
Subgraph Query Generation with Fairness and
Diversity Constraints

Hanchao Ma, Sheng Guan, Mengying Wang, Yen-shuo Chang, Yinghui Wu
Case Western Reserve University

Email: {hxm382,sxg967,mxw767,yxc1425,yxw1650}@case.edu

Abstract—This paper studies the problem of subgraph query
generation with guarantees on both diversity and group fairness.
Given a query template (with parameterized search predicates)
and a set of node groups in a graph, it is to compute a set of sub-
graph queries that instantiate the query template, and each query
ensures diversified answers that meanwhile covers each group
with a desired number of nodes. Such need is evident in web
and social search with fairness constraints, query optimization,
and query benchmarking. We formalize a bi-criteria optimization
problem that aims to find a Pareto optimal set of query instances
in terms of diversity and fairness measures. We show the problem
is in ΔP

2 and verify its hardness (NP-hard and fixed-parameter
tractable). We provide (1) two efficient algorithms that can
approximate Pareto optimal sets with ε-dominance relations that
yield representative query instances with a bounded size, and (2)
an online algorithm that progressively generates and maintains
fixed-size ε-Pareto set with small delay time. We experimentally
verify that our algorithms can efficiently generate queries with
desired diversity and coverage properties for targeted groups.

Index Terms—attributed graph, query suggestion, fairness

I. INTRODUCTION

Subgraph queries have been routinely used in e.g., social

search [31] and knowledge search [41]. Given a graph G,

a subgraph query Q(uo) with a designated output node uo

computes a set of nodes (matches) of uo in G. A number

of algorithms [8] have been developed to process subgraph

queries in terms of subgraph isomorphism and variants [41].

The emerging need for data systems that requires both

results diversity and fairness [7], [3], [34], [15] poses new

challenges to graph querying. In such scenarios, queries are

expected to return diversified matches that meanwhile ensure a

required coverage of designated groups (node sets) of interests

from G. Such groups may refer to the population of vulnerable

social groups that are characterized in terms of sensitive

attributes (e.g., gender, race, professions) [19], relevant articles

yet with diversified labels for Web exploration [2] and rec-

ommendation engines [21], or designated columns for query

benchmark [5]. Consider the following real-world scenarios.

Example 1: Talent search. A talent search over a professional

network G [21] finds strong candidates with desired skills.

Each node in G denotes a user with attributes such as title,

skill, profession, or an organization with attributes such as

the number of employees. Each edge indicates the affiliation

(worksAt) of a user or recommendation (recommend) between

users. A recruiter issues a graph search query q1 (illustrated in

Fig. 1) to find directors uo who have expertise in managing IT

business, and moreover, recommended by at least two users

from large companies. In our test (Section V), this query

returns a set of qualified candidates q(G), yet with a skewed

distribution of 375 male users and 173 female users.

The recruiter pursues the desired gender distribution and

diversity of the candidates, and wonders how to revise the

search such that (1) the new answer can properly cover q(G)
with an equal number of male and female candidates (e.g., both

with 200 candidates; a case of “Equal opportunity” [21]); and

(2) the candidates are also more diversified in their majors. A

more desirable query q2 can be suggested, which finds 202

male and 198 female candidates that span 10 majors. The

query q2 suggests that a relaxed condition on recommendation

(removing the edge from u1 to u3) and a relaxation that also

recommends candidates from smaller businesses (reducing

‘1000’ employees to ‘500’ employees) help to achieve the

desired answer with proper coverage of the gender groups. �

It is desirable that such queries can be automatically sug-

gested, which ensures diversified answers that can meanwhile

cover designated node groups with desired cardinalities. On

the other hand, there may exist multiple queries with “better”

answers in terms of either diversity or equal opportunity.

Example 2: Continuing the talent search, two more queries

q3 and q4 (Fig. 1) can be found by “perturbing” the ranges of

the years of experience of recommenders and the number of

employees they work at. (1) Compared with q1, both queries

can identify more diversified candidates with a less skewed

distribution of genders. (2) Compared with q2, both find a

more skewed result over gender groups, yet each finds more

diversified candidates with more than 30 majors. While all

three queries provide more “desired” answers in terms of

diversity or promoting equal opportunity, it remains a daunting

task for users to inspect all these queries. �

This calls for efficient algorithms that can suggest a set of

representative subgraph queries with desirable guarantees on

both diversity and group coverage, over specified groups of

interests. Such need is evident in social search and recommen-

dation with group fairness [21], workload generation for query

benchmark [5], and query optimization in large graphs [27].

This paper studies a novel problem called subgraph query
generation with diversity and fairness constraints (FairSQG),

which has a general form below:

3106

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00278

20
22

 IE
EE

 3
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
78

-1
-6

65
4-

08
83

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
53

74
5.

20
22

.0
02

78

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Subgraph queries with Diversity and Group Fairness: Talent Search

◦ Input: graph G, an initial query (template) Q(uo), and a

set of groups P , where each group Pi ∈ P is associated

with a coverage constraint ci (ci ≤ |Pi|);
◦ Output: a set of subgraph queries Q obtained by revis-

ing Q(uo); each query can retrieve a set of diversified

matches (“Diversity”) from G that also cover each group

Pi with desired cardinality ci (“Group fairness”).

Several methods have been developed to generate graph

queries that lead to desired answers. Notable examples include

query suggestion with diversified answers [33], [24], coverage

of similar counterparts of “examples” [39], [35], or cardinality

constraints on output sizes [28], [4]. These approaches are

designed to revise queries towards specific properties rather

than ensuring both group fairness and answer diversity, thus

cannot be directly applied to our problem.

Contributions & Organization. We formally analyze the

subgraph query generation problem with group fairness con-

straints. We propose both feasible approximation schemes as

well as practical exact algorithms for large graphs. We refer

to the subgraph query as “query” in the rest of the paper.

A Bi-objective formalization. We provide a practical formal-

ization of the FairSQG problem (Section III). (1) We introduce

a class of query templates (denoted as Q(uo)). A template

carries variables defined on search predicates and edges yet

to be instantiated at processing time. Query generation yields

value binding to the variables to produce a set of query

instances. (2) We introduce diversity and fairness measures

to measure the quality of an instance. Despite the need of

optimizing both, they may come in conflict: a single optimal

instance may not exist. On the other hand, a complete Pareto

set is of substantial size for users to inspect. Instead, we

introduce a bi-objective optimization problem to compute an

ε-Pareto set of instances based on a query dominance relation.

ε-Pareto set is a desirable subset approximation of the Pareto

optimal set that strikes a balance between dominance relation

and the number of instances to be returned.

We show FairSQG is solvable in ΔP
2 (a class of PNP prob-

lems with an NP oracle) for templates with fixed variables, and

show its hardness varies from PTIME to NP-hard if Q(uo) has

fixed size and variable sizes, and for templates without range

variables. These results verify useful upper and lower bound

results for query generation scenarios in practice.
Query generation with quality guarantees (Section IV). Gen-

erating a Pareto set of substantial size is often not desirable.

We first introduce algorithms that can approximate the exact

Pareto set Q with a quality guarantee controlled by an error

bound ε. The algorithm ensures to find a subset of Q, denoted

as Qε, such that for each possible instance of Q(uo), there

is an instance in Qε that approximately dominates it on both

diversity and coverage within a constant factor ε > 0. Better

still, the algorithm ensures to return a representative query set

with a bounded size. We also introduce optimization strategies

to reduce the cost of query generation.

Online maintenance of fixed-sized set (Section IV-C). Our

analysis shows that one often needs to sacrifice query instance

quality (ε) in trade for a smaller, representative set to inspect.

We follow up with an online algorithm, which progressively

constructs and incrementally maintains an ε-Pareto set with k
instances and an ε as small as possible. The online algorithm

uses a sliding window strategy to dynamically swap or replace

queries and incrementally update ε-Pareto set only when

necessary, and incurs a small delay time.

Real-world evaluation and case analysis (Section V). Using

real-life graphs, we verify the effectiveness and efficiency

of our algorithms (Section V). We show that our algorithms

can generate subgraph queries with both desired diversity and

small errors in covering designated groups. These algorithms

are also feasible. For example, it takes 78 seconds to produce

instances with desired coverage in real-life graphs with 30

million nodes and edges. We also illustrate that our algorithms

can generate favorable queries for different user preferences.

Related Work. We categorize the related work as follows.

Graph query suggestion. Subgraph query suggestion has been

studied to discover queries with different desirable proper-

ties [24], [33], [39], [35]. Graph query by example [24]

computes subgraph queries with answers that are close to a set

of user-specified (triple) examples in knowledge graphs. Given

an initial query, diversified query suggestion [33] extends an

initial query with additional edges to derive a set of queries

with diversified answers. Answering Why-questions [39], [35]

suggest queries with query rewriting operators to approach

answers by including or excluding specified nodes. Query

suggestion in terms of both diversity and group coverage

constraints are not addressed by these methods.

Subset selection with group fairness. Another relevant work is

subset selection with group fairness. Given a universal set,

3107

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

and a set of groups (subsets), it is to select a set of nodes

that can cover each group with a desirable number of nodes.

[32] proposed a fairness metric that considers a fair group

coverage of the outputs of decision making models. [20]

computes a size-k seed set such that it maximizes the coverage

of one group and covers “t-fraction” of the other. Diversified

subset selection with group fairness has been studied [40],

[34]. Approximation algorithms have been studied to generate

subsets for max-sum and max-min diversification [34] as well

as for online selection [40]. These methods study set coverage

properties and cannot be directly used to suggest graph queries

and coverage in terms of graph search.
Query workload generation. Query generation with output

size constraints and distribution constraints have been inves-

tigated for graph benchmarking. [4] generates regular path

queries from a given schema that can output answers with

required cardinalities when projected to pre-defined attributes.

[27] generates SPARQL queries that can cover the answer

of given queries with cheaper plans for query optimization.

Workload generation with group coverage [30] aims to gener-

ate a set of subgraph queries, where the union of their answers

cover a desired fraction of each group.

Our work differs from prior work as follows. (1) We

study query generation under fairness constraints for arbitrary

groups with guaranteed coverage requirements. (2) We con-

sider queries defined in subgraph isomorphism with search

predicates, a more involved query class compared with regular

path queries [4]. (3) Unlike [30], we study a different problem

which aims to approximate the Pareto set of subgraph queries

in diversity and coverage. The Pareto-optimality is not studied

in these works. On the other hand, our algorithms can be

readily applied to generate queries for benchmark needs.
Skyline search. Multiobjective search such as skyline

queries [11], [12] has been extensively studied. Existing

multi-objective optimization algorithms are studied to

compute Pareto optimal sets [23], [10] or their approximate

variants [36], [26] over data points. [23] transforms the multi

objectives to a single objective by linear summation of all

objectives with importance weights. Constraint based method

(CBM) [10] initializes a set of anchor points that optimize

each single objective function. It then bisects the straight

lines between pairs of anchor points with a fixed vertical

separation distance. This transforms bi-objective optimization

into a set of single objective optimization problems. Then, it

solves each to get a set of anchor nodes to approximate the

Pareto frontier. ε-Pareto set [36], [26] has been studied as a

desirable approximation for Pareto optimal set.

Our problem can be considered as computing a repre-

sentative bi-objective skyline front in subgraph query space

with diversity and coverage preferences. It differs from prior

work as follows. (1) Our problem solves the multi-objective

optimization problem defined on query instances. It needs to

compute diversity and coverage for query instances via sub-

graph isomorphism. Nevertheless, traditional skyline search

problems are defined on data points with given feature vectors.

(2) It is also not desirable to return a large Pareto set [11]

Fig. 2. Query Template and Query Instance

for practical query generation scenarios. We advocate feasible

algorithms that can (a) efficiently generate and maintain ε-
Pareto instance sets for large graphs, and (b) strike a balance

between the solution quality and size. (3) Our approach aims

to balance between efficiency and provable group coverage.

Moreover, our method generates size bounded query sets for

the user to inspect. This can not be guaranteed by [10].

II. GRAPH, QUERY TEMPLATES AND INSTANCES

Graphs. We consider directed graphs G = (V,E,L, T), where

(1) V is a finite set of nodes, (2) E ⊆ V × V is a set of

edges, (3) each node v ∈ V (resp. edge e ∈ E) carries a label

L(v) (resp. L(e)); and (4) each node v carries a tuple T (v)
= <(A1, a1),. . . ,(An, an)>, where each Ai (i ∈ [1, n]) is a

distinct node attribute with a value ai.
We denote the finite set of all the node attributes in G as

A. The active domain adom(A) of an attribute A ∈ A refers

to the set of values of v.A as the node v ranges over V .

Query Template. A query template (or simply “template”)

Q(uo) is a connected graph (VQ, EQ, LQ, TQ), where VQ

(resp. EQ ⊆ VQ × VQ) is a set of query nodes (resp. query

edges). Each query node u ∈ VQ (resp. query edge e ∈ VE)

has a label LQ(u) (resp. LQ(e)). Specifically, there is a

designated output node uo ∈ VQ.

Variables. A template allows “placeholders” in search predi-

cates that can be bound to specific values when executed. It

extends parameterized queries [9] for graph query generation.

We consider two types of variables in a template Q(uo). (a)

For each node u ∈ VQ, TQ(u) is a set of literals. A literal l is in

the form of u.A op xl, where op is from {>,>=,=, <=, <},

and xl is a range variable that can be assigned to a constant.

(b) For each edge e ∈ EQ, TQ(e) is a Boolean edge variable
xe (either ‘0’ or ‘1’). The set of all the variables in Q(uo) is

denoted as X = XL ∪XE .

Query Instances. Given a template Q(uo), an instantiation
of Q(uo) is a function I , such that for each variable x ∈ X ,

I(x) is either a constant or a wildcard ‘ ’. A query instance (or

simply “instance”) q(uo) of Q(uo) induced by an instantiation

I is a connected graph (VQ, Eq, LQ, Tq) with the same VQ,

output node uo and LQ, and moreover,

◦ for each literal l ∈ TQ(u) in Q(uo), if I(xl) is a constant,

then there is a literal l = u.A op I(xl) in Tq(u); and

◦ there is an edge e ∈ EQ if and only if (a) I(xe) = ’1’,

and (b) e is in the same connected component of uo.

An instance q of Q(uo) contains no variables but only literals

and the edges in the connected component where uo resides,

3108

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

Notation Description
G=(V,E, L, T) attributed graph G

Q(uo)=(VQ, EQ, LQ, TQ) query template Q(uo); uo: output node

xl; xe range variable; boolean edge variable

q(uo) an instantiation of Q(uo)
q(u,G) match set of a query node u of q(uo) in G
q(G) match set q(uo, G)
V (uo) set {v|L(v) = L(uo), v ∈ V }

P m disjoint node groups in G
C cardinality constraints of groups P

I(Q) all the query instances of Q
Q∗ ⊆ I(Q) Pareto instance set of I(Q)
Q∗

ε ⊆ I(Q) ε-Pareto instance set of I(Q)

TABLE I
SUMMARY OF NOTATION.

induced by the constant binding from I . We denote the set of

all the possible instances of Q(uo) as I(Q).

Matches. Given an instance q(uo) and a graph G, a matching

from q(uo) to G is a function h ⊆ Vq×V , where (1) for each

node u ∈ VQ, LQ(u) = L(h(u)), and for each literal u.A op c
in Lq , h(u).A op c; and (2) for each edge e = (u, u′) in q(uo),
h(e) = (h(u), h(u′)) is an edge in G, and LQ(e) = L(h(e)).

The matches of a query node u of q(uo) in G, denoted as

q(u,G), refers to the set of all the nodes in G that can match

node u via a matching h(u) from q to G. The result of q
in G, denoted as q(G), refers to the match set q(uo, G). We

summarize the notations in Table I.

Example 3: Fig. 1 illustrates a template Q(uo) that searches

for directors in G [21]. (1) Q(uo) has five variables X̄
= {xl1, xl2, xl3, xe1, xe2}, with three range variables in lit-

erals u1.yearsOfExp. ≥ xl1, u2.yearsOfExp. ≥ xl2, and

u4.employees ≥ xl3 respectively, and edge variables xe1, xe2.

(2) An instantiation {10, 10, 1000, ′1′, ′1′} (resp. {10, 10,
500, ′0′, ′1′}, {6, 12, 300, ′0′, ′1′}, {11, 5, 1000, ′0′, ′1′}) of

X̄ induces an instance q1 (resp. q2 and q3 and q4) of Q(uo).
(3) Given G, q1(G) = {v1}, q2(G) = {v1, v2, v3}, q3(G) =

{v1, v2}, and q4(G) = {v3, v4, v5}. �

Remarks. The instances are well-defined for a “partial” in-

stantiation in which some variables are assigned a wildcard ‘ ’

(“don’t care”). For such a case, q is induced by removing cor-

responding parameterized predicates or edges to ensure valid

q(G). A user-defined “initial” query (e.g., q1 in Example 1)

can be captured by a template with a partial instantiation.

III. QUERY GENERATION PROBLEM

Given a template Q(uo), graph G and m disjoint node

groups P in G, where each group Pi ∈ P has a cardinality

constraint ci ∈ [0, |Pi|], the query generation problem aims

to compute a set of instances Q ⊆ I(Q) of Q(uo) with

maximized diversity and required coverage properties.

A. Quality Measures
We consider two functions to quantify the “goodness” of

instances in terms of diversity and fairness.

Diversification. We consider Max-sum diversity as a natural

objective for result diversification [22]. Given an instance q
and G, the diversity of q is defined as:

δ(q,G) = (1−λ)
∑

v∈q(G)

r(uo, v)+
2λ

|Vuo
| − 1

∑

v,v′∈q(G)

d(v, v′)

where (1) λ ∈ [0, 1] is a constant to balance relevance and

diversity; (2) the function r(uo, v) ∈ [0, 1] (resp. d(v, v′) ∈
[0, 1]) computes a relevance score between uo and a match v
(resp. difference between two matches v and v′). In practice,

d(v, v′) can be the edit distance between tuples T (v) and

T (v′) [25], and r(uo, v) can be an entity linkage score or

impact of v in social networks [16].

The set Vuo
refers to the nodes in G with the same label of

uo. Given G, the pairwise dissimilarity is normalized with a

constant
|Vuo |−1

2 , as there are at most
|Vuo |(|Vuo |−1)

2 pairs but

|Vuo
| relevance numbers. That is, δ(q,G) ∈ [0, |Vuo

|].
Coverage. Ideally, an instance should satisfy the coverage

requirement ci posed on each group Pi ∈ P , and cover exactly

ci nodes in each Pi ∈ P . Given P , G, and template Q(uo),
an instance is feasible, if for each Pi ∈ P , |q(G) ∩ Pi| ≥ ci.

We next introduce a function to quantify the quality in terms

of desired coverage as:

f(q,P) = C −
∑

Pi∈P
(|q(G) ∩ Pi| − ci)

where the constant C =
∑|P|

1 ci. The function penalizes the

total accumulated errors between desired coverage and actual

counterpart by q(G) over each group in P . The larger f(q,P)
is, the better (f(q,P) ∈ [0, C]).

Example 4: Continue with the queries as illustrated in Fig. 1.

Suppose we want to cover exactly 2 male users and 2 female

users over the qualified candidates, one may verify the fol-

lowing: δ(q1, G) = 0 and f(q1,P) = 1; δ(q2, G) = 1 and

f(q2,P) = 1; and δ(q3, G) = 0.75 and f(q3,P) = 2, and

δ(q4, G) = 0.5 and f(q3,P) = 3. �

In the rest of the paper, we only consider feasible instances.

We shall denote δ(q,G) and f(q,P) simply as δ(q) and f(q),
respectively, when G and P are specified in the context.

B. Query Generation Problem
Pareto Optimality. Given G, P and a template Q(uo), an

“optimal” instance q∗ should maximize both diversity and

relative coverage, (i.e., a Pareto optimal instance):

q∗ = argmax
q∈I(Q)

δ(q); q∗ = argmax
q∈I(Q)

f(q)

While desirable, such a solution may not always exist, as

diversity (which favors instances with diversified matches) and

group fairness (which requires desired coverage) may be in

conflict. A proper option is to compute a Pareto set. Given

two instances q and q′ in I(Q), we say q dominates q′, if

either (1) δ(q) ≥ δ(q′) and f(q) > f(q′), or (2) δ(q) > δ(q′)
and f(q) ≥ f(q′). A set Q∗ ⊆ I(Q) is a Pareto instance set
if (1) there is no pair of instances (q, q′) from Q∗, such that q
dominates q′, and (2) for any instance q′′ ∈ I(Q), there exists

an instance q ∈ Q∗ that dominates q′′.
One may wonder if there exist multiple Pareto instance sets.

The result below verifies the uniqueness of the Pareto instance

set for a given template and groups.

Lemma 1: Given a template Q(uo), graph G and groups P ,
there exists a unique, finite and maximum Pareto set Q∗. �

3109

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

Lemma 1 justifies that computing a Pareto instance set Q∗

is desirable as a unique optimal solution for query suggestion.

Nevertheless, the exact set Q∗ is often of substantial size in

practice. For a small template of 3 edges and 3 variables,

a complete Pareto set may already contain 100 instances

(see Section V), which remains a daunting task for users to

inspect. Alternatively, we consider a smaller, representative set

of instances to approximate the unique optimal Pareto set Q∗.

To this end, we introduce a notion of ε-Pareto instance set,
which approximates Q∗ with a polynomially bounded size.

ε-Pareto instance set. Given Q(uo), G, and P , we say an

instance q ε-dominates q′ for some ε > 0, denoted as q 	ε q
′,

if and only if (1 + ε)δ(q) ≥ δ(q′), and (1 + ε)f(q) ≥ f(q′).
A set of instances Q∗

ε ⊆ I(Q) is an ε-Pareto instance set,
if (a) Q∗

ε ⊆ Q∗, and (b) for any instance q′ ∈ I(Q), there

exists an instance q ∈ Q∗
ε , such that q
ε q

′.
An ε-Pareto instance set is desirable: it not only ε-dominates

all the instances in I(Q), with a configurable quality con-

trolled by ε, but also contains instances from the Pareto

instance set Q∗. That is, it approximates Q∗ with a subset

of representative but less number of instances. On the other

hand, there exist multiple such ε-Pareto instance sets.

Problem statement. A configuration of query generation is a

tuple C = (G,Q(uo),P, ε), which contains a graph G, template

Q(uo), disjoint groups P with coverage constraints, and a

constant ε > 0. Given a configuration (G,Q(uo),P, ε), the

FairSQG problem is to compute an ε-Pareto instance set Qε.

Here uo specifies the common output nodes of the instances

over which the diversity and fairness constraints are consis-

tently enforced. We characterize fairness with group coverage,

which readily expresses a few practical measures, including

(1) Equal Opportunity [21], by assigning the same coverage

bound (c) to social groups; (2) Disparate fairness [18] such as

“80% rules”, which advocates that the ratio of the size of a

minor group (e.g. female employees) to a majority counterpart

(e.g. male ones) be at least 0.8.

Example 5: Given the I(Q) that contains q1, q2, q3 and

q4, the Pareto set of I(Q) is {q2, q3, q4} since q1, q2 and

q3 all dominate q1. Here, we set ε = 0.3. Given the δ
and f values of these query instances (See Example 4). We

can compute the“boxing” coordinates of I(Q). From q2 to

q4, “boxing” coordinates are {2.0, 2.0)(2.0, 4.0)(1.0, 5.0)},

respectively. Then, the ε-Pareto instance set of I(Q) is {q2,

q3,q4}. We can see that q3 and q4 can not dominate each other,

however, q3 dominates q2 with the “boxing” coordinates. Thus,

q2 will be removed from the Pareto Set of I(Q) to form the

ε-Pareto set which is {q3, q4}. �
Although desirable, FairSQG remains nontrivial. We pro-

vide the following upper and lower bound analysis.

Theorem 1: Given a configuration C = (G,Q(uo),P, ε),
the FairSQG problem (1) is in ΔP

2 when Q(uo) has a fixed
number of variables |X|, (2) remains NP-hard when Q(uo)
has no range variables, and (3) is fixed-parameter tractable,
for Q(uo) with fixed size (number of edges) and fixed |X|. �

Proof sketch: The decision problem of FairSQG is to

determine whether there is a non-empty ε-Pareto instance

set Qε. (1) FairSQG is solvable in ΔP
2 for fixed template

Q(uo). Here ΔP
2 is the class of problems in PNP. A ΔP

2

algorithm first enumerates I(Q). For each instance, it consults

an NP oracle to verify f(q) and δ(q), and computes an ε-
Pareto set with a pairwise comparison (e.g., nested loop). As

|I(Q)| ≤ 2|XE ||adomm||XL| (|XE | and |XL| are constants),

the verification is in PTIME. Here adomm refers to the largest

active domain in G. (2) The NP-hardness can be verified from

the hardness of deciding subgraph isomorphism, even when

XE is fixed (thus in total 2|XE | instances).

To see Theorem 1 (3), we observe that the ΔP
2 algorithm

in Theorem 1 (1) takes polynomial time for fixed |X| and

|Q(uo)|, given that it is in PTIME to verify the coverage and

diversity for I(Q) with polynomially bounded size. �
The above analysis provides a naive algorithm (denoted as

EnumQGen): enumerates up to 2|XE ||adomm||XL| instances,

verifies each instance to find feasible ones, and invokes a

nested loop comparison to generate ε-Pareto instance set. This

is infeasible when G is large.

We next show that an ε-Pareto instance set Q∗
ε with a

bounded size can be efficiently computed (Section IV) and

dynamically maintained (Section IV-C), where the size bound

is only determined by ε and the range of diversity and

coverage. This enables flexible query generation that strikes

a balance between quality and instance sizes. We present

detailed proofs of lemmas and Theorem 1 in [1].

IV. APPROXIMATING PARETO INSTANCE SETS

We start with a generic query generation algorithm, denoted

as QGen, for FairSQG without enumeration.

Auxiliary structures. To characterize the search space, we

start with a notion of refinement relation defined on I(Q).
Refinement. Given a template Q(uo), and instantiations I and

I ′ of Q(uo), I
′ refines I at a variable x (denoted as I ′
x I) if

it binds a constant to x that makes the predicate parameterized

by x no less selective than the counterpart from I . Specifically,

(1) for a literal l in the form of u.A > xl or u.A ≥ xl (resp.

u.A < xl or u.A ≤ xl), I
′(xl) refines I(xl) if I ′(xl) ≥ I(xl)

(resp. I ′(xl) ≤ I(xl)) (“refines a selection condition”); (2) for

edge variable xe, I ′(xe) refines I(xe) if I ′(xe) = 1 and I(xe)
= 0 (“adds a query edge”); (3) I ′
x I if I(x) = ′ ′.

We say I ′ refines I (denoted as I ′
 I) if for every variable

x in Q(uo), I
′
x I ′. Given two instances q′ and q induced

by I ′ and I respectively, q′ refines q (denoted as q′
I q) if

I ′
 I . We observe the following result.

Lemma 2: Given a configuration C = (G,Q(uo),P, ε), (1) the
refinement relation is a preorder; and (2) for any instances q
and q′ in I(Q), if q′
I q, then δ(q) ≥ δ(q′); and f(q) ≤
f(q′) when both q and q′ are feasible. �
Proof sketch: The above results can be verified by observing

that (a) refinement relation is reflexive and transitive, and (b)

q′(G) ⊆ q(G) if q′
I q, i.e., any match of uo in q′ remains

to be a match of uo in q if q′ refines q at some variables. �

3110

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

These results justify the following. Lemma 2 (1) provides a

convenient lattice encoding of the search space induced by the

refinement preorder. Lemma 2 (2) verifies useful monotonicity

properties on diversity and coverage measures that shall be

exploited for effective pruning.

Instance Lattice. Following Lemma 2, the algorithm QGen
maintains a lattice encoding of the instance space Ł =

(I(Q),≺I) induced by refinement. (1) It initializes (I(Q),≺I
) with a single root qr (upper bound) induced by the “most

relaxed” instantiation, and a single lower bound qb induced

by the “most refined” instantiation. (2) Each node q in

(I(Q),≺I) is an instance. For each node q, QGen maintains

◦ (a) two Boolean flags: ‘verified’ to record if q is verified,

and ‘feasible’ to indicate if q is a feasible instance;

◦ (b) q(G), the (estimated) query answer; and

◦ (c) a coordinate (δ(q), f(q)), and a “boxing” coordinate

Box(q) = (δε(q)), fε(q). The coordinate value δε(q) (resp.

fε(q)) is defined as
log(1+δ(q))
log(1+ε) (resp.

log(1+f(q))
log(1+ε)). Box(q)

specifies a box region in the bi-objective (2-dimensional)

space of instance q to decide the ε-dominance relation

(see “Updater” below).

(3) There is an edge (q, q′) with a label x if (a) q′
 q, and

(b) q′ differs from q in the value of only one variable x, and q′

refines q by modifying the value of x to its closest counterpart

in the corresponding active domain (e.g., changing 0 to 1 if x
is an edge variable). Intuitively, an edge indicates a stepwise

refinement action of q by adjusting the value of x only.

Example 6: A fraction of the lattice structure Ł that contains

{qr, q1, . . . q4, q5} is shown on the left-hand side of Fig. 4.

Algorithm QGen maintains the auxiliary information of e.g., q3
once it is verified, including the coordinates δ(q3), f(q3), and

the boxing coordinates Box(q3). As q4 refines q3 at variable

xl1 at the node u1, (q3, q4) is a direct edge in Ł. �
Generic Algorithm. Given a configuration C =

(G,Q(uo),P, ε), algorithm QGen maintains an instance

set Q and iteratively refines Q towards an ε-Pareto instance

set of I(Q). At each iteration i, it refines the solution Qi

from the last iteration by interacting two procedures.

(1) Spawner. A spawner (Spawn) constructs new instances

to be verified that may contribute to the current instance set

Qi with new ε-dominance relation in diversity and coverage.

In each iteration, Spawn (a) refines the current configuration

given the quality of Qi to reduce unnecessary generation, (b)

constructs a front set of instances QF (thus a fraction of lattice

(I(Q),≺I)) on-the-fly, and (c) prunes unpromising instances

that are already ε-dominated by Qi whenever possible. The

spawner performs no actual query processing and verification.

(2) Updater. An updater (Update) refines Qi with the front

set QF from Spawn towards a better solution Qi+1. Our idea

extends [26] to maintain “boxes” of instances that discretize

the bi-objective (2-dimensional) space of answer diversity and

coverage of groups. Each box is represented by a single in-

stance q and specified by its boxing coordinates (δε(q), fε(q)).
To verify ε-dominance, it then suffices to verify the dominance

Algorithm RfQGen
Input: configuration C = (G,Q(uo),P, ε);
Output: an ε-Pareto instance set Q∗

ε .

1. set Q∗
ε := ∅; initializes Ł := {qr};

2. BFExplore (C, qr,Ł,Q∗
ε);

3. return Q∗
ε ;

Procedure BFExplore(C, qr,Ł,Q∗
ε)

1. if q.verified then return ;
2. incVerify (q,Ł, G); q.verified:= true;
3. if !q.feasible then return ;
4. Update (q,Q∗

ε);
5. set QF := Spawn (q, C);
6. for each q′ ∈ QF do
7. BFExplore (C, q′,Ł,Q∗

ε);

Fig. 3. Algorithm RfQGen

of boxing coordinates at both box level and instance level.

We present our main result below.

Theorem 2: Given a configuration (G,Q(uo),P, ε), there
exists an algorithm that (1) correctly maintains an ε-Pareto
instance set Qi

ε over all generated instances upon any time i
the updater is invoked; (2) ensures a size-bounded Qi, where
|Qi

ε| ≤ log(|V |)
log(1+ε) , and (3) take O(|adomm||X|(log(|V |)

log(1+ε) + Tq))
time to compute Q∗

ε , where adomm refers to the largest active
domain, and Tq is the cost of verifying a single instance. �

We next present two efficient algorithms as a constructive

proof of Theorem 2. Each implements QGen with different

exploration strategies of the instance lattice Ł, and conver-

gences to instances with high diversity, or a more balanced

distribution of coverage, for different user preferences. Both

have provable guarantees in Theorem 2.

A. Query Generation by Refinement

Our first algorithm, denoted as RfQGen, uses a “refine

as always” strategy to compute Q∗
ε . Given a configuration

(G,Q(uo),P, ε), it starts from the root qr of the instance

lattice Ł (which carries search predicates with the most “re-

laxed” conditions), and performs a depth-first exploration of

Ł. The algorithm uses Lemma 2 (2) to achieve early pruning

of infeasible instances, and reduce unnecessary updates.

Algorithm. Algorithm RfQGen is shown in Fig. 3. It initializes

set Q∗
ε , and the lattice Ł with a single root qr. It then

invokes a recursive procedure BFExplore to perform depth-

first exploration, which interacts spawn and update process

and generates a front set QF to be explored at each level of

Ł. RfQGen early terminates if no new instance can be spawned

(as BFExplore backtracks), and returns set Q∗
ε .

Procedure BFExplore. The recursive procedure BFExplore
starts by verifying an unvisited instance q from the current

front set QF . (1) It invokes a procedure incVerify (line 2;

not shown) to incrementally update the match set q(G) [17],

along with the coordinates (δ(q), f(q)) and boxing coordinates

(δε(q), fε(q)). Following Lemma 2, incVerify only determines

which matches should be excluded from the counterparts of

the verified “parent” of q in Ł. (2) It then invokes a proce-

dure Update (line 4) to maintain Q∗
f given a feasible instance

q. (3) For a feasible instance q, it invokes a procedure Spawn
(line 5) to generate the frontier set QF of refined instances

3111

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Instance Lattice and “Refinement as always” exploration

(thus spawns a set of children of q in Ł), by modifying one

variable at a time using the next closest active domain value.

It then starts a next-level exploration for each instance in QF .

BFExplore backtracks whenever q is not feasible (line 3), as

no refined counterparts are feasible (Lemma 2).

Procedure Update. Given a feasible instance q and current

ε-Pareto instance set Q∗
ε , procedure Update maintains ε-

dominance by verifying the dominance of Boxing coordinates

Box(q), with a case analysis below.

(Case 1) Replacing boxes (lines 1-5). This case verifies a box-

level dominance relation. Using the boxing coordinates Box(q)

= (δε(q), fε(q)) of q, it verifies if q introduces a box that also

already dominates a set of boxes in the bi-objective space of

diversity and coverage. If so, it removes all the representative

instances of those boxes from Q∗
f , and adds q.

(Case 2) Replacing instances (lines 6-7). If q falls into a box

which is represented by another instance q′, Update simply

keeps the one that can dominate the other.

(Case 3) Adding a non-dominated box (lines 8-9). If no box

can dominate Box(q), Update simply adds q to Q∗
f (which

represents a new box). Here we use Box(q′)
 Box(q) to

denote that Box(q′) 	 Box(q) or Box(q′) = Box(q).

Example 7: Fig 4 illustrates a case of the running of “update”.

Starting from the root of the lattice qr, RfQGen spawns and

verifies instances following the refinement preorder. (1) In the

first iteration, Update simply add q2 to Q∗
ε . (2) Once q3 is

verified, Update removes q2 under Case (1), as Box(q3)

Box(q2) (“Replacing boxes”). (3) In the next iteration, Update
keeps q4 in Q∗

ε , since q4 and q3 cannot dominate each other

at the box level. (4) Update finally rejects q1, since q3 and q4
both dominate q1. RfQGen then returns Q∗

ε as {q3, q4}. �
Procedure Spawn. To further reduce generation and verifica-

tion costs, procedure Spawn uses the following strategy to

actively refine the values. Each variable can take, and “sim-

plifies” template Q(uo) when possible. The refined templates

are restored when BFExplore backtracks to ensure correctness.

Template refinement. Given a verified instance q, Spawn dy-

namically tracks the subgraph induced by d-hop neighbors of

q(G) (d is the diameter of Q(uo)), denoted as Gd
q .

(1) For each literal u.A op x of Q(uo), it refines the values

x can take to {T (v.A)} ⊆ adom(A), where v ranges over the

nodes in Gd
q and L(v) = L(u).

(2) For each edge variable xe on edge e = (u, u′) in Q(uo),
it “fixes” xe to be 0 if there is no path from any match of

uo in Gd
q with an edge (v, v′) such that LQ(e) = L((v, v′)).

Procedure Update (q,Q∗
ε)

1. set QB := ∅;
/* verify “box-level” dominance */

2. for each q′ ∈ Q∗
ε do

3. if Box(q′) ≺ Box(q) then QB := QB ∪ {q′};
4. if QB �= ∅ then
5. Q∗

ε := (Q∗
ε \ QB) ∪ {q};

/* verify “instance-level” dominance */
6. else if there is an instance q′ ∈ Q∗

ε

and Box(q′) = Box(q) then
7. if q′ ≺ q then Q∗

ε := (Q∗
ε \ {q′} ∪ {q};

/* adding a new instance and a non-dominated box */
8. else if there is no instance q′ ∈ Q∗

ε

such that Box(q′) � Box(q) then
9. Q∗

ε := Q∗
ε ∪ {q} ;

10.return Q∗
ε ;

Fig. 5. Algorithm Update

Moreover, if e is a bridge of Q(uo), i.e., removing e leads to

two connected components in Q(uo), Spawn removes e and

the entire connected component that does not contain uo.

Example 8: Given a configuration C = (G,Q(uo),P, ε) where

P is defined on gender groups of users in G, and ε = 0.3.

Algorithm RfQGen starts with the root qr in the lattice Ł,

as illustrated in Fig. 4. (1) Following a depth first strategy,

BFExplore reaches q3 and invokes Spawn to refine q3 to q4.

In particular, Spawn selects variable Xl1 at node u1. While

the active domain of “yearsOfExp” suggests three values

{10, 11, 12, 20}, Spawn recognizes that it suffices to explore

only {10, 11, 12} with the next available value, given that no

neighbors of the current match have “yearsOfExp” more than

20. It then generates q4 and adds it to the front set for further

exploration. (2) As the exploration reaches q2, it finds an ε-
Pareto set {q3, q4} and returns the set (See Example 9). �
Correctness. Algorithm RfQGen correctly maintains an ε-
Pareto instance set Qi

ε over the generated instances Ii(Q)
upon Update is invoked at time i. To see this, assume Qi

ε

is not an ε-Pareto instance set. Then either (a) there exists

an instance q ∈ Ii(Q) \ Qi
ε that is not ε-dominated by any

instance in Qi
ε, or (b) q ∈ Qi

ε but not in the Pareto set of

Ii(Q). For case (a), Update only removes q if there is another

verified instance q′ ∈ Ii(Q) that either dominates q (line 7),

or ε-dominates q (line 3). In either case, it contradicts the

assumption. Similarly, case (b) indicates that there exists at

least an instance q′ ∈ Ii(Q) that q′
 q. Thus q′ is verified at

some time and either remains in Qi
ε or leaves a box Box(q′′),

where q′′
 q′. In either case, q should be excluded by Update
from Qi

ε (at line 7 or line 3), which contradicts that q ∈ Qi
ε.

Size bound. We next show that at any time i, |Qi
ε| ≤ log(|V |)

log(1+ε) .

To see this, observe that (a) Update ensures that each box

is represented by a single instance; (b) there are in total
log(|V |)
log(1+ε)

C
log(1+ε) boxes in the bi-objective 2D space, thus at

most
log(|V |)
log(1+ε) instances having the same coverage that ε-

dominate the rest (as δ(q) ∈ [0, |V |]), or logC
log(1+ε) instances that

ε-dominate the rest having same diversity (as f(q) ∈ [0, C]).
As C ≤ |V | for disjoint groups, the size bound follows.

Time Cost. Following Theorem 1, Spawn generates up to

2|XE ||adomm||XL| instances. Thus it takes in O(|adomm||X|)
runs of BFExplore. For each instance q, it takes Update

3112

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

Algorithm BiQGen
Input: configuration C = (G,Q(uo),P, ε);
Output: an ε-Pareto instance set Q∗

ε .

1. queue Sf := {qr}; queue Sb := {qb}; set Q∗
ε :=∅;

2. set Qf := ∅; set Qb := ∅; set SBounds:= ∅;
3. while Sf �= ∅ or Sb �= ∅ do

/* forward exploration */
4. if Sf �= ∅ then instance q:= Qf .dequeue();
5. if q.verified or !q.feasible then continue;
6. if SPrune(q,SBounds) then continue;
7. incVerify (q); q.verified:=true;
8. if q.feasible then Update (q,Q∗

ε);

9. Qf
F := SpawnF (q, C); Sf .enqueue(Qf

F);
/* backward exploration */

10. if Sb �= ∅ then instance q′:= Qb.dequeue();
11. if q.verified or !q.feasible then continue;
12. if SPrune(q, SBounds) then continue;
13. incVerify (q′); q.verified:=true;
14. if q′.feasible then Update (q′,Q∗

ε);
15. Qb

F := SpawnB (q, C); Sb.enqueue(Qb
F);

/*update “Sandwidch” bounds with feasible pair (q, q′)*/
16. if q′ �I q and (Box(q′).δ = Box(q′).δ

or Box(q′).f = Box(q′).f) then
17. update SBounds with (q, q′);
18. return Q∗

f ;

Fig. 6. Algorithm BiQGen

O(log(|V |)
log(1+ε) +Tq) time to verify q (in time Tq) and update Qi

ε.

Thus the total time cost is in O(|adomm||X|(log(|V |)
log(1+ε) + Tq))

time. We found that adomm and |X| are usually small in

real-world graphs. Moreover, the early pruning of infeasible

instances reduces on average 40% of the generated ones,

compared with the naive algorithm EnumQGen (Section V).

The above analysis completes the proof of Theorem 2.

B. Bi-directional Query Generation
Algorithm RfQGen achieves early convergences to an ε-

Pareto instance set Q∗
ε , where a majority of instances may

have high answer diversity (Lemma 3 (a)).

We next present a second algorithm, denoted as BiQGen.

It adopts a bi-directional strategy that explores Ł from both

ends. The forward exploration inspects instances with non-

increasing diversity, and the backward exploration keeps “re-

laxing” instances towards early convergence to instances with

high coverage. Following Lemma 3 (b), the computation has

more chance to generate Q∗
ε with a more “balanced” distribu-

tion on instances with high diversity and those with desired

coverage, as also verified by our experiments (Section V).

Algorithm. The algorithm BiQGen (shown in Fig. 6) uses

the same procedure Update as in RfQGen to maintain Q∗
ε at

any time, but specifies two separate spawners: SpawnF, same

as Spawn in RfQGen, and SpawnB, a reversed “relaxation”

counterpart that yields new instances by relaxing the search

predicates. The procedure SpawnF and SpawnB are invoked

to generate a front set Qf
F (line 9) and Qb

F (line 15) in

a “forward” refinement-based exploration from qr, and a

“backward” relaxation-based exploration from qb, respectively.

It uses two queues Sf and Sb to control the iterative forward

and backward exploration (line 2). It iteratively performs

forward (lines 3-9) and backward exploration (lines 10-15),

and terminates if no new instances can be generated (line 3).

Fig. 7. Bi-directional Query Generation

“Sandwich” pruning. The bidirectional strategy enables an

effective pruning strategy that exploits the monotonicity prop-

erties of diversity and coverage in Lemma 2 (2).

Lemma 3: For any feasible instances q ∈ Qf
F and q′ ∈ Qb

F ,
if q′
I q, and (a) Box(q).δ = Box(q′).δ or (b) Box(q).f
= Box(q′).f , then for any instance q′′ ∈ I(Q) where q ≺I
q′′ ≺I q′, q′′ �∈ Q∗

ε . �
Proof sketch: Consider an instance q′′ ∈ I(Q) where q ≺I
q′′ ≺I q′. Following Lemma 2, δ(q′) ≤ δ(q′′) ≤ δ(q), and

f(q′) ≥ f(q′′) ≥ f(q). For Case (a), if Box(q).δ = Box(q′).δ,

then Box(q′′).δ = Box(q′).δ and f(q′) ≥ f(q′′). Thus q′ 	 q′′

or q′ 	ε q
′′. Similarly, for Case (b), if Box(q).f = Box(q′).f ,

then Box(q′′).f = Box(q).f . Thus q 	 q′′ or q 	ε q′′. In

either case, Update rejects q′′ (line 5 or line 7). �
During the bi-directional exploration, BiQGen keeps track

of the occurrences of “sandwich” pairs (q, q′) that satisfy

the condition in Lemma 3 in a set SBounds. Upon a new

pair (q, q′) is identified (line 16), it updates SBounds by

(a) replacing any pair (q1, q2) with (q, q2) (resp. (q1, q
′)) if

q ≺I q1 (resp. q2 ≺I q′), or (q, q′) if q ≺I q1 and q2 ≺I q′; or

(b) adding (q, q′) (line 17). This in turn allows more instances

to be pruned (by a procedure SPrune; lines 6 and 12), for both

forward and backward exploration.

These pruning strategies are fast and effective. Checking

the refinement preorder 	I takes O(|X|) time per instance.

We found on average 60% of the generated instances from

EnumQGen are pruned by BiQGen (see Section V).

Example 9: Given I(Q) that contains {qr, q1, q2, q3, q4},

BiQGen starts a forward search from qr as in RfQGen, and a

backward search from q1. (1) In the first round of bidirectional

search, SpawnF refines qr to q5, and SpawnB relaxes q1 to

q4. Upon the verification of q4 and q5, BiQGen finds that

Box(q5).f = Box(q4).f = 4. It then creates a pair (q5, q4) and

adds it to SBounds. (2) In the next round, the backward search

reaches q2. Meanwhile, as q5 ≺I q6 ≺I q4, q6 is skipped in

the forward search without further exploration. �
Analysis. The correctness of BiQGen follows from the correct-

ness analysis of Update, SpawnF and SpawnB (following the

analysis of Spawn) and the invariant that forward and back-

ward exploration verifies and safely prunes I(Q) (Lemma 2

and Lemma 3). The size bound and time cost follows from a

similar analysis as in BFExplore.

C. Online Query Generation
Another need for query generation is to produce workloads

with arbitrary size k with diversity and coverage requirements

3113

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

over interested groups for query benchmarking [37], [4], [5],

[6]. We consider the following problem. Given a configuration

C=(G,Q(uo),P, k), maintain an ε-Pareto instance set Qt
(ε,k)

over a large set of instances (due to e.g., active domains and

G), such that at any time t, (a) |Qt
(ε,k)| = k, and (b) ε is

as small as possible. This is nontrivial: as more instances

arrive, one needs to compromise with a larger ε (thus worse

approximation) for a smaller k (Theorem 2).

We extend QGen to an online algorithm, denoted

as OnlineQGen, to maintain an ε-Pareto instance set with a

fixed size k and a small ε at any time. To cope with large

instance space, it treats I(Q) as a stream of instances from

a query generator. Unlike RfQGen and BiQGen, it does not

assume ordered processing (e.g., “refinement”). Instead, (1) it

uses a sliding window WQ with a bounded size w to cache

a certain number of instances that can help reduce ε, while

keeping k fixed; and (2) it incrementalizes the maintenance of

Qt
(ε,k) upon the arrival of a new instance, and only perform

necessary maintenance when Update causes size growth (in

particular, Case (3) in Update).

Online Algorithm. The algorithm, as shown in Fig. 8, takes

as input a stream of instances from an arbitrary generator

that instantiates Q(uo), and a small initial constant εm > 0. It

starts by populating Qt
(ε,k) with Update upon newly arrived

instances (in arbitrary order), until |Qt
(ε,k)| = k (lines 7-10).

If an instance q is rejected by Update, OnlineQGen includes

it to WQ (line 9) for future consideration (up to at most w
timestamps before it “expires”; lines 5-6). This is to “tem-

porally” keep the instances that may be accepted by Update
again, thus reducing |Qt

(ε,k)|. (and ε remains unchanged).

When |Qt
(ε,k)| = k and a new instance q can be added,

OnlineQGen incrementalizes Update by individually checking

(a) if adding q increases |Qt
(ε,k)| (Case (3)) or not (Case (1)

and (2); see Update in Section IV). if the latter applies, it

simply adds q (lines 12-13); otherwise, it first finds the nearest

neighbor of q in Qt
(ε,k) to be replaced by q. To this end, it

enlarges ε as the Euclidean distance of the coordinates of q and

q′, to include q and q′ in a larger box (line 16). It also verifies

if a cached instance can be added without increasing |Qt
(ε,k)|

(lines 18-20). It returns a size-k ε-Pareto set Qt
(ε,k) upon

request (line 21) or no new instance is generated (line 22).

Analysis. OnlineQGen correctly maintains an ε-Pareto in-

stance set with a fixed size k for the “seen” fraction of I(Q)
at time t. We first observe the following property.

Lemma 4: If q ≺ε q
′, then q ≺ε′ q

′ for any ε′ > ε. �
The correctness follows from the following invariant: at any

time t, (1) either Update correctly rejects an instance that is

already ε-dominated by an instance in |Qt
(ε,k)|, including those

“expired” in WQ; or (2) ε is adjusted to a larger counterpart

to reduce the size of |Qt
(ε,k)| to k (Theorem 2), and preserves

any previous ε-dominance relation (Lemma 4).

Delay time. OnlineQGen efficiently maintains the ε-Pareto

instance set with a delay time in O(Tq +w + k) time, where

Tq is the cost of verifying a single instance. This verifies the

Algorithm OnlineQGen
Input: a configuration (G,Q(uo),P, k), εm;

a stream of instances I(Q), a cache size w;
Output:a size-k ε-Pareto instance set Qt

(ε,k) at any time t.

1. set Q(ε,k) :=∅; set WQ:= ∅; integer t:= 0; ε:=εm;
2. while I(Q).hasNext() do
3. instance q:=I(Q).getNext();
4. verify q; q.ts:=i; i:=i+1;

/* remove “expired” query instances */
5. for each q′ ∈ WQ do
6. if q′.ts< i− w + 1 then WQ:=WQ \ {q′};
7. if |Q(ε,k)| < k then
8. Update (q,Q(ε,k));

/* cache an ε-dominated instance for future update */
9. if q �∈ Q(ε,k) then WQ :=WQ ∪ {q};
10. else continue ;
11. if |Q(ε,k)| = k then
12. if Update accepts q with Case (1) or (2) then
13. Q(ε,k):=Q(ε,k) ∪ {q}; Continue;
14. if Update accepts q with Case (3) then

/* replace an instance with q */
15. q′ := NearestNeighbor(q,Q(ε,k));
16. ε := dist((q.δ, q.f), (q′.δ, q′.f));
17. Q(ε,k) := Q(ε,k) \ {q′};

/* check if a cached instance can be added without impact */
18. if there is a qb ∈ WQ such that Update accepts qb

in Case (1) or Case (2) then
19. Q(ε,k):=Q(ε,k) ∪ {qb};
20. Q(ε,k):=Q(ε,k) ∪ {q};
21. return Q(ε,k) upon request;
22. return Q(ε,k);

Fig. 8. Algorithm OnlineQGen

practical application of OnlineQGen in query generation with

desired diversity and coverage for large workloads.

V. EXPERIMENTS

Using real-world graphs, we experimentally verify the ef-

fectiveness and efficiency of our algorithms. We investigate

the following: (RQ1) The effectiveness of our algorithms in

maximizing the diversity and ensuring the group coverage;

(RQ2) The efficiency of our query generation algorithms; and

(RQ3) The performance of our online generation algorithm.

Experiment Setting. We used the following setting.

Datasets and Groups. We use three real-life data graphs (sum-

marized in Table II), each reflects an application of query

generation. (1) DBP [29] is a movie knowledge graph induced

from DBpedia. Each node has a label (e.g., movie, director,

actors; in total 115 types) and attributes such as title, genre,

and years. Each relation has a label (e.g., directed, collabo-

ration; in total 398 types). We induce up to 5 movie groups

based on their genres (e.g., “Action”,“Romance”) or countries

for diversified and fair movie recommendations. (2) For talent

search, we use LKI [42]. with nodes denoting users and organi-

zations, and edges denoting co-review and works. Each node

has attributes such as “Major”. We induce 2 gender groups

P (male, female) with synthetic genders generated by gender

inference tools [14]. (3) For diversified and fair academic

recommendations, we use Cite [38] where nodes are papers

and authors, and edges denoting citations and authorship. Each

node has attributes such as “numberOfCitations” and “topic”.

3114

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

Dataset |V | |E| avg. # attr |P| |Q(uo)| C |X̄|
DBP 1M 3.18M 10 2-5 3-5 100-800 3-5
LKI 3M 26M 7 2 3-5 200 3-5
Cite 4.9M 46M 6 2-4 3-4 200 3-4

TABLE II
OVERVIEW OF REAL-LIFE GRAPHS

We induce up to 4 groups P of papers with different topics

(e.g., “Machine Learning”,“Networking”).

Queries and Templates. We developed a generator to produce

query templates with practical search conditions, controlled by

the number of variables |X| (specifically, the number of edge

variables and range variables), query size |Q(uo)| (in terms of

the number of edges) and topologies.

For each dataset, we generated a set of Q(uo) and P and

ensure the existence of feasible query instances. The largest

set of instances I(Q) for DBP, LKI, and Cite are 1000, 1400

and 800, respectively. We quantify the diversity of two nodes

with the normalized edit distances of their matching attributes.

Algorithms. We implemented the following algorithms in Java:

(1) EnumQGen, which enumerates and verifies the instances

in I(Q), and performs a simple nested loop to compute the

ε-Pareto optimal instance set. (2) RfQGen, with “refine as

always” strategy; (3) BiQGen, the algorithm that adopts bi-

directional search with “Sandwich” pruning; and (4) the online

query generation algorithm OnlineQGen, which maintains an

ε-Pareto instance set with a fixed size k and small ε. (5) To

verify the quality of query generation, we also implemented

Kungs, an algorithm that enumerates and verifies the instances

in I(Q), and invokes Kung’s algorithm [13] to compute the

Pareto optimal non-dominated set. (6) CBM [10], the con-

straint based bi-objective optimization algorithm. As default,

we set |P| = 2, C = 200, |Q(uo)| = 3 with |X| = 3
and ε = 0.01 for our experiments. We also summarized the

parameter settings we adopted for our experiments in Table II.

Our source codes and datasets are available online1.

Experimental results. We next present our findings.

Exp-1: Effectiveness (RQ1). As the diversity and coverage

of queries vary over different graphs, we quantify their effec-

tiveness with two established relative measures: R-indicator,

and ε-indicator[43], for a fair comparison.

ε-Indicator (Iε). Given a set of tuples Q, the ε-indicator [43]

finds the minimum ε, denoted by εm, for which Q is an εm-

Pareto set. Given ε-Pareto instance set Q∗
ε that conform to a

given constant ε, we define a normalized ε-Indicator (denoted

as Iε), which is computed as Iε(Q∗
ε) = 1 - εm

ε , where εm refers

to the minimum constant such that for any instance q ∈ I(Q),
there still exists an instance q′ and q′
εm q′, i.e., Q∗

ε remains

to be an εm-Pareto instance set. The larger Iε(Q∗
ε) is, the

better. For the complete Pareto optimal set Q∗, I(Q∗) = 1.

R-indicator (IR). For a set of tuples Q, an R-indicator takes

into consideration users’ preferences, and maps Q to a score

by aggregating the weighted attribute values [43]. We define

a simple R-indicator with a preference factor λR ∈ (0, 1),

denoted as IR, which is defined as IR(Q∗
ε) =

(1−λR)δ∗+λR·f∗

2 ,

1https://github.com/PanCakeMan/QueryGen

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

DBP LKI Cite

In
di

ca
to

r I
ε

Kungs
RFQGenP

BIQGenP
BIQGenP

(a) Effectiveness: Real-life graphs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0.2 0.4 0.6 0.8 1

In
di

ca
to

r I
ε

Kungs
EnumQGen

RFQGenP
BIQGenP

(b) Varying ε(LKI)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 3 4 5

In
di

ca
to

r I
ε

Kungs
EnumQGen

RFQGenP
BIQGenP

(c) Varying |XL| (DBP)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 3 4 5

In
di

ca
to

r I
R

Kungs
EnumQGen

RFQGenP
BIQGenP

(d) Varying |XE | (LKI)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

25% 50% 75% 100%

In
di

ca
to

r I
R

RFQGenP λR=0.9
BIQGenP λR=0.9
RFQGenP λR=0.1
BIQGenP λR=0.1

(e) Varying Pregressiveness (DBP)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

100 200 400 800

In
di

ca
to

r I
ε

Kungs
EnumQGen

RFQGenP
BIQGenP

(f) Varying C (DBP)

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 4 5

In
di

ca
to

r I
R

Kungs
EnumQGen

RFQGenP
BIQGenP

(g) Varying |P | (DBP)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 3 4 5

In
di

ca
to

r I
ε

Kungs
EnumQGen

RFQGenP
BIQGenP

(h) Varying |P | (DBP)

Fig. 9. Effectiveness of Subgraph Query Generation

where δ∗ (resp. f∗) refers to the maximum diversity (resp.

coverage) of an instance in Q∗
ε (normalized to be in [0,1]).

Here we use λR to “reward” the quality of Q∗
ε in terms of

coverage: a higher λR indicates the user’s preferences that

favor queries with a better coverage property; accordingly, a

higher IR under fixed λR suggests a query set Q∗
ε that contains

queries with more desired group coverage.

Overall Effectiveness (ε-indicator). We compare the effective-

ness of Kungs, EnumQGen, RfQGen and BiQGen over the

three real life datasets (Fig. 9(a)). We set |Q(uo)| = 3 with

3 variables (1 edge variable, and 2 range variables), |P| =

2, ε = 0.01, and C=200. We use an “Equal opportunity”

scenario and set c = 100 for both groups. (1) Kungs always

can achieve scores as 1 over all the graphs as it computes the

exact Pareto-optimal sets. (2) Over all the datasets, EnumGen,

RfQGen and BiQGen achieve Iε at least 0.6, which indicates

that they constantly achieve an “actual” approximation of

Pareto optimal set with an εm constantly smaller than 0.4 · ε
for a predefined ε. (3) RfQGen and BiQGen approximate the

complete Pareto set almost equally good as EnumGen, which

enumerates all query instances. On the other hand, RfQGen
and BiQGen on average inspect 40% and 60% less instances

compared with EnumGen and Kungs. We also found that

RfQGen and BiQGen approximate Pareto optimal sets with

a representative subset of 10% of their sizes.

Varying ε (ε-indicator). Fixing |Q(uo)| = 4, |X| = 3 (with 1

3115

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

range variable and 2 edge variables), and C = 200, we varied

ε from 0.2 to 1 and evaluate its impact over LKI. Fig. 9(b)

verifies the following. (1) EnumGen, RfQGen and BiQGen
approximate Pareto optimal set with larger εm (all bounded by

ε). This is due to the trade-off between the enforced tolerance

ε and the output size. The larger ε is, the fewer boxes and

representative ε-dominance instances are verified by RfQGen
and BiQGen. Thus, it is more difficult to use less amount

of representative instances to approximate the Pareto set. (2)

In all cases, RfQGen and BiQGen can approximate Pareto

optimal set with a small εm up to 0.4 of predefined ε in

all cases (IR ≤ 0.6), and achieve the same performance as

EnumGen. These suggest our methods can generate a good

approximation of the Pareto set over various settings of ε.

Varying |XL| (ε-indicator). We use DBP to evaluate the im-

pact of range variables given that the nodes have more

attributes on average. Fixing |Q(uo)| = 4, |P| = 2, C = 200,

ε = 0.01, we varied the number of range variables from 2 to

5, and evaluated the impact to the effectiveness of Kungs and

our algorithms. As shown in Fig. 9(c), EnumQGen, RfQGen
and BiQGen approximate the Pareto set better for larger |XL|.
Interestingly, the larger |XL| is, the more ε-dominating query

instances are verified to approach Pareto optimal set; on the

other hand, the increased query complexity leads to less

number of matches, which reduces the number of feasible

instances and the sizes of Pareto instance sets, thus making

it “easier” to approximate Pareto sets with fewer instances.

Varying |XE | (ε-indicator). We use LKI to evaluate the impact

of edge variables, given its dense social structures. Fixing

|Q(uo)| = 5, |P| = 2, C = 200, ε = 0.01, we varied the

number of range variables from 2 to 5, and evaluated its

impact to the effectiveness of Kungs, EnumQGen, RfQGen
and BiQGen. We observe a consistent trend (Fig. 9(d)) for

the algorithms over larger |XE | as for their counterparts

in Fig. 9(c). Similarly, more edge variables lead to more

dominating instances and better approximations of Pareto sets.

The above results verify that our methods suggest better

approximation for higher template complexity (in terms of

the number of range and edge variables), due to the reduced

number of feasible instances, and a larger instance space that

can be efficiently explored by RfQGen and BiQGen.

“Any time” quality with user preference (R-indicator). We

evaluate the convergence property of RfQGen and BiQGen in

response to different user preferences (controlled by λR) in

Fig. 9(e). Fixing |Q(uo)| = 4, |P| = 2, C = 200, |X| = 3,

and ε = 0.01, we report IR when different fractions of

I(Q) are explored over DBP, with λR = 0.9 (favoring high

coverage) and λR = 0.1 (favoring answer diversity). We

observe the following (1) RfQGen converges faster to a set

of instances with high answer diversity than BiQGen when

λR = 0.1, as the refinement strategy probes feasible instances

(2) On the other hand, BiQGen promotes the discovery of

instances with desired group coverage when λR = 0.9, due

to the bi-directional search bringing more feasible queries

with higher coverage from the backward exploration. (3)

 0
 100
 200
 300
 400
 500
 600
 700
 800

DBP LKI Cite

T
im

e
(s

ec
on

ds
)

EnumQGen
Kungs

RFQGenP
BIQGenP

(a) Overall Efficiency

 0

 100

 200

 300

 400

 500

0.2 0.4 0.6 0.8 1

T
im

e
(s

ec
on

ds
)

EnumQGen
Kungs

RFQGenP
BIQGenP

(b) Varying ε (LKI)

 0

 200

 400

 600

 800

 1000

 1200

2 3 4 5

T
im

e
(s

ec
on

ds
)

EnumQGen
Kungs

RFQGenP
BIQGenP

(c) Varying |XL|(DBP)

 0

 50

 100

 150

 200

2 3 4 5

T
im

e
(s

ec
on

ds
)

EnumQGen
Kungs

RFQGenP
BIQGenP

(d) Varying |XE | (LKI)

Fig. 10. Efficiency of Subgraph Query Generation

Consistently, BiQGen and RfQGen converge to query sets

with higher diversity and coverage, respectively.

Varying C (R-indicator). Fixing |Q(uo)| = 4, |P| = 3, |X| = 3
and λR = 0.5 which represents an equal preference over

diversity and coverage, We evaluate the impact of coverage re-

quirement(Fig. 9(f)). We follow equal opportunity and evenly

distribute C to each group, and report IR over DBP. As

more nodes are required to be covered, less instances become

feasible. This reduces the chance for EnumGen, RfQGen and

BiQGen to identify ε-dominating instances.

Varying |P|. In this test, we set |Q(uo)| = 4, |X| = 3, λR =

0.5, C = 240 and vary |P| from 2 to 5 and evenly distribute C
to each group. We evaluate the impact of the number of groups

(Fig. 9(h) and 9(g)) over DBP. Iε and IR decrease as the

number of groups increases. This is because as more groups

are required to be covered, less instances become feasible.

As a result, EnumGen, RfQGen and BiQGen identify less ε-
dominating instances to the approximate Pareto set.

Performance of CBM (not shown) . Following the same set-

ting in Fig. 9(a), we evaluate the performance of CBM over

DBP. On average, Kungs outperforms CBM by 1.2 times in

efficiency, as CBM iterates over a more expensive bi-level

optimization procedure. Nevertheless, BiQGen outperforms

CBM in IR by 1.1 times on average. We thus report Kungs
as a better alternative and omit the result of CBM.

These results verify the application of our methods for

generating favorable queries for different user preferences.

Exp-2: Efficiency (RQ2). We next evaluate the efficiency of

Kungs, EnumQGen, RfQGen andBiQGen.

Efficiency over real-life graphs. Using the same setting as in

Fig. 9(a), we report the efficiency of Kungs, EnumQGen,

RfQGen and BiQGen, over the real datasets in Fig. 10(a). (1)

BiQGen achieves the best performance for all the datasets. On

average, it outperforms EnumQGen and RfQGen by 4.4 and

2.5 times, respectively, due to the bi-directional search, and

the pruning from both forward and backward exploration. (2)

Query generation with diversity and coverage is feasible for

large graphs. For example, it takes BiQGen (resp. RfQGen)

78s (resp. 367s) over LKI with 3M nodes and 26M edges.

3116

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

(a) Varying K (LKI)

 0.6

 0.65

 0.7

 0.75

 0.8

25% 50% 75% 100%

In
di

ca
to

r I
ε

K=10,W=40
K=20,W=40

K=10,W=80
K=20,W=80

(b) Anytime Effectiveness (LKI)

Fig. 11. Performance of OnlineQGen

Varying ε. Using the same setting as in Fig. 9(b), we report the

efficiency of the algorithms in Fig. 10(b). (1) EnumGen and

Kungs are not sensitive due to that their main bottleneck is

the enumeration and verification of all instances. (2) BiQGen
achieves the best performance among all the algorithms due

to effective pruning. BiQGen (resp. RfQGen) outperforms

EnumGen by 6 times (resp. 2.2 times) on average. While not

very sensitive to ε, BiQGen and RfQGen take slightly less time

over large ε due to that more instances are ε-dominated and

captured by Update, thus are early pruned.

Varying |XL| and |XE |. Following the setting as in Fig. 9(c),

we report the efficiency of the algorithms in Fig. 10(c).

BiQGen achieves the best performance among all the algo-

rithms, and is the least sensitive compared with others. BiQGen
(resp. RfQGen) outperforms EnumQGen (resp. QGenEqn) by

7.5 times (resp. 5.6 times) on average over DBP.

Using the same setting as in Fig. 10(d) over LKI, Fig. 10(d)

verifies that BiQGen achieves the best performance among

all the algorithms. BiQGen (resp. RfQGen) outperforms

EnumQGen by 3 times (resp. 2.1 times) on average due to

the pruning over LKI. RfQGen and BiQGen are less sensitive

to |XL|. This is because an increase of the number of edge

variables (and by enforcing them to ‘1’) significantly reduces

feasible instances that are effectively captured by spawn pro-

cedure during template refinement (Section IV).

Exp-3: Online Generation (RQ3). We next evaluate the

performance of OnlineQGen over LKI. We simulate instance

streams by randomly instantiating fixed query templates.

Delay time: Varying k and Batch sizes. Fig. 11(a) reports the

delay time of OnlineQGen to process a batch of instances (with

size 40 or 80) from the input stream. We varied k from 5 to

20 and set window size w as 10 and 40, respectively. While

OnlineQGen takes around 1 second per instance to maintain

Q(ε,k) of size k, on average it takes 63 seconds for the batch

with size 40 and 121 seconds for the batch with size 80. It

takes less time for larger k and smaller w. Indeed, the cached

instances and incremental updates reduce the chance of k to be

enlarged; on the other hand, the larger w is, the more unexpired

instances in the cache need to be verified.

Anytime Effectiveness (ε-indicator). Keeping the setting in

Fig. 11(a), we evaluate the anytime effectiveness of

OnlineQGen by setting k = 10, 20 and w = 40, 80, respec-

tively. Fig. 11(b) verifies the following. (1) Iε decreases as the

OnlineQGen evaluates more instances from the stream. This

is consistent with our observation in Fig. 9(b) even when k
is not fixed. Indeed, OnlineQGen compromises ε (a case in

Fig. 12. Case study: Query Generation

Fig. 9(b)) in trade for smaller k as more instances arrive from

the stream. On the other hand, it retains an IR ≥ 0.63 at

any time. (2) OnlineQGen effectively exploits larger w over

larger k to achieve higher Iε. The incremental updating and

caching strategy reduce the unnecessary growth of ε as well

as k, keeping both smaller to maintain high-quality queries.

Exp-4: Case Study. We also conducted a case analysis to

evaluate how our algorithms adapt to users’ preferences. The

query template q10 (with parameterized ratings, country and

award information) and three instances are shown in Fig. 12

for movie search (DBP). Our method automatically generates

feasible queries and only requires users to specify output

node type “movie” and coverage constraints e.g., “(100,100)”.

An initial query (not shown) that searches for high rating,

award wining US movies (rating >7) with US actors returns

350 romance movies and 120 horror movies. Upon enforcing

an equal coverage over genres, BiQGen prefers q7 and q8,

achieving more desired coverage. For example, q8 refines the

results to 112 romance movies and 103 horror movies. On the

other hand, RfQGen returns q7 and q9, where q9 has more

skewed but more diversified results compared with q7.

VI. CONCLUSIONS

We have studied a bi-objective subgraph query generation

problem with group coverage constraints. We have provided

two feasible algorithms that approximate the Pareto-optimal

set with ε-Pareto instance set, with effective pruning strategies,

as well as an online algorithm that maintains the ε-Pareto

instance set with a fixed size and high quality (small ε).
As verified analytically and experimentally, our methods are

feasible for large graphs, and can achieve desirable diversity

and coverage properties over targeted groups. A future topic

is to study parallel query generation over large graphs with

diversity and group fairness. Another topic is to extend our

work to multiple output nodes, attributes with large domains

and other query classes such as RPQs.

Acknowledgement. This work is supported by NSF under

CNS-1932574, OIA-1937143, ECCS-1933279, CNS-2028748,

OAC-2104007 and DoE under DE-EE0009353.

3117

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Full version. https://github.com/PanCakeMan/SQGen/blob/main/full.pdf.
[2] Z. Abbassi, V. Mirrokni, and M. Thakur. Diversity maximization under

matroid constraints. In KDD, 2013.
[3] A. Asudeh and H. Jagadish. Fairly evaluating and scoring items in a data

set. Proceedings of the VLDB Endowment, 13(12):3445–3448, 2020.
[4] G. Bagan, A. Bonifati, R. Ciucanu, G. H. Fletcher, A. Lemay, and

N. Advokaat. Controlling diversity in benchmarking graph databases.
arXiv preprint arXiv:1511.08386, 11, 2015.

[5] G. Bagan, A. Bonifati, R. Ciucanu, G. H. Fletcher, A. Lemay, and
N. Advokaat. gmark: Schema-driven generation of graphs and queries.
IEEE Transactions on Knowledge and Data Engineering, 29(4):856–
869, 2016.

[6] A. Bonifati, G. Fletcher, J. Hidders, and A. Iosup. A survey of
benchmarks for graph-processing systems. In Graph Data Management,
pages 163–186. 2018.

[7] A. Bonifati, I. Holubová, A. Prat-Pérez, and S. Sakr. Graph generators:
State of the art and open challenges. ACM Computing Surveys (CSUR),
53(2):1–30, 2020.

[8] S. Bouhenni, S. Yahiaoui, N. Nouali-Taboudjemat, and H. Kheddouci. A
survey on distributed graph pattern matching in massive graphs. CSUR,
54(2):1–35, 2021.

[9] S. Chaudhuri, H. Lee, and V. R. Narasayya. Variance aware optimization
of parameterized queries. In SIGMOD, 2010.

[10] K. Chircop and D. Zammit-Mangion. On epsilon-constraint based
methods for the generation of pareto frontiers. J. Mech. Eng. Autom,
2013.

[11] J. Chomicki, P. Ciaccia, and N. Meneghetti. Skyline queries, front and
back. ACM SIGMOD Record, 42(3):6–18, 2013.

[12] P. Ciaccia and D. Martinenghi. Reconciling skyline and ranking queries.
Proceedings of the VLDB Endowment, 10(11):1454–1465, 2017.

[13] L. Ding, S. Zeng, and L. Kang. A fast algorithm on finding the non-
dominated set in multi-objective optimization. In The 2003 Congress
on Evolutionary Computation, 2003. CEC ’03., 2003.

[14] Y. Dong, Y. Yang, J. Tang, Y. Yang, and N. V. Chawla. Inferring user
demographics and social strategies in mobile social networks. In KDD,
2014.

[15] T. Draws, N. Tintarev, and U. Gadiraju. Assessing viewpoint diversity
in search results using ranking fairness metrics. ACM SIGKDD Explo-
rations Newsletter, 23(1):50–58, 2021.

[16] W. Fan, X. Wang, and Y. Wu. Diversified top-k graph pattern matching.
VLDB, 2013.

[17] W. Fan, X. Wang, and Y. Wu. Incremental graph pattern matching. ACM
Transactions on Database Systems (TODS), 38(3):1–47, 2013.

[18] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkata-
subramanian. Certifying and removing disparate impact. In proceedings
of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining, 2015.

[19] Y. Ge, S. Zhao, H. Zhou, C. Pei, F. Sun, W. Ou, and Y. Zhang.
Understanding echo chambers in e-commerce recommender systems.
In SIGIR, pages 2261–2270, 2020.

[20] S. Gershtein, T. Milo, and B. Youngmann. Multi-objective influence
maximization. algorithms, 2021.

[21] S. C. Geyik, S. Ambler, and K. Kenthapadi. Fairness-aware ranking in
search & recommendation systems with application to linkedin talent
search. In KDD, 2019.

[22] S. Gollapudi and A. Sharma. An axiomatic approach for result
diversification. In WWW, 2009.

[23] C.-L. Hwang and A. S. M. Masud. Multiple objective decision
making—methods and applications: a state-of-the-art survey. Springer
Science & Business Media, 2012.

[24] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri. Querying
knowledge graphs by example entity tuples. IEEE Transactions on
Knowledge and Data Engineering, 27(10):2797–2811, 2015.

[25] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage: similarity
measures and algorithms. In SIGMOD, 2006.

[26] M. Laumanns, L. Thiele, E. Zitzler, and K. Deb. Archiving with
guaranteed convergence and diversity in multi-objective optimization. In
Proceedings of the 4th Annual Conference on Genetic and Evolutionary
Computation, pages 439–447, 2002.

[27] W. Le, A. Kementsietsidis, S. Duan, and F. Li. Scalable multi-query
optimization for sparql. In ICDE, pages 666–677, 2012.

[28] M. Lissandrini, D. Mottin, T. Palpanas, and Y. Velegrakis. Graph-query
suggestions for knowledge graph exploration. In The Web Conference,
2020.

[29] J. Lu, J. Chen, and C. Zhang. Helsinki Multi-Model
Data Repository. https://www2.helsinki.fi/en/researchgroups/
unified-database-management-systems-udbms/, 2018.

[30] H. Ma, S. Guan, and Y. Wu. Diversified subgraph query generation with
group fairness. In WSDM, 2022.

[31] T. Ma, S. Yu, J. Cao, Y. Tian, A. Al-Dhelaan, and M. Al-Rodhaan. A
comparative study of subgraph matching isomorphic methods in social
networks. IEEE Access, 6:66621–66631, 2018.

[32] S. Mitchell, E. Potash, S. Barocas, A. D’Amour, and K. Lum. Prediction-
based decisions and fairness: A catalogue of choices, assumptions, and
definitions. arXiv preprint arXiv:1811.07867, 2018.

[33] D. Mottin, F. Bonchi, and F. Gullo. Graph query reformulation with
diversity. In KDD, 2015.

[34] Z. Moumoulidou, A. McGregor, and A. Meliou. Diverse data selection
under fairness constraints. In ICDT, 2021.

[35] M. H. Namaki, Q. Song, Y. Wu, and S. Yang. Answering why-questions
by exemplars in attributed graphs. In SIGMOD, 2019.

[36] C. H. Papadimitriou and M. Yannakakis. On the approximability of
trade-offs and optimal access of web sources. In FOCS, pages 86–92,
2000.

[37] M. Poess and J. M. Stephens Jr. Generating thousand benchmark queries
in seconds. In VLDB, pages 1045–1053, 2004.

[38] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. P. Hsu, and K. Wang.
An overview of microsoft academic service (mas) and applications.
WWW, 2015.

[39] Q. Song, M. H. Namaki, and Y. Wu. Answering why-questions for
subgraph queries in multi-attributed graphs. In ICDE, 2019.

[40] J. Stoyanovich, K. Yang, and H. Jagadish. Online set selection with fair-
ness and diversity constraints. In Proceedings of the EDBT Conference,
2018.

[41] Y. Wang, Y. Li, J. Fan, C. Ye, and M. Chai. A survey of typical attributed
graph queries. World Wide Web, 24(1):297–346, 2021.

[42] Y. Zhang, J. Tang, Z. Yang, J. Pei, and P. S. Yu. Cosnet: Connecting
heterogeneous social networks with local and global consistency. In
KDD, 2015.

[43] E. Zitzler, J. Knowles, and L. Thiele. Quality Assessment of Pareto Set
Approximations. 2008.

3118

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

