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ABSTRACT
It has become an increasingly common practice in modern science
and engineering to collect samples of multiple network data in
which a network serves as a basic data object. The increasing preva-
lence of multiple network data calls for developments of models and
theories that can deal with inference problems for populations of
networks. In this work, we propose a general procedure for hypoth-
esis testing of networks and in particular, for differentiating distribu-
tions of two samples of networks. We consider a very general
framework which allows us to perform test on large and sparse net-
works. Our contribution is two-fold: (1) We propose a test statistics
based on the singular value of a generalized Wigner matrix. The
asymptotic null distribution of the statistics is shown to follow the
Tracy–Widom distribution as the number of nodes tends to infinity.
The test also yields asymptotic power guarantee with the power
tending to one under the alternative; (2) The test procedure is
adapted for change-point detection in dynamic networks which is
proven to be consistent in detecting the change-points. In addition
to theoretical guarantees, another appealing feature of this adapted
procedure is that it provides a principled and simple method for
selecting the threshold that is also allowed to vary with time.
Extensive simulation studies and real data analyses demonstrate the
superior performance of our procedure with competitors.
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1. Introduction

One of the unique features in modern data science is the increasing availability of com-
plex data in nontraditional forms. Among the newer forms of data, network has arguably
emerged as one of the most important and powerful data types. A network, an abstract
object consisting of a set of nodes and edges, can be broadly used to represent interac-
tions among a set of agents or entities and one can find its applications in virtually any
scientific field. The ubiquity of network data in diverse fields ranging from biology (Chen
and Yuan 2006; Cline et al., 2007), physics (Bounova and de Weck 2012; Kulig et al.
2015), social science (Hoff, Raftery, and Handcock 2002; Snijders and Baerveldt 2003) to
engineering (Leonardi and Van De Ville 2013; Chen, Cao, and Bu 2010) has spurred fast
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developments in models, theories and algorithms for the field of network analysis, see
e.g., Erd}os and R!enyi (1959); Holland, Laskey, and Leinhardt (1983); Karrer and
Newman (2011); Ball, Karrer, and Newman (2011); Wolfe and Olhede (2013); Rohe,
Chatterjee, and Yu (2011); Decelle et al. (2011); Amini and Levina (2018); Bickel and
Chen (2009). The existing literature, however, has largely been focusing on inference of
one single (often large) network. The recent advancement in technology and computer
prowess has led to the increasing prevalence of network data available in multiple net-
works in which a network serves as the basic data object. For instance, such datasets can
be found in neuroscience (Bassett et al. 2008), cancer study (Zhang et al. 2009), micro-
biome study (Cai et al. 2019), and social interactions (Kossinets and Watts 2006; Eagle,
Pentland, and Lazer 2009). There is a strong need for development of models and theo-
ries that can deal with such data sets, and more broadly, for inference of population
of networks.
One has already seen a growing effort in this direction. Ginestet et al. (2017) pro-

poses a geometric framework for hypothesis tests of populations of networks viewing a
weighted network as a point on a manifold. Along the same line, Kolaczyk et al. (2020)
provides geometric characterization of space of all unlabeled networks which serve as
the foundation for inference based on Fr!echet mean of networks. In addition,
Mukherjee, Sarkar, and Lin (2017) provides a general framework for clustering network
objects. Josephs et al. (2020) proposes a Gaussian process based framework for regres-
sion and classification with network inputs. Durante, Dunson, and Vogelstein (2017)
proposes a Bayesian nonparametric approach for modeling the populations of networks.
One of commonly encountered problems for inference of populations of networks is

hypothesis testing which has significant applications, but remains largely understudied
especially for large networks. Among the few existing work in the literature, besides
Ginestet et al. (2017) as mentioned above, Tang et al. (2017) carries out hypothesis tests
using random dot product graph model via adjacency spectral embedding.
Ghoshdastidar et al. (2020) proposes two test statistics based on estimates of the
Frobenius norm and spectral norm between link probability matrices of the two sam-
ples, the key challenge of which lies in choosing a threshold for the test statistics.
Ghoshdastidar and von Luxburg (2018) uses the same statistics as Ghoshdastidar et al.
(2020) and proves asymptotic normality for the statistics. Ghoshdastidar and von
Luxburg (2018) further proposes a test statistics based on the extreme eigenvalues of a
scaled and centralized matrix and proves that the new statistics asymptotically follows
the Tracy–Widom law (Tracy and Widom 1996). Most of the literature, however,
focuses on the case where the number of nodes for each network is fixed, which greatly
limits the scope of inference.
The initial focus of our work is on hypothesis testing for two samples of networks

including large and sparse networks. We propose a very intuitive testing statistics which
yields theoretical guarantees. More specifically, we prove that its asymptotic null distri-
bution follows the Tracy–Widom distribution and the asymptotic power tends to 1
under the alternative. One of the appealing features of our approach is that our test
adopts a very general framework in which the number of the nodes are allowed to grow
to infinity, while most of the existing methods assume that the number of nodes is
fixed, which is not always a practical assumption since many modern networks are
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often large and sparse. We then adapt our test statistics for a change-point detection
procedure in dynamic networks and prove its consistency in detecting change-points.
We provide a principled method for selecting the threshold level in the change-point
detection procedure based on the asymptotic distribution of the testing statistics and
the threshold is allowed to vary with time. This is appealing comparing to many exist-
ing change-point detection approaches which require either a cross-validation for select-
ing the threshold or a careful tuning of the parameters. Extensive simulation studies
and two real data analyses demonstrate the superior performance of our procedure in
comparing with others in both tasks.
The paper is organized as follows. In Section 2, we propose a testing statistics and

throughly study its asymptotic properties. Section 3 is devoted to a change-point detec-
tion procedure for dynamic networks by adapting the testing statistics derived in
Section 2. Simulation studies are carried out in Section 4 and real data examples are
presented in Section 5. Technical proofs can be found in the supplementary material.

2. Two-sample hypothesis testing for networks

2.1. Notation

We first introduce some notations that will be used throughout the paper. For a set
N , jN j denotes its cardinality. TW1 denotes the Tracy–Widom distribution with index 1.
v2ðnÞ denotes the Chi-squared distribution with n degrees of freedom. For a square matrix
B 2 Rn#n, Bij denotes its (i, j) entry, Bi$ is the ith row of B, and B$i is the ith column of B.
For a symmetric matrix B 2 Rn#n, kjðBÞ denotes its jth largest eigenvalue, ordered as
k1ðBÞ % k2ðBÞ % ::: % knðBÞ, r1ðBÞ is the largest singular value. Write Xn X if a
sequence of random variables fXng1n¼1 converges in distribution to random variable X. bxc
denotes the largest integer but no greater than x 2 R: Ið$Þ denotes indicator function. For
two sequences of real numbers fxng and fyng, we have the following notations:
yn ¼ OnðxnÞ : there exists a positive constant M such that limn!1 j ynxn j ' M:

yn ¼ onðxnÞ : lim
n!1

yn
xn

¼ 0

yn ¼ opðxnÞ : lim
n!1

P
!!!!
yn
xn

!!!! % e

 !

¼ 0 for any positive e.

2.2. Problem setup and some existing tests

We consider two samples of networks with n nodes and sample sizes m1 and m2

respectively. More specifically, we assume one observes symmetric binary adjacency

matrices Að1Þ
1 , :::,Aðm1Þ

1 that are generated from symmetric link probability matrix P1
with AðkÞ

1, ij ( BernoulliðP1, ijÞ, k ¼ 1, 2, :::,m1, i, j ¼ 1, 2, :::, n, and another sample of adja-

cency matrices Að1Þ
2 , :::,Aðm2Þ

2 generated from the same model with link probability
matrix P2. Our goal is to test whether the two samples of networks have same graph
structure or not, which is equivalent to testing:
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H0 : P1 ¼ P2 against H1 : P1 6¼ P2: (1)

For the case of m1 ¼ m2 ¼ 1 and a fixed n, Tang et al. (2017) focuses on random dot
product graphs by applying the adjacency spectral embedding, whereas Ghoshdastidar
and von Luxburg (2018) focuses on the inhomogeneous Erd}os–R!enyi graphs and pro-
poses a test based on eigenvalues.
For the case of large m1, m2 and again a fixed number of nodes n, Ginestet et al.

(2017) proposes a v2-type test based on a geometric characterization of the space of
graph Laplacians and a notion of Fr!echet means (Fr!echet 1948; Bhattacharya and Lin
2017). As a simplification of the statistics in Ginestet et al. (2017), Ghoshdastidar and
von Luxburg (2018) sets m1 ¼ m2 ¼ m and obtains the test statistics as follows:

Tv2 ¼
X

i<j

ð"A1, ij ) "A2, ijÞ2

1
mðm)1Þ

Pm
k¼1 AðkÞ

1, ij ) "A1, ij

" #2
þ 1

mðm)1Þ
Pm

k¼1 AðkÞ
2, ij ) "A2, ij

" #2 , (2)

where "Au, ij ¼ 1
m

Pm
k¼1 A

ðkÞ
u, ij with u¼ 1, 2. Then Tv2 ! v2ðnðn)1Þ

2 Þ as m ! 1: We call this

method v2-type test.
The case of large n and fixed m1 and m2 is one of the likely scenarios in practice and

is thus perhaps more interesting. Ghoshdastidar and von Luxburg (2018) uses the same
statistics as Ghoshdastidar et al. (2020) as follows:

TN ¼

P
i<j

P
k'm=2 A

ðkÞ
1, ij ) AðkÞ

2, ij

" # P
k>m=2 A

ðkÞ
1, ij ) AðkÞ

2, ij

" #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

i<j

P
k'm=2 A

ðkÞ
1, ij þ AðkÞ

2, ij

" # P
k>m=2 A

ðkÞ
1, ij þ AðkÞ

2, ij

" #r : (3)

Ghoshdastidar and von Luxburg (2018) proves the asymptotic normality of TN as
n ! 1: We refer this method to N-type test.

2.3. Proposed test statistics

In proposing our test statistics, we consider a very general setting in which the number
of nodes can grow to infinity instead of being fixed like in most of the existing litera-
ture, and the sample sizes m1 and m2 grow in an appropriate rate. We first introduce
the centralized and re-scaled matrix Z with entries given as follows:

Zij ¼
"A1, ij ) "A2, ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn) 1Þ 1
m1

P1, ijð1) P1, ijÞ þ 1
m2

P2, ijð1) P2, ijÞ
h ir , (4)

where "Au, ij ¼ 1
mu

Pmu
k¼1 A

ðkÞ
u, ij with u¼ 1, 2 and i, j ¼ 1, :::, n:

The matrix Z involves unknown link probability matrices P1 and P2 thus can not be
directly used as a test statistics. As an alternative, one can choose some appropriate plu-
gin estimates for P1 and P2, and some of these estimates attain good properties for the
resulting tests as we will see in the following discussions.
Denote P̂1 and P̂2 as some plugin estimators of P1 and P2 respectively, then the

empirical standardized matrix Ẑ of Z can be written with entries as
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Ẑ ij ¼
"A1, ij ) "A2, ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn) 1Þ 1
m1

P̂1, ijð1) P̂1, ijÞ þ
1
m2

P̂2, ijð1) P̂2, ijÞ
% &s , i, j ¼ 1, 2, :::, n:

(5)

We propose to use the largest singular value of Ẑ , after suitable shifting and scaling,
as our test statistics:

TTW1 ¼ n2=3 r1ðẐÞ ) 2
' (

: (6)

Given a significance level a 2 ð0, 1Þ, the rejection region Q for H0 in test (1) is

Q ¼ fTTW1 jTTW1 % sa=2g, (7)

where sa=2 is the corresponding a=2 upper quantile of TW1. We then have the following
results.

Theorem 2.1 (General asymptotic null distribution). Let Að1Þ
1 , :::,Aðm1Þ

1 be a sample of net-

works generated from a link probability matrix P1 with n nodes, and Að1Þ
2 , :::,Aðm2Þ

2 be
another sample generated from a link probability matrix P2 with the same number of
nodes. Let Ẑ be given as in (5). Given some estimated matrices P̂u of Pu, u ¼ 1, 2, if
supi, j jP̂u, ij ) Pu, ijj ¼ opðn)2=3Þ, then the following holds under the null hypothesis in (1):

n2=3 k1ðẐÞ ) 2
' ( TW1, n2=3 )knðẐÞ ) 2

' ( TW1: (8)

Remark 2.2. Theorem 2.1 is very general in the sense that it puts no structural condi-
tions on the networks, nor does it impose any assumption on the type of estimates for
P1 and P2 so long as they are estimated within opðn)2=3Þ error.

The following corollaries show asymptotic type I error control and asymptotic power
for the rejection rule (7).

Corollary 2.3 (Asymptotic type I error control). Supposing assumptions in Theorem 2.1
hold, the rejection region in (7) has size a.

Corollary 2.4 (Asymptotic power guarantee). Define a matrix ~Z 2 Rn#n with zero diag-
onal and for any i 6¼ j,

~Zij ¼
P1, ij ) P2, ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn) 1Þ 1
m1

P1, ijð1) P1, ijÞ þ 1
m2

P2, ijð1) P2, ijÞ
h ir : (9)

Under the assumptions of Theorem 2.1, if P1, ij and P2, ij are such that

n)2=3½r1ð~ZÞ ) 4,)1 ' onð1Þ, then
PðTTW1 % sa=2Þ ¼ 1) onð1Þ:

Remark 2.5. As mentioned in the introduction, in Ghoshdastidar and von Luxburg
(2018), a test statistics for comparing two large graphs is proposed, and our test statis-
tics appears to be similar in natural to theirs. However, there are some key distinctions
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between our method and theirs. First, our testing statistics considers two-sample test on
two populations of networks which requires exploration of the proper interplay between
the asymptotics in both the sample sizes of networks and nodes number. Second,
Ghoshdastidar and von Luxburg (2018) proves the asymptotic Tracy–Widom law under
the true link probability matrices, while in our paper, we consider various estimates of
link probability matrices (again based on multiple networks) and prove the
Tracy–Widom law theoretically. We also discuss the performance of the resulting test-
ing statistics under various estimators. Third, our testing statistics is modified for a
novel and efficient change-point detection procedure and the consistency of the change-
point detection is also proved.

2.4. Different estimators of link probability matrix

The testing statistics proposed in the previous section requires a plugin estimator for
the link probability matrix based on a sample of networks. In this subsection, we inves-
tigate the properties of the tests corresponding to various different estimators for link
probability matrix.
We first consider a different but natural and simple estimator of Pu by using the

average of all the adjacency matrices in the same group. We denote this method as
AVG and the link probability matrix estimator as P̂AVG, u, which is actually "Au:
It’s not difficult to see that

sup
i, j

jP̂AVG, u, ij ) Pu, ijj ¼ opðm)1=2
u log ðnÞÞ

by applying Bernstein’s inequality. To guarantee the asymptotic TW1 in (8), it requires
that mu ¼ Onðn4=3Þ: More specifically, the sample size mu needs to increase faster than
nodes number n, so mu will exceed n eventually as n tends to infinity. Therefore, the
AVG estimator will perform well if the sample size is large enough. However, this is
hard to hold in reality especially when the size of the network is large. Usually, for
most practical applications, it would be more suitable to require mu to increase slower
than n.
We also consider an average estimator of Pu based on the stochastic block model

(SBM), which is similar in spirit to the estimator in Ghoshdastidar and von Luxburg
(2018) but with a different algorithm for estimating the communities. Our main idea
can be summarized as follows: First, assume the graphs are SBMs, or approximate them
with SBMs by a weaker version of Szemer!edi’s regularity lemma (see Lov!asz (2012)).
Second, use one of the community detection algorithms such as the goodness-of-fit test
proposed in Lei (2016) to estimate the number of the communities K̂ u: Then perform
clustering using for example the spectral clustering algorithm (see, e.g., von Luxburg
(2007)) to obtain estimates of the membership vector gu 2 f1, :::, K̂ ugn as well as the
community set Bu, k ¼ fi : 1 ' i ' n, gu, i ¼ kg, where k ¼ 1, 2, :::, K̂ u and gu, i is the ith
element of gu. Subsequently, Pu is approximated by a block matrix P̂SBM, u such that
P̂SBM, u, ij is the mean of the submatrix of "Au restricted to Bu, gu, i # Bu, gu, j :
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Under further assumption that each community has size at least proportional to
n=Ku, where Ku is the true community number, it can be seen that the error of

P̂SBM, u, ij is opðKum
)1=2
u n)1 log nÞ (Lei 2016). This implies that only when Ku ¼

OnðncuÞ, cu < 1=3þ au=2, and mu ¼ OnðnauÞ, au % 0, the error condition in Theorem
2.1 holds. For large networks in practice, the number of communities can be very large
therefore such a condition might be hard to satisfy. Moreover, due to the potential dou-
ble estimation in the process (in estimating the number of communities as well as the
community membership), it may bring large error to the final test statistics, especially
when the SBM assumption is not valid.
We now discuss another explicit method for the link probability matrix estimates

that can be used as the plugging estimates in the test statistics called the modified
neighborhood smoothing (MNBS) estimator. Let fnigni¼1 be a random sequence such
that ni, i ¼ 1, :::, n, are i:i:d: uniform random variables on ½0, 1,: Conditional on this
global sequence fnigni¼1, we assume all the adjacency matrices Að1Þ,Að2Þ, :::,AðmÞ in the
same population share the same link probability matrix P 2 Rn#n, which is modeled by
a graphon function f : ½0, 1,2 ! ½0, 1, such that

Pij ¼ f ðni, njÞ:

Therefore, we have

AðkÞ
ij j fnigni¼1 ( Bernoulliðf ðni, njÞÞ,

independently for all i ' j and k ¼ 1, :::,m:
We then apply MNBS method proposed in Zhao, Chen, and Lin (2019) to estimate

P. The essential idea of the MNBS procedure consists of the following steps: First, for
the group of adjacency matrices Að1Þ,Að2Þ, :::,AðmÞ generated from P, let "A ¼
Pm

k¼1 A
ðkÞ=m, define the distance measure between nodes i and i0 as d2ði, i0Þ ¼

maxk 6¼i, i0 jh"Ai$ ) "Ai0$, "Ak$ij and the neighborhood of node i as N i ¼ fi0 6¼ i : d2ði, i0Þ '
qiðqÞg, where qiðqÞ denotes the qth quantile of the distance set fd2ði, i0Þ : i0 6¼ ig: Then
the parameter q is set to be C log n=ðn1=2xÞ, where C is some positive constant and

x ¼ minfn1=2, ðm log nÞ1=2g: Finally, given the neighborhood N i for each node i, the
link probability Pij between nodes i and j is estimated by ~Pij ¼

P
i02N i

"Ai0j=jN ij: In com-
paring with the neighborhood smoothing method proposed in Zhang, Levina, and Zhu
(2017), the key idea is to employ the average network information "A and simultan-

eously shrink the neighborhood size (from Cð log n=nÞ1=2 to C log n=ðn1=2xÞ) to obtain
an estimate with an improved rate.
Based on MNBS, for the symmetric networks considered in this paper, we use sym-

metrized estimators of the link probability matrices Pu, u ¼ 1, 2, of the two groups of
graphs as

P̂u ¼
~Pu þ ð~PuÞT

2
, with ~Pu,ij ¼

P
i02N u, i

"Au,i0j

jN u,ij
, (10)

where "Au,i0j is the ði0, jÞ element of "Au ¼
Pmu

k¼1 A
ðkÞ
u =mu and N u,i is the neighborhood of

node i in group u.
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From Lemma 9.3 in Zhao, Chen, and Lin (2019), we have

jN u, ij % Bu
n1=2 log n

xu
, (11)

where Bu is a global positive constant and xu ¼ minfn1=2, ðmu log nÞ1=2g for u¼ 1, 2.
For the MNBS, we do not provide an explicit rate on bounding the sup norm

supi, j jP̂u,ij ) Pu,ijj due to the difficulty in deriving the point-wise rate. From the defin-

ition of d2ði, i0Þ, it can be seen that the distance measure between nodes i and i0 in the
MNBS algorithm is based on the row pattern similarity instead of point-wise way. To
derive an entry-wise error of Pij, one can use Bernstein’s inequality, but the neighbor of
a node is selected by the qth quantile of the distance set, which would decrease the vari-
ance of sample in the neighbor, but this decreased variance is unknown. The extensive
simulation carried out in Section 4 and Section 5 show that MNBS-based tests often
yield the best performance in comparing with tests based on other estimators.

Remark 2.6. As one can see in our setup in Section 2.2, it is assumed that the edges of
each network AðkÞ, k ¼ 1, :::,m, in the same populations are generated independently
from the same deterministic link probability matrix P. To fit this setup under a genuine
‘graphon model’, one has to assume that for each node i, the latent variable ni is the
same over all the samples in the same population and will not change for each sample.
That is, a global latent sequence fnigni¼1 is shared across all the networks. Note that this
setup does not fall under a genuine graphon model in which one first samples uniform

random sequence fnðkÞi gni¼1 for each network over k, then AðkÞ
ij j fnðkÞi gni¼1 (

Bernoulliðf ðnðkÞi , nðkÞj ÞÞ: Therefore, the entries of the adjacent matrix or network are not

independent after marginalizing the latent variables.

3. Change-point detection in dynamic networks

We refer the two sample test based on asymptotic TW1 proposed in the previous sec-
tion as TW1-type test. In this section, we adapt the TW1-type test to a procedure for
change-point detection in dynamic networks, which is another important learning task
in statistics and has received a great deal of recent attentions. Specifically, we examine a
sequence of networks whose distributions may exhibit changes at some time epochs.
Then, the problem is to determine the unknown change-points based on the observed
sequence of network adjacency matrices.
Assume the observed dynamic networks fAtgmt¼1 are generated by a sequence of prob-

ability matrices fPtgmt¼1 with At, ij ( BernoulliðPt, ijÞ for time t ¼ 1, :::,m: Let J ¼
fgjg

J
j¼1 - f1, :::,mg be a collection of change-points and g0 ¼ 0, gJþ1 ¼ m, ordered as

g0 < g1 < ::: < gJ < gJþ1, such that

Pt ¼ PðjÞ, t ¼ gj)1 þ 1, :::, gj, j ¼ 1, :::, J þ 1:

In other words, the change-points fgjg
J
j¼1 divide the networks into Jþ 1 groups, the

networks contained in the same group follow the same link probability matrix and PðjÞ
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is the link probability matrix of the jth segment satisfying PðjÞ 6¼ Pðjþ1Þ: Denote J ¼ Ø
if J¼ 0.
Now we apply our TW1-type test to a screening and thresholding algorithm that is

commonly used in change-point detection, see Niu and Zhang (2012); Zou et al. (2014);
Zhao, Chen, and Lin (2019). The detection procedure is referred as TW1-type detection
and described as follows.
Define L ¼ min1'j'Jþ1ðgj ) gj)1Þ, which is the minimum segment length. Set a

screening window size h . m and h < L=2: Denote "A1ðt, hÞ ¼ 1
h

Pt
i¼t)hþ1 Ai and

"A2ðt, hÞ ¼ 1
h

Ptþh
i¼tþ1 Ai for each t ¼ h, :::,m) h: P̂1ðt, hÞ and P̂2ðt, hÞ are for example

MNBS estimators using fAigti¼t)hþ1 and fAigtþh
i¼tþ1 respectively. In addition, we denote a

matrix Ẑðt, hÞ with entries as follows essentially the same as in (5):

Ẑ ijðt, hÞ ¼
"A1, ijðt, hÞ ) "A2, ijðt, hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn) 1Þ 1
h
P̂1, ijðt, hÞ 1) P̂1, ijðt, hÞ

h i
þ 1
h
P̂2, ijðt, hÞ 1) P̂2, ijðt, hÞ

h i) *s ,

i, j ¼ 1, 2, :::, n:

In the screening step, we calculate the scan statistics TTW1ðt, hÞ depending only on
observations in a small neighborhood ½t ) hþ 1, t þ h, as follows:

TTW1ðt, hÞ ¼ n2=3fr1 Ẑðt, hÞ
' (

) 2g:

Define the h-local maximizers of TTW1ðt, hÞ as ft : TTW1ðt, hÞ %
TTW1ðt0, hÞ for all t0 2 ðt ) h, t þ hÞg: Let LM denote the set of all h-local maximizers
of TTW1ðt, hÞ:
In the thresholding step, we estimate the change-points by a thresholding rule to

LM with time t such that

Ĵ ¼ ft : t 2 LM and TTW1ðt, hÞ > !TTW1
g, (12)

where !TTW1
¼maxfsa,n2=3½dðt,hÞ)4,)sag,a¼1=2)ð1)1=nÞ1=ð2hÞ=2,dðt,hÞ¼r1ðV1ðt,hÞÞ is

the largest singular value of matrix V1ðt,hÞ with zero diagonal and for any i 6¼j,

V1,ijðt,hÞ¼
P̂1,ijðt,hÞ)P̂2,ijðt,hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn)1Þ
)
1
h
P̂1,ijðt,hÞ 1)P̂1,ijðt,hÞ

h i
þ1
h
P̂2,ijðt,hÞ 1)P̂2,ijðt,hÞ

h i*s ,

i,j¼1,2,:::,n:

We have the following consistency result.

Theorem 3.1 (Consistency of TW1-type change-point detection). Under the alternative

hypothesis, assume n2=3½rðt, hÞ ) 4, % 2sa, a ¼ 1=2) ð1) 1=nÞ1=ð2hÞ=2, h < L=2, then the
TW1-type change-point detection procedure satisfies

lim
n!1

PðJ ¼ Ĵ Þ ¼ 1:
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One of the interesting findings from Theorem 3.1 is that for a fixed window size h,
the threshold in (12) is dynamic with time t instead of being a constant as in Zhao,
Chen, and Lin (2019). By adapting the TW1-type test for change-point detection, we
can adjust the threshold with t and still enjoy consistency of the change-point detection.
From the proof of Theorem 3.1, it is reflected that for a time t that does not correspond
to a change-point, TTW1ðt, hÞ ' !TTW1

with probability 1, so it can control the type I
error. However, for a change-point t, TTW1ðt, hÞ > !TTW1

with probability 1, and hence
the threshold can lead to a good performance.
The only tuning parameter of TW1-type change-point detection procedure is the local

window size h, which is chosen according to applications with available information or
artificially like set h ¼

ffiffiffiffi
m

p
as recommended in Zhao, Chen, and Lin (2019).

4. Simulation study

In this section, we illustrate the performance of TW1-type test and its application to
change-point detection using several synthetic data examples.
We first define four graphons and an SBM, which are used for two-sample test and

change-point detection in the simulation studies. The graphons are partly borrowed
from Zhang, Levina, and Zhu (2017) and the SBM is from Zhao, Chen, and Lin (2019)
with 2 communities. We denote the block matrix or the probability matrix of connec-
tions between blocks as K. More specifically, the graphons and SBM are defined as:

Graphon 1:

f ðu, vÞ ¼ k=ðK þ 1Þ, u, v 2 ððk) 1Þ=K, k=KÞ,
0:3=ðK þ 1Þ, otherwise,

)

where K ¼ b log nc, k ¼ 1, 2, :::,K:

Graphon 2:

f ðu, vÞ ¼ ðu2 þ v2Þ=3 cos 1=ðu2 þ v2Þ
' (

þ 0:15:

Graphon 3:
f ðu, vÞ ¼ sin 5pðuþ v) 1Þ þ 1½ ,=2þ 0:5:

Graphon 4:

f ðu, vÞ ¼ ðu2 þ v2Þ=10 cos 1=ðu2 þ v2Þ
' (

þ 0:05:

SBM 1:

K ¼ 0:6þ h0 0:3
0:3 0:6

% &
,

where h0 is a constant related to sample size m. The membership of the ith node
is MðiÞ ¼ Ið1 ' i ' b2n= log ncÞ þ 2Iðb2n= log nc þ 1 ' i ' nÞ:
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To operationalize simulations related to MNBS, the quantile parameter q ¼
B0ð log nÞ1=2=ðn1=2h1=2Þ and the threshold !D ¼ D0ð log nÞ1=2þd0=ðn1=2h1=2Þ with tuning
parameters D0 and d0 for change-point detection in Zhao, Chen, and Lin (2019) need
to be specified. In the following simulations in this section and the real data analyses in
Section 5, we set the related parameters h ¼

ffiffiffiffi
m

p
,B0 ¼ 3, d0 ¼ 0:1,D0 ¼ 0:25 as recom-

mended in Zhao, Chen, and Lin (2019) unless otherwise indicated.

4.1. Two-sample test with simulated data

To examine the performance of the two-sample test (1), we present our results by TW1-
type tests based on MNBS (TW1-MNBS), AVG (TW1-AVG), and SBM (TW1-SBM) dis-
cussed in subsection 2.4, v2-type test with statistics (2), and N-type test with statistics
(3). We measure the performance in terms of the Attained Significance Level (ASL)
which is the probability of observing a statistics far away from the true value under the
null hypothesis, and the Attained Power (AP), the probability of correctly rejecting the
null hypothesis when the alternative hypothesis is true.
We conduct two experiments using Graphon 1 and Graphon 2 respectively. In the

first experiment, we generate two groups of networks fAðkÞ
1 gm1

k¼1 and fAðkÞ
2 gm2

k¼1: We vary
the number of nodes n growing from 100 to 1000 in a step of 100 with sample sizes

m1 ¼ m2 ¼ 30, 200, and set significance level at a ¼ 0:05: fAðkÞ
1 gm1

k¼1 are generated from

Graphon 1. Under the null hypothesis, fAðkÞ
2 gm2

k¼1 are also generated from the Graphon 1
and hence P1 ¼ P2. Under the alternative hypothesis, randomly choose b log nc-element

subset S - f1, 2, :::, ng, generate fAðkÞ
2 gm2

k¼1 from P2 by setting P2, ij ¼ P1, ij þ h1 with h1 ¼
0:05 for m1 ¼ m2 ¼ 30 ðh1 ¼ 0:02 for m1 ¼ m2 ¼ 200Þ if i, j 2 S, and h1 ¼ 0 otherwise.
Using TW1-MNBS, TW1-AVG, TW1-SBM tests, v2-type test and N-type test, we run 1000
Monte Carlo simulations for the experiment to estimate the ASLs and APs of test (1).
The second experiment is conducted similarly but using Graphon 2. The only differ-

ence is that for a better visualization of comparisons, under the alternative hypothesis,
we set P2, ij ¼ P1, ij þ h2 with h2 ¼ 0:2 for m1 ¼ m2 ¼ 30 ðh2 ¼ 0:17 for m1 ¼ m2 ¼
200Þ if i, j 2 S and h2 ¼ 0 otherwise. The rates of rejecting the null hypothesis for these
two experiments are summarized in Figures 1 and 2 respectively.
The results of the first experiment using Graphon 1, an SBM set up, are plotted in

Figure 1. It reveals undesirable behaviors of v2-type test and TW1-AVG test since with
increasing number of nodes n, the ASLs of both tests grow quickly close to 1, which is
too large to be used in practice. We can also see that the N-type test is not efficient as
both ASLs and APs of the test are 0 for both cases of m1 ¼ m2 ¼ 30, 200: Its poor per-

formance in APs is partly due to the small difference between fAðkÞ
1 gm1

k¼1 and fAðkÞ
2 gm2

k¼2
we set. However, the performance of TW1-SBM test and TW1-MNBS test are much bet-
ter, ASLs of both tests are stable and close to the significance level of a ¼ 0:05, while
APs improve to 1 as n grows. It is also found that when n is not that large, TW1-SBM
test is slightly more powerful in terms of AP than TW1-MNBS test. This is not surpris-
ing because the networks generated from Graphon 1 are endowed with an
SBM structure.
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The results of the second experiment using Graphon 2, which is not an SBM, are
given in Figure 2. It indicates that the behaviors of TW1-AVG test, v2-type test and N-
type test are similar to those in the first experiment using Graphon 1 and the perform-
ance is poor. On the other hand, TW1-MNBS test has a superior performance than
TW1-SBM in both ASL and AP. Specifically, ASLs of TW1-SBM test are away from
0.05, whereas TW1-MNBS test still performs well on both ASL and AP. Moreover, this
also indicates that TW1-SBM test is sensitive to the network structure especially devi-
ation from an SBM. Hence, TW1-MNBS test is more robust to the network structure
whereas TW1-SBM test is preferable for SBM networks.

4.2. Change-point detection in dynamic networks

To assess the performance of TW1-type change-point detection in dynamic networks,
we compare its performance based on MNBS, AVG, and SBM estimators (referred as
CP-TWMNBS, CP-TWAVG, CP-TWSBM respectively) to the graph-based nonparamet-
ric testing procedure in Chen and Zhang (2015) referred as CP-GRA detection, and the

Figure 1. ASLs and APs of tests using Graphon 1 for different values of nodes number n, sample sizes
m1 and m2. m1 ¼ m2 ¼ 30 for (a) and (c) and m1 ¼ m2 ¼ 200 for (b) and (d).
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MNBS-based change-point detect procedure in Zhao, Chen, and Lin (2019) referred as
CP-DMNBS detection.
Specifically, using all the above five methods, we conduct change-point detection

experiments under three different scenarios with zero, one, and three change-points
respectively. For all the experiments, we vary the nodes number and the sample size at
n ¼ 100, 200, 300,m ¼ 100, 200, and set the significance a ¼ 0:05: For each combination
of the sample size, nodes number, and the network model, we run 100 Monte Carlo tri-
als. Simultaneously, we also explore the effect of network sparsity on the performance
of change-point detection. For this, we consider the above setting, but scale the link
probability P as qP by a factor q ¼ 1, 0:25, where q¼ 1 is exactly the same as the above
setting while q ¼ 0:25 corresponds to sparser graphs.

4.2.1. No change-point detection
To study the performance with respect to false positives, we simulate two kinds of
dynamic networks fAtgmt¼1 with no change-point from Graphon 3 and SMB 1 with

Figure 2. ASLs and APs of tests using Graphon 2 for different values of nodes number n, sample sizes
m1 and m2. m1 ¼ m2 ¼ 30 for (a) and (c) and m1 ¼ m2 ¼ 200 for (b) and (d).
(a) HC
(b) SCZ
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h0 ¼ 0 respectively. Tables 1 and 2 report the average number of estimated change-
points by using the five methods.
As one can see, the performance of CP-TWSBM, CP-TWMNBS, and CP-GRA detec-

tions perform reasonably well and improves as n increases. CP-TWAVG detect method
performs well in the case of Graphon 3 while experiences heavy inflated levels in the
case of SBM 1. As for CP-DMNBS detection, the empirical type I error is completely
controlled at the target level 0.05 for SBM 1, but there are some false positives in the
case of Graphon 3.

4.2.2. Single change-point detection
We now assess the accuracy of our proposed TW1-type change-point estimators in dif-
ferent scenarios. The dynamic networks fAtgmt¼1 are designed as follows. For t ¼
1, 2, :::,m=2, At is generated from link probability matrix P1 by SBM 1 with h0 ¼ 0: For
t ¼ m=2þ 1, :::,m, At is generated from P2 by SBM 1 with h0 ¼ )m)1=4:
We adopt Boysen distance suggested in Boysen et al. (2009) as a measurement in the

change-point estimation. Specifically, calculate the distances between the estimated
change-point set Ĵ and the true change-point set J as eðĴ jjJ Þ ¼ maxb2Jmina2Ĵ ja) bj
and eðJ jjĴ Þ ¼ maxb2Ĵ mina2J ja) bj:

Table 1. Average estimated change-points number Ĵ under no change-point scenarios through
Graphon 3.
m n q CP-TWAVG CP-TWSBM CP-TWMNBS CP-GRA CP-DMNBS

100 100 1 0.00 0.00 0.00 0.04 3.75
0.25 0.00 0.00 0.00 0.03 2.04

100 200 1 0.00 0.00 0.00 0.11 0.15
0.25 0.00 0.00 0.00 0.07 0.3

100 300 1 0.00 0.00 0.00 0.04 0.02
0.25 0.00 0.00 0.00 0.04 0.02

200 100 1 0.00 0.00 0.00 0.02 2.02
0.25 0.00 0.00 0.00 0.08 5.16

200 200 1 0.00 0.00 0.00 0.08 0.21
0.25 0.00 0.00 0.00 0.03 0.35

200 300 1 0.00 0.00 0.00 0.05 0.01
0.25 0.00 0.00 0.00 0.08 0.01

Table 2. Average estimated change-points number Ĵ under no change-point scenarios through
SBM 1.
m n q CP-TWAVG CP-TWSBM CP-TWMNBS CP-GRA CP-DMNBS

100 100 1 4.19 0.02 0.02 0.10 0.00
0.25 0.06 0.02 0.02 0.02 0.00

100 200 1 4.21 0.00 0.00 0.04 0.00
0.25 0.16 0.00 0.03 0.03 0.00

100 300 1 4.09 0.01 0.01 0.04 0.00
0.25 0.17 0.02 0.03 0.01 0.00

200 100 1 5.74 0.02 0.02 0.08 0.00
0.25 0.42 0.02 0.07 0.04 0.00

200 200 1 6.34 0.03 0.03 0.07 0.00
0.25 1.13 0.02 0.02 0.01 0.00

200 300 1 6.26 0.02 0.02 0.03 0.00
0.25 2.30 0.01 0.01 0.02 0.00
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Utilizing CP-TWMNBS, CP-TWAVG, CP-TWSBM, CP-GRA, and CP-DMNBS
detections, we estimate the efficient detect rate (the rate at least one change-point is
detected over 100 simulations), the average change-point number over the efficient
detections, and the average Boysen distances over the efficient detections. The corre-
sponding results are listed in Tables 3–5.
Results provided in Tables 3–5 show that CP-TWSBM and CP-TWMNBS detections

yield reliable estimates of the number of change-points and their locations. When q¼ 1,
CP-TWAVG over-estimates the number of change-points, but it’s interesting that it per-
forms well for sparser case of q ¼ 0:25: A possible explanation is that the sparser struc-
ture overcomes its inflated behavior to some extent. As for CP-GRA and CP-DMNBS
detections, the performances of both methods are reasonable in dense scenarios, espe-
cially CP-DMNBS. However, they are unable to detect any change-point for the sparser
setting q ¼ 0:25 in this example.

4.2.3. Three change-points detection
To assess the robustness of our method for change-point detection, we further construct
a model with three change-points in the networks. We first design three types of link
probability matrix changes, which we use to build dynamic networks later. Given a link
probability matrix P, define a changed link probability matrix initialized as P0 ¼ P: For
two given sets M1,M2 - f1, 2, :::, ng, for any i 2 M1 and j 2 M2, the different types
of link probability matrix changes are defined as follows:

1. Coummunity switching: P0
i, $ ¼ Pj, $,P0

$, i ¼ P$, j,P0
j, $ ¼ Pi, $,P0

$, j ¼ P$, i:
2. Community merging: P0

i, $ ¼ Pj, $,P0
$, i ¼ P$, j:

3. Community changing: Regenerate P0
i, j from Graphon 4.

Then the dynamic networks fAtgmt¼1 for multiple change-points are designed as fol-
lows. M1 and M2 are two sets with bn=3c nodes randomly chosen from f1, 2, :::, ng:
For t ¼ 1, 2, :::,m=4, At is generated from P1 by Graphon 2. For t ¼ m=4þ 1, :::,m=2,
At is generated from P2 changed from P1 by community switching. For t ¼ m=2þ
1, :::, 3m=4, At is generated from P3 changed from P2 by community merging. For t ¼
3m=4þ 1, :::,m, At is generated from P4 changed from P3 by community changing. The
results are illustrated in Tables 6–8.
The reports suggest that CP-TWMNBS performs the best in terms of the number,

efficiency and accuracy of change-point estimation. CP-TWSBM enjoys reasonably good
behavior when m¼ 100 while encounters some false positives when m increases to 200.

As for CP-TWAVG, although the estimated change-points number Ĵ in Table 6 are
not far away from real value 3 and the efficient detect rates in Table 7 are all equal to
1, the Boysen distances in Table 8 are sometimes too large to be accepted, i.e., the loca-
tion error can not be controlled stably.
On the other hand, CP-GRA detection suffers greatly under-estimating the change-

points, especially when q ¼ 0:25, there is no change-point detected in all cases. It hap-
pens similarly to CP-DMNBS detection when q ¼ 0:25, so CP-DMNBS is also not the
ideal for this scenario even though it is powerful when the networks are dense.
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Table 3. Average estimated change-points number Ĵ under single change-point scenarios through
SBM 1.
m n q CP-TWAVG CP-TWSBM CP-TWMNBS CP-GRA CP-DMNBS

100 100 1 3.43 1.01 1.01 1.07 1.00
0.25 1.02 0.95 0.98 0.00 0.00

100 200 1 3.50 1.01 1.01 1.09 1.00
0.25 1.04 1.00 1.01 0.00 0.00

100 300 1 3.49 1.01 1.01 1.11 1.00
0.25 1.04 1.00 1.01 0.00 0.00

200 100 1 5.09 1.00 1.00 1.06 1.00
0.25 1.05 0.66 0.73 0.04 0.00

200 200 1 5.52 1.03 1.03 1.11 1.00
0.25 1.51 1.00 1.01 0.00 0.00

200 300 1 5.34 1.00 1.01 1.06 1.00
0.25 2.19 1.00 1.00 0.00 0.00

Table 4. Average efficient detect rate under single change-point scenarios through SBM 1.
m n q CP-TWAVG CP-TWSBM CP-TWMNBS CP-GRA CP-DMNBS

100 100 1 1.00 1.00 1.00 1.00 1.00
0.25 0.97 0.94 0.95 0.00 0.00

100 200 1 1.00 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 0.00 0.00

100 300 1 1.00 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 0.00 0.00

200 100 1 1.00 1.00 1.00 1.00 1.00
0.25 0.88 0.65 0.70 0.03 0.00

200 200 1 1.00 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 0.00 0.00

200 300 1 1.00 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 0.00 0.00

Table 5. Average Boysen distances e1, e2 under single change-point scenarios through SBM 1.
m n q CP-TWAVG CP-TWSBM CP-TWMNBS CP-GRA CP-DMNBS

100 100 1 e1 35.16 0.39 0.39 1.53 0.03
e2 0.00 0.00 0.00 0.00 0.03

0.25 e1 1.62 0.39 0.92 – –
e2 0.13 0.12 0.12 – –

100 200 1 e1 36.09 0.39 0.39 1.80 0.00
e2 0.00 0.00 0.00 0.00 0.00

0.25 e1 0.91 0.00 0.19 – –
e2 0.00 0.00 0.00 – –

100 300 1 e1 35.83 0.31 0.31 2.18 0.00
e2 0.00 0.00 0.00 0.00 0.00

0.25 e1 0.93 0.00 0.36 – –
e2 0.00 0.00 0.00 – –

200 100 1 e1 78.46 0.00 0.00 3.22 0.08
e2 0.00 0.00 0.00 0.06 0.08

0.25 e1 11.51 1.35 3.60 38.00 –
e2 1.34 0.34 1.31 27.33 –

200 200 1 e1 80.86 1.60 1.60 3.88 0.00
e2 0.00 0.00 0.00 0.00 0.00

0.25 e1 23.31 0.01 0.41 – –
e2 0.01 0.01 0.01 – –

200 300 1 e1 78.86 0.00 0.45 2.78 0.00
e2 0.00 0.00 0.00 0.00 0.00

0.25 e1 48.20 0.00 0.00 – –
e2 0.00 0.00 0.00 – –

Note: the dash “-” means there is no change-points detected.
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Table 6. Average estimated change-points number Ĵ under three change-points scenarios.
m n q CP-TWAVG CP-TWSBM CP-TWMNBS CP-GRA CP-DMNBS

100 100 1 3.00 3.00 3.00 0.31 3.00
0.25 1.92 3.40 2.99 0.00 0.02

100 200 1 3.00 3.00 3.00 2.10 3.00
0.25 3.00 3.03 3.00 0.00 0.15

100 300 1 3.00 3.00 3.00 0.00 3.00
0.25 3.00 3.00 3.00 0.00 1.52

200 100 1 3.16 3.00 3.00 2.29 3.02
0.25 2.20 5.35 2.96 0.00 0.07

200 200 1 3.37 3.00 3.00 1.06 3.01
0.25 3.00 4.57 3.01 0.00 1.62

200 300 1 3.57 3.01 3.00 0.11 3.00
0.25 3.00 4.55 3.00 0.00 1.95

Table 7. Average efficient detect rate under three change-points scenarios.
m n q CP-TWAVG CP-TWSBM CP-TWMNBS CP-GRA CP-DMNBS

100 100 1 1.00 1.00 1.00 0.13 1.00
0.25 1.00 1.00 1.00 0.00 0.02

100 200 1 1.00 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 0.00 0.15

100 300 1 1.00 1.00 1.00 0.00 1.00
0.25 1.00 1.00 1.00 0.00 0.96

200 100 1 1.00 1.00 1.00 0.81 1.00
0.25 1.00 1.00 1.00 0.00 0.07

200 200 1 1.00 1.00 1.00 0.39 1.00
0.25 1.00 1.00 1.00 0.00 0.98

200 300 1 1.00 1.00 1.00 0.06 1.00
0.25 1.00 1.00 1.00 0.00 1.00

Table 8. Average Boysen distances e1, e2 under three change-points scenarios.
m n q CP-TWAVG CP-TWSBM CP-TWMNBS CP-GRA CP-DMNBS

100 100 1 e1 0.00 0.01 0.00 8.69 0.02
e2 0.00 0.01 0.00 34.31 0.02

0.25 e1 0.06 5.50 0.15 – 0.00
e2 26.99 0.39 0.40 – 50.00

100 200 1 e1 0.00 0.00 0.00 1.17 0.00
e2 0.00 0.00 0.00 25.10 0.00

0.25 e1 0.00 0.45 0.00 – 0.07
e2 0.00 0.00 0.00 – 50.07

100 300 1 e1 0.00 0.00 0.00 – 0.00
e2 0.00 0.00 0.00 – 0.00

0.25 e1 0.00 0.00 0.00 – 0.03
e2 0.00 0.00 0.00 – 34.90

200 100 1 e1 4.70 0.00 0.00 14.72 0.69
e2 0.00 0.00 0.00 53.96 0.16

0.25 e1 0.08 29.51 0.67 – 0.43
e2 40.01 0.51 3.30 – 79.00

200 200 1 e1 11.27 0.00 0.00 15.72 0.35
e2 0.00 0.00 0.00 61.03 0.04

0.25 e1 0.00 27.64 0.30 – 0.04
e2 0.00 0.03 0.00 – 65.83

200 300 1 e1 17.05 0.33 0.00 11.17 0.00
e2 0.00 0.00 0.00 89.33 0.00

0.25 e1 0.00 27.85 0.00 – 0.07
e2 0.00 0.02 0.00 – 52.47

Note: the dash “-” means there is no change-points detected.
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Overall, the numerical experiments clearly demonstrate the superior performance of
CP-TWMNBS detection over other detect methods for all simulation scenarios with
CP-TWSBM method coming in second. CP-TWMNBS detection provides robust and
stable performance across all experiments with more accurate Ĵ , higher efficient detec-
tion and smaller Boysen distances.

5. Data analysis

In this section, we analyze the performance of the proposed TW1-type method for two-
sample test and TW1-type change-point detection using two real datasets. The first data-
set used for the two-sample test comes from the Centers of Biomedical Research
Excellence (COBRE) and the second dataset used for change-point detection is from
MIT Reality Mining (RM) (Eagle, Pentland, and Lazer 2009).

5.1. Two-sample test with real data example

Raw anatomical and functional scans from 146 subjects of 72 patients with schizophre-
nia (SCZ) and 74 healthy controls (HCs) can be downloaded from a public database
(http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html). In this paper, we use the
processed connectomics dataset in Reli!on et al. (2019). After a series of pre-processing
steps, Reli!on et al. (2019) keeps 54 SCZ and 70 HC subjects for analysis and chooses
264 brain regions of interest as the nodes. For each of the 263 nodes with every other
node, they applies Fisher’s R-to-Z transformation to the cross-correlation matrix of
Pearson r-values.
In our study, we perform the Z-to-R inverse transformation to their dataset to get

the original cross-correlation matrix of Pearson r-values, which is denoted as R. To ana-
lyze graphical properties of these brain functional networks, we need to create an adja-
cency matrix A from R. We set Aij to be 1 if Rij exceeds a threshold T and Aij to be 0
otherwise. There is no generally accepted way to identify an optimal threshold for this
graph construction procedure, we decide to set T varied between 0.3 and 0.7 with step
of 0.05.
For each threshold T, two situations are considered for the two-sample test. In the

first situation, we randomly divide HC into 2 groups with sample sizes m1 ¼ m2 ¼ 35
and calculate the average null hypothesis reject rates of TW1-MNBS test, TW1-AVG
test, TW1-SBM test, v2-type test, and N-type test through 100 repeated simulations. In
the second situation, we apply the same test methods above to two groups of SCZ and
HC directly and compare their average null hypothesis reject rates. In both cases, the
significance level is set to be 0.05. The results are shown in Tables 9 and 10
respectively.
To investigate the performance of the tests, we need to compare the type I error in

Table 9 and the power result in Table 10 together. Table 9 shows that TW1-type tests
based on SBM and AVG have poor performance for the test over HC group because
the reject rates all exceed 0.05 and even equal to 1. From Table 10, it is found that
v2-type test loses power for the test over SCZ and HC groups, where the reject rates are
all 0. Only TW1-type test based on MNBS when T ¼ 0:55, 0:60 and N-type test when
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T % 0:45 can perform well in both situations. In addition, applying MNBS, we illustrate
the adjacency matrices of subject-specific networks of HC and SCZ groups when
T¼ 0.60 in Figure 3. One can find that the two groups do have differences in the net-
work structure.

5.2. Change-point detection in dynamic networks

In this section, we apply CP-TWMNBS, CP-TWAVG, CP-TWSBM, CP-GRA, and CP-
DMNBS detections to perform change-point detection for a phone-call network data
extracted from RM dataset. The data is collected through an experiment conducted by
the MIT Media Laboratory following 106 MIT students and staff using mobile phones
with preinstalled software that can record and send call logs from 2004 to 2005 aca-
demic year. Note that this is different from the MIT proximity network data considered
in Zhao, Chen, and Lin (2019) which is based on the bluetooth scans instead of phone
calls. In this analysis, we are interested in whether phone call patterns changed during
this time, which may reflect a change in relationship among these subjects. 94 of the
106 RM subjects completed the survey, we remain records only within these participants
and filter records before 07=20=2004 due to the extreme scarcity of sample before that

Table 9. Average H0 reject rate of test over HC group over 100 simulations.
T 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

TW 1-AVG 1 1 1 1 0.80 0.67 0.57 0.50 0.44
TW 1-SBM 1 1 1 1 1 1 1 1 1
TW 1-MNBS 1 1 1 1 1 0 0 1 1
v2-type 1 1 0 0 0 0 0 0 0
N-type 1 1 1 0 0 0 0 0 0

Table 10. Average H0 reject rate of test over SCZ and HC groups.
T 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

TW 1-AVG 1 1 1 1 1 0 0 0 0
TW 1-SBM 1 1 1 1 1 1 1 1 1
TW 1-MNBS 1 1 1 1 1 1 1 1 1
v2-type 0 0 0 0 0 0 0 0 0
N-type 1 1 1 1 1 1 1 1 1

Figure 3. Adjacency matrices estimated by MNBS for HC and SCZ groups.
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time. Then there remains 81 subjects left and we construct dynamic networks among
these subjects by day. For each day, construct a network with the subjects as nodes and
a link between two subjects if they had at least one call on that day. We encode the net-
work of each day by an adjacency matrix, with 1 for element (i, j) if there is an edge
between subject i and subject j, and 0 otherwise. Thus, there are in total 310 days from
07=20=2004 to 06=14=2005: The calendar of events is included in the supplementary
material. We claim that an estimated change-point is reasonable if it is at most three
days away from the real dates the event lasts.
We first choose h¼ 7 and Figure 4 plots the results of different methods on the

dynamic networks. The purple shadow areas mark time intervals from the beginning to
the end of events continue on MIT academic calendar 2004–2005, which can be used as
references for the estimated change-points’ occurrences. The red lines in Figure 4 are
the estimated change-points applying different detect methods.
It turns out that CP-TWAVG and CP-DMNBS detections either do not work well or

detect no change-point. CP-TWSBM method detects 20 change-points, CP-TWMNBS
method detects 19 change-points, while CP-GRA detection detects 12 change-points.
When comparing the estimated change-points to intervals of calendar events, we see
that they align each other the best by using CP-TWMNBS detection and then CP-
TWSBM detection, whereas there are more estimated change-points by CP-GRA detec-
tion that can not be explained.

Figure 4. Calendar time intervals of events and estimated change-points.
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However, it’s observed that some of the change-points detected by CP-TWSBM and
CP-TWMNBS methods can be a little trivial. For example, CP-TWMNBS detected a
change-point occurred at around 01/09/2004, which is near event “English Evaluate Test
for International Students” in the calendar. To ignore the less significant events, we
only consider the seemingly major events displayed in bold in the calendar as possible
reasons for estimated change-points and set h¼ 14, which corresponds to 2weeks. The
details are reported in Table 11. The CP-TWMNBS and CP-TWSBM methods detect 9
change-points, CP-GRA method detects 13 change-points. Notably CP-GRA method
still labels more trivial change-points away from the important events. Based on the
results, it is most likely valid in saying that CP-TWSBM and CP-TWMNBS detections
are more reliable.

6. Conclusion

We consider the problem of hypothesis testing on whether two populations of networks
defined on a common vertex set are from the same distribution. Two-sample testing on
populations of networks is a challenging task especially when the the number of nodes
is large. We propose a general TW1-type test (which is later adapted to a change-point
detection procedure in dynamic networks), derive its asymptotic distribution and
asymptotic power. The test statistics utilizes some plugin estimates for the link probabil-
ity matrices and properties of the resulting tests with various estimates are discussed by
evaluating and comparing TW1-type tests based on MNBS, AVG, SBM theoretically,
and numerically with both simulated and real data. From the simulation study, we see
that the proposed TW1-type test based on MNBS performs the best and yields robust
results even when the structure is sparse. In addition, we provide a significant modifica-
tion of the two-sample network test for change-point detection in dynamic networks.
Simulation and real data analyses show that the procedure is consistent, principled and
practically viable.
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