2022 IEEE 38th International Conference on Data Engineering (ICDE) | 978-1-6654-0883-7/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICDE53745.2022.00278

2022 IEEE 38th International Conference on Data Engineering (ICDE)

Subgraph Query Generation with Fairness and
Diversity Constraints

Hanchao Ma, Sheng Guan, Mengying Wang, Yen-shuo Chang, Yinghui Wu
Case Western Reserve University
Email: {hxm382,sxg967,mxw767,yxc1425,yxw1650} @case.edu

Abstract—This paper studies the problem of subgraph query
generation with guarantees on both diversity and group fairness.
Given a query template (with parameterized search predicates)
and a set of node groups in a graph, it is to compute a set of sub-
graph queries that instantiate the query template, and each query
ensures diversified answers that meanwhile covers each group
with a desired number of nodes. Such need is evident in web
and social search with fairness constraints, query optimization,
and query benchmarking. We formalize a bi-criteria optimization
problem that aims to find a Pareto optimal set of query instances
in terms of diversity and fairness measures. We show the problem
is in AL and verify its hardness (NP-hard and fixed-parameter
tractable). We provide (1) two efficient algorithms that can
approximate Pareto optimal sets with e-dominance relations that
yield representative query instances with a bounded size, and (2)
an online algorithm that progressively generates and maintains
fixed-size e-Pareto set with small delay time. We experimentally
verify that our algorithms can efficiently generate queries with
desired diversity and coverage properties for targeted groups.

Index Terms—attributed graph, query suggestion, fairness

I. INTRODUCTION

Subgraph queries have been routinely used in e.g., social
search [31] and knowledge search [41]. Given a graph G,
a subgraph query Q(u,) with a designated output node u,
computes a set of nodes (matches) of u, in G. A number
of algorithms [8] have been developed to process subgraph
queries in terms of subgraph isomorphism and variants [41].

The emerging need for data systems that requires both
results diversity and fairness [7], [3], [34], [15] poses new
challenges to graph querying. In such scenarios, queries are
expected to return diversified matches that meanwhile ensure a
required coverage of designated groups (node sets) of interests
from G. Such groups may refer to the population of vulnerable
social groups that are characterized in terms of sensitive
attributes (e.g., gender, race, professions) [19], relevant articles
yet with diversified labels for Web exploration [2] and rec-
ommendation engines [21], or designated columns for query
benchmark [5]. Consider the following real-world scenarios.

Example 1: Talent search. A talent search over a professional
network G [21] finds strong candidates with desired skills.
Each node in G denotes a user with attributes such as title,
skill, profession, or an organization with attributes such as
the number of employees. Each edge indicates the affiliation
(worksAt) of a user or recommendation (recommend) between
users. A recruiter issues a graph search query ¢; (illustrated in
Fig. 1) to find directors u, who have expertise in managing IT

business, and moreover, recommended by at least two users
from large companies. In our test (Section V), this query
returns a set of qualified candidates ¢(G), yet with a skewed
distribution of 375 male users and 173 female users.

The recruiter pursues the desired gender distribution and
diversity of the candidates, and wonders how to revise the
search such that (1) the new answer can properly cover ¢(G)
with an equal number of male and female candidates (e.g., both
with 200 candidates; a case of “Equal opportunity” [21]); and
(2) the candidates are also more diversified in their majors. A
more desirable query g» can be suggested, which finds 202
male and 198 female candidates that span 10 majors. The
query go suggests that a relaxed condition on recommendation
(removing the edge from u; to ug3) and a relaxation that also
recommends candidates from smaller businesses (reducing
‘1000’ employees to ‘500’ employees) help to achieve the
desired answer with proper coverage of the gender groups. U

It is desirable that such queries can be automatically sug-
gested, which ensures diversified answers that can meanwhile
cover designated node groups with desired cardinalities. On
the other hand, there may exist multiple queries with “better”
answers in terms of either diversity or equal opportunity.

Example 2: Continuing the talent search, two more queries
q3 and g4 (Fig. 1) can be found by “perturbing” the ranges of
the years of experience of recommenders and the number of
employees they work at. (1) Compared with ¢q;, both queries
can identify more diversified candidates with a less skewed
distribution of genders. (2) Compared with g5, both find a
more skewed result over gender groups, yet each finds more
diversified candidates with more than 30 majors. While all
three queries provide more “desired” answers in terms of
diversity or promoting equal opportunity, it remains a daunting
task for users to inspect all these queries.]

This calls for efficient algorithms that can suggest a set of
representative subgraph queries with desirable guarantees on
both diversity and group coverage, over specified groups of
interests. Such need is evident in social search and recommen-
dation with group fairness [21], workload generation for query
benchmark [5], and query optimization in large graphs [27].

This paper studies a novel problem called subgraph query
generation with diversity and fairness constraints (FairSQG),
which has a general form below:

2375-026X/22/$31.00 ©2022 IEEE 3106
DOI 10.1109/ICDES53745.2022.00278

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

query q; query q, Tifle="director
(user) Uo| profession="IT" (user) Uo| profession="IT"
recommend recommend recommend recommend
(user) u; Alz(user) (user) uy u, (user)
yearsOfExp.>=10 yearsOfExp.>=10 yearsOfExp.>=10

workAt
é Us(organization)
employees > 1000

workAt ‘ workAt
(organization) UsX

employees > 1000 employees > 500

e s
(user) Yo|profession="IT"

yearsOfExp.>=10

uy (organization)

query qq title="director”
(ser)
recommend recommend recommend A recommend
(user) uf u, (user) (user) u; u, (user)
yearsOfExp.>=6 yearsOfExp.>=12 yearsOfExp.>=11d yearsOfExp.>=5
‘ workAt workAt
& u, (organization) u, (organization)

employees >300 employees > 10000

: G 1 g =] "
i gender="Male' gender="Male' gender="Male' gender="Female gender'— Ferr{alf
name='A.Hanks' name='C.Dickson' name="K.Jones' name="A.Taylor' name= (?.Sm'uh
degree="MS' degree='Ph.D." degree="MS' degree="MS" deg.ree=’ MA’S‘
user v, major="CS" major='EE' user v, major='CS' uservs major='CE' uservy major='CS uservs
e s ., | e Py
B , N e — _ "
— a - R
3 E y ” ~ = AN
o= O —~0 o= Ne) ~¢o = O S “o
user Ve organization v; uservg uservg organization v;o user vy user vy, organization vy3 uservy, uservis
name='C.Aderson| |name="EMC' name='B.John' name='DE" name='B.David' name="HP'

yearsOfExp.=<10 | |employees=6000 yearsOfExp.=12 yearsOfExp.=12 employees=600

name="J.Bell' ‘

yearsOfExp.=12

yearsOfExp.=11 employees=55,000 yearsOfExp.=6 yearsOfExp.=11

name="H.Scott' ‘

name='A.Brow' ‘

name="J.Kim' ‘

Fig. 1. Subgraph queries with Diversity and Group Fairness: Talent Search

o Input: graph G, an initial query (template) Q(u,), and a
set of groups P, where each group P; € P is associated
with a coverage constraint ¢; (¢; < |P;|);

o Output: a set of subgraph queries Q obtained by revis-
ing Q(u,); each query can retrieve a set of diversified
matches (“Diversity”) from G that also cover each group
P; with desired cardinality ¢; (“Group fairness”).

Several methods have been developed to generate graph

queries that lead to desired answers. Notable examples include
query suggestion with diversified answers [33], [24], coverage
of similar counterparts of “examples” [39], [35], or cardinality
constraints on output sizes [28], [4]. These approaches are
designed to revise queries towards specific properties rather
than ensuring both group fairness and answer diversity, thus
cannot be directly applied to our problem.

Contributions & Organization. We formally analyze the
subgraph query generation problem with group fairness con-
straints. We propose both feasible approximation schemes as
well as practical exact algorithms for large graphs. We refer
to the subgraph query as “query” in the rest of the paper.

A Bi-objective formalization. We provide a practical formal-
ization of the FairSQG problem (Section III). (1) We introduce
a class of query templates (denoted as Q(u,)). A template
carries variables defined on search predicates and edges yet
to be instantiated at processing time. Query generation yields
value binding to the variables to produce a set of query
instances. (2) We introduce diversity and fairness measures
to measure the quality of an instance. Despite the need of
optimizing both, they may come in conflict: a single optimal
instance may not exist. On the other hand, a complete Pareto
set is of substantial size for users to inspect. Instead, we
introduce a bi-objective optimization problem to compute an
e-Pareto set of instances based on a query dominance relation.
e-Pareto set is a desirable subset approximation of the Pareto
optimal set that strikes a balance between dominance relation
and the number of instances to be returned.

We show FairSQG is solvable in Ag (a class of PNP prob-
lems with an NP oracle) for templates with fixed variables, and
show its hardness varies from PTIME to NP-hard if Q(u,) has
fixed size and variable sizes, and for templates without range
variables. These results verify useful upper and lower bound
results for query generation scenarios in practice.

Query generation with quality guarantees (Section IV). Gen-

3107

erating a Pareto set of substantial size is often not desirable.
We first introduce algorithms that can approximate the exact
Pareto set Q with a quality guarantee controlled by an error
bound e. The algorithm ensures to find a subset of Q, denoted
as Q, such that for each possible instance of Q(u,), there
is an instance in Q. that approximately dominates it on both
diversity and coverage within a constant factor € > (. Better
still, the algorithm ensures to return a representative query set
with a bounded size. We also introduce optimization strategies
to reduce the cost of query generation.

Online maintenance of fixed-sized set (Section IV-C). Our
analysis shows that one often needs to sacrifice query instance
quality (e) in trade for a smaller, representative set to inspect.
We follow up with an online algorithm, which progressively
constructs and incrementally maintains an e-Pareto set with &
instances and an e as small as possible. The online algorithm
uses a sliding window strategy to dynamically swap or replace
queries and incrementally update e-Pareto set only when
necessary, and incurs a small delay time.

Real-world evaluation and case analysis (Section V). Using
real-life graphs, we verify the effectiveness and efficiency
of our algorithms (Section V). We show that our algorithms
can generate subgraph queries with both desired diversity and
small errors in covering designated groups. These algorithms
are also feasible. For example, it takes 78 seconds to produce
instances with desired coverage in real-life graphs with 30
million nodes and edges. We also illustrate that our algorithms
can generate favorable queries for different user preferences.

Related Work. We categorize the related work as follows.
Graph query suggestion. Subgraph query suggestion has been
studied to discover queries with different desirable proper-
ties [24], [33], [39], [35]. Graph query by example [24]
computes subgraph queries with answers that are close to a set
of user-specified (triple) examples in knowledge graphs. Given
an initial query, diversified query suggestion [33] extends an
initial query with additional edges to derive a set of queries
with diversified answers. Answering Why-questions [39], [35]
suggest queries with query rewriting operators to approach
answers by including or excluding specified nodes. Query
suggestion in terms of both diversity and group coverage
constraints are not addressed by these methods.

Subset selection with group fairness. Another relevant work is
subset selection with group fairness. Given a universal set,

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

and a set of groups (subsets), it is to select a set of nodes
that can cover each group with a desirable number of nodes.
[32] proposed a fairness metric that considers a fair group
coverage of the outputs of decision making models. [20]
computes a size-k seed set such that it maximizes the coverage
of one group and covers “t-fraction” of the other. Diversified
subset selection with group fairness has been studied [40],
[34]. Approximation algorithms have been studied to generate
subsets for max-sum and max-min diversification [34] as well
as for online selection [40]. These methods study set coverage
properties and cannot be directly used to suggest graph queries
and coverage in terms of graph search.

Query workload generation. Query generation with output
size constraints and distribution constraints have been inves-
tigated for graph benchmarking. [4] generates regular path
queries from a given schema that can output answers with
required cardinalities when projected to pre-defined attributes.
[27] generates SPARQL queries that can cover the answer
of given queries with cheaper plans for query optimization.
Workload generation with group coverage [30] aims to gener-
ate a set of subgraph queries, where the union of their answers
cover a desired fraction of each group.

Our work differs from prior work as follows. (1) We
study query generation under fairness constraints for arbitrary
groups with guaranteed coverage requirements. (2) We con-
sider queries defined in subgraph isomorphism with search
predicates, a more involved query class compared with regular
path queries [4]. (3) Unlike [30], we study a different problem
which aims to approximate the Pareto set of subgraph queries
in diversity and coverage. The Pareto-optimality is not studied
in these works. On the other hand, our algorithms can be
readily applied to generate queries for benchmark needs.
Skyline search. Multiobjective search such as skyline
queries [11], [12] has been extensively studied. Existing
multi-objective optimization algorithms are studied to
compute Pareto optimal sets [23], [10] or their approximate
variants [36], [26] over data points. [23] transforms the multi
objectives to a single objective by linear summation of all
objectives with importance weights. Constraint based method
(CBM) [10] initializes a set of anchor points that optimize
each single objective function. It then bisects the straight
lines between pairs of anchor points with a fixed vertical
separation distance. This transforms bi-objective optimization
into a set of single objective optimization problems. Then, it
solves each to get a set of anchor nodes to approximate the
Pareto frontier. e-Pareto set [36], [26] has been studied as a
desirable approximation for Pareto optimal set.

Our problem can be considered as computing a repre-
sentative bi-objective skyline front in subgraph query space
with diversity and coverage preferences. It differs from prior
work as follows. (1) Our problem solves the multi-objective
optimization problem defined on query instances. It needs to
compute diversity and coverage for query instances via sub-
graph isomorphism. Nevertheless, traditional skyline search
problems are defined on data points with given feature vectors.
(2) It is also not desirable to return a large Pareto set [11]

query template Q(up) query gs i
i
(user) Yo (user) u |p,
recommend 4 recommend
/ recommend recommend
(user) Y1/ \ Y2 (user) (user) uy u, (user)
yearsOfExp.>=x;, yearsOfExp.>=x;; : yearsOfExp.>=12 yearsOfExp.>=3
WOrKAt Xy WOrKA X, workAt
(organization) Us & Uy (organization) u, (organization)
employees >1000 employees >X3 employees >7000

Fig. 2. Query Template and Query Instance

for practical query generation scenarios. We advocate feasible
algorithms that can (a) efficiently generate and maintain e-
Pareto instance sets for large graphs, and (b) strike a balance
between the solution quality and size. (3) Our approach aims
to balance between efficiency and provable group coverage.
Moreover, our method generates size bounded query sets for
the user to inspect. This can not be guaranteed by [10].

II. GRAPH, QUERY TEMPLATES AND INSTANCES
Graphs. We consider directed graphs G = (V, E, L, T'), where
(1) V is a finite set of nodes, 2) £ C V x V is a set of
edges, (3) each node v € V (resp. edge e € E) carries a label
L(v) (resp. L(e)); and (4) each node v carries a tuple T'(v)
= <(A1,a1),...,(Ap,an)>, where each A; (i € [1,n]) is a
distinct node attribute with a value a;.

We denote the finite set of all the node attributes in G as
A. The active domain adom(A) of an attribute A € A refers
to the set of values of v.A as the node v ranges over V.

Query Template. A query template (or simply “template”)
Q(u,) is a connected graph (Vg,Eqg,Lq,Tg), where Vg
(resp. Eg C Vi x V) is a set of query nodes (resp. query
edges). Each query node u € Vi (resp. query edge e € V)
has a label Lg(u) (resp. Lg(e)). Specifically, there is a
designated output node u, € Vg.

Variables. A template allows “placeholders” in search predi-
cates that can be bound to specific values when executed. It
extends parameterized queries [9] for graph query generation.
We consider two types of variables in a template Q(u,). (a)
For each node u € Vi, T (u) is a set of literals. A literal [is in
the form of u.A op x;, where op is from {>, >=, =, <=, <},
and z; is a range variable that can be assigned to a constant.
(b) For each edge e € Eq, Tg(e) is a Boolean edge variable
z, (either ‘0’ or ‘1°). The set of all the variables in Q(u,) is
denoted as X = X U Xg.

Query Instances. Given a template Q(u,), an instantiation
of Q(u,) is a function I, such that for each variable z € X,
I(x) is either a constant or a wildcard ‘_’. A query instance (or
simply “instance”) ¢(u,) of Q(u,) induced by an instantiation
I is a connected graph (Vi, Ey, Lg,Ty) with the same Vo,
output node u, and Lg, and moreover,
o for each literal | € Ty(u) in Q(u,), if I(x;) is a constant,
then there is a literal I = u.A op I(x;) in T,(u); and
o there is an edge e € Eg if and only if (a) I(z.) =1,
and (b) e is in the same connected component of .
An instance ¢ of Q(u,) contains no variables but only literals
and the edges in the connected component where u, resides,

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

Notation Description
G=(V,E,L,T) attributed graph G
Q(uo)=(Vq,Eq,Lqg,Tq) query template Q(u,); Uo: output node
Ty Te range variable; boolean edge variable
q(uo) an instantiation of Q(u,)
q(u, G) match set of a query node u of q(u,) in G
q(G) match set q(u,, G)
V (uo) set {v|L(v) = L(u,),v € V}
P 'm disjoint node groups in G
C cardinality constraints of groups P
Z(Q) all the query instances of @Q
o CZ(Q) Pareto instance set of Z(Q)
QI C I(Q) e-Pareto instance set of Z(Q)

TABLE [
SUMMARY OF NOTATION.
induced by the constant binding from I. We denote the set of

all the possible instances of Q(u,) as Z(Q).

Matches. Given an instance ¢(u,) and a graph G, a matching
from ¢(u,) to G is a function h C V, x V, where (1) for each
node u € Vi, Lgo(u) = L(h(u)), and for each literal u.A op ¢
in Ly, h(u).A op ¢; and (2) for each edge e = (u,u’) in q(u,),
h(e) = (h(u), h(u')) is an edge in G, and Lg(e) = L(h(e)).

The matches of a query node u of ¢(u,) in G, denoted as
q(u, G), refers to the set of all the nodes in G that can match
node u via a matching h(u) from ¢ to G. The result of q
in G, denoted as ¢(G), refers to the match set ¢(u,, G). We
summarize the notations in Table I.

Example 3: Fig. 1 illustrates a template Q(u,) that searches
for directors in G [21]. (1) Q(u,) has five variables X
= {z1, T2, 213, Te1, Tea }, With three range variables in lit-
erals wup.yearsOfExp. > a1, ug.yearsOfExp. > a9, and
ug.employees > x;3 respectively, and edge variables .1, Teo.
(2) An instantiation {10, 10, 1000, ‘1", 1’} (resp. {10, 10,
500, '07, "1}, {6, 12, 300, '0’, '1’}, {11, 5, 1000, '0’, '1'}) of
X induces an instance q; (resp. ¢z and g3 and q4) of Q(u,).
(3) Given G, q1(G) = {v1}, @2(G) = {v1,v2,v3}, 43(G) =
{v1,v2}, and q4(G) = {v3, v4,v5} O

Remarks. The instances are well-defined for a “partial” in-
stantiation in which some variables are assigned a wildcard ‘_’
(“don’t care”). For such a case, ¢ is induced by removing cor-
responding parameterized predicates or edges to ensure valid
q(G). A user-defined “initial” query (e.g., ¢; in Example 1)
can be captured by a template with a partial instantiation.

III. QUERY GENERATION PROBLEM

Given a template Q(u,), graph G and m disjoint node
groups P in (G, where each group P; € P has a cardinality
constraint ¢; € [0, |F;|], the query generation problem aims
to compute a set of instances Q C Z(Q) of Q(u,) with
maximized diversity and required coverage properties.

A. Quality Measures
We consider two functions to quantify the “goodness” of
instances in terms of diversity and fairness.
Diversification. We consider Max-sum diversity as a natural
objective for result diversification [22]. Given an instance ¢
and G, the diversity of ¢ is defined as:
Z d(v,v")

2A
6(q,G) = (1-A) Z r(uwv)—f—ﬁ
vEq(Q) Yo v,v' €q(G)

3109

where (1) A € [0,1] is a constant to balance relevance and
diversity; (2) the function r(u,,v) € [0,1] (resp. d(v,v’) €
[0,1]) computes a relevance score between u, and a match v
(resp. difference between two matches v and v’). In practice,
d(v,v") can be the edit distance between tuples 7'(v) and
T(v") [25], and r(u,,v) can be an entity linkage score or
impact of v in social networks [16].

The set V,,, refers to the nodes in G with the same label of
u,. Given G, the pairwise dissimilarity is normalized with a
constant %, as there are at most M pairs but
|V..,| relevance numbers. That is, d(¢q, G) € [0, |V, |].

Coverage. Ideally, an instance should satisfy the coverage
requirement c; posed on each group P; € P, and cover exactly
¢; nodes in each P; € P. Given P, G, and template Q(u,),
an instance is feasible, if for each P; € P, |¢(G) N P;| > ¢;.
We next introduce a function to quantify the quality in terms
of desired coverage as:
flaP)=C=Y (ld(G)NP| - c)
P,eP
where the constant C' = lepl ¢;. The function penalizes the
total accumulated errors between desired coverage and actual
counterpart by ¢(G) over each group in P. The larger f(q,P)
is, the better (f(g,P) € [0, C)).

Example 4: Continue with the queries as illustrated in Fig. 1.
Suppose we want to cover exactly 2 male users and 2 female
users over the qualified candidates, one may verify the fol-
lowing: 6(q1,G) = 0 and f(q1,P) = 15 §(g2,G) = 1 and
f(g2,P) = 1; and 6(q3,G) = 0.75 and f(g3,P) = 2, and
5(qs,G) = 0.5 and f(g3,P) = 3. O

In the rest of the paper, we only consider feasible instances.
We shall denote 6(¢q, G) and f(g,P) simply as d(g) and f(q),
respectively, when G and P are specified in the context.

B. Query Generation Problem

Pareto Optimality. Given G, P and a template Q(u,), an
“optimal” instance ¢* should maximize both diversity and
relative coverage, (i.e., a Pareto optimal instance):

¢" =argmaxd(q); ¢ =argmax f(q)
q€Z(Q) q€Z(Q)

While desirable, such a solution may not always exist, as
diversity (which favors instances with diversified matches) and
group fairness (which requires desired coverage) may be in
conflict. A proper option is to compute a Pareto set. Given
two instances ¢ and ¢’ in Z(Q), we say q dominates ¢, if
either (1) d(q) > d(q’) and f(q) > f(q'), or (2) d(q) > 0(q’)
and f(q) > f(q'). A set Q* C Z(Q) is a Pareto instance set
if (1) there is no pair of instances (g, ¢q’) from Q*, such that ¢
dominates ¢’, and (2) for any instance ¢ € Z(Q), there exists
an instance ¢ € Q* that dominates ¢”.

One may wonder if there exist multiple Pareto instance sets.
The result below verifies the uniqueness of the Pareto instance
set for a given template and groups.

Lemma 1: Given a template Q(u,), graph G and groups P,
there exists a unique, finite and maximum Pareto set Q*.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

Lemma 1 justifies that computing a Pareto instance set Q*
is desirable as a unique optimal solution for query suggestion.
Nevertheless, the exact set Q* is often of substantial size in
practice. For a small template of 3 edges and 3 variables,
a complete Pareto set may already contain 100 instances
(see Section V), which remains a daunting task for users to
inspect. Alternatively, we consider a smaller, representative set
of instances to approximate the unique optimal Pareto set Q*.
To this end, we introduce a notion of e-Pareto instance set,
which approximates Q* with a polynomially bounded size.

e-Pareto instance set. Given Q(u,), G, and P, we say an
instance q e-dominates ¢’ for some ¢ > 0, denoted as ¢ = ¢/,
if and only if (1 + €)d(q) > d(¢’), and (1 +¢€)f(q) > f(q').

A set of instances QF C Z(Q) is an e-Pareto instance set,
if (a) QF C Q% and (b) for any instance ¢’ € Z(Q)), there
exists an instance ¢ € QF, such that ¢ =, ¢'.

An e-Pareto instance set is desirable: it not only e-dominates
all the instances in Z(Q), with a configurable quality con-
trolled by €, but also contains instances from the Pareto
instance set Q*. That is, it approximates Q* with a subset
of representative but less number of instances. On the other
hand, there exist multiple such e-Pareto instance sets.

Problem statement. A configuration of query generation is a
tuple C = (G, Q(u,), P, €), which contains a graph G, template
Q(u,), disjoint groups P with coverage constraints, and a
constant € > 0. Given a configuration (G,Q(u,),P,¢€), the
FairSQG problem is to compute an e-Pareto instance set Q..

Here u,, specifies the common output nodes of the instances
over which the diversity and fairness constraints are consis-
tently enforced. We characterize fairness with group coverage,
which readily expresses a few practical measures, including
(1) Equal Opportunity [21], by assigning the same coverage
bound (c) to social groups; (2) Disparate fairness [18] such as
“80% rules”, which advocates that the ratio of the size of a
minor group (e.g. female employees) to a majority counterpart
(e.g. male ones) be at least 0.8.

Example 5: Given the Z(Q) that contains ¢, g2, g3 and
qa, the Pareto set of I(Q) is {¢2,q3,qs} since ¢1, g2 and
g3 all dominate gl. Here, we set ¢ = 0.3. Given the 0
and f values of these query instances (See Example 4). We
can compute the“boxing” coordinates of Z(Q)). From g2 to
¢4, “boxing” coordinates are {2.0,2.0)(2.0,4.0)(1.0,5.0)},
respectively. Then, the e-Pareto instance set of Z(Q) is {go,
43,94} We can see that g3 and ¢4 can not dominate each other,
however, g3 dominates go with the “boxing” coordinates. Thus,
g2 will be removed from the Pareto Set of Z(Q) to form the
e-Pareto set which is {¢3,q4}. O

Although desirable, FairSQG remains nontrivial. We pro-
vide the following upper and lower bound analysis.
Theorem 1: Given a configuration C = (G,Q(u,),P,€),
the FairSQG problem (1) is in AY when Q(u,) has a fixed
number of variables |X|, (2) remains NP-hard when Q(u,)
has no range variables, and (3) is fixed-parameter tractable,
Sor Q(u,) with fixed size (number of edges) and fixed | X|. O

Proof sketch: The decision problem of FairSQG is to
determine whether there is a non-empty e-Pareto instance
set Q.. (1) FairSQG is solvable in AL for fixed template
Q(u,). Here A is the class of problems in PNP. A AP
algorithm first enumerates Z(Q). For each instance, it consults
an NP oracle to verify f(¢) and §(g), and computes an e-
Pareto set with a pairwise comparison (e.g., nested loop). As
[Z(Q)| < 2%=l|ladom,,,|Xt! (| Xg| and |X 1| are constants),
the verification is in PTIME. Here adom,,, refers to the largest
active domain in G. (2) The NP-hardness can be verified from
the hardness of deciding subgraph isomorphism, even when
Xg is fixed (thus in total 2/X£! instances).

To see Theorem 1 (3), we observe that the A§ algorithm
in Theorem 1 (1) takes polynomial time for fixed |X| and
|Q(uo)|, given that it is in PTIME to verify the coverage and
diversity for Z(Q) with polynomially bounded size. O

The above analysis provides a naive algorithm (denoted as
EnumQGen): enumerates up to 2‘XE||adomm||XL‘ instances,
verifies each instance to find feasible ones, and invokes a
nested loop comparison to generate e-Pareto instance set. This
is infeasible when G is large.

We next show that an e-Pareto instance set Q) with a
bounded size can be efficiently computed (Section IV) and
dynamically maintained (Section IV-C), where the size bound
is only determined by € and the range of diversity and
coverage. This enables flexible query generation that strikes
a balance between quality and instance sizes. We present
detailed proofs of lemmas and Theorem 1 in [1].

IV. APPROXIMATING PARETO INSTANCE SETS
We start with a generic query generation algorithm, denoted
as QGen, for FairSQG without enumeration.

Auxiliary structures. To characterize the search space, we
start with a notion of refinement relation defined on Z(Q).
Refinement. Given a template Q(u,), and instantiations [and
I" of Q(u,), I’ refines I at a variable x (denoted as I’ =, I) if
it binds a constant to = that makes the predicate parameterized
by « no less selective than the counterpart from /. Specifically,
(1) for a literal [in the form of u.A > z; or u.A > x; (resp.
wA <z or uw.A <), I'(x;) refines I(x;) if I'(z;) > I(x;)
(resp. I'(x;) < I(z;)) (“refines a selection condition™); (2) for
edge variable x., I'(z.) refines I(z.) if I'(x.) =1 and I(z.)
= 0 (“adds a query edge”); 3) I' =, I if I(x) ="'_".

We say I’ refines I (denoted as I’ = I) if for every variable
z in Q(u,), I' =, I'. Given two instances ¢’ and ¢ induced
by I’ and I respectively, ¢’ refines g (denoted as ¢’ =7 q) if
I’ = I. We observe the following result.
Lemma 2: Given a configuration C = (G, Q(u,), P, ¢), (1) the
refinement relation is a preorder; and (2) for any instances q
and ' in T(Q), if ¢ >z g, then 5(q) > 6(¢'); and f(g) <
f(q') when both q and q' are feasible. a

Proof sketch: The above results can be verified by observing
that (a) refinement relation is reflexive and transitive, and (b)
¢ (G) C q(G) if ¢’ »1 q, i.e., any match of u, in ¢’ remains
to be a match of u, in g if ¢’ refines ¢ at some variables. []

3110

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

These results justify the following. Lemma 2 (1) provides a
convenient lattice encoding of the search space induced by the
refinement preorder. Lemma 2 (2) verifies useful monotonicity
properties on diversity and coverage measures that shall be
exploited for effective pruning.

Instance Lattice. Following Lemma 2, the algorithm QGen
maintains a lattice encoding of the instance space L
(Z(Q), <) induced by refinement. (1) It initializes (Z(Q), <z
) with a single root g, (upper bound) induced by the “most
relaxed” instantiation, and a single lower bound ¢, induced
by the “most refined” instantiation. (2) Each node ¢ in
(Z(Q), <z) is an instance. For each node ¢, QGen maintains
o (a) two Boolean flags: ‘verified’ to record if ¢ is verified,
and ‘feasible’ to indicate if ¢ is a feasible instance;
o (b) ¢(G), the (estimated) query answer; and
o (c) a coordinate (d(g), f(q)), and a “boxing” coordinate
Box(q) = (0¢(q)), fe(q). The coordinate value d.(q) (resp.
fe(q)) is defined as % (resp. %). Box(q)
specifies a box region in the bi-objective (2-dimensional)
space of instance ¢ to decide the e-dominance relation
(see “Updater” below).
(3) There is an edge (¢,q’) with a label z if (a) ¢’ = ¢, and
(b) ¢’ differs from ¢ in the value of only one variable x, and ¢’
refines ¢ by modifying the value of x to its closest counterpart
in the corresponding active domain (e.g., changing 0 to 1 if =
is an edge variable). Intuitively, an edge indicates a stepwise
refinement action of ¢ by adjusting the value of = only.

Example 6: A fraction of the lattice structure L that contains
{¢r,q1,-.-q4,q5} is shown on the left-hand side of Fig. 4.
Algorithm QGen maintains the auxiliary information of e.g., g3
once it is verified, including the coordinates d(gs3), f(gs), and
the boxing coordinates Box(g3). As g4 refines g3 at variable
z;1 at the node w1, (g3, ¢4) is a direct edge in L. O
Generic Algorithm. Given a configuration C =
(G,Q(u,),P,e€), algorithm QGen maintains an instance
set Q and iteratively refines Q towards an e-Pareto instance
set of Z(Q)). At each iteration 4, it refines the solution Q;
from the last iteration by interacting two procedures.

(1) Spawner. A spawner (Spawn) constructs new instances

to be verified that may contribute to the current instance set
Q, with new e-dominance relation in diversity and coverage.
In each iteration, Spawn (a) refines the current configuration
given the quality of Q; to reduce unnecessary generation, (b)
constructs a front set of instances Qp (thus a fraction of lattice
(Z(Q), <1)) on-the-fly, and (c) prunes unpromising instances
that are already e-dominated by Q; whenever possible. The
spawner performs no actual query processing and verification.

(2) Updater. An updater (Update) refines Q; with the front

set Q from Spawn towards a better solution Q;;1. Our idea
extends [26] to maintain “boxes” of instances that discretize
the bi-objective (2-dimensional) space of answer diversity and
coverage of groups. Each box is represented by a single in-
stance ¢ and specified by its boxing coordinates (0.(q), fc(q))-
To verify e-dominance, it then suffices to verify the dominance

3111

Algorithm RfQGen

Input: configuration C = (G, Q(uo), P, €);
Output: an e-Pareto instance set Q.

1. set QF:= 0; initializes £ := {¢, };
2. BFExplore (C, gr, Lk, QF);

3. return O;;

Procedure BFExplore(C, ¢, £, QF)

if g.verified then return ;

incVerify (¢, Lk, G); g.verified:= true;
if !g.feasible then return ;

Update (g, Q7);

set Qp := Spawn (q,();

for each ¢’ € Qr do

1
2
3.
4.
5
6
7 BFExplore (C, ¢, L, QF);

Fig. 3. Algorithm RfQGen
of boxing coordinates at both box level and instance level.

We present our main result below.

Theorem 2: Given a configuration (G,Q(u,),P,€), there
exists an algorithm that (1) correctly maintains an e-Pareto
instance set Q' over all generated instances upon any time i
the updater is invoked; (2) ensures a size-bounded Q;, where
Q] < llsgg((l“il:), and (3) take O(|adomm\‘X‘(% +1T,))
time to compute Q7, where adomy, refers to the largest active
domain, and Ty is the cost of verifying a single instance. [

We next present two efficient algorithms as a constructive
proof of Theorem 2. Each implements QGen with different
exploration strategies of the instance lattice £, and conver-
gences to instances with high diversity, or a more balanced
distribution of coverage, for different user preferences. Both
have provable guarantees in Theorem 2.

A. Query Generation by Refinement

Our first algorithm, denoted as RfQGen, uses a “refine
as always” strategy to compute Q. Given a configuration
(G,Q(uo),P,e), it starts from the root ¢, of the instance
lattice L (which carries search predicates with the most “re-
laxed” conditions), and performs a depth-first exploration of
L. The algorithm uses Lemma 2 (2) to achieve early pruning
of infeasible instances, and reduce unnecessary updates.

Algorithm. Algorithm RfQGen is shown in Fig. 3. It initializes
set QF, and the lattice . with a single root ¢,. It then
invokes a recursive procedure BFExplore to perform depth-
first exploration, which interacts spawn and update process
and generates a front set Qp to be explored at each level of
L. RfQGen early terminates if no new instance can be spawned
(as BFExplore backtracks), and returns set Q.

Procedure BFExplore. The recursive procedure BFExplore
starts by verifying an unvisited instance ¢ from the current
front set OQp. (1) It invokes a procedure incVerify (line 2;
not shown) to incrementally update the match set ¢(G) [17],
along with the coordinates (6(g), f(¢)) and boxing coordinates
(0¢(q), fe(q)). Following Lemma 2, incVerify only determines
which matches should be excluded from the counterparts of
the verified “parent” of ¢ in L. (2) It then invokes a proce-
dure Update (line 4) to maintain Q"} given a feasible instance
q. (3) For a feasible instance g, it invokes a procedure Spawn
(line 5) to generate the frontier set Qp of refined instances

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

Box(qy)= | Box(q,)=
106():2, fe(q.): 4} 106(q2):2, felq2):2}

0000 o

Box(q.)=
{06(q.): 1. fe(q.):5}

.O'Ov

v e=03 o
5 @@
: 9,@
. _ae
e % | (box dominants

coverage

diversity

Fig. 4. Instance Lattice and “Refinement as always” exploration

(thus spawns a set of children of ¢ in L), by modifying one
variable at a time using the next closest active domain value.
It then starts a next-level exploration for each instance in Q.
BFExplore backtracks whenever ¢ is not feasible (line 3), as
no refined counterparts are feasible (Lemma 2).

Procedure Update. Given a feasible instance ¢ and current
e-Pareto instance set QF, procedure Update maintains e-
dominance by verifying the dominance of Boxing coordinates
Box(q), with a case analysis below.

(Case 1) Replacing boxes (lines 1-5). This case verifies a box-
level dominance relation. Using the boxing coordinates Box(q)
= (8(q), fe(q)) of g, it verifies if ¢ introduces a box that also
already dominates a set of boxes in the bi-objective space of
diversity and coverage. If so, it removes all the representative
instances of those boxes from Q%, and adds gq.

(Case 2) Replacing instances (lines 6-7). If ¢ falls into a box
which is represented by another instance ¢’, Update simply
keeps the one that can dominate the other.

(Case 3) Adding a non-dominated box (lines 8-9). If no box
can dominate Box(q), Update simply adds ¢ to Q;‘, (which
represents a new box). Here we use Boz(q') = Boz(q) to
denote that Box(q') = Boxz(q) or Box(q') = Box(q).

Example 7: Fig 4 illustrates a case of the running of “update”.
Starting from the root of the lattice g, RfQGen spawns and
verifies instances following the refinement preorder. (1) In the
first iteration, Update simply add g2 to QF. (2) Once ¢s is
verified, Update removes ¢o under Case (1), as Box(q3) =
Box(g2) (“Replacing boxes™). (3) In the next iteration, Update
keeps g4 in QF, since ¢4 and g3 cannot dominate each other
at the box level. (4) Update finally rejects gy, since g3 and g4
both dominate g;. RfQGen then returns QF as {g3,qs}. O
Procedure Spawn. To further reduce generation and verifica-
tion costs, procedure Spawn uses the following strategy to
actively refine the values. Each variable can take, and “sim-
plifies” template (Q)(u,) when possible. The refined templates
are restored when BFExplore backtracks to ensure correctness.
Template refinement. Given a verified instance ¢, Spawn dy-
namically tracks the subgraph induced by d-hop neighbors of
¢(G) (d is the diameter of Q(u,)), denoted as Gg.

(1) For each literal u.A op z of Q(u,), it refines the values
x can take to {T'(v.A)} C adom(A), where v ranges over the
nodes in G and L(v) = L(u).

(2) For each edge variable z, on edge e = (u,u') in Q(u,),
it “fixes” x. to be O if there is no path from any match of
u, in G¢ with an edge (v,v’) such that Lg(e) = L((v,v')).

Procedure Update (g, Q)
1. set Qp :=0;
/* verify “box-level” dominance */
for each ¢’ € Q! do
if Box(q') < Box(q) then Qp:= Qs U {¢'};
if Op # 0 then
Q= (Qc\ QB)U{g}:
/* verify “instance-level” dominance */
else if there is an instance ¢’ € Q7
and Boz(q') = Box(q) then
7. if ¢ < ¢ then Q¢ := (Q7 \ {¢'} U{q};
/* adding a new instance and a non-dominated box */
8. else if there is no instance ¢’ € QF
such that Boz(q') = Box(q) then
9. Q= 0Q; U{q};

10.return Q7;

DAl

)

Fig. 5. Algorithm Update
Moreover, if e is a bridge of Q(u,), i.e., removing e leads to
two connected components in Q(u,), Spawn removes e and
the entire connected component that does not contain u,,.

Example 8: Given a configuration C = (G, Q(u,), P, €) where
P is defined on gender groups of users in GG, and € = 0.3.
Algorithm RfQGen starts with the root ¢, in the lattice E,
as illustrated in Fig. 4. (1) Following a depth first strategy,
BFExplore reaches g3 and invokes Spawn to refine g3 to gq.
In particular, Spawn selects variable X;; at node u;. While
the active domain of “yearsOfExp” suggests three values
{10,11, 12,20}, Spawn recognizes that it suffices to explore
only {10,11,12} with the next available value, given that no
neighbors of the current match have “yearsOfExp” more than
20. It then generates g4 and adds it to the front set for further
exploration. (2) As the exploration reaches g3, it finds an e-
Pareto set {¢3,q4} and returns the set (See Example 9). O

Correctness. Algorithm RfQGen correctly maintains an e-
Pareto instance set Q! over the generated instances Z%(Q)
upon Update is invoked at time ¢. To see this, assume Qi
is not an e-Pareto instance set. Then either (a) there exists
an instance ¢ € Z¢(Q) \ Q¢ that is not e-dominated by any
instance in QF, or (b) ¢ € Q! but not in the Pareto set of
T¥(Q). For case (a), Update only removes g if there is another
verified instance ¢’ € ZV(Q) that either dominates ¢ (line 7),
or e-dominates ¢ (line 3). In either case, it contradicts the
assumption. Similarly, case (b) indicates that there exists at
least an instance ¢’ € Z¢(Q)) that ¢’ = g. Thus ¢’ is verified at
some time and either remains in Q¢ or leaves a box Box(q"),
where ¢” = ¢'. In either case, ¢ should be excluded by Update
from Q! (at line 7 or line 3), which contradicts that ¢ € QF.

Size bound. We next show that at any time i, |Q?| < llggg((l‘ig.

To see this, observe that (a) Update ensures that each box
is represented by a single instance; (b) there are in total

%ﬁ boxes in the bi-objective 2D space, thus at

most 22UYDinstances having the same coverage that e-
log(1+e€) ps
og

dominate the rest (as d(q) € [0, |V]]), or Toa(i 1o instances that

e-dominate the rest having same diversity (as f(q) € [0, C)).
As C < |V] for disjoint groups, the size bound follows.

Time Cost. Following Theorem 1, Spawn generates up to
2/Xel|adom,, |l X! instances. Thus it takes in O(|adom,|IX!)
runs of BFExplore. For each instance ¢, it takes Update

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

Algorithm BiQGen

Input: configuration C = (G, Q(uo), P, €);

Output: an e-Pareto instance set Q.

1. queue Sy = {¢,}; queue Sy := {gs}; set Q7 :=0;

2. set Qy := 0; set Qp := (; set SBounds:= 0;

3. while Sy # 0 or S, # 0 do
/* forward exploration */

4 if Sy # 0 then instance ¢:= Qy.dequeue();

5. if g.verified or !g.feasible then continue;

6. if SPrune(q,SBounds) then continue;

7 incVerify (q); g.verified:=true;

8 if g.feasible then Update (¢, Q7);

9 Q{; := SpawnF (g,C); Sf.enqueue(Q;,);
/* backward exploration */

10. if Sy # 0 then instance q':= Qyp.dequeue();
11. if g.verified or !g.feasible then continue;
12. if SPrune(q, SBounds) then continue;

13. incVerify (¢'); g.verified:=true;

14. if ¢’ .feasible then Update (¢’, QF);

15. Q% := SpawnB (g,C); Sp.enqueue(Q%);

I*update “Sandwidch” bounds with feasible pair (q,q')*/
16. if ¢ =z g and (Boxz(q').6 = Boz(q').6

or Box(q').f = Box(q').f) then
17. update SBounds with (q,q’);
18. return Q7;

Fig. 6. Algorithm BiQGen

O(11§§(<1‘¥L)) +T,) time to verify ¢ (in time 7;,) and update Q.

Thus the total time cost is in O(|adomm|‘X|(% +1y))
time. We found that adom,, and |X]| are usually small in
real-world graphs. Moreover, the early pruning of infeasible
instances reduces on average 40% of the generated ones,
compared with the naive algorithm EnumQGen (Section V).

The above analysis completes the proof of Theorem 2.

B. Bi-directional Query Generation

Algorithm RfQGen achieves early convergences to an e-
Pareto instance set QF, where a majority of instances may
have high answer diversity (Lemma 3 (a)).

We next present a second algorithm, denoted as BiQGen.
It adopts a bi-directional strategy that explores L. from both
ends. The forward exploration inspects instances with non-
increasing diversity, and the backward exploration keeps “re-
laxing” instances towards early convergence to instances with
high coverage. Following Lemma 3 (b), the computation has
more chance to generate Q} with a more “balanced” distribu-
tion on instances with high diversity and those with desired
coverage, as also verified by our experiments (Section V).

Algorithm. The algorithm BiQGen (shown in Fig. 6) uses
the same procedure Update as in RfQGen to maintain QF at
any time, but specifies two separate spawners: SpawnF, same
as Spawn in RfQGen, and SpawnB, a reversed “relaxation”
counterpart that yields new instances by relaxing the search
predicates. The procedure SpawnF and SpawnB are invoked
to generate a front set Qlfp (line 9) and Q'j, (line 15) in
a “forward” refinement-based exploration from g¢,, and a
“backward” relaxation-based exploration from g, respectively.
It uses two queues Sy and .Sy to control the iterative forward
and backward exploration (line 2). It iteratively performs
forward (lines 3-9) and backward exploration (lines 10-15),
and terminates if no new instances can be generated (line 3).

for‘7

AR

“San.ﬂv@ich Pruning"

3as)=1.5,flg)=2 |,
Box(qs)= ‘
{66(q5):0, fe(q5): 1} %

o(qy)=1, flg)=3 . ¥
Box(q;)= " §
toota0. a1 | Qy

backward
Fig. 7. Bi-directional Query Generation
“Sandwich” pruning. The bidirectional strategy enables an

effective pruning strategy that exploits the monotonicity prop-
erties of diversity and coverage in Lemma 2 (2).

Lemma 3: For any feasible instances q € Qé and ¢ € QY
if ¢ =1 q, and (a) Box(q).0 = Box(q').0 or (b) Box(q).f
= Boxz(q').f, then for any instance ¢ € Z(Q)) where q <1
¢"=<zq,q" Q. D
Proof sketch: Consider an instance ¢’ € Z(Q) where ¢ <z
q" <z ¢. Following Lemma 2, §(¢') < §(¢") < d6(g), and
7(d) = f(¢") > f(q). For Case (a), if Box(q).d = Boxz(q').94,
then Box(q").6 = Box(q').6 and f(q’) > f(¢""). Thus ¢’ > ¢”
or ¢’ > ¢". Similarly, for Case (b), if Boxz(q).f = Boxz(q¢').f,
then Boz(q").f = Boz(q).f. Thus ¢ > ¢" or ¢ = ¢". In
either case, Update rejects ¢ (line 5 or line 7). O

During the bi-directional exploration, BiQGen keeps track
of the occurrences of “sandwich” pairs (q,q’) that satisfy
the condition in Lemma 3 in a set SBounds. Upon a new
pair (¢,¢') is identified (line 16), it updates SBounds by
(a) replacing any pair (q1,g2) with (g,q2) (resp. (¢1,¢")) if
q <7 q1 (resp. g2 <z ¢'), or (q,q") if ¢ <z q1 and g2 <z ¢'; or
(b) adding (g, ¢’) (line 17). This in turn allows more instances
to be pruned (by a procedure SPrune; lines 6 and 12), for both
forward and backward exploration.

These pruning strategies are fast and effective. Checking
the refinement preorder >z takes O(|X|) time per instance.
We found on average 60% of the generated instances from
EnumQGen are pruned by BiQGen (see Section V).

Example 9: Given Z(Q) that contains {q,,q1,92,93,44},
BiQGen starts a forward search from ¢, as in RfQGen, and a
backward search from ¢;. (1) In the first round of bidirectional
search, SpawnF refines ¢, to ¢5, and SpawnB relaxes ¢; to
qs. Upon the verification of ¢4 and ¢5, BiQGen finds that
Box(qs).f = Box(qa).f = 4. It then creates a pair (g5, ¢4) and
adds it to SBounds. (2) In the next round, the backward search
reaches go. Meanwhile, as q5 <7 g <7 q4, ¢ is skipped in
the forward search without further exploration. |
Analysis. The correctness of BiQGen follows from the correct-
ness analysis of Update, SpawnF and SpawnB (following the
analysis of Spawn) and the invariant that forward and back-
ward exploration verifies and safely prunes Z(Q) (Lemma 2
and Lemma 3). The size bound and time cost follows from a
similar analysis as in BFExplore.
C. Online Query Generation

Another need for query generation is to produce workloads
with arbitrary size k£ with diversity and coverage requirements

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

over interested groups for query benchmarking [37], [4], [5],
[6]. We consider the following problem. Given a configuration
C=(G, Q(u,), P, k), maintain an e-Pareto instance set Q(_;,
over a large set of instances (due to e.g., active domains and
G), such that at any time ¢, (a) |sz,k)| =k, and (b) € is
as small as possible. This is nontrivial: as more instances
arrive, one needs to compromise with a larger e (thus worse
approximation) for a smaller k£ (Theorem 2).

We extend QGen to an online algorithm, denoted
as OnlineQGen, to maintain an e-Pareto instance set with a
fixed size k and a small € at any time. To cope with large
instance space, it treats Z(Q) as a stream of instances from
a query generator. Unlike RfQGen and BiQGen, it does not
assume ordered processing (e.g., “refinement”). Instead, (1) it
uses a sliding window Wg with a bounded size w to cache
a certain number of instances that can help reduce ¢, while
keeping k fixed; and (2) it incrementalizes the maintenance of
Qfe,k) upon the arrival of a new instance, and only perform
necessary maintenance when Update causes size growth (in
particular, Case (3) in Update).

Online Algorithm. The algorithm, as shown in Fig. 8, takes
as input a stream of instances from an arbitrary generator
that instantiates @Q(u,), and a small initial constant €, > 0. It
starts by populating Q (k) with Update upon newly arrived
instances (in arbitrary order) until |Qt6 %) | = k (lines 7-10).
If an instance ¢ is rejected by Update, OnImeQGen includes
it to W¢ (line 9) for future consideration (up to at most w
timestamps before it “expires”; lines 5-6). This is to “tem-
porally” keep the instances that may be accepted by Update
again, thus reducing \QEE’ k)|. (and € remains unchanged).

When |Q€6,k)\ = k and a new instance ¢ can be added,
OnlineQGen incrementalizes Update by individually checking
(a) if adding ¢ increases |Qf€7k)\ (Case (3)) or not (Case (1)
and (2); see Update in Section IV). if the latter applies, it
simply adds ¢ (lines 12-13); otherwise, it first finds the nearest
neighbor of ¢ in Qze,k) to be replaced by ¢. To this end, it
enlarges € as the Euclidean distance of the coordinates of ¢ and
q', to include ¢ and ¢’ in a larger box (line 16). It also verifies
if a cached instance can be added without increasing \Q’Ee, k>|
(lines 18-20). It returns a size-k e-Pareto set Qte,k upon
request (line 21) or no new instance is generated (line 22).

Analysis. OnlineQGen correctly maintains an e-Pareto in-
stance set with a fixed size k for the “seen” fraction of Z(Q)
at time ¢t. We first observe the following property.
Lemma 4: If ¢ <. ¢/, O
The correctness follows from the following invariant: at any
time ¢, (1) either Update correctly rejects an instance that is
already e-dominated by an instance in |Qf€_ k) |, including those
“expired” in Wg; or (2) € is adjusted to a larger counterpart
to reduce the size of |Qf€7 k)\ to k (Theorem 2), and preserves
any previous e-dominance relation (Lemma 4).

then q < ¢ for any € > e

Delay time. OnlineQGen efficiently maintains the e-Pareto
instance set with a delay time in O(T, + w + k) time, where
T, is the cost of verifying a single instance. This verifies the

3114

Algorithm OnlineQGen
Input: a configuration (G, Q(uo), P, k), €m;

a stream of instances Z(Q), a cache size w;
Output:a size-k e-Pareto instance set QEEJ«) at any time .
1. set Qe ry :=0; set Wq:= 0; integer t:= 0; er=€p;

2 while Z(Q).hasNext() do
3. instance ¢:=7(Q).getNext();
4 verify q; q.ts:=i; i:=i+1;
/* remove “expired” query instances */
5. for each ¢’ € Wy do
6. if ¢/.ts<i —w + 1 then Wo:=Wq \ {¢'};
7. if ‘Q(e,k)‘ < k then
8. Update (g, Q(e.x))s
/* cache an e-dominated instance for future update */
9. if ¢ & Q) then Wo =Wq U {q};
10. else continue ;
11. if|Q(F,k)‘ = k then
12. if Update accepts ¢ with Case (1) or (2) then
13. Q(e.k) =9 (c,k) U {¢}; Continue;
14. if Update accepts ¢ with Case (3) then
/* replace an instance with q */
15. q’ := NearestNeighbor(q, Q(E K))s
16. ¢ := dist((4.0,.f). (q 2,4-1));
17. Qe.ky = Qery \ ¢’
/* check if a cached instance can be added without impact */
18. if there is a ¢, € W such that Update accepts g
in Case (1) or Case (2) then
19. ety =Q(e,k) U{dmp }5
20. Qe k) =Q(e,k) U {a}s
21. return Q. 1) upon request;
22, return Qc x);

Fig. 8. Algorithm OnlineQGen
practical application of OnlineQGen in query generation with
desired diversity and coverage for large workloads.

V. EXPERIMENTS

Using real-world graphs, we experimentally verify the ef-
fectiveness and efficiency of our algorithms. We investigate
the following: (RQ1) The effectiveness of our algorithms in
maximizing the diversity and ensuring the group coverage;
(RQ2) The efficiency of our query generation algorithms; and
(RQ3) The performance of our online generation algorithm.
Experiment Setting. We used the following setting.
Datasets and Groups. We use three real-life data graphs (sum-
marized in Table II), each reflects an application of query
generation. (1) DBP [29] is a movie knowledge graph induced
from DBpedia. Each node has a label (e.g., movie, director,
actors; in total 115 types) and attributes such as title, genre,
and years. Each relation has a label (e.g., directed, collabo-
ration; in total 398 types). We induce up to 5 movie groups
based on their genres (e.g., “Action”,“Romance”) or countries
for diversified and fair movie recommendations. (2) For talent
search, we use LKI [42]. with nodes denoting users and organi-
zations, and edges denoting co-review and works. Each node
has attributes such as “Major”. We induce 2 gender groups
‘P (male, female) with synthetic genders generated by gender
inference tools [14]. (3) For diversified and fair academic
recommendations, we use Cite [38] where nodes are papers
and authors, and edges denoting citations and authorship. Each
node has attributes such as “numberOfCitations” and “topic”.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

Dataset V| |E| avg. #attr | |P| | |Q(uo)] C | X|
DBP 1M [3.18M 10 2-5 3-5 100-800 | 3-5
LKI 3M 26M 7 2 3-5 200 3-5
Cite 4.9M 46M 6 2-4 3-4 200 3-4

TABLE II

OVERVIEW OF REAL-LIFE GRAPHS
We induce up to 4 groups P of papers with different topics
(e.g., “Machine Learning”,“Networking”).

Queries and Templates. We developed a generator to produce
query templates with practical search conditions, controlled by
the number of variables | X | (specifically, the number of edge
variables and range variables), query size |Q(u,)| (in terms of
the number of edges) and topologies.

For each dataset, we generated a set of Q(u,) and P and
ensure the existence of feasible query instances. The largest
set of instances Z(Q) for DBP, LKI, and Cite are 1000, 1400
and 800, respectively. We quantify the diversity of two nodes
with the normalized edit distances of their matching attributes.

Algorithms. We implemented the following algorithms in Java:
(1) EnumQGen, which enumerates and verifies the instances
in Z(Q), and performs a simple nested loop to compute the
e-Pareto optimal instance set. (2) RfQGen, with “refine as
always” strategy; (3) BiQGen, the algorithm that adopts bi-
directional search with “Sandwich” pruning; and (4) the online
query generation algorithm OnlineQGen, which maintains an
e-Pareto instance set with a fixed size k and small €. (5) To
verify the quality of query generation, we also implemented
Kungs, an algorithm that enumerates and verifies the instances
in Z(Q), and invokes Kung’s algorithm [13] to compute the
Pareto optimal non-dominated set. (6) CBM [10], the con-
straint based bi-objective optimization algorithm. As default,
we set [P| = 2, C = 200, |Q(u,)] = 3 with |X|

and € = 0.01 for our experiments. We also summarized the
parameter settings we adopted for our experiments in Table II.
Our source codes and datasets are available online!.

Experimental results. We next present our findings.

Exp-1: Effectiveness (RQ1). As the diversity and coverage
of queries vary over different graphs, we quantify their effec-
tiveness with two established relative measures: R-indicator,
and e-indicator[43], for a fair comparison.

e-Indicator (1.). Given a set of tuples Q, the e-indicator [43]
finds the minimum e, denoted by ¢,,, for which Q is an €,,-
Pareto set. Given e-Pareto instance set Q that conform to a
given constant €, we define a normalized e-Indicator (denoted
as I.), which is computed as I.(QF) = 1 - €=, where ¢, refers
to the minimum constant such that for any instance ¢ € Z(Q),
there still exists an instance ¢’ and ¢’ = ¢/, i.e., QF remains
to be an e,,-Pareto instance set. The larger I.(QF) is, the
better. For the complete Pareto optimal set O,

€m

Q%) =1
R-indicator (Ig). For a set of tuples Q, an R-indicator takes
into consideration users’ preferences, and maps Q to a score
by aggregating the weighted attribute values [43]. We define
a simple R-indicator with a preference factor A € (0,1),
denoted as I, which is defined as Ir(QF) = M

>

Uhttps://github.com/PanCakeMan/QueryGen

3115

S

"REQGenP 2272
BIQGenP mmmm |

BIQGenP w27z

Kungs' [Smmw
== BIQGenP mm—"

Kungs [
[RFQGenP

FEnumQGen

S

ol
12

<

Indicator I

PSRN

’
7

R
o

FzzzZzzZzZzzZZzZZZZ2
222227222222
2272272222222

Wiy

V]
KI

=)
g
"o ASSSSSRSRRY

[_
o)

0.4

(b) Varying e(LKI)

06 08 I
(a) Effectiveness: Real-life graphs

1.4

Kungs
[EnumQGen £===3

%MJ

RFQGenP £22Z2
BIQGenP mmmmm |

Kungs SSS RFQGenP £2772
LEnumQGen E===3 BIQGenP s |

I

(d) Varying | X g| (LKI)

1.2

0.8

Indicator Iy
Indicator I

e o
> o

0.2

2

12
L1E
n
«
ool
5
s 08t
S
E 07F
0.6
05}

0,

REQGenP 2772
BIQGenP mmmmm |

Kungs SR
| [EnumQGen ===

0.8
0.6
04}

02r

Indicator I,

E
E
N

7277272

é
¢
7
%

E
E
N

N

wlZzZZZZZZZ72]

00

(f) Varying C' (DBP)

1.4
1.2

00 00

95% 75% 100%
(e) Varying Pregre%qlveneqs (DBP)

RFQGenP r2zz2
BIQGenP mmmm |

Kungs
FEnumQGen =%

1k
0.8
0.6
0.4
02+

0

1 Kungs
EnumQGen £

4

(g) Varying |P| (DBP) (h) Varying |P| (DBP)
Fig. 9. Effectiveness of Subgraph Query Generation

Rl'QLucnP Zzz |
BIQGenP

0.6
041

Indicator IR
Indicator I

021

)
=
)

0

N
5 E
N N
N N
N N
N N
W\
N7 NN
3 4

where §* (resp. f*) refers to the maximum diversity (resp.
coverage) of an instance in Q} (normalized to be in [0,1]).
Here we use Ap to “reward” the quality of Q} in terms of
coverage: a higher \r indicates the user’s preferences that
favor queries with a better coverage property; accordingly, a
higher I under fixed A suggests a query set Q7 that contains
queries with more desired group coverage.

Overall Effectiveness (e-indicator). We compare the effective-
ness of Kungs, EnumQGen, RfQGen and BiQGen over the
three real life datasets (Fig. 9(a)). We set |Q(uo)| = 3 with
3 variables (1 edge variable, and 2 range variables), |P| =
2, € = 0.01, and C=200. We use an “Equal opportunity”
scenario and set ¢ = 100 for both groups. (1) Kungs always
can achieve scores as 1 over all the graphs as it computes the
exact Pareto-optimal sets. (2) Over all the datasets, EnumGen,
RfQGen and BiQGen achieve I, at least 0.6, which indicates
that they constantly achieve an ‘“actual” approximation of
Pareto optimal set with an €, constantly smaller than 0.4 - €
for a predefined €. (3) RfQGen and BiQGen approximate the
complete Pareto set almost equally good as EnumGen, which
enumerates all query instances. On the other hand, RfQGen
and BiQGen on average inspect 40% and 60% less instances
compared with EnumGen and Kungs. We also found that
RfQGen and BiQGen approximate Pareto optimal sets with
a representative subset of 10% of their sizes.

Varying € (e-indicator). Fixing |Q(u,)| = 4, |X| = 3 (with 1

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

range variable and 2 edge variables), and C' = 200, we varied
€ from 0.2 to 1 and evaluate its impact over LKI. Fig. 9(b)
verifies the following. (1) EnumGen, RfQGen and BiQGen
approximate Pareto optimal set with larger ¢, (all bounded by
€). This is due to the trade-off between the enforced tolerance
€ and the output size. The larger € is, the fewer boxes and
representative e-dominance instances are verified by RfQGen
and BiQGen. Thus, it is more difficult to use less amount
of representative instances to approximate the Pareto set. (2)
In all cases, RfQGen and BiQGen can approximate Pareto
optimal set with a small €, up to 0.4 of predefined € in
all cases (/g < 0.6), and achieve the same performance as
EnumGen. These suggest our methods can generate a good
approximation of the Pareto set over various settings of e.

Varying | X 1| (e-indicator). We use DBP to evaluate the im-
pact of range variables given that the nodes have more
attributes on average. Fixing |Q(u,)| = 4, |P| = 2, C = 200,
€ = 0.01, we varied the number of range variables from 2 to
5, and evaluated the impact to the effectiveness of Kungs and
our algorithms. As shown in Fig. 9(c), EnumQGen, RfQGen
and BiQGen approximate the Pareto set better for larger | X |.
Interestingly, the larger | X | is, the more e-dominating query
instances are verified to approach Pareto optimal set; on the
other hand, the increased query complexity leads to less
number of matches, which reduces the number of feasible
instances and the sizes of Pareto instance sets, thus making
it “easier” to approximate Pareto sets with fewer instances.

Varying |Xg| (e-indicator). We use LKI to evaluate the impact
of edge variables, given its dense social structures. Fixing
|Q(uo)| =35, |P| = 2, C = 200, ¢ = 0.01, we varied the
number of range variables from 2 to 5, and evaluated its
impact to the effectiveness of Kungs, EnumQGen, RfQGen
and BiQGen. We observe a consistent trend (Fig. 9(d)) for
the algorithms over larger |Xg| as for their counterparts
in Fig. 9(c). Similarly, more edge variables lead to more
dominating instances and better approximations of Pareto sets.

The above results verify that our methods suggest better
approximation for higher template complexity (in terms of
the number of range and edge variables), due to the reduced
number of feasible instances, and a larger instance space that
can be efficiently explored by RfQGen and BiQGen.

“Any time” quality with user preference (R-indicator). We
evaluate the convergence property of RfQGen and BiQGen in
response to different user preferences (controlled by Ar) in
Fig. 9(e). Fixing |Q(u,)| = 4, |P| = 2, C = 200, | X| = 3,
and € = 0.01, we report Ir when different fractions of
Z(Q) are explored over DBP, with A = 0.9 (favoring high
coverage) and Ap 0.1 (favoring answer diversity). We
observe the following (1) RfQGen converges faster to a set
of instances with high answer diversity than BiQGen when
Ar = 0.1, as the refinement strategy probes feasible instances
(2) On the other hand, BiQGen promotes the discovery of
instances with desired group coverage when Ap = 0.9, due
to the bi-directional search bringing more feasible queries
with higher coverage from the backward exploration. (3)

3116

0 T T T T T
EnumQGen 2772 500 FEnumQGen 222
[Kungs &5 Kungs £5553

ungs
| RFQGenP sz
BIQGenP mmmm—

o
Ei
o
N
N
N
N
N
A

02 04 06 08 1
(a) Overall Efficiency (b) Varying € (LKI)

1200

EnumQGen —— RFQGenP -
Kungs ¢ BIQGenP -5~ X

EnumQGen —— RFQGenP %= |
Kungs % BIQGenP -8~

o

07 3

(d) Varying

1000 1

Qa

€800
£

g
2600t

1)
=3

Timelgeconds)

P
E 400 -
&

v

200

#
0 3

E [i
(c) Varying | X, |(DBP) | Xg| (LKI)

Fig. 10. Efficiency of Subgraph Query Generation

Consistently, BiQGen and RfQGen converge to query sets
with higher diversity and coverage, respectively.

Varying C (R-indicator). Fixing |Q(u,)| =4, |P| =3, |X| =3
and Ap 0.5 which represents an equal preference over
diversity and coverage, We evaluate the impact of coverage re-
quirement(Fig. 9(f)). We follow equal opportunity and evenly
distribute C' to each group, and report Ir over DBP. As
more nodes are required to be covered, less instances become
feasible. This reduces the chance for EnumGen, RfQGen and
BiQGen to identify e-dominating instances.

Varying |P|. In this test, we set |Q(uo)| =4, | X| =3, Ag =

0.5, C' =240 and vary |P| from 2 to 5 and evenly distribute C
to each group. We evaluate the impact of the number of groups
(Fig. 9(h) and 9(g)) over DBP. I. and Ir decrease as the
number of groups increases. This is because as more groups
are required to be covered, less instances become feasible.
As a result, EnumGen, RfQGen and BiQGen identify less e-
dominating instances to the approximate Pareto set.

Performance of CBM (not shown) . Following the same set-

ting in Fig. 9(a), we evaluate the performance of CBM over
DBP. On average, Kungs outperforms CBM by 1.2 times in
efficiency, as CBM iterates over a more expensive bi-level
optimization procedure. Nevertheless, BiQGen outperforms
CBM in I by 1.1 times on average. We thus report Kungs
as a better alternative and omit the result of CBM.

These results verify the application of our methods for
generating favorable queries for different user preferences.

Exp-2: Efficiency (RQ2). We next evaluate the efficiency of
Kungs, EnumQGen, RfQGen andBiQGen.

Efficiency over real-life graphs. Using the same setting as in
Fig. 9(a), we report the efficiency of Kungs, EnumQGen,
RfQGen and BiQGen, over the real datasets in Fig. 10(a). (1)
BiQGen achieves the best performance for all the datasets. On
average, it outperforms EnumQGen and RfQGen by 4.4 and
2.5 times, respectively, due to the bi-directional search, and
the pruning from both forward and backward exploration. (2)
Query generation with diversity and coverage is feasible for
large graphs. For example, it takes BiQGen (resp. RfQGen)
78s (resp. 367s) over LKI with 3M nodes and 26 M edges.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

2
3

K=10,W=40 8- K=10,W=80 -
K=20.W=40 -©- K=20,W=80 -

\'_\:
85% 50% 75% 100%

E 10 15
(a) Varying K (LKI) (b) Anytime Effectiveness (LKI)
Fig. 11. Performance of OnlineQGen

Batch=40,W=10 o~
Bal W: ——

=
S

Ba W=10 -6~ 7

\ﬂﬁg&

I}
3

2

3
e
3

Time (seconds)
Indicator I

E3

°
2

60

Varying e. Using the same setting as in Fig. 9(b), we report the
efficiency of the algorithms in Fig. 10(b). (1) EnumGen and
Kungs are not sensitive due to that their main bottleneck is
the enumeration and verification of all instances. (2) BiQGen
achieves the best performance among all the algorithms due
to effective pruning. BiQGen (resp. RfQGen) outperforms
EnumGen by 6 times (resp. 2.2 times) on average. While not
very sensitive to €, BiQGen and RfQGen take slightly less time
over large € due to that more instances are e-dominated and
captured by Update, thus are early pruned.

Varying | X 1| and | X g|. Following the setting as in Fig. 9(c),
we report the efficiency of the algorithms in Fig. 10(c).
BiQGen achieves the best performance among all the algo-
rithms, and is the least sensitive compared with others. BiQGen
(resp. RfQGen) outperforms EnumQGen (resp. QGenEgq,,) by
7.5 times (resp. 5.6 times) on average over DBP.

Using the same setting as in Fig. 10(d) over LKI, Fig. 10(d)
verifies that BiQGen achieves the best performance among
all the algorithms. BiQGen (resp. RfQGen) outperforms
EnumQGen by 3 times (resp. 2.1 times) on average due to
the pruning over LKI. RfQGen and BiQGen are less sensitive
to |X|. This is because an increase of the number of edge
variables (and by enforcing them to ‘1’) significantly reduces
feasible instances that are effectively captured by spawn pro-
cedure during template refinement (Section IV).

Exp-3: Online Generation (RQ3). We next evaluate the
performance of OnlineQGen over LKI. We simulate instance
streams by randomly instantiating fixed query templates.

Delay time: Varying k and Batch sizes. Fig. 11(a) reports the
delay time of OnlineQGen to process a batch of instances (with
size 40 or 80) from the input stream. We varied k from 5 to
20 and set window size w as 10 and 40, respectively. While
OnlineQGen takes around 1 second per instance to maintain
Q(e,k) Of size k, on average it takes 63 seconds for the batch
with size 40 and 121 seconds for the batch with size 80. It
takes less time for larger k£ and smaller w. Indeed, the cached
instances and incremental updates reduce the chance of k to be
enlarged; on the other hand, the larger w is, the more unexpired
instances in the cache need to be verified.

Anytime Effectiveness (e-indicator). Keeping the setting in
Fig. 11(a), we evaluate the anytime effectiveness of
OnlineQGen by setting £ = 10,20 and w = 40, 80, respec-
tively. Fig. 11(b) verifies the following. (1) I. decreases as the
OnlineQGen evaluates more instances from the stream. This
is consistent with our observation in Fig. 9(b) even when k
is not fixed. Indeed, OnlineQGen compromises € (a case in

3117

q7 ds
couny="Us" |
rating>7.0 rating>5.0
(Film) us (Film) us

starring director
(Actor) ug uy (Director)
country="UK" _-mmzry* "Us"
A

award

director
u, (Director)

starring
(Actor) ug
country="Us"

award

(Award) ug (g (Award) ug o

gu 10 country="US'
country="US' | ratingoxl
4
rating>2.0 (Film) us
(Film) us [
. X starring director
starring dlrecto[(Actor) ug u, (Director)
(Actor) ug uy (Director)
country=xl, country="US"
country="UK" 1
? award | X€s
award
(Award) ug

(Award) ug é
Fig. 12. Case study: Query Generation

Fig. 9(b)) in trade for smaller k& as more instances arrive from
the stream. On the other hand, it retains an Ir > 0.63 at
any time. (2) OnlineQGen effectively exploits larger w over
larger k to achieve higher I.. The incremental updating and
caching strategy reduce the unnecessary growth of € as well
as k, keeping both smaller to maintain high-quality queries.

Exp-4: Case Study. We also conducted a case analysis to
evaluate how our algorithms adapt to users’ preferences. The
query template ¢qo (with parameterized ratings, country and
award information) and three instances are shown in Fig. 12
for movie search (DBP). Our method automatically generates
feasible queries and only requires users to specify output
node type “movie” and coverage constraints e.g., “(100,100)”.
An initial query (not shown) that searches for high rating,
award wining US movies (rating >7) with US actors returns
350 romance movies and 120 horror movies. Upon enforcing
an equal coverage over genres, BiQGen prefers ¢; and gs,
achieving more desired coverage. For example, gs refines the
results to 112 romance movies and 103 horror movies. On the
other hand, RfQGen returns ¢; and g9, where gg9 has more
skewed but more diversified results compared with g7.

VI. CONCLUSIONS

We have studied a bi-objective subgraph query generation
problem with group coverage constraints. We have provided
two feasible algorithms that approximate the Pareto-optimal
set with e-Pareto instance set, with effective pruning strategies,
as well as an online algorithm that maintains the e-Pareto
instance set with a fixed size and high quality (small).
As verified analytically and experimentally, our methods are
feasible for large graphs, and can achieve desirable diversity
and coverage properties over targeted groups. A future topic
is to study parallel query generation over large graphs with
diversity and group fairness. Another topic is to extend our
work to multiple output nodes, attributes with large domains
and other query classes such as RPQs.

Acknowledgement. This work is supported by NSF under
CNS-1932574, O1A-1937143, ECCS-1933279, CNS-2028748,
OAC-2104007 and DoE under DE-EE0009353.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22

[23]

[24]

[27]

REFERENCES

Full version. https://github.com/PanCakeMan/SQGen/blob/main/full.pdf.
Z. Abbassi, V. Mirrokni, and M. Thakur. Diversity maximization under
matroid constraints. In KDD, 2013.

A. Asudeh and H. Jagadish. Fairly evaluating and scoring items in a data
set. Proceedings of the VLDB Endowment, 13(12):3445-3448, 2020.
G. Bagan, A. Bonifati, R. Ciucanu, G. H. Fletcher, A. Lemay, and
N. Advokaat. Controlling diversity in benchmarking graph databases.
arXiv preprint arXiv:1511.08386, 11, 2015.

G. Bagan, A. Bonifati, R. Ciucanu, G. H. Fletcher, A. Lemay, and
N. Advokaat. gmark: Schema-driven generation of graphs and queries.
IEEE Transactions on Knowledge and Data Engineering, 29(4):856—
869, 2016.

A. Bonifati, G. Fletcher, J. Hidders, and A. Iosup. A survey of
benchmarks for graph-processing systems. In Graph Data Management,
pages 163-186. 2018.

A. Bonifati, I. Holubovd, A. Prat-Pérez, and S. Sakr. Graph generators:
State of the art and open challenges. ACM Computing Surveys (CSUR),
53(2):1-30, 2020.

S. Bouhenni, S. Yahiaoui, N. Nouali-Taboudjemat, and H. Kheddouci. A
survey on distributed graph pattern matching in massive graphs. CSUR,
54(2):1-35, 2021.

S. Chaudhuri, H. Lee, and V. R. Narasayya. Variance aware optimization
of parameterized queries. In SIGMOD, 2010.

K. Chircop and D. Zammit-Mangion. On epsilon-constraint based
methods for the generation of pareto frontiers. J. Mech. Eng. Autom,
2013.

J. Chomicki, P. Ciaccia, and N. Meneghetti. Skyline queries, front and
back. ACM SIGMOD Record, 42(3):6-18, 2013.

P. Ciaccia and D. Martinenghi. Reconciling skyline and ranking queries.
Proceedings of the VLDB Endowment, 10(11):1454-1465, 2017.

L. Ding, S. Zeng, and L. Kang. A fast algorithm on finding the non-
dominated set in multi-objective optimization. In The 2003 Congress
on Evolutionary Computation, 2003. CEC ’03., 2003.

Y. Dong, Y. Yang, J. Tang, Y. Yang, and N. V. Chawla. Inferring user
demographics and social strategies in mobile social networks. In KDD,
2014.

T. Draws, N. Tintarev, and U. Gadiraju. Assessing viewpoint diversity
in search results using ranking fairness metrics. ACM SIGKDD Explo-
rations Newsletter, 23(1):50-58, 2021.

W. Fan, X. Wang, and Y. Wu. Diversified top-k graph pattern matching.
VLDB, 2013.

W. Fan, X. Wang, and Y. Wu. Incremental graph pattern matching. ACM
Transactions on Database Systems (TODS), 38(3):1-47, 2013.

M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkata-
subramanian. Certifying and removing disparate impact. In proceedings
of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining, 2015.

Y. Ge, S. Zhao, H. Zhou, C. Pei, F. Sun, W. Ou, and Y. Zhang.
Understanding echo chambers in e-commerce recommender systems.
In SIGIR, pages 2261-2270, 2020.

S. Gershtein, T. Milo, and B. Youngmann. Multi-objective influence
maximization. algorithms, 2021.

S. C. Geyik, S. Ambler, and K. Kenthapadi. Fairness-aware ranking in
search & recommendation systems with application to linkedin talent
search. In KDD, 2019.

S. Gollapudi and A. Sharma.
diversification. In WWW, 2009.
C.-L. Hwang and A. S. M. Masud. Multiple objective decision
making—methods and applications: a state-of-the-art survey. Springer
Science & Business Media, 2012.

N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri. Querying
knowledge graphs by example entity tuples. [EEE Transactions on
Knowledge and Data Engineering, 27(10):2797-2811, 2015.

N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage: similarity
measures and algorithms. In SIGMOD, 2006.

M. Laumanns, L. Thiele, E. Zitzler, and K. Deb. Archiving with
guaranteed convergence and diversity in multi-objective optimization. In
Proceedings of the 4th Annual Conference on Genetic and Evolutionary
Computation, pages 439-447, 2002.

W. Le, A. Kementsietsidis, S. Duan, and F. Li. Scalable multi-query
optimization for sparql. In /CDE, pages 666-677, 2012.

An axiomatic approach for result

3118

[28]

[29]

[30]

[31]

[32]

[33]
[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

M. Lissandrini, D. Mottin, T. Palpanas, and Y. Velegrakis. Graph-query
suggestions for knowledge graph exploration. In The Web Conference,
2020.

J. Lu, J. Chen, and C. Zhang. Helsinki Multi-Model
Data Repository. https://www?2.helsinki.fi/en/researchgroups/
unified-database- management-systems-udbms/, 2018.

H. Ma, S. Guan, and Y. Wu. Diversified subgraph query generation with
group fairness. In WSDM, 2022.

T. Ma, S. Yu, J. Cao, Y. Tian, A. Al-Dhelaan, and M. Al-Rodhaan. A
comparative study of subgraph matching isomorphic methods in social
networks. IEEE Access, 6:66621-66631, 2018.

S. Mitchell, E. Potash, S. Barocas, A. D’ Amour, and K. Lum. Prediction-
based decisions and fairness: A catalogue of choices, assumptions, and
definitions. arXiv preprint arXiv:1811.07867, 2018.

D. Mottin, F. Bonchi, and F. Gullo. Graph query reformulation with
diversity. In KDD, 2015.

Z. Moumoulidou, A. McGregor, and A. Meliou. Diverse data selection
under fairness constraints. In /CDT, 2021.

M. H. Namaki, Q. Song, Y. Wu, and S. Yang. Answering why-questions
by exemplars in attributed graphs. In SIGMOD, 2019.

C. H. Papadimitriou and M. Yannakakis. On the approximability of
trade-offs and optimal access of web sources. In FOCS, pages 86-92,
2000.

M. Poess and J. M. Stephens Jr. Generating thousand benchmark queries
in seconds. In VLDB, pages 1045-1053, 2004.

A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. P. Hsu, and K. Wang.
An overview of microsoft academic service (mas) and applications.
WWW, 2015.

Q. Song, M. H. Namaki, and Y. Wu. Answering why-questions for
subgraph queries in multi-attributed graphs. In /CDE, 2019.

J. Stoyanovich, K. Yang, and H. Jagadish. Online set selection with fair-
ness and diversity constraints. In Proceedings of the EDBT Conference,
2018.

Y. Wang, Y. Li, J. Fan, C. Ye, and M. Chai. A survey of typical attributed
graph queries. World Wide Web, 24(1):297-346, 2021.

Y. Zhang, J. Tang, Z. Yang, J. Pei, and P. S. Yu. Cosnet: Connecting
heterogeneous social networks with local and global consistency. In
KDD, 2015.

E. Zitzler, J. Knowles, and L. Thiele. Quality Assessment of Pareto Set
Approximations. 2008.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2022 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.

