
whether there is a non-empty subset S’ C S that is summed to
be a target value c. Given S = {s1,...,s,} and ¢, we construct an
instance of SQG with a single-node parameterized query Q(u,) as
follows. (1) For each integer s; € S, there are |s;| nodes v;; in G
(i €[1,n],j € [1,5]) inV and E = 0. Each node v;; has a label /,
and a tuple T(v) defined on |S| Boolean attributes Ag (k € [1,n]),
where v;j.A; = 1, and v;j.A = 0 for k # i. (2) Q(uo) has a single
output node u, with label [, and n literals u,.Aj. = xj, with n range
variables Xg {x1,...,x,}. (3) P contains a single group V with
cardinality constraint c. We set threshold f;, = 0 and §, = 0. We can
verify that there is a set of instances Q with results that precisely
cover ¢ nodes in V (f(Q) > b=1) if and only if there is a subset S’
with integers that are summed to be c. This completes the proof. O

4 APPROXIMATING QUERY GENERATION
An “optimal” solution of SQG Q* should ensure

f(@") = argmax f(Q)
8(Q,P)=0

That is, among all instances that cover $ with exactly the required
cardinality, Q" has the maximized diversity (i.e., a Pareto optimal
solution). While desirable, such an “ideal” solution may not always
exist as diversity and fairness can be in conflict. On the other hand,
it is still desirable to use f(Qx*) and §(Qx, P) as “reference points”
to measure the quality of solutions [13, 18].

(a, p)-approximation. Following the reference approach of bi-
objective optimization [13, 18], we characterize a desirable quality
guarantee. A solution Q; is a reference solution if (1) f(Q,) =
a- f(@Q) (a € [0,1]), and (2) 5(Qr,P) = argming(q)>q.£(Q")
d(Q,P). That is, Q, ensures a bounded gap between diversity and
an ideal counterpart with the smallest coverage error.

We say an algorithm is an (a, §)-approximation for SQG (a €
[0,1], p > 1), if for any non-empty solutions Q it generates, (1)
f(Q) = a- f(Q%), and (2) §(Q) < f - 6(Qy). In other words, it
generates Q with guaranteed diversity as any reference solutions,
and ensures a bounded gap in the minimum coverage error they can
achieve. This guarantee is weaker yet remains desirable, especially
when a single Pareto optimal solution Q* may not exist [13, 18].

We next show that there exists feasible («, f§)-approximations for
SQG. We introduce a general strategy (Section 4.1), and investigate
two practical approximable cases (Section 4.2).

4.1 A General Approximation Scheme

We present a general approximation scheme, denoted as APXQGen.
In a nutshell, APXQGen exploits a “pivot-and-cover” strategy to
compute a set of instances Q as follows.

(1) Pivoting. The pivoting step finds an optimal set S* C V;, of size

C, such that §* covers each P; € P exactly with ¢; nodes, and has
the maximized diversity. We refer to the output of pivoting step,
denoted as Sp, as a pivot set (ideally, Sp = S%).

(2) Covering. The covering step aims to compute Q that ensures (a)
Sp € Q(G), and (b) |Q(G) N (Vy, \ Sp)| is minimized.

689

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Algorithm APXQGen

Input: graph G, parameterized query Q(u,),
groups P with cardinality constraints.

Output:a set of instances Q.

set Sp := 0; set Q:= 0; queue Sp:= 0;

set Vi, := {v]L(0) = Lo(uo);0 € V};

Sp = Pivot(P); Sp := Vi, \ Sp;

S = MatchGen(G, Q, Sp, Sn);

Q := Cover(Sp, Sn, Sp);

return Q;

R

Figure 3: Algorithm APXQGen

Intuitively, the pivoting step computes a most diversified subset
Sp of size C, which ensures the exactly required coverage of P
as a hard constraint (thus ensures §(Sp, P) = 0). The pivot set Sp,
hence serves as a desired diversified answer to be approached.
The covering step then aims to “recovers” a reference solution Q
that approaches Sp,. By ensuring the containment of Sp as hard
constraint, Q preserves the diversity (as f(-) is non-decreasing)
and ideally with a bounded coverage error.

Algorithm. The algorithm APXQGen, outlined in Fig. 3, maintains
aqueue Sp to store a set of query instances to be verified (line 1). (1)
In the pivoting step, it invokes a procedure Pivot to compute a pivot
set Sp (line 3). (2) For the covering step, APXQGen first initializes a
set S, = Vi, \ Sp to track the nodes that are not to be covered by the
desired instances Q (line 3). It then invokes a procedure MatchGen
(line 4) to generate a set of instances Sp, where each individual
instance may have matches to cover a fraction of S, (to be discussed).
It then invokes procedure Cover (line 5) to further refine Sp to Q
towards a complete coverage of S;, with minimized nodes from S,.

We next introduce procedures Pivot, MatchGen and Cover.

Procedure Pivot. The procedure Pivot is “plug-able” to specify
APXQGen to (a, f)-approximations. Given P, it returns a pivot
set Sy of size C with maximized diversity, and covers each group
P; € P with exactly ¢; nodes. To this end, it solves a class of
diversified subset selection problems, with variants depending on
the specific cardinality constraints [1, 6, 26]. This partly ensures
the general performance guarantees of APXQGen as long as Pivot
approximates optimal S, (see “Analysis”). We defer the discussion
by providing two such approximations in Section 4.2.

Example 3: Recall G and Q(u,) in Fig. 2, and consider the gender
groups P with P; = {v4, 06} (female actors) and Py = {v2, vg, v10}
(male actors). Given a function f(-) that aims to diversify the age
differences and a coverage measure that enforces ¢; = ¢ = 2 (“equal
opportunity”), a proper pivot set Sy is {04, v6, 08, 910}, which satis-
fies 5(Sp, P) = 0 with maximized age diversity. O

Procedure MatchGen. Given pivot set Sp, Sp, Q(uo) and G, the
procedure MatchGen (not shown) generates a small set of “promis-
ing” instances that may likely to output S,. It maintains a priority
queue. Sp, where each entry of Sg records an instance g, match
set q(G) (initialized as 0), and an integer q.r to track |q(G) N Su|).
The goal is to retain all instances of Q,, that contribute to cover
Sp (which in turn properly covers #) and avoids the generation of

Research Paper

Procedure Cover

Input: pivot set Sp, set S, queue Sp.

Output:a set of instances Q.

1 set Q := 0; set S* := 0; integer B:= max(q.r|q € Sp.Q);
2. forinteger i = 1to B do

3 S;i = {q(G)j] € 80.Q,qr <i};

4. if S, ¢ U(S;) then continue ;

5. set S5 := {v € S,,|v occurs in at least+/|Sp|/log C sets in Si);
6

7

8

9

set S; := Refine(S;); update Sp.S;

S¢ = GreedySC(S;, Sp, SH);

restore S¢ to original match sets in Sg.S;
if (S, P) > 6(U(Sy), P) then S* := S;

10. Induce Q from S*; return S*;

Figure 4: Procedure Cover

an excessive number of instances. To this end, it exploits the data
locality of subgraph isomorphism without expensive verification.
Constraining Qy,,. MatchGen first rewrites Q(u,) and its literals
by “narrowing down” the values the variables may take towards
targeted answer S,. It induces a set of subgraphs N(Sp) of G, where
each subgraph G, contains a node v € Sp, and its n-hop neighbors
in G (n is the diameter of Q(u,)).

(1) For each range variable x; in the literal u.A op x;, MatchGen
constrains a set of possible values of x; as {T(v).A}, where v ranges
over the nodes in N (Sp) with L(v) = L(u). If x; has no proper value,
it removes the literal u.A op x; from Q(u,).

(2) For each edge variable x, defined on an edge e = (u,u’), it
“presets” x, = 0, if there exists no subgraph of N(S;) that contain a
path from v, € V,, with an edge (v,v”) such that Lo (e) = L((v,2")).
If x, = 0 and e is a bridge of Q(u,), i.e., removing e leads to two
connected components in Q(u,), MatchGen removes e and the
entire connected component that does not contain u,.

Instance generation. Given the constrained Q,,, (denoted as Qzuo)),
MatchGen then instantiates Qzuo) with constrained values. For
each instance g, MatchGen overestimates q(G) as q(G) = (1 qi(G),
where each g; is a path query from u, to a distinct node in q. If
q(G) N Sp # 0, it inserts g, q(G) and q.r = |q(G) N Sp| into Sp.

It suffices to instantiate the constrained Ql’lo, as verified below.

Lemma 2: For any instance q € I(Qy,) where q(G) NSy # 0,
MatchGen guarantees that q € Sg € I(Q;,). m]

Procedure Cover. Given Sp generated by MatchGen, we refer to
the set of instances (resp. corresponding match sets) as Sp.Q (resp.
80.8). The procedure (given in Fig. 4) solves a red-blue set cover
problem [8, 28]. Given a collection of sets with “blue” and “red”
elements, the red-blue set cover problem computes a sub-collection
of sets that covers all “blue” elements and the minimum number of
“red” elements. We map Sp, to “blue” elements, Sy, to “red” elements,
and the match sets Sp.S to the sets.

Procedure Cover follows a greedy approximation [28]. It opti-
mizes the process with a “late verification” strategy, which exploits
the overestimated match sets and defers unnecessary verification
to reduce cost. It conducts B rounds of computation, where B is the
maximum number of nodes in S, contained in a single match set
in Sgp.S. At the i-th round, it performs the following (lines 3-9).

690

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

(1) It first verifies if ; C S0.S can cover S, (lines 3-4). Here S; is
induced by the overestimated match sets m € Sp.S, where q.r
= |m NSyl < i, ie., each m contains no more than i nodes
from Sj,. It early terminates if no cover can be found for i (line 4).
(2) Cover then refines S; to a minimum weighted set cover S{ of Sp
(lines 5-6). Intuitively, it favors the match sets that cover S, and
also repeatedly cover the same set of nodes in S,. (controlled by
a threshold). The weighted set cover leads to a bounded coverage
error for Sp, as the repeatedly covered nodes are counted once in
the induced answer Q(G) (see “Analysis”).

(a) It updates each m € S; to g(G) by verifying if each node
vE m remains a match of g, by invoking established subgraph
isomorphism algorithm (e.g., VF2 [10]) over q and a subgraph N, (v)
induced by the n-hop neighbors of v (n is the diameter of g). This
refines S, to S;. S80S is updated accordingly (line 6).

(b) Cover then constructs an instance of weighted set cover. It “trims”
q(G) to q(G)\Sn and assigns a weight Iq(G)ﬂSnHI), where S,If refers
to a set of nodes in S, such that each node occurs in more than
VISol/logC match sets in S;. It invokes a greedy approximation
GreedySC [32] to compute the weighted set cover S{ C S; of S
(line 7). It then “restores” 57 to be the set of original match sets q(G)
by augmenting their trimmed counterparts in S¢, and computes
3(Ug(G)ese 9(G), P) (lines 8-9).

(3) Cover keeps track of the best Sf as S* with the smallest
8(Uq(c) ese q(G),P) (line 9). It finally sets Q as the instances in
Sp.Q whose match set is in S, and returns Q (line 10).

Example 4: We continue with Example 3. Given the pivot set S, =
{v4, v6, vs, 010}, MatchGen yields a set of instances including g2 and
q3. Cover then verifies g2 (G)={v4, vg,v10} and q3(G) = {v4, v} as a
minimum weighted set cover for S, (with no additional nodes), and
returns Q = {q2, g3} as a solution. This suggests a proper gender
coverage with equal opportunity by considering both “Action” and
“Comedy” movie actors. O

Analysis. We show that APXQGen ensures the following guarantee
for SQG with the condition below.

Theorem 3: APXQGen is an (a, 24/|Sp|log C-approximation for
SQQG, for any Pivot that approximates the optimal pivot set with
approximation ratio a. m]

Proof sketch: Let the ideal solution be Q*. A reference solution
Q; ensures f(Q;) > af(Q*) with minimized relative coverage
error §(Qy, P). Consider Q (Q # 0) computed by APXQGen.

1) f(Q) = f(Qr) = a- f(Q"). As Pivot is an a-approximation of
the subset selection problem with output S, from V,,,, we have
f(Sp) = af(S*) = af(Q). Given that S, C Q(G), we have
f(Q) = f(Sp). Thus f(Q) = af(Q).

(2)8(Q. P) < 24/ISol1og|C8(Qy, P). Forany set S C Vi, 8(S, P)-
[UP)| = Xp,ep(ISNPi|-¢i) = Xp,ep(SNP;) -C=|SNUP|
- C. Assume S, C S, we have 6(S,P) - [U(P)| =[S, N U(P)| +
[(S\'Sp) NP|-C=|(S\Sp) NP|=|S N Sy|. Denote the optimal
weighted set cover of S, as Sz. As Cover simulates the greedy
approximation in [28] without missing instances (Lemma 2), we

Research Paper

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Procedure PivotEq

Input: groups P with equal cardinality constraint c.

Output:a pivot set Sp;

1 set Sp = 0;

2 for each P; € P do

3 initializes S;, with ¢ random nodes in P;;

4 while 5}, changes do

5. for each pair of nodes (v,?') € S;, X (P; \S;,) do
. i / € iy.

6 lff((Sp \ {oh) U{o };) > (1+ ‘U(p”)f(sp)s

7 Sp = S;,.\ {v}Uu {v'};

8 Sp:=Sp U S;,;

9 return Sp;

Figure 5: Procedure PivotEq

have |Q(G) N Sy| < 24/|Sp|log C|| U(S7) N Sp|. Hence, §(Q, P) -

[U®P)] < 2¢/ISpllog C5(S;, P)-| U(P)| < 24/ISg log 5(Qr57’)

| U(#P)|. This completes the proof of Theorem 3.

Time cost. There are at most |Q(u,)| variables. Let md be
max(|adom(A)|) where adom(A) is the active domain of a node
attribute. Thus procedure MatchGen takes in total O(|Ny(Sp)| +
md - |Q(uo)| + |Spl) time to generate instances Sp (n is the diame-
ter of Q(uo)). Procedure Cover takes at most B rounds, and each
round takes O(|C||Sp|) time to compute the set cover. It takes in
total |Sp| - T time to verify the exact matches, where T is the time
cost of verifying the matches of a single instance. Let T(Sp) be the
time cost of the procedure Pivot on computing S,,. The total time
cost is thus in O((B - C + T)|Sp| + Tsp). We found that [Sg| is not
large in practice (a few hundreds after pruning), and APXQGen is
feasible for large graphs due to late verification (see Section 6).
We next investigate two practical scenarios for diversified query
generation, and provide approximations ensured by specific Pivot.

4.2 Diversified Query Generation

Query Generation with Equal opportunity. SQG with equal
opportunity computes Q with answers that (1) maximize a max-sum
diversity in terms of pairwise distances (A = 1), and (2) retrieves
equally ¢ nodes from each group (e.g., gender, topics), as seen in
social [5, 16, 26] or Web search[1]. We show the following result.

Theorem 4: The SQG problem with equal opportunity has an (% -
W, 2+/ISpllog c|P])-approximation in time O((B-C+T)|Sp|+
P P 1og (1)), 0

Given Theorem 3, it suffices to show that SQG permits an % -
m—approximation for pivot sets with equal opportunity. We
present such a procedure., denoted as PivotEq.

Procedure PivotEq. The procedure (illustrated in Fig. 5) computes
Sp as the union of |P| diversified sets. Each set S;, C P e®P
contains ¢ nodes that are picked with a local search strategy as
follows. (1) PivotEq initializes S; with ¢ randomly selected nodes

(line 3). (2) It verifies if “swapping” of a pair (v, v”) where v € S;, and
v’ in P; \ S;, improves the diversity, and if so, updates S;, (lines 5-7).
This repeats until f (5111) can no longer be locally improved (line 4).
It finally returns S, as the union of all S;, (line 9).

691

Algorithm HeuQGen

Input: graph G, parameterized query Q(u,), integer k,
groups P with cardinality constraints.

Output:a set of instances Q.

1 set Q:= 0; queue Sp:= 0; set P":=P;

2 while |Q| < k do

3 Q:= QU { getNext (P'Q, So) };

4 set P':= {P;|P; :=P; \ Q(G);P; € P)};

5. c; := |P}| for each P € P’;

6 while hasNext(Q) do

7 q:=getNext(P',Q, Sp);

8 update P’ and each ¢; of P; € P with q(G);

9 if (min(f(q") 19" € Q)> f(q(G))

or no P; € £’ has ¢} > 0 then return Q;

10. if there is no change in #’ then continue ;

11. find ¢’ € Q with maximum f(Q\ {¢’'} Uq) - f(Q)
or maximum §(Q, P) - 5(Q\ {¢'} U q, P));

12. Q=Q\{q'}tvg;

13. return Q;

Figure 6: Algorithm HeuQGen

Correctness & Complexity. PivotEq returns a pivot set S, with
size ¢|P|, and ensures a coverage of each group $; with ¢ nodes.
We show that it approximates an optimal pivot set $* with ratio
% - m for a small constant €. To see this, we perform an approx-
imation preserving reduction to clustered diversity maximization
with matroid constraints (CDM) [1]. Given a set D and a set of
subsets D = (Djp...,Dg) of D, a matroid is a pair (|J(D), M),
where M is a set of independent sets with certain matroid con-
straints. An instance of CDM (DM, p) is to select a set of subsets
R ={Ry,...,R¢}, such that R; € D;, R; € M, and |R;| = p, with
maximized diversity f'(LJ(R)) (f is a special case of f(-) with A
=1). By setting P = D, ¢ = p, and M as the subsets of | J(#) with
size up to ¢, we can verify that PivotEq simulates a local search
approximation [1] with approximation ratio % - m

For time cost, PivotEq takes at most |#| rounds. In each round,

it takes in total O(w log(|P])) time (lines 4-8) for a small
constant €, as PivotEq only triggers a bounded number of swapping
upon a factor of (l+m) incremental improvement from any
random selection to optimal diversity. The total cost of PivotEq is

thus in O(|P|| U(P)|elog(|P])). Theorem 4 thus follows.

Generate Queries with Cardinality Constraints. We next inves-
tigate SQG with cardinality constraints, which sets £ = {V;, } (a
single group). This allows us to generate Q with diversified answers
that also has a desired output size ¢ as needed in query benchmark-
ing and database tests [3-5]. We show the following result.

Theorem 5: The SQG problem with cardinality constraints has
a (%,2\/|SQ|logc)—approximation in time O((B - C + T)|Sp| +
clUPD). o

Procedure PivotC. In this case, Pivot solves a max-sum diversifica-
tion problem. Given a set V,, , it aims to select a subset Sp with size
¢ and maximizes f(Sp). Procedure PivotC adopts a greedy strategy
to iteratively enlarge Sy, (initialized as 0) by selecting a node v’
from V,,, \ Sp, with the maximal marginal gain, i.e., f(Sp U {0"}) -
f(Sp) is maximized. This step repeats until |Sp| = ¢. It is known that

the above greedy selection strategy yields a 1 3-approximation for

Research Paper

HeuGen-My s | HeuGen-M; 2772 2 HeuGen-Mj HeuGen-M, 7772
| RGGenEq-My 5= QGenFq-M; s | | RGGenC-Mg QGenC-M; sz
=08 e e 1 208+
3 g 7 3
= 4 7 = 7
206 ? ?] 106 %
s 7 2 b= %
< 04 g a < 04 %
02 é é | 02 g
NN A /
0 DBP LKI Cite 0 DBP LKI Cite
(a) Equal Opportunity (b) Cardinality Constraint
1 . . .
HeuQGen-M; —— QGenEq-M; —— HeuQGen-M; —— QGenEq-M; ——
HeuQGen-Mj QGenEq-M; HeuQGen-My QGenEq-M;
09t i 09| o B
;o,g | S o 1 Egu) e — -
= o7t 1 = o7 4
06 1 06 4
B I A R (W] 05

(c) Varymg |X| (DBP) : (d) Vazrying |ﬁ| (DBPg)
Figure 7: Effectiveness of Query Generation

Max-Sum Diversification [17]. The procedure Cover then generates
Q with answers that covers S, and minimizes additional nodes
from Vy,, \ Sp. The time cost of PivotC is in O(c| J(P)]). Putting
these and Theorem 3, Theorem 5 follows.

5 EARLY TERMINATION HEURISTICS

Algorithm APXQGen requires a “batch” generation of promising
instances and may return an excessive number of instances. It is
also desirable to find Q with k high-quality instances as soon as
possible [22]. We present a heuristic algorithm for SQG, denoted
as HeuQGen, that early terminates without enumerating instances.

Algorithm. Similar to APXQGen, HeuQGen uses a priority queue
SQ to maintain Q up to k instances, with an additional pair
(f(q(G)),8(q(G))) per instance gq. It populates Q by invoking a
procedure getNext (lines 2-5), and greedily update Q by replacing
an instance q’ with a next new instance from getNext that can max-
imally improve f(Q) or 6(Q) (lines 11-12). In this process, it (1)
ensure that g covers new nodes in # by retaining uncovered nodes
in groups P’ (initialized as P; lines 4-5; line 8); and (2) skips un-
necessary verification if g has no contribution to f(Q) or 6(Q, P)
(line 10). It early terminates when (a) no instance can improve f(Q),
or (b) all nodes in P are covered (thus §(Q,) converges).

Procedure hasNext. The procedure (1) generates and puts the first
instance to Sp.Q with “most constrained” predicates (e.g., setting
all edge variables to 1, and range variables to minimum or maxi-
mum values); and (2) ensures to generate a next instance by relaxing
the latest one in Sp.Q, one variable and one “step” at a time (e.g.,
changing a range variable value to the next smaller or larger coun-
terpart). It also skips instances that cannot cover any nodes in the
input P, similar to MatchGen (details omitted due to space limit).

Analysis. Algorithm HeuQGen correctly identifies Q with k in-
stances. The early termination property is ensured by hasNext,
which produces a sequence of instances by keep “relaxing” the
search predicates. This ensures an invariant that Q has monotoni-
cally increasing min(f(q)|q € Q), and a monotonically decreasing
§(Q, P) before termination. As each iteration covers at least one
node in P, it takes up to | [J(#)| rounds of replacement with veri-
fication (line 11). The time cost is thus in O(| J(P)|(k + T)).

692

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

HeuQGen —— QGenEq, >/
QGenEq %

Hequen —
QGenEq 53
QGenEg,

]
g 8
L

Time Seconds
2 ®
8 8

NN
Ci

=1 p= =] p=] [X]=5

(a) Equal Opportunity (b) Varymg |X| (Eq. Opportunity)

HeuQGen —+— QGenC, —m- HeuQeen
1200 QGenC & i QGenEq £=5<3
150 | QGenEq, ===
) 5
51000 R =]
s £
g soor 1 %100
w n ~
© 600 4 2
g £
= 400 - = 50
200 | 1 0 N N
100 200 300 400 5()()
B o WS R s

(c) Varying |X | (Cardinality Constraint) (d) Varying | ()| (Eq. opportunity)

Figure 8: Efficiency of Query Generation

6 EXPERIMENTS

Based on real-world attributed graphs, we experimentally verify
the effectiveness and efficiency of our algorithms for SQG.

Experiment Setting. We used the following setting.

Datasets. We use three real-life data graphs. (1) DBP is a movie
knowledge graph induced from DBpedia [23] with 1M entities
(e.g., movies, directors, actors) and 3.18M relations (e.g., directed,
collaboration). Each node has attributes such as title, genre. We
induce movie groups based on their genres or countries. (2) LK1 [34]
contains 3M nodes (users, organizations) with labels (professions,
skills) and 26M edges (e.g., co-review). We induce gender groups #
with synthetic genders generated by gender inference tools [11].
(3)Cite [29] contains 4.9 nodes (e.g., papers, authors) with labels
(e.g., topics) and 46M edges (e.g., citations, authorship). We induce
groups P of papers having different topics.

Queries. We developed a generator to produce parameterized
queries with practical search conditions, controlled by the number
of variables, query size |Q(u,)| and topologies.

Algorithms. We implemented the following algorithms in Java.:
(1) algorithms QGenEq for SQG with equal opportunity, and
QGenC for SQG with cardinality constraints, which specifies
APXQGen with procedures PivotEq and PivotC, respectively; (2)
algorithms QGenEq,, (resp. QGenC,), a counterpart of QGenEq
(resp. QGen) without the late verification strategies; (3) the early
terminating algorithm HeuQGen, and (4) an exact algorithm
EnumGen that enumerates all instances and their sets, and ter-
minates once the reference solution Q is found.

Reference solutions. For a fair comparison, we use EnumGen to en-
sure the existence of a “yardstick” reference solution Qf, by setting
a long running time (2 hours) unless it terminates with all possi-
ble enumerations. exhausted. We track the solution Q¢ with the
smallest coverage error, and ensure a local optimal diversity by

“perturbing” the instances in Q¢ with other domain values.

Experimental results. We next present our findings.

Exp-1: Effectiveness. We first evaluated the effectiveness of our
algorithms. QGenEq,, (resp. QGenC,,) report the same results as

Research Paper

(e project No.> 15 Js project No.>15
profession="T" profession="IT'
skill='businessAnalysis' skill='userInteractionDesign'
(user) ugy (user) uq
co-reviewed, co-reviewed co-reviewed, co-reviewed
(user) uy (user) uy (user) uy (user) Uy
project No.>10 ‘ project No.>10 ‘ ‘ project No.> I 0‘ roject No.> 10
A
co-reviewed co-reviewed
(user) us (user) u; o
roject No.>10 project No.>10

Figure 9: Case study: Query Suggestion for Talent Search

QGenkEq (resp. QGenC), thus are omitted. We quantify the effec-
tiveness with a normalized M; score [35] between the returned
Q and reference solution Q. Specifically, M; is a pair (Mg, Ms),

ff—(é?) »and Ms = % (f 6(Q, P) = 0 then Ms =
1), both in [0, 1]. This measure also indicates the ratios in (a, f§)-

approximations: the closer to 1, the better.

where M =

Equal Opportunity. We compare the performance of EnumGen,
QGenEq and HeuQGen for SQG with equal opportunity over the
three real life datasets (Fig. 7(a)). We set |Q| = 3 with 3 variables
(1 edge variables, and 2 range variables), and |P| = 2. We set k =
50 for HeuQGen, which is calibrated with the output size from
QGenkEq. (1) QGenEq achieves high scores, at least 0.69 and 0.8 in
both diversity and coverage, respectively, over all the datasets. (2)
HeuQGen has comparable quality. While it terminates early, we
found that it achieves My = 0.52 and Ms = 0.79 and inspects 20%
less instances compared with QGenEq.

Cardinality Constraints. Using the same setting as in Fig. 7(a) while
fixing |P| =1 (P = {Vi, }), and k = 50 for HeuQGen, we next report
the performance of EnumGen, QGenEq, QGenC and HeuQGen for
SQG with cardinality constraints in Fig. 7(b). To apply QGenEq, we
set A = 1. While QGenC and QGenEq have comparable scores in
both diversity and coverage, QGenC achieves better ratios, and in
general inspects fewer instances due to a simpler greedy strategy.
HeuQGen can achieve 0.54 and 0.78 in diversity and coverage by
further inspecting less instances compared with QGenC, due to the
early termination strategy.

Varying | X|. Fixing |Q| = 4, |P| = 200, k= 50 for HeuQGen, we varied
the number of range variables from 1 to 3 and enlarge to five by
allowing two additional edge variables, and evaluated the impact to
the performance of QGenEq and HeuQGen for equal opportunity.
Fig. 7(c) shows that the Ms score of QGenEq is more sensitive to
the number of variables. As |X| increases, more instances need to
be inspected in Sg. This makes it more difficult for the greedy
set cover strategy (Cover) to find Q with good coverage, which is
consistent with our analysis in Theorem 3. HeuQGen reports lower
scores, but is less sensitive, as it incurs less verification cost.

Varying |P|. Fixing |Q| = 3, |X| = 3 (with 1 range variables and
2 edge variables), and k= 50 for HeuQGen, we varied |P| from 1
to 6 by fixing | J(P) and cardinality constraints, but only change
its partitions). As shown in Fig. 7(d), QGenEq achieves a higher
ratio than HeuQGen, and reports M i that is less sensitive than Ms.
Indeed, it is harder to generate Q that can properly cover all the
groups as the number of groups increases. On the other hand, the
performance of HeuQGen is less sensitive to |P|.

Exp-2: Efficiency. We next evaluate the efficiency of the algorithms
QGenkq, QGenkEq,,, QGenC, QGenC,, HeuQGen, and EnumGen.

693

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Efficiency over real-life graphs (Equal opportunity). Fig. 8(a) reports
the performance of QGenEq, QGenEq,,, and HeuQGen over the
real datasets. For all the datasets, HeuQGen achieves the best per-
formance. On average, it outperforms QGenEq by 2.4 times due
to the early termination property. The late verification strategy
of QGenEq improves the efficiency of QGenEq,, by 1.65 times. In
general, QGenEq and HeuQGen are feasible. For example, while
EnumGen takes more than 2 hours over DBP, it takes QGenEq
(resp. HeuQGen) 187s (resp. 129s) over LKI with 3M nodes and
26M edges to generate queries with comparable quality.

Varying |X| (Equal opportunity). Using the same setting as in

Fig. 7(c), we reported the performance of QGenEq, QGenEq,,
HeuQGen and EnumGen over DBP in Fig. 8(b). (1) All the al-
gorithms take longer time for larger |X| due to that more in-
stances need to be inspected, as expected. (2) QGenEq outperforms
QGenEq,, by 1.88 times, and improves the latter better for larger |X|
due to the late verification strategy. It inspects 10% less instances
than QGenEq,,. (3) HeuQGen outperforms all the algorithms due
to the early termination strategy, and remains least sensitive.

Varying |X| (Cardinality constraint). Using the same setting as in

Fig. 7(b) over DBP, while varying |X| from 1 to 5 we verify the per-
formance of all the algorithms in Fig. 8(c). (1) HeuQGen achieves
the best performance among all the algorithms, and is less sensi-
tive compared with others. QGenC (resp. QGenEq) outperforms
QGenC,, (resp. QGenEq,,) by 1.9 times (resp. 2) on average. On the
other hand, QGenC is less sensitive compared with QGenEq with
a simpler greedy strategy.

Varying | \U(P)| (Equal opportunity). Fig. 8(d) reports the efficiency
in the same setting as in Fig. 7(d), while keeping || unchanged.
All the algorithms take more time to compute Q when | J(P)| is
larger. QGenEq outperforms QGenEq,, by 1.5 times on average.

Exp-3: Case Study. We also manually verified k=2 instances found
by HeuQGen for talent search with fairness constraints, and report
a case in Fig. 9. The parameterized query Q (not shown) contains
a range variable on skills and an edge variable between two users
(us,u1). An initial query with an instantiation {0, ‘1’} returns a
set of 62 male and 12 female candidates. Posing a gender equality
requirement, g4 and gs are suggested, resulting a balanced set of 30
female and 30 male. The queries suggest to relax long “co-review”
chains while specifying two different skillsets.

7 CONCLUSIONS

We have introduced and studied the diversified query generation
with group fairness problem. We verified the hardness of the prob-
lem. We have provided both feasible approximation algorithms (for
equal opportunity and cardinality constraint on output sizes) and
fast heuristics (for the general problem) with optimization strate-
gies such as late verification and properties of early termination. As
verified analytically and experimentally, our methods are feasible
for large graphs, and can achieve desirable diversity and coverage
properties over targeted groups.

Acknowledgments. This work is supported by NSF under CNS-
1932574, OIA-1937143, ECCS-1933279, CNS-2028748 and DoE under
DE-TA0000025.

Research Paper

REFERENCES

(1]
(2]
(3]

[11]

[12]

[14]

[15]

[16]

Z. Abbassi, V. Mirrokni, and M. Thakur. Diversity maximization under matroid
constraints. In KDD, 2013.

A. Asudeh and H. Jagadish. Fairly evaluating and scoring items in a data set.
Proceedings of the VLDB Endowment, 13(12):3445-3448, 2020.

G. Bagan, A. Bonifati, R. Ciucanu, G. H. Fletcher, A. Lemay, and N. Ad-
vokaat. Controlling diversity in benchmarking graph databases. arXiv preprint
arXiv:1511.08386, 11, 2015.

G. Bagan, A. Bonifati, R. Ciucanu, G. H. Fletcher, A. Lemay, and N. Advokaat.
gmark: Schema-driven generation of graphs and queries. IEEE Transactions on
Knowledge and Data Engineering, 29(4):856-869, 2016.

A. Bonifati, I. Holubov4, A. Prat-Pérez, and S. Sakr. Graph generators: State of
the art and open challenges. ACM Computing Surveys (CSUR), 53(2):1-30, 2020.
A. Borodin, H. C. Lee, and Y. Ye. Max-sum diversification, monotone submodular
functions and dynamic updates. PODS, 2012.

S. Bouhenni, S. Yahiaoui, N. Nouali-Taboudjemat, and H. Kheddouci. A survey on
distributed graph pattern matching in massive graphs. CSUR, 54(2):1-35, 2021.

R. D. Carr, S. Doddi, G. Konjevod, and M. Marathe. On the red-blue set cover
problem. In SODA, 2000.

S. Chaudhuri, H. Lee, and V. R. Narasayya. Variance aware optimization of
parameterized queries. In SIGMOD, 2010.

L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph isomorphism
algorithm for matching large graphs. IEEE transactions on pattern analysis and
machine intelligence, 26(10):1367-1372, 2004.

Y. Dong, Y. Yang, J. Tang, Y. Yang, and N. V. Chawla. Inferring user demographics
and social strategies in mobile social networks. In KDD, 2014.

T. Draws, N. Tintarev, and U. Gadiraju. Assessing viewpoint diversity in search
results using ranking fairness metrics. ACM SIGKDD Explorations Newsletter,
23(1):50-58, 2021.

M. Ehrgott. Multicriteria optimization, volume 491. Springer Science & Business
Media, 2005.

W. Fan, X. Wang, and Y. Wu. Diversified top-k graph pattern matching. VLDB,
2013.

Y. Ge, S. Zhao, H. Zhou, C. Pei, F. Sun, W. Ou, and Y. Zhang. Understanding
echo chambers in e-commerce recommender systems. In SIGIR, pages 2261-2270,
2020.

S. C. Geyik, S. Ambler, and K. Kenthapadi. Fairness-aware ranking in search &
recommendation systems with application to linkedin talent search. In KDD,
2019.

694

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

S. Gollapudi and A. Sharma. An axiomatic approach for result diversification. In
WWW, 2009.

T. F. Gonzalez. Handbook of approximation algorithms and metaheuristics. CRC
Press, 2007.

N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri. Querying knowledge graphs
by example entity tuples. IEEE Transactions on Knowledge and Data Engineering,
27(10):2797-2811, 2015.

N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage: similarity measures
and algorithms. In SIGMOD, 2006.

W. Le, A. Kementsietsidis, S. Duan, and F. Li. Scalable multi-query optimization
for sparql. In ICDE, pages 666677, 2012.

M. Lissandrini, D. Mottin, T. Palpanas, and Y. Velegrakis. Graph-query suggestions
for knowledge graph exploration. In The Web Conference, 2020.

J. Lu, J. Chen, and C. Zhang. Helsinki Multi-Model Data Repository.
https://www2.helsinki.fi/en/researchgroups/unified- database-management-
systems-udbms/, 2018.

T. Ma, S. Yu, J. Cao, Y. Tian, A. Al-Dhelaan, and M. Al-Rodhaan. A comparative
study of subgraph matching isomorphic methods in social networks. IEEE Access,
6:66621-66631, 2018.

D. Mottin, F. Bonchi, and F. Gullo. Graph query reformulation with diversity. In
KDD, 2015.

Z. Moumoulidou, A. McGregor, and A. Meliou. Diverse data selection under
fairness constraints. In ICDT, 2021.

M. H. Namaki, Q. Song, Y. Wu, and S. Yang. Answering why-questions by
exemplars in attributed graphs. In SIGMOD, 2019.

D. Peleg. Approximation algorithms for the label-covermax and red-blue set
cover problems. Journal of Discrete Algorithms, 5(1):55-64, 2007.

A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-]. P. Hsu, and K. Wang. An overview
of microsoft academic service (mas) and applications. WWW, 2015.

Q. Song, M. H. Namaki, and Y. Wu. Answering why-questions for subgraph
queries in multi-attributed graphs. In ICDE, 2019.

J. Stoyanovich, K. Yang, and H. Jagadish. Online set selection with fairness and
diversity constraints. In Proceedings of the EDBT Conference, 2018.

V. V. Vazirani. Approximation algorithms. Springer, 2013.

Y. Wang, Y. Li, J. Fan, C. Ye, and M. Chai. A survey of typical attributed graph
queries. World Wide Web, 24(1):297-346, 2021.

Y. Zhang, J. Tang, Z. Yang, J. Pei, and P. S. Yu. Cosnet: Connecting heterogeneous

social networks with local and global consistency. In KDD, 2015.
E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary

algorithms: Empirical results. Evolutionary computation, 8(2):173-195, 2000.

https://www2.helsinki.fi/en/researchgroups/unified-database-management-systems-udbms/
https://www2.helsinki.fi/en/researchgroups/unified-database-management-systems-udbms/

	Abstract
	1 Introduction
	2 Preliminaries
	3 Query Generation Problem
	4 Approximating Query Generation
	4.1 A General Approximation Scheme
	4.2 Diversified Query Generation

	5 Early Termination Heuristics
	6 Experiments
	7 Conclusions
	References

