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Bernstein-Sato theory for arbitrary ideals in positive characteristic

Eamon Quinlan-Gallego *

May 17, 2020

Abstract

Mustata defined Bernstein-Sato polynomials in prime characteristic for principal ideals and proved
that the roots of these polynomials are related to the F-jumping numbers of the ideal. This approach
was later refined by Bitoun. Here we generalize these techniques to develop analogous notions for the
case of arbitrary ideals and prove that these have similar connections to F-jumping numbers.

1 Introduction

Let R = Clxy,...,2,] be a polynomial ring over C. We denote by Dpg the ring of C-linear differential
operators on R, i.e. the ring generated by R and its derivations inside of End¢(R). Let f € R be a nonzero
polynomial. Bernstein [Ber72] and Sato [Sat90] independently, and in different contexts, discovered the
following fact: there is a nonzero polynomial b(s) € C[s] and a differential operator P(s) € Dg[s] satisfying
the following functional equation:

P(s)- fF1 =b(s)f*.

The monic polynomial bs(s) of least degree for which there is some P(s) € Dgls] satisfying the above
equation is called the Bernstein-Sato polynomial for f.

In the case where f defines an isolated singularity it was proven by Malgrange [Mal75] that the roots of by(s)
are negative and rational. This was later extended by Kashiwara [Kas77] to the case of arbitrary f by using
resolution of singularities. In particular, we have that by(s) € QIs].

Since its inception the Bernstein-Sato polynomial has seen a wide variety of applications. In [Mal74] Mal-
grange exhibited a relation between the roots of bs(s) and the eigenvalues of the monodromy action on the
cohomology of the Milnor fibre of f. Kashiwara [Kas83] and Malgrange [Mal83] also used the existence of
Bernstein-Sato polynomials to define V-filtrations with the purpose of defining nearby and vanishing cycles
at the level of D-modules. Coming full circle, Budur, Mustata and Saito then used this theory of V-filtrations
to define the Bernstein-Sato polynomial b, (s) of an arbitrary ideal a C R.

A key application of the theory of Bernstein-Sato polynomials, critical in our motivation, comes from the
relationship between its roots and the jumping numbers for multiplier ideals. Since this relationship holds
for the Bernstein-Sato polynomials of [BMS06a] (i.e. those of general ideals a C R) let us explain it in this
more general case.

Let a C R be an ideal and suppose that A > 0 is a real number. Using a log-resolution of a one can define
the multiplier ideal J(a*) of a with exponent A (see [Laz04] for details). The J(a*) are ideals of R satisfying
the following two properties:

(i) If A < g then J(at) D J(a®).
(ii) For all A > 0 there exists some € > 0 such that J(a*) = J(a*) for all g € [\, X + €.
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An real number \ for which one has J(a%) # J(a*) for all i < X is called a jumping number for a. The set of
jumping numbers is discrete and rational, and the smallest jumping number «, (the so-called log-canonical
threshold of a) is an important invariant in singularity theory. The connection to the theory of Bernstein-
Sato polynomials comes from the following fact: « is the smallest root of b,(—s), and every jumping number
in the interval [a, @ + 1) is a root of bq(—s) [Kol96], [ELSV04], [BMS06a, Thm. 2].

A characteristic p > 0 analogue of the multiplier ideal .J(a*) is given by the test ideal 7(a*) (c.f. Definition
2.4). The notion of test ideal originally comes from the theory of tight closure of Hochster and Huneke
[HH90], and was later generalized by Hara and Yoshida [HY03]. The test ideals 7(a*) satisfy properties
(i) and (ii) and thus one can analogously define jumping numbers for the test ideal (so-called F-jumping
numbers of a), which are therefore characteristic-p analogues of jumping numbers for the multiplier ideal.
The set of F-jumping numbers is known to be discrete and rational (see [BMSO08] for the finite-type regular
case, and [ST14] for greater generality).

As mentioned, in characteristic zero the Bernstein-Sato polynomial b4(s) carries information about the
jumping numbers of a. The existence of characteristic-p analogues of jumping numbers suggests that there is
a Bernstein-Sato theory in positive characteristic. This hope is emboldened by the fact that the Bernstein-
Sato polynomial b,(s) of a (in characteristic zero) has been related to other characteristic-p invariants of
mod-p reductions of a [MTWO05].

In [Mus09], Mustata began this line of research and developed a Bernstein-Sato theory in prime characteristic
for principal ideals a = (f). Since then this technique has been refined by Bitoun [Bit18] and has been
extended to the setting of unit F-modules [Stal2] and F-regular Cartier modules [BS16]. In this work we
provide the first instance of Bernstein-Sato theory in positive characteristic where a is an arbitrary ideal.
We do this by generalizing the work of Mustata and some of the work of Bitoun and as such we still work
in the ring setting; that is, we do not consider F-modules or Cartier modules although an extension of our
work to these settings might be possible.

Let us summarize the work of Mustatd. Suppose that R be a regular F-finite ring and that a = (f) is a
principal ideal of R. Over C the Bernstein-Sato polynomial is defined in [BMS06a] as the minimal polynomial
of an operator s; acting on a certain module Ny, and Mustata observed that the module can be defined in
prime characteristic but that, instead of considering a single operator s1, one should consider the action of
an infinite family {s,: : i = 0,1,...}. Moreover, in characteristic p > 0 the module N; can be expressed as
a direct limit
: (&
Nr =l Ny,

where for all e the module N carries an action of the first e operators sp0,...,5,.-1 and the transition map

P
N]? — N]?H is linear with respect to these.

The operators s, satisfy two crucial properties: they are pairwise commuting and satisfy sg ; = 8pi. Observe

that because we are in characteristic p > 0 the latter is equivalent to f;é (spi —7) = 0. It then follows

that if e > 0 is fixed then every module over [Fy,[s,0, ..., spe-1] splits as a direct sum of multi-eigenspaces. In
particular, for all e > 0 we have decompositions

Nf = @ (Vo
acly

where, given a = (ag,...,ac—1) € F}, the subspace (N;?)a consists of those elements v € N§ for which
Spi-u = g -u for all i = 0,1,...,e — 1. In [Mus09] Mustata proves that the modules N§ carry the
information about the F-jumping numbers of f (c.f. Definition 2.5) in the following way.

Theorem ([Mus09]). Let e >0 and a = (ao,...,ac—1) € Fy. Then the following are equivalent.

(1) The module (N§)a is nonzero.
(2) There is an F-jumping number of f in the interval

ag+par+ -+ p e agtpar ++p T lae 4+ 1
pe ’ pe

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



In (2) we have implicitly identified each «; € F, with its unique representative in {0,...,p — 1}. Also
note that condition (2) is equivalent to the existence of an F-jumping number A € (0, 1] of f whose base-p
expansion starts with A = ae_1p™' + Qe_ap 2 + - -+ + app ¢ — where we take the base-p expansion that is
eventually nonzero. Mustata defines a collection of polynomials associated to f. He calls these Bernstein-
Sato polynomials, but we have found that the naive extension of this definition to the monomial case does
not give the desired result and thus we prefer the name “approximating polynomials”.

Definition ([Mus09]). Let e > 0. The e-th approximating polynomial of f (called Bernstein-Sato polyno-
mials in [Mus09], and denoted b%(s)) is

; ag +pas + -+ P e
af(s) == H s — .

€
{a€Fe:(Ng)a 0} p

Mustata’s theorem then gives the following.

Corollary ([Mus09]). For every e > 0 the roots of a$(s) are given by the rational numbers % as A

ranges through all F-jumping numbers of f in (0,1].

In Section 3 we follow Mustatd’s approach and define approximating polynomials a&(s) for the case of an
arbitrary ideal a in positive characteristic. We then show that these polynomials still retain information
about the F-jumping numbers of a. First of all, the roots of a¢(s) are related to the v-invariants v (p®) of
[MTWO5] (c.f. Definition 4.1) as follows.

Theorem (4.7). Let e > 0 be an integer. Then all roots of a(s) are simple and lie in [0, 1)QZ#. Moreover,

the roots are given by = — [z ] where v ranges through all v-invariants vl (p®).

Secondly, if eq is large enough (more precisely, a stable exponent for a, see Definition 4.9) then the roots of
atote(s) give approximations to the decimal parts of the F-jumping numbers of a, and these approximations
are accurate in the order of 1/p°.

Theorem (4.12). Let ey be a stable exponent and fix integers e > 0 and 0 < k < p®. Then the following are

equivalent.
(1) There is a root of a®te(s) in [ﬁ, k;:zl)-
2) There is an F-jumping number of a in (&£ 5] + N.
e p

Our second goal is to generalize some the results of Bitoun from [Bit18], which we describe briefly. First
of all observe that as e gets bigger the approximating polynomials of Mustata give increasingly better
approximations to the F-jumping numbers of f. We would expect then that if we consider the direct limit
Ny = lige N% one may be able to recover the F-jumping exponents of f from this module only. To state
Bitoun’s theorem let us introduce some notation.

Given a p-adic integer 8 € Z, we let 3; be the unique integers with 0 < 8; < p such that 8 = 5y + pB1 +
p?Ba + -+ . We then define
(Ng)p :=A{u € Ny : spi - u= PBu for all i}.

Bitoun’s result is then as follows.
Theorem ([Bit18]). We have a decomposition Ny = @gez (Ny)s and, moreover,
{BeZy:(Ny)p# 0} = —FJ(a)N(0,1]NZ),
where FJ(a) is the collection of F-jumping numbers of a.
In [Bit18] the Bernstein-Sato polynomial of a is defined as an ideal in the algebra Fun®*(Z,,F,) of continuous

functions from Zj, to F,. A notion of root for such an ideal is also developed in such a way that the p-adic
numbers /5 for which (Ny)g # 0 are the roots of the Bernstein-Sato polynomial.
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In Section 5 we develop some abstract theory with the goal of generalizing Bitoun’s result to arbitrary a,
which we achieve in Section 6. For simplicity we have chosen to sidestep Bitoun’s definition of Bernstein-Sato
polynomial and, instead, we define its roots directly, which we call Bernstein-Sato roots.

Theorem /Definition.

(a) (Prop. 6.1)We have a decomposition No = @Bgcy (Na)s and, moreover, the set BS(a) :={f € Zj :
(Nq)s # 0} is finite. We call an element of BS(a) a Bernstein-Sato root of a.

(b) (Thm. 6.7)The Bernstein-Sato roots of a are rational and negative.

(¢c) (Thm. 6.11) We have
BS(a)+Z = —FJ(a) N Zg + Z

where F'J(a) is the collection of F-jumping numbers of a.

The definition of Bernstein-Sato roots is better behaved than one might expect at first glance. Firstly, in
a certain sense the definition given above is compatible with the one in characteristic-zero (see Subsection
6.1). Moreover, in [QG] we show, using results from [BMS06b], that if a C Z[zq,...,2,] is a monomial
ideal then the set of roots of ba.(s) (the Bernstein-Sato polynomial of the expansion of a to Clxy,...,z,])
coincides with the set of Bernstein-Sato roots (in the above sense) of a,,, the image of a in F[z1,...,z,], for
p large enough. In Proposition 6.13 we are also able to give a characterization of the Bernstein-Sato roots
of a purely in terms of the v-invariants of Mustatad, Takagi and Watanabe [MTWO05].

Finally, let us remark that in [Bit18] Bitoun is able to give Ny a unit F-module structure. This was later
generalized by Stébler to the setting of F-regular Cartier modules in [Std17]. We do not pursue the question
of whether a similar statement can be made for N, in this paper.

Let us set up some notation. Given a k-algebra R we denote by Dpy, or simply by Dg, its ring of k-linear
differential operators in the sense of Grothendieck [Gro65, §16.8]. We say that a ring R of characteristic
p > 0 is F-finite if R is finite as a module over its subring RP. Whenever R is an F-finite ring of characteristic
p > 0 we write Dj := Endg, (R); in this setting we have that Dpgj, = UsZ,D% for every perfect field &
contained in R [Yek92] [SVdB97, Rmk. 2.5.1] (if no reference to k is made, we always take k =TF,).

We will use multi-index notation. That is, given a tuple b = (b1, ..., b,) of integers and a tuple g = (g1, ..., gr)
of elements in a ring we have g2 = gll’1 ---glr. We also use multi-index notation on binomial coefficients:
given another tuple a¢ we have (%) = [1: (Z’) We denote by 1 the tuple 1 := (1,1,...,1). Finally, we

i=1 b,
denote |b| = b1 + -+ + b,
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2 Background

2.1 V-filtrations
Let S be a regular F-finite ring of characteristic p > 0 and I C S be an ideal. As mentioned previously, in
this setting we have Dg = U2 ;D% where DS := Endgpe (.5).

We begin by observing that the V-filtration of Kashiwara and Malgrange on the ring of differential operators
can be defined in characteristic p. Moreover, in this setting the ideal I induces decreasing filtrations V' on
Dg and all its subrings D% by setting, for all e > 0 and ¢ € Z,

VD¢ = {¢ € DE|¢- P C P for all j € Z}
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and similarly for Dg. We use the convention that I™ = S whenever n < 0. Observe that the filtration V is
indexed by Z and decreasing. We will only be concerned with V-filtrations arising in the following setting:
let R be an F-finite regular ring of characteristic p > 0, S = R[t1,...,t.] be a polynomial ring over R and
I=(t1,...,t,) CS. We can give S an Ny-grading by setting degt; = 1 for all 4. This induces a Z-grading
on all D¢ (since S is F-finite) and thus on Dg. Given d € Z we denote by Sy (resp. (Dg)q, (Ds)q) the set
of homogeneous elements of degree d in S (resp. Dg, D%).

Lemma 2.1. Let R, S and I be as above and let i € Z.
(a) We have VD¢ = (D%)>; for alle >0 and V' Dg = (Dg)>;.
(b) Suppose i > 0. Then (D%); = Si(D%)o = (D%)0S;-
(¢c) Suppose i > 0. Then V'Dg = I'VOD¢ = VODSI'.

Proof. We first prove (a). Let e > 0, and we will show VD% = (D%)>;. The result for Dg will follow.

It is clear that V'D% D (D%)>;. For the other inclusion, let £ € VD% and let £ = >, & where &4 is
homogeneous of degree d. By subtracting we may assume that d < ¢ whenever £; # 0. Suppose for a
contradiction that & # 0 and let dy := max{d : & # 0}. As &4, # 0 there exists some homogeneous g € S

of degree m such that £4,(g) # 0. By multiplying by tlfle for some sufficiently large [ we may assume that
m > —do.

On the one hand, since £ € VD¢ we have Y &4(g) = £(g) € I™T. On the other hand, the homogeneous
component &4, (g) of £(g) has degree m + dyp < m +1i. As &4,(g) # 0, this is a contradiction.

Let us now prove (b). Let P =Fp[ty,...,t.] with degt; = 1, so that S = R®p, P. Given differential operators
¢ € DY, and i € D% there is a unique differential operator ®¢ , € D% determined by ®¢ ,(rt*) = &(r)n(t%)
for all 7 € R,a € Njj. The assignment [ ® n — ®¢,] induces an isomorphism D%, ®r, D% = D¢ which
identifies (Dg); = D% ®F, (Dp); for all i € Z and thus it suffices to prove the statement for S = P, i.e.
R=F,.

We thus assume S = P. Let L := {a € N[ : 0 < oj < p°} and, given a € L denote |a| := a1 + -+ + a,.
Observe that an operator in D§g is uniquely determined by its action on monomials t* with a € L. Given

a € L we define 0, € Dg by 04 -t* =1 and o - t8 =0 for all &« # € L. With this notation we have
Dg = @1, Soo and therefore (Dg); = @, cp Sjaj+i0a = Si(Dg)o, which gives the first equality.

We now prove the second equality. First observe that the containment (D%)oS; C (Dg); is clear. Next
notice that by our previous discussion (Dg); is spanned over F, by operators of the form z7o, where

a€l

|v| = |a| + ¢ (where we use multi-index notation) and thus it suffices to show that such an operator is in
(D%)oSi- Let 79,71 be multi-exponents with 79 € L such that 27 = P g, Let B € L be such that
roaP = 2 R 22"~ and let 7 = O(pe—1,....pc—1) (an operator of degree —r(p® —1)). Observe that

2oy =2 12’ = 207z 2P,
We claim that the degree of 27" 2# is at least i, i.e. that p°|yi| + || > i. This follows because
i+ laf = p°Iml + Il

> p°Iml +r(p®—1)
=l + 18] + |af.

From the claim we conclude that there exist monomials 7 and z¥ with |v| = i and zP*"2f = 272",
By the above equalities, we have 270, = x°7z#z”. The degree of the operator z7°7x* is zero and thus
Vo, € (Dg)osi.

Part (c) follows by combining (a) and (b) and the observation I* = S>;. O
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2.2 The ring Ci and test ideals

Let R be aregular F-finite ring of characteristic p > 0. We denote by F' : R — R the Frobenius endomorphism
on R and, given an integer e > 0, we denote by F*° its e-th iterate. We define F¢ : Mod(R) — Mod(R) to be
the functor that restricts scalars via F'°. The R-module F¢R is then equal to R as an abelian group and we
will denote an element r € R as F¢r when viewed as an element of F?R. In this way, the R-module action
on F¢R is given by s - Fér = F¢(s?°r) for all 5,7 € R. Given an ideal I C R and e > 0 we define an ideal
TPl .= (fP° . f € I). We begin by defining the ring Cr, which will act on R. This definition is taken from
[Bli13, Def. 2.2, Ex. 2.3].

Definition 2.2. We denote C§ := Hompg(FFR, R). The algebra Cg of Cartier linear operators on R is given
by Cr = @ego C% as an abelian group with multiplication defined as follows: if o € C¢ and 8 € C? then

a~ﬁ:=a0Ff5€C§+d.

This makes Cg into a noncommutative ring, which acts on R on the left by ¢ - f := ¢(F¢f) for ¢ € C§
and f € R. In particular, given an ideal I C R and an integer e > 0, Cf - I is the ideal generated by
{¢(FEr) : ¢ € C5,,r € I}. These ideals have been considered in the past with varying notation: see, for
example, [AMHNBI17], [AMBLO05] (where C§ - f is denoted I.(f)) and [BMS09] (where C%, - I is denoted
I1V/P] which is also the notation used by Mustata in [Mus09]).

Recall that in our setting the ring Dp of differential operators on R is given by Dr = |, D% where
D%, := Endpye (R). Our next lemma relates the actions of D%, and C%. It is well-known to experts and parts
of it are proved in the aforementioned references. We include a proof for completeness.

Lemma 2.3. Let I,J C R be ideals and e > 0 be an integer. Then:
(a) We have D%, - I = (C - T)[P°L.
(b) One has C§, -1 C J if and only if I C JPl
(c) One has D%, -1 = D% - J if and only if C4 - I =C5, - J.

Proof. We begin with (a). Let 1353 := Endg(FER) and observe that the natural identification of R and F¢R
identifies D% and D%. Because R is regular and F-finite, Kunz’s theorem gives that F¢R is locally free of
finite rank. It follows that the map FYR ®gr Cy — D% given by

Fér@ ¢ — [Fis s F2(r¢(Fes)P)]

is an isomorphism. We thus get F€(D - I) = D%(F2I) = F¢((C% - I)IPN), which proves the statement.

For (b), the “if” direction is clear. For the “only if” direction, observe that I C D%-T and D%-I = (C§,-I)P"]
by part (a).

For (c), the “if” direction follows from part (a) so let us prove the “only if” implication. If DG - I = D%, - J
then, by part (a), (C% - )Pl = (C% - J)IP"l. By applying a splitting of the Frobenius map R — F¢R to both
sides of this equality, one gets C¢ - I =Cg - J O

We now define the test ideal. As we will only be concerned with the case where R is regular we will take the
following description as our definition.

Definition 2.4. Let a C R be an ideal and A € Ry . Then the test ideal for a with exponent A is
() = g - al" ]
e=0

We observe that the union on the right-hand side is an increasing union of ideals and that, since R is
noetherian, 7(a*) = C% - al*"1 for some d large enough. If A < g it follows from the definition that
7(a*) C 7(a*). Moreover, given \ there exists some € > 0 such that 7(a*) = 7(a*) for all u € [A\,\ + €
[BMS08, Cor. 2.16].
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Definition 2.5. We say ) is an F-jumping number for a if for all € > 0 we have 7(a*~¢) # 7(a*).

The set of F-jumping numbers forms a discrete subset in R and all F-jumping numbers are rational (see
[BMS08, Thm. 3.1] for the case where R is essentially of finite type over an F-finite field, and [ST14, Thm.
B] for the more general statement).

We will repeatedly use the following standard result about test ideals. We note that the regularity assumption
on R can be relaxed [HT04, Thm. 4.2], but the proof is much easier in this case (especially when using the
definition of test ideal given above).

Proposition 2.6 (Skoda-type theorem). Let R be a reqular F-finite ring, a C R be an ideal generated by r
elements and A\ > r be a real number. Then:

(a) For all e > 0 we have C§ - alPA = a CHalP*O=D1,
(b) We have 7(a*) = a 7(a*~1).

(¢) If X is an F-jumping number for a then so is A — r.

Proof. See the proof of [BMS08, Prop. 2.25]. O

3 The multi-eigenspace decomposition of the modules N}

In this section we follow Mustata’s approach from [Mus09] to develop a Bernstein-Sato theory in positive
characteristic. This technique relies on the construction of certain modules N¢ which carry an action of
certain operators syi, and subsequent analysis of this action.

Fix a nonzero ideal a C R and let us choose generators f1,..., f, for a. To this data we will associate some
modules Ng, where e > 1 is an integer.

Let us first set up some notation. We let t = (t1,...,%,) be a set of variables and by R[t] we denote the
polynomial ring R[t] := R[t1,...,t,]. Let J := (f1 —t1,..., fr — t;) C R[t], which is the ideal of the graph
X — X x A" of the functions f,..., f,, where X = Spec R.

We consider the local cohomology module H R[t]. Via the Cech complex on the generators (fi—t;) for J we
write this module as H}R[t] = @, ¢y~ R0, where, if v = (v1,...,1,) then §, denotes the class of (f —1)™"
(recall we use multi-index notation). We denote 0 := 6(1,1,...,1). We equip Dgpy with the V-filtration induced
by the ideal (¢) = (t1,...,t,).

Given e > 0 we define

NE .— Ve DR[t] J (1)
o
V1iDe R 6
Note that the construction of this module depends on the original choice of generators (f1,..., f.) for a.

Remark 3.1. In characteristic zero one considers the module V°D R[t] 6/V'Dpgpy - 6 [BMSO06a]. Observe
that in characteristic p > 0 we have maps N¢ — N¢*! and that hg VODR[t] A% Dpgyy) - 6. We thus
think of the N¢ as providing a filtration of the module that comes from characteristic zero. We will explore
this limiting process further in Sections 5 and 6.

As mentioned, a key ingredient in the construction will be to consider the action of certain operators s,: on
the modules N¢. We will next define these operators and describe their basic properties.

3.1 The operators s,,

Let R be an A-algebra and consider a polynomial ring R[t] := R|[t1,...,t,] over R. Given a multi-exponent
a € Njj we denote by QEQ] the “divided power differential operator”: 8%] is the unique R-linear operator that
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acts on a monomial t£ by 8t[g] tE = (5) tE=a. From the definition one easily checks that 8t[g] at[é] = (Q;LQ) 8£2+Q].

If A is a field of characteristic zero one has 8t[g] = Lof.
For every positive integer m € N we define the A-linear differential operator

smo= (1) Y o,

a€Nj
la|=m

The operators s,, also depend on R and r but we suppress these from the notation as they will always be
clear from context. Even though we defined them for all m > 0, in a characteristic-p setup we will only be
interested in operators s,, where m = p* for some 4, since these generate all the other s,, (c.f. Proposition

3.3(d)).
Given an integer n > 0 we denote by n; the i-th digit in the base-p expansion of n. That is to say, the n;
are integers with 0 < n; < p and such that n = ng + pni + p*ny + ---. We have the following fact about

binomial coefficients mod p.
Lemma 3.2 (Lucas’ Theorem). Let m,n > 0 be integers. Then

(1) =T0() moan

Jj=0

Observe that since for j large enough one has m; = n; = 0 and (8) = 1 by convention the right-hand side
of this congruence has a well-defined value.

Proof. One equates the coefficient of ™ on the two sides of the following equality in F,[z]: (1 4+ z)™ =
[152(1 + 2P )™, O
We now prove some basic results about our operators s,.

Proposition 3.3. Let R be an A-algebra. The operators s, on R[t1,...,t.] defined above satisfy the fol-
lowing properties:

(a) They are pairwise commuting, i.e. S, 8, = S18m for all m,l € N.
(b) We have mls,, =s1(s1—1)---(s1 —m+1).
(c) If a € Nj is a multi-exponent then for all m > 0 we have

-1
sm.tau)m('“'*”m )t“.

m

If R has prime characteristic p then we also have:

(d) For every integer e > 0 we have an equality
Fpls1,82,...,8pe—1] = Fpls1,5p, Sp2, ..., Spe—1

of subalgebras of Dy, ...+,

(e) Fiz an integer e > 0 and a multi-exponent a € Nj. Then for all i < e we have

Spi P -Dl-a _ la); t2.

(f) Given integers 0 < i < e, the operator sy is in DEM.

(9) The operators {syi :i=0,1,...} satisfy sz,; = 5,1 or, equivalently, Hjer (spi —J) =0.
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(h) Given e >0 and a module M over Fp[s,0,8p1,...,5,e-1] the module M splits as a direct sum

M= P M,

a€clg
where for all o = (g, ..., Qe_1) € [y and all 0 < i < e the operator s, acts on M, by the scalar ;.

Proof. We first notice that if a € Nj is a multi-exponent then it is clear from the definition that s,, acts on
the monomial ¢* by an integer scalar (in fact, (c¢) will say what scalar it is). Statement (a) follows.

We claim that ms,, = s;,—1(s1 — m + 1), which will prove (b). One first checks that

Ot 0it; = (a+ 1) et — ao e,

i

and the claim then follows from the following computation:

( 3 at[“]t‘l)(iatiti)
la]l=m—1 =1

SN g ((ai 1ottt aﬁ,[f”t“i) o oferllar]

|la|=m—1 i=1

= >0 (a1 g et g

la|=m—1 i=1

(—1)m8m,181

T Z i(*ai)ai?l]t‘lll .. ‘aifr]tkl"]

la|=m—1i=1

=m(=1)"s,, — (m —1)(=1)""ts,,_1.

We now turn to (c). The operator s, on Rl[t1,...,t,] is, by definition, the extension of the operator s,, on

Z[t1,...,tr]. We therefore restrict to the case A = R =Z. On the monomial t2 the operator s; acts by the
scalar —|a| — r and, from part (b), we conclude that s,, acts by the scalar
1 la| +74+m—1

il =)l == 1)l = = = (1 )

m

as required.

Suppose now that R has characteristic p > 0, and let us prove (d). First recall that every differential operator
on R[t,...,t,] also acts on the localization R[tT!, ... '] and, moreover, the formula from part (c) is still
true for all multi-exponents a € Z".

From part (c) we know that each s,, acts on a monomial t¢ by an F,-scalar that depends only on |a|. Given
& € Fpls1,82,...,8pe—1] and k € Z let ¢({, k) € Fp, be the scalar such that & - t2 = ¢(§, k)t® for all ¢ € Z7
with |a| = k. Let Fun(Z,F,) be the F,-algebra of functions from Z to F,, consider the injective F,-algebra
homomorphism ® : F,[s1, s2,. .., Spe—1] = Fun(Z,F,) given by ®(£)(k) = c(§,k —r — m + 1). If we denote
by () € Fun(Z,F,) the function [z > ()], we note that ®((—1)"sy,) = () for all m =0,1,...,p° — 1.
We conclude that the image of ® is precisely the Fj-subalgebra of Fun(Z,F,) generated by the functions
(n'@) for m =0,1,...,p° — 1. This is known to be precisely the subalgebra of periodic functions with period
p° [Rob00, §4.1.3]. The presentation of the subalgebra Fy[s,0, 5,1, ..., 5,.-1] obtained in Lemma 5.2 proves
that it also has dimension p°®. The statement follows.

We now prove (e). From part (c) it follows that s, acts on ¢t(P"~D1=2 by the scalar:

_(I(pe—l)ﬂl —|a|+r+pi—1> _ _<Tpe—|a|+pi—1>

p p
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From Lucas’ Theorem (Lemma 3.2) it follows that (;’f) = m; mod p, where m; is the i-th digit in the base-p
expansion of m. We conclude that the scalar above is equal to

—(rp® —lal+p' = 1)i = =(rp" =1~ lal)i =1 = ~(p— 1 —|al;) - 1 = |al;

as required. From part (e) we deduce that if a € Nj is a multi-exponent then, for all i < e, the operator s

acts on monomials % and ¢! "1 by the same scalar. Part (f) follows. Part (g) follows from the fact that the
operators s,: act on monomials ¢* by IF,-scalars.

From parts (a) and (g) it follows that the subalgebra I} [s,0, 5,1, ..., 5,e-1] is a quotient of the algebra

]Fp[m(bxl?"'vxefl] ~ H ]Fp[‘r(hxlv"’,xefl}
—1 . . - R g — —
(Mo =) 1i=0,1e=1) (o @im i =01 e—1)

(in fact, we will see in Lemma 5.2 that there are no more relations). Part (h) follows. O

We refer to the decomposition in Proposition 3.3 (h) as the multi-eigenspace decomposition of M with respect
to 8p0,...,8pe—1. The following example of this property will be crucial.

Example 3.4. Let e > 0 and let us consider the action of sy0,...,sp-1 on T := R[t] = Rl[ty,...,t,]. For
all a = (g, ..., ac—1) € Ff, the module Ty, is generated over R[tﬁ)e, ...,12°] by the monomials
{t®P"=Dl=a | g4 e {0,...,p° —1}" and |a| = |o| mod p°},

where || = ag + pag + -+ + p¢~!

{0,1,...,p—1}.

o1 after identifying each a; € F, with its unique representative in

Let us note that the local cohomology module H’; R|[t] is a D gpy-module (for example, via the Cech complex)
and that N¢ is a module over the ring VOD%[t . It follows from Proposition 3.3 (f), and the observation
that the s, have degree zero in the t’s, that tLe operators $,0,8p1,...,8p-1 act on the module Ng. By
Proposition 3.3 (h) N¢ has an multi-eigenspace decomposition with respect to the operators sy, ..., Spe-1.
Our next goal will be to describe this decomposition, which achieved in Theorem 3.11.

3.2 The module H’R[t] in positive characteristic

In the construction of our module N, at the beginning of Section 3 our first step was to consider the module
H7(R[t]), which we construct via the Cech complex on the generators (f; — t1),...,(f, —t.). As above,
given v € N” we let 6, € H}R[t] be the class of (fi — 1) --- (fr —t,) """ It follows that H}R[t] is a free
R-module on the d,,. We let 6 := 61 1. 1)

The module H}RJ[t] has a very useful extra structure in positive characteristic — that of a unit F-module
over R[t]. Let us quickly recall the definition.

We denote by R[t]®) the (R[t], R[t])-bimodule which is R[t] on the left and FER[t] on the right.

Definition 3.5. A unit F-module over R[t] is an R[t]-module M together with an isomorphism vy :
R[] @py M = M.

The data of the map v is equivalent to that of a an additive map F' : M — M satisfying F(gu) = g?F (u) for
all g € R[t] and u € M, where the equivalence is given by v1(g®u) = gF (u), and F(u) = n(1®u). If M isa
unit F-module over R[] we can iterate the structure map v to obtain an isomorphism v, : R[t](®) @ gy M =5
M. A unit F-module over R[t] has a natural Dgjy-module structure, where an operator § € D;[t] acts
naturally on the left side of the tensor R[t](®) ® M. One can therefore ask what the decomposition from
Proposition 3.3 (h) looks like. The answer is as follows.

10
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Lemma 3.6. Let M be a unit F-module over R[t]. Fiz e >0 and let « = (ap,...,ac—1) € F;,. Then
My =v.(To ® M)

where T, is as in Example 3.4.

Proof. From Example 3.4 we have that the multi-eigenspace decomposition for R[t](®) is R[t](©) = @ T,. We
thus have M = v.(R©@M) = @, ve(Toa®M) and, as the operators s,: act by s, Ve (g@u) = ve((sp:-g)@u),
this gives the multi-eigenspace decomposition of M. O

The module R[t] is itself a unit F-module, as well as any of its localizations. The cokernel of a map of
unit F-modules is also a unit F-module. By considering the Cech complex it follows that H R[t] is a unit
F-module. The unit F-module structure on HR]t] is given by v1(g ® d,) = gdp..

Given an e > 0 and an r-tuple a € {0,...,p° — 1}", set
Q= vt e @ 5).

By Lemma 3.6, Qg is an eigenvector for the multi-eigenvalue o € Fy, where a; = |al;.

Our first goal will be to show the following.

Proposition 3.7. Fiz e > 0. Then the elements {Qg : 0 < a; < p°} are linearly independent over R.

Before we begin, we remark that just as in [Mus09] it is true that for a fixed e > 0 the elements v, (t?" -1 -2g
d,) as v ranges through {0,...,p°—1}" form an R-basis for the module H} R[t]. However we will only require
the result above.

We first want to express the elements Qg in terms of the R-basis d,.

Lemma 3.8. Let e and a be as above. Let E, be the set of r-tuples of integers (i1,...,i,) with 0 < i; <
p® —1—a; for all j. We then have

= Z Uie,a,i) 01 +atis

1€Eq

Uogp) = (—1)lelHl <(Pe -1 a>.

7

where

Proof. We have
Qo =ve (<f —(f-p) g 5)
_ Z |a|+|z|( 1i)]l _a)fiye ((f—t)(l)e—l)l—a—i@@é),

i€k,
where the second equality follows from the multi-variate binomial theorem. The proof is complete once we
observe the fact that ve((f — )2 ® &) = Speq_p. O

Given an integer n > 0 let F;, be the R-module spanned by 4, for which Zj v; >n.

Lemma 3.9. Suppose {q, : a € N"} is a collection of elements satisfying
o = 5(1 mod Fa1+"'+ar

for all a € N". Then the {q,} are linearly independent over R.

11
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Proof. Suppose we had a relation
Pida, -+ Thda, =0

and assume for a contradiction that all 7; # 0. Let a;; be the entries of a;, i.e. a; = (ai1,...,air). Let
n:=min{a;; +---+a;:i=1,...,k}

and by relabeling assume that n = a1+ -+ a1, =+ =ag1 +---+as and n < a;; +- - -+ a;, for all i > s.
By considering the relation modulo F;, we obtain

710q, + "+ 7504, =0 mod F,.

Recall that H}R[t] is a free R-module on the basis d,. It follows that H}R[t]/F,, is a free module on the
basis {0, : a1 + - - - + a, < n}, which implies that r; =--- =r, =0, a contradiction. O

We can now prove Proposition 3.7.

Proof of Proposition 3.7. For all a € N" let g, := (—1)'2‘62;71. From Lemma 3.8 it follows that ¢, = d,
mod Fy, 1...4q, and thus by Lemma 3.9 the g, are linearly independent. It follows that the @ are also
linearly independent. U

Finally, we express § in terms of the Q.

Lemma 3.10. For all e > 0 we have

5= > Ua f2Q5

ac{0,...,pe—1}"
where the uq, are units in IFp.
Proof. We have

§=vo((f — )P~V g 4)

= Ve Z (—1)lal ((pe ; 1)]l>fat(1f—1)ll—«1 ® 0

ac{0,.pe—1}r =

a€{0,...,pe—1}"

Uug = (—1)le! ((pe - 1)]1>.

a

where we have set

Finally, observe that given an integer b with 0 < b < p° by Lemma 3.2 (Lucas’ Theorem) we have the

following equality in F,:
e—1
pe—1\ p—1
-0,

It follows that (¥ I; 1) is nonzero in IF),, and this shows that u, is nonzero in I,,. This completes the proof. [

12
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3.3 Description of the modules V;.

We are finally in a position to describe the eigenspaces of N§. Let us first introduce some notation: given
o= (ap,...,ac 1) € F& we denote by |al the integer |a| := ap+pay+---4p~ a1, where we have identified
each a; € I, with its unique representative in {0,...,p — 1}. Observe that if o € Ff, then 0 < |af < p©.

Theorem 3.11. Let R be a regular F-finite Ting of characteristic p, a C R be an ideal and e > 0 be
an integer. Fiz generators a = (f1,...,fr) for a let N¢ be the module defined in (1) using this choice of

generators. Let o = (ao,...,ac—1) € Fy, be a vector, and let (Ng)a be the corresponding multi-eigenspace.
Then:

(a) The multi-eigenspace (NE)y is then a direct sum of the modules in the set

e . qlal+sp®
{ D%, - alol

D, - qlaltsp it 520717--~v’"—1}7

and in turn each such module occurs in the direct sum.

(b) The module (NE),, is zero if and only if for all s € {0,1,...,r — 1} we have

C, - alaltsp™ — ce, . glaltsp™+1

Moreover, we are able to give a complete description of the module (N¢),: see Remark 3.17. Before we
begin the proof of this theorem, we point out the following consequence.

Corollary 3.12. The set {a € 5, : (Ng)a # 0} is independent of the choice of generators for a.

Proof. Part (b) of Theorem 3.11 already shows that the set depends at most on the number r of generators
chosen (if a bigger set of generators was chosen, more values for s are available). We therefore have to
prove that if s > r is such that C§ - alol+sp £ cs - alel+sp°+1 then we can find some s’ < r such that
C% . alO‘H’S,pE # C}% . ala‘+slpe+1.

To prove this, note that whenever s > r we have, by the Skoda-type theorem (c.f. Proposition 2.6 (a)),
that C§, - al®l+5P" = aC§ - alol+(s=P" and C§, - alaltsr*+1 = qC¢, . alel+(s=Dp"+1 - Therefore, an inequality
C§, - alaltsp® £ cg - glal+sp™+1 implies €5 - alelT(s=1p® £ ¢¢ . glal+(s=Dp"+1 By a straightforward induction,
this proves the claim. O

Observe that part (b) of Theorem 3.11 of the theorem follows from part(a) and Lemma 2.3. We begin
working towards the proof of (a).

Recall that we give R[t] an Ny-grading by degt; = 1, and that the rings D%[t] inherit Z-gradings. We denote
(D%p)a the degree d piece of this grading. Let I := (t1,...,ty).

Lemma 3.13. We have (D% Yo -6
Ns = eR[t] : :
(DR[t])O -aé

Proof. Recall that, by Lemma 2.1, we have VODEM = (DRpy)=0 = (D)o + (Dgpyylod and VlD%[t] =
(D%pp)ol. Note also that since (f; — ;)6 = 0 for all j we have I6 = ad. It follows that

v oo VP 0
© 7 VIDgy, 6
(D)o - 0+ (D)o - a0
(DEM)O -ad
_ (Dgglo 0
B (ng[t])o -ad

as required. O
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We next describe the ring (D, )o. Let P = kl[t1,...,t;] where degt; =1 for all 4, so that R[t] = R ®; P.

As already mentioned in the proof of Lemma 2.1 there is a natural isomorphism D% ®j D% — D%[t]
which identifies Df @ (D)o = (Dfy)o- Recall each element of D is uniquely determined by its action

on monomials # with i € {0,...,p° — 1}" or, equivalently, its action on monomials tP D1 with § €
{0,...,p°—1}".

Given a € {0,...,p* —1}" and c € Z e we denote by o4, the unique PP linear operator on P with the
property

P =Di-cif; =g

o LG D) B
ame 0 otherwise.

Note that we allow the c; to be negative but we imposte c¢; < p°.

Observe that D% is spanned by the o, as a k-vector space. Since the degree of o, is |a| — |c|, we see that
(D%)o is therefore generated over k by the operators o, for which |a| = |¢|. We conclude the following.

Lemma 3.14. We have
(Djé[t])o = Di @k (Dp)o = @D% "Ta—c

a.c

where the sum ranges over all a € {0,...,p° — 1} and ¢ € ZL . for which |a| = |c|.

Let us observe how the operators o, act on the elements Qf.

Lemma 3.15. Let a,c’,i € {0,...,p® = 1}" and ¢’ € Z%,. We then have:

e ifi=a

0 otherwise.

e __
O—Qﬁglipegll . Ql = {

Proof. Recall that our operators act via the unit F-module structure. That is, if ¢ € D°R][t] then &-v.(9®u) =
Ve(€-g®u). Let us first consider the case where ¢’/ = 0. It follows that

O—Q‘}Q,Q? = Ve(agﬂg . t(pe_l)l_i ® 5)

which gives the statement. To complete the proof note that

’

e !
Oase—pecr =t € Oamser

and that

With this one last lemma, the proof of the theorem is almost complete.

Lemma 3.16. We have
R(D%)o -6 = b

a€{0,...,pe—1}"

Proof. First of all, the fact that the sum on the right-hand side is direct follows from Proposition 3.7.

To see that the left-hand side is contained in the right-hand side, notice that R(D%)o - d is generated over
R by 04 -6 where a € {0,...,p° —1}" and ¢ € ZZ . are such that |a| = |c|. Let ¢’ € {0,...,p® — 1} and
e Z%, be such that c = —pcd” + . By Lemma 3.15 and Lemma 3.10,

5 . Q+P€QII e
Og—c 0 = Ugf Q-
14
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The equality |a| = |¢| implies |a + p°c”’| = ||, and 04— -0 € a‘9/|QE,.

For the reverse inclusion observe that the right-hand side is generated over R by f<Q; where ¢ € Z%,
a € {0,...p° — 1}" and |c| = |a|. Given such a and ¢ choose ¢’ € {0,...,p° — 1}" and ¢ € Z%, such that

c=p°c’ + . Lemmas 3.15 and 3.10 once again give

’
ng; = O¢'—a—pec" * fE Qz/

= ugl%’%gfp“‘g” -0.
To finish, we observe that the condition |a| = |¢| gives |¢/| = |a—p°c”| and therefore ¢ q—peer € (D%)o. O

Proof of Theorem 3.11. As mentioned, part (b) follows from part (a) and Lemma 2.3. We now prove part
(a) By combining our previous lemmas we obtain:

N¢ = M
(D%[t])o -ad
- lgm by Lemma 3.14
®, Dg - a|ﬂ‘Q§
@QD% . a|ﬂ\+1Q2
D5, - alel o

~ €

e . qla|+1 QQ’
DS, - alal

by Lemma 3.13

by Lemma 3.16

a€{0,...,pe—1}"

where the operator s,: acts on @2 by the scalar |a|; for alli = 0,1,...,e—1 (c.f. comment above Proposition
3.7). The result follows. O

Remark 3.17. In fact, it follows from the proof that

€ a
R.aLI @e
@ D¢, . glal+1 2
e_11r TR
a€{0,...,pe—1}

N,

€
a

1

where @Z is the image of Qf in the quotient. It follows that

() ~y D% ) algl Ne
N)a= D De. . glar1 %
a€f0,...pe—1}7 TR

la|=|a| mod p°©
We end with a description of the maps N¢ — N that will be important later. From the definition of the
modules N¢ it follows that this natural map is VO D§[t]-linear (in particular, D%-linear) and thus it suffices

to describe the image of the @;

Lemma 3.18. The natural map N¢ — N+ sends @2 to

e: =~ 1
> wft

i€{0,...,p—1}"

where u; s a unit in F,.

15
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Proof. First of all observe that v.(1® 6) = ver1((f — )P PV ®68) = vy 1 ((fP° — t?°)P~1 @ §). We have:
Qg = ve <t(p€1”“ ® 5>
= Vey1 (t(pe—l)ll(fp"‘ — PP~ g 5)
= Z (—1)l! ((p _z 1)]1) Py <t(pe“—1)11—(pei+a) ® 5)

“ 1
uif? Qpliea

M

where we have set

g = (~1)ld <(p —.1)1)

A
This was already proved to be a unit in Lemma 3.10. This completes the proof. O

Remark 3.19. Let a € {0,...,p° —1}", c € {0,...,p—1}" and set b := a + p°c € {0,...,pctL —1}". It
follows from Lemma 3.18 that the map

e a e+1 b
DR-aU ~ DS, Lglel o

e e+1
0)¢ —

e . +1 ¥a

DR CIIQI

D?l . albl+1 %k

induced by the map NS — NS is, up to a unit, given by multiplication by fPe. In particular, it is
Dé%-linear as expected.

4 Approximating polynomials in positive characteristic

As always we fix an F-finite regular ring R and an ideal a C R, as well as generators a = (fi,..., f.) for a.

Before defining approximating polynomials we discuss some notions that will be important conceptually and
in the relevant proofs.

4.1 The v-invariants and F-thresholds

The invariants v (p®) were introduced in [MTWO05]. We recall the definition, and give a name to the collection
of all such invariants.

Definition 4.1. Given a proper ideal J C R containing a in its radical and an integer e > 0 we define
vl (p?) == max{n > 0 : a® ¢ JPI}. The set v3(p°) := {v/(»°) | (1) # V/J 2 a} is called the set of

a
v-invariants of level e for a.

In [MTWO5] it is shown that if one fixes J as above then the sequence (vJ(p®)/p®)S2, is increasing an

a
bounded. The limit 5
a

¢’(a) := lim (")

e—oc0  p¢

is called the F-threshold of a with respect to J. The set of F-thresholds coincides with the set of F-jumping
numbers [BMS08, Cor. 2.30].

14

The following result is well-known to experts.

Proposition 4.2. Let R be a regular F-finite ring, a C R be an ideal and e > 0 be an integer. Then the set
of v-invariants of level e for a is given by

va(p) = {n >0|Ch-a" ;«éclg.anﬂ}.
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Proof. First suppose that C% -a™ = C% - a1 If a" ¢ JP*] then Cg - a™ # J by Lemma 2.3. Therefore
Cs - a"t!l ¢ J and thus a”t! ¢ JPl. Therefore n # v (p¢). This proves that v2(p°) is contained in the
right-hand side.

For the other containment, suppose that n > 0 is such that C§ - a" # C§ - a" 1. Let J := C% - a™*1. Observe
that J # (1): otherwise C§ - a” = C% - a"*1. Given f € a we note that (f™) = C% - f™" and f™" € an*!
for m large enough, thus f € v/J.

We claim that n = v(p®) and this will complete the proof. First, by Lemma 2.3 one has a”*! C JP*] and

therefore it suffices to show that a” Z J [Pl But this follows because if a® C JP°] then C%-a™ C J, and thus
Cs - a™ =C% - a"t! a contradiction. O

Corollary 4.3. If n > rp® is a v-invariant of level e then so is n — p°.

Proof. By the Skoda-type theorem (c.f. Proposition 2.6) we see that whenever n > rp® we have C% - a™ =

aCg - a”?° and Cs - a™tl = aC§ - a®t1=P° If n is a v-invariant, it follows from Proposition 4.2 that
C§ - a™ # C% - a”*! and thus C§ - a"P° # C§ - a" P T1. Again by Proposition 4.2, n — p® is a v-invariant of
level e. O

4.2 Definition and immediate consequences

We now define approximating polynomials in positive characteristic. This is analogous to the definition in
[Mus09]. As always we fix a regular F-finite ring R and an ideal a C R with generators a = (f1,..., f»). We
let N¢:= Ng be the modules defined in Section 3 with this choice of generators and, for a € F5,, N := (N§)a

be the corresponding multi-eigenspace for the action of spo,...,s,.-1 (c.f. Proposition 3.3 (h)). We thus
drop the subscript a from the notation. Recall that given o = (ap,...,@c—1) € F;, we denote by |a| the
integer |a| := ag + pay + - + p° a1, where we identify each a; € F, with its unique representative in

{0,...,p — 1}. With this notation the definition is as follows.

Definition 4.4. Let e > 0 be an integer. The e-th approximating polynomial for a is given by

at(s) = 11 (s - |;|> .

{a€Fg : Ng#0}

Remark 4.5. By Corollary 3.12, the a&(s) are independent of the choice of generators for a used in the
construction of the modules N°€.

Remark 4.6. In [Mus09] these are called Bernstein-Sato polynomials. However, our computations with
monomial ideals show that, unlike the Bernstein-Sato roots defined later (c.f. Definition 6.2), these polyno-
mials fail to provide good analogues to the classical Bernstein-Sato polynomials. Nonetheless, approximating
polynomials encode information about the F-jumping numbers of a and a good understanding of approxi-
mating polynomials is crucial in our approach to Bernstein-Sato roots.

Our previous work immediately yields the following result. Recall that v$(p®) is the set of v-invariants of
level e for a (c.f. Definition 4.1 and Proposition 4.2).

Theorem 4.7. Let R be a regular F-finite ring, a C R be an ideal and e > 0 be an integer. Then all roots
of aS(s) are simple and lie in [0,1) N Z#. Moreover, the set of Toots is given by

{u— lu) | me V“.;fe) }

Proof. The fact that all roots are simple follows directly from the definition. Moreover, if n/p® is a root then
it follows from Theorem 3.11 that C% - a"™*P" = C§ - a"+*P"+1 for some 0 < s < r. By Proposition 4.2 we
conclude that n + sp® is a v-invariant of level e. If we let © = (n + sp®)/p® we have n/p® = u — |p| and thus
n/p° is in the set given above.
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Conversely, if 4 = m/p® where m € v3(p®) we want to show that u — || is a root of a&(s). From Corollary
4.3 we may assume that 0 < m < rp°. Let 0 < n < p°® and s > 0 be such that m = n+ sp® and let a € F; be

the unique vector with |a| = n. By Proposition 4.2 we have that C - a"+*?" % C%, - a"**P**1. From Theorem
3.11 it follows that N& # 0 and thus p — | ] = n/p° is a root of a&(s). O

We are also able to recover Mustata’s result at this stage.

Corollary 4.8 ([Mus09, Thm. 6.7]). Suppose that a is a principal ideal. Then the roots of aS(s) are given

by the rational numbers % as X\ ranges through all F-jumping numbers of a in (0, 1].

Proof. Since a is principal, for all n,e > 0 we have Cg - a™ = 7(a™/?"). By Proposition 4.2, n is a v-invariant
of level e if and only if there is an F-jumping number in the interval (%, “£1]. The result then follows from
Theorem 4.7 together with the observation that n := [p°A] — 1 is the unique integer with A € (2, 2] O

pe’ pe
pe’ pe

4.3 Roots of af(s) and F-jumping numbers

Theorem 4.7, together with the fact that the limit ¢”(a) = lime o v (p®)/p° is an F-jumping number
elucidates that the roots of the approximating polynomials should approximate the F-jumping numbers of
a. This fact is indeed very clear in the case where a is principal (c.f. Corollary 4.8). Here we begin working
towards the proof of Theorem 4.12 which states, roughly, that to obtain a similar approximation property
one should shift the index e of the approximating polynomial by an integer we call a stable exponent. The
definition as well as the subsequent lemma are inspired in [Sat17].

Definition 4.9. Given a C R we call an integer ey > 0 a stable exponent (for a) if for all n € N we have
T(a") =C% - a™"’.

From the definition it follows that eq is stable if and only if for all d > 0 we have C®0a™"" = Ceotdgnp™t?,

Note that if eg is stable and e > eg then e is also stable. By the Skoda-type theorem (c.f. Proposition
2.6), for eg to be stable it suffices to have the equality for integers n with 0 < n < r. In particular, stable
exponents exist.

Lemma 4.10. Suppose eq is a stable exponent. Then for all e > 0 we have
r(@"/7") = CEFeoqn
Proof. For all d > 0 we have

Carra™ = Ceans”

_ C]c%c}e{o-l-danp

= ot tq e, 0

eg+d

Lemma 4.11. Let eg be stable and fiz e > 0 and v € F,. Then the following are equivalent.

e epte __
(1) For all B € Fy, Nily =0.

(2) For all integers s with 0 < s <,

1| Lyl
T (aHF) =T (a”T) .

(2°) The above holds for all nonnegative integers s.
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(8) The set

Il vl+1
e pe
contains no F-jumping numbers of a.

(3°) The set

]+{0,1,...,r—1}

1
R

pe’ pe

contains no F-jumping numbers of a.

Proof. Tt is clear that (2) and (3) (resp. (2’) and (3’)) are equivalent. The equivalence between (2) and (27)
(resp. (3) and (3’)) follows from the Skoda-type theorem (c.f. Proposition 2.6). We conclude that (2), (2’),
(3) and (3’) are all equivalent.

Let us show that (1) and (2) are equivalent. From Theorem 3.11 we see that N(eﬁf’tj =0 for all g if and only
if

C¢, - a0 O kM _ e gl IpT0+spTOfmtl

for all 0 < m < p® and 0 < s < r. We conclude that (1) is true if and only if for all s with 0 < s < r all
containments in the chain of ideals

e ete e e+e e ete e e ete
Cs - alVIPTOHsPTTE0 5 oo gl PP HspTTIOHL 5 LD oo L gl IPTO st AP0 =1 5 e g (171 1RO FeptTEO
are in fact equalities. This is equivalent to the statement that, for all s with 0 < s < r, the first and last

ideals in the chain above are equal. But, by Lemma 4.10, the first ideal is 7(a**/7/?) and the last ideal is
7(as+(71+D/P%)  This completes the proof. O

We are now ready to state and prove the theorem.

Theorem 4.12. Let R be a regular, F-finite ring and a C R be an ideal. Let ey be a stable exponent for a
and fix integers e > 0 and 0 < k < p®. Then the following are equivalent.

(1) There is a root of aSt¢(s) in [p%, kzj;l).

(2) There is an F-jumping number of a in (ﬁ, kptl] +N.

Proof. Let v € T, be the unique vector with |y| = k. Let us show that (1) implies (2). Suppose that
n/pte € [k/p®, (k+1)/p°) is a root of b5 T¢(s). As 0 < n < p®*¢ there exists a unique vector a € FgoT°
with [a| = n. Since kp®® < n < (k+ 1)p® it follows that a = (3, 7) for some 3 € F;°. By Lemma 4.11 we

get (2).

Let us now show that (2) implies (1). By Lemma 4.11, (2) implies that NSoT¢ = 0 for some o = (3, 7). It
follows that |a|/p® ™€ is a root of a%t¢(s). Since |a| = |B] + pk and 0 < |3] < p® the root |a|/p®* is in
the required interval. O

5 The algebra 4, and its modules

Having generalized the work of Mustata to the case of a general ideal we now turn to generalizing the work
of Bitoun given in [Bit18]. Therefore, our goal will be to study the module

VODR[t] . 6
N, = —  —limN¢
" VIDgy s el

and to use it to detect the F-jumping numbers of a.
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When detecting the v-invariants of a on the modules N§ we made use of the fact that V¢ carries a module
structure over the algebra Fp[syo,...,spe-1], where the s,: satisfy the relation s, = s,:. Similarly, Nq
carries a module structure over an algebra we call A,. The algebra A, will be isomorphic to the algebra
Fp[sp0, 8p1, ... ] where we use all of the operators s, but it will be convenient to define it in a different way.
In this section we define 4, and study its modules in an abstract setting before turning to our analysis of
Ng. Our main tools for Section 6 will be Proposition 5.8 and Proposition 5.11.

Given a p-adic number o € Z, we denote by «; the integers with 0 < o; < p such that o = Zipiozi. The
fact that such a representation is unique establishes a bijection between Z, and FE . We will often identify

the p-adic number « with its corresponding vector (ag, q,...) € IFII\]. Given a € Z, we denote by a.. the
vector ace = (g, ..., Qe—1).

Definition 5.1. We define the algebra A, by

Fylmo, 1, -]
(7P — m; 1 i € Np)

K2

Ay =

and, given an integer e > 0, we define

Ae — ]Fp[ﬂ'o,...,ﬂ'e_l] '

Poo(ml—mii=0,...e—1)
We will think of A7 as subalgebras of A,. In this way, one has an increasing union Azl, C 'A127 C ... with
A, = U2, A% In this next lemma we see that these algebras have already appeared in our previous

discussion.

Lemma 5.2. Fori € Ny let s, be the differential operator on R[ty,...,t,] defined in Section 3. Then we

have:
(a) For each e >0 the map A5 — Fp[spo, ..., spe-1] that sends m; to sy is an isomorphism.
(b) The map A, — Fplspo,sp1,...] that sends m; to spi is an isomorphism.
Proof. Let Fun(Fy,F,) be the ring of F,-valued functions on F; and let x,...,z.—1 be the coordinate

functions. As [y is finite all functions Fj, — F, are polynomials in the z; and therefore the map A; —
Fun(F;, F),) that sends 7; to x; is surjective. As both algebras have the same number of elements (or the
same dimension over F,) this map is an isomorphism.

The composition Fun(Fs,F,) = A5 — Fylspo,...,spe-1] sends z; to s,:. We construct an inverse to this
composition. Consider the map ¢ : Fy[sy0,. .., 5,e-1] = Fun(Fy, Fy) given by

P11
Spi -t

pr—1=la]
tl

(b(spi)(a) =

where |a| = ag+pag+- - p° La._; after identifying each a; with its unique representative in {0,1,...,p—1}.

It follows from Proposition 3.3 (e) that this is indeed an F,-scalar and that, moreover, ¢(s,i)(a) = oy, i.e.
¢(spi) = x;. This completes the proof of (a).

The statement in (b) follows from (a) and the fact that A, = UcAj. O

As we have already mentioned in Proposition 3.3(h), the algebras Aj have a nice representation theory.

Lemma 5.3. Let e > 0 and let M be an Aj-module. Then M is spanned by its multi-eigenspaces for the

operators my, ..., Te—1. That is,
M= M,
acly
where m; acts on M, by the scalar «;.
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Proof. This is analogous to Proposition 3.3 (h). O

Suppose that M is an Ajp-module. Then it is also a A7-module for all e, by restriction of scalars. It follows
that for all e one has a decomposition as above and these decompositions are compatible in the sense that
My € M, ;) for all a € Fy, and j € F,,. Moreover, given a € Z;, one can define M,, := {u € M : m;-u = a;u}
and one gets an injection &,M, — M. But this need not be surjective — indeed, one could have M, = 0 for
all a € Z,. With this in mind we introduce the following definition.

Definition 5.4. An A,-module M is discrete if the map
@ M, — M
a€Zyp

is an isomorphism and there are only finitely many « for which M, # 0. If M is discrete a p-adic number
a is a root of M if M, # 0. An element w € M is said to be pure if there exists some o € Z, such that
u € M,; equivalently, u is pure if for every ¢ = 0,1,... there exists some a; € [F,, such that m; - u = oju.
In this case, and if u # 0, we say that a is the root of u. If M is discrete with roots ag,...,a, we say an
integer e > 0 is separating (for M) if (o)<e # (@) <. for all ¢ # j. Note that separating integers exist.

A simple way in which A,-modules may arise is via a limit procedure. Our module of interest IV, arises
this way, and this extra structure will be very useful in our analysis. We make the following definitions to
address this situation.

Definition 5.5. A filtered A,-module consists of the following data:

(i) For each e >0, a Aj-module M¢.

(ii) For each e > 0, an A¢-module homomorphism ¢, : M¢ — M**!.
These form an abelian category Filt A,-mod in a natural way. There is a functor lim : Filt A,-mod —
A,-mod that sends (M°, ¢.) to lim, M*®.
We will omit ¢, from the notation and simply refer to a filtered .A,-module by the collection of modules
(M°).

In order to study lim M* it will be convenient to replace M* with another filtered A,-module for which the
maps M€ — MeT! are injective.

Lemma 5.6. Let (M®) be a filtered Ap-module. For all e > 0 let K° be the set of all u € M*® for which
there exists some d > e such that u maps to zero under the map M — M?®. Let M¢ := Me/K¢. Then:

(a) The modules M¢ have the structure of a filtered Ap-module.
(b) There is a surjective map (M®) — (M®) of filtered Ap-modules.
(¢) The maps Me — ML are injective.

(d) The natural map lim M¢ — lim Me€ is an isomorphism of A,-modules.

Proof. Let us denote by ¢, : M¢ — M°™! the transition maps of the filtered A,-module (M¢). Fix some
e > 0 and observe that, for all d > e, the map ¢q : M4 — M1 is Aj-linear. It follows that K¢ is an
AS-submodule of M¢. Moreover, from the definition of K¢ it follows that ¢.(K¢) € K*'. Tt follows that
the modules K¢, equipped with the maps ¢.||xe : K¢ — KT define a filtered A,-submodule of M¢. We

conclude that the M are A7-quotients of M and that the ¢. induce transition maps ¢, : M¢ — Me+1,
This proves parts (a) and (b).

Let u € M®, and observe that whenever ¢.(u) € K™ we must have u € K¢. Part (c) follows.

Finally, we use the exactness of limits to conclude that there is a short exact sequence

0 — lim K¢ — lim M€ — lim M¢ — 0.
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Since lim K¢ = 0, we conclude that lim M€ — lim Me is an isomorphism, thus proving (d). O

Definition 5.7. A filtered A,-module (M°) is bounded if there exists some integer K such that for all e > 0
one has
#la e F|MS #0} < K,

where the M¢ are the eigenspaces given by Lemma 5.3.

Proposition 5.8. If (M*°) is a bounded filtered A,-module then im(M*®) is a discrete A,-module.

Proof. A quotient of a bounded filtered A,-module is still bounded. By Lemma 5.6 we may assume that
the maps ¢, are injective and thus M :=lim M® = U, M*®. In this case the sequence #{a € IE‘;|M§ # 0} is
increasing and bounded, and therefore eventually constant. We conclude that there exists some K’ and eg
such that for all e > eg one has #{a € F;, : MS # 0} = K.

We now claim there are at most K’ p-adic integers a such that M, # 0. Indeed, suppose that S1,..., Bx/11
are distinct p-adic integers such that Mg, # 0 for alli = 1,..., K’ +1. We may then pick e > e large enough
so that for all i we have M*° N Mg, # 0 and such that (5;)<c # (3j)<e for all i # j. With this assumption
we have #{a € Fy : M5 # 0} > K’ + 1, a contradiction.

It remains to show that pure elements span the module M. For this suppose v € M. Thus v € M€ for some
e > eg. Since M€ = Baere M¢E it suffices to show that all elements of M are pure. For this purpose let
d > e > ep and suppose that a € F}, is such that Mg # 0. Since MS = (@vngfe M(da’,y)) N M*€ there exists a
unique y € Fg_e such that Mg C M(da 9 (otherwise the number of nonzero multi-eigenspaces increases past
K'). Tt follows that all elements of M¢ are pure as required. O

Lemma 5.9. Let M be a discrete A,-module and e > 0 be separating. Suppose that w € M is such that for
alli=0,1,...,e — 1 there exists some o; € F, with m; - w = oy - u. Then u is pure.

Proof. Because M is discrete we may write v = uq + - - - + u, where u; is pure with root «;, where o; #
for j # k. But since e is separating this is also the unique decomposition of u into eigenvectors for {m; : i =
0,...,e — 1} coming from Lemma 5.3. Since u is itself an eigenvector for these operators all but one of the
u; are zero and thus u is pure. O

Let (M°) be a filtered A,-module such that lim M€ is discrete (e.g. if M€ is bounded) and let o € Z,,. We

define the modules
M, = P Mg
B#O‘<e

Observe that the maps M¢ — Me*! restrict to maps M5, — M;zl thus the collection (M;a) acquires a
filtered A,-module structure. It is in fact a subobject of (M) in the category of filtered .A,-modules.

We can also consider

Mg = Mg _..
In this case, even though M¢ C M€, the maps M¢ — M¢*! do not restrict to M¢ — MSH but we still
have natural maps MS — ME*! that send an element u € M(e% o) tO the (ayg, ..., ae)-component of its

image under M¢ — M¢T!. This makes (M¢), into a filtered A,-module for which lim M¢ is discrete with
at most a single root . In the following lemma we observe that (MS) is in fact a quotient of (M) in the
category of filtered .4,-modules.

Lemma 5.10.

(i) One has a short exact sequence
0— Mg, = M®— Mg —0

of filtered Ap,-modules.
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(i) If lim M€ is discrete with Toots au, ..., ay, there is a sequence

0— ﬁM;maMe%éM;eo

=1 i=1

that is eract whenever e is separating.

Proof. The claim in (i) follows directly from the descriptions. The existence and left exactness of the sequence
in (ii) is clear. The surjectivity of M* — @M follows from the separating hypothesis. O

Proposition 5.11. Let (M°) be a filtered A,-module such that M :=lim M* is discrete. Then the natural
map
Mj — lim M

is an isomorphism for all 5 € Z,.
Proof. Consider first the case where 3 is not a root — that is, where Mg = 0. We must show that lim M§ = 0.

Let e be separating and, by enlarging it if necessary, assume that S.. # a.. for all roots a. Let 0 # u €

Mg = M(eﬂ0 B 1)’ By Lemma 5.9 the image of v in M is pure and, if nonzero, would have a root o with

B<e = Q<¢, a contradiction to our assumption on e. We conclude that the image of v in M is zero and thus
there is a d > e such that the image of u under M€ — M? is zero. The commutativity of the diagram

M® —— Mg

Il

M* —— M

implies that the image of u is also zero under M 5 M g.

It remains to prove the statement for the roots ay, ..., a,. We will prove that the map ¢ : M = ®&;M,, —
®; lim M$ is an isomorphism and this will give the result.

From Lemma 5.10 (ii) and the exactness of lim we have a short exact sequence

n n
0= lim () M%,, = M — lim @ Mg, — 0.

i=1 i=1

There is a natural isomorphism lim &; Mg, = @;lim M and the composition

M — liméMgi = élimMzi
i=1 i=1

is equal to . Therefore it suffices to show that lim M M5, = 0. But this follows because

m M;Oéi = @ ME
=1

{BEFg:p#(0i) < Vi)

and if e is separating every nonzero element of M§ has a pure image in M. Therefore if 3 # (a;)<e for all 4
one has that the image of Mg in M is zero — thus also its image in lim ﬂiM;ai. O

6 Bernstein-Sato roots

Let N¢ := N¢ be the modules defined in Section 3. Recall that these depend on a choice of generators
a=(f1,...,[fr) for the ideal a.

23

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



As seen in Section 3 the module N¢ has an .A7-module structure, where 7; acts via the operator s,:. Moreover,
we have maps N¢ — N°! that are linear over A%. This gives the collection (N¢) an filtered A,-module

structure. We let V := N, = lim N°¢.

Throughout this section we will make use of the fact that the collection of F-jumping numbers for (R, a) is
discrete and rational. In the case where R is of finite type over a field this was shown in [BMS08], and we
refer to [ST14] for the more general statement.

Proposition 6.1. Let R be a regular, F-finite ring and a C R be an ideal. Fix a choice of generators
a=(fi,..., fr) for a and let Ny be the A,-module defined above using this choice of generators. Then Ny
is discrete.

Proof. By Proposition 5.8 it suffices to show that the filtered A,-module (N°) is bounded. In turn, for this
it suffices to show that there exists some K > 0 such that #{a € F, : N§ # 0} < K for e large enough.

Let e be a stable exponent and, by making use of the discreteness of F-jumping numbers, let e > 0 be large

enough so that every interval of the form (pﬁe, kptl} with k& € Ny contains at most one F-jumping number of
a.

Recall from Lemma 4.11 that N(eﬁoti # 0 if and only if there is an F-jumping number of a in the set

(lp%l, W}L—jl] +{0,...,r —1}. If we let N be the number of F-jumping numbers contained in (0,r] it then
follows that #{a € Feo+e : Neo+e £ 0} < peoN. .

It follows from the definition of discreteness that N, has a finite set of roots (c.f. Definition 5.4), to which
we give a special name.

Definition 6.2. The Bernstein-Sato roots of a are the roots of the A,-module N,. That is to say, if o € Z,,
has p-adic expansion ag + pag + -+ (i.e. a; € {0,1,...,p — 1}) then « is a Bernstein-Sato root if and only
if the multi-eigenspace

(Na)a :=={u € N : 5, -u = a;u for all i}

is nonzero. We denote the set of all Bernstein-Sato roots of a by BS(a) which, a priori, is just a set of p-adic
integers.

6.1 First remarks

We would like to first address why the above definition follows naturally from the one in characteristic
zero. While issues regarding p-torsion in the corresponding D-modules have not allowed us to turn these
observations into reasonable statements regarding reduction modulo p of Bernstein-Sato roots, we hope that
they help motivate Definition 6.2.

Recall that, over C, the Bernstein-Sato polynomial of a is defined as the minimal polynomial for the action of
51 on Ng. The existence of a Bernstein-Sato polynomial for a with roots a(?), ... a(®) is therefore equivalent
to the existence of a decomposition Ny = (Ng)qm) @ -+ ® (Na)gw where (Ng)y0) is the ali)-generalized
eigenspace for the action of s; on Ny, i.e. we can find some M > 0 such that (Ny),o = {u € N :
(51 — aU)M .4 = 0}. From the recursive properties of the operators s, (c.f. Proposition 3.3), we see that

(s1 — )™ - u =0 is equivalent to (sp, — (3))™ - u =0 for all m, where (%) :=x(x —1)--- (x —m +1)/ml.

If o is in Zp) then (:1) is also in Z,): this is clear when « is an integer, so we approximate a by integers in
p-adic norm and observe that (fn), being a polynomial, is p-adically continuous (see [Con]).

It follows that, in characteristic p, the equations (s, — (;))M -u = 0 still make sense as long as a € Z;,) and,
since M can be replaced by a power of p, they are equivalent to (s, — (;‘)) -u =0 (c.f. Proposition 3.3 (g)).
Finally, we observe that (;‘,) = «; mod p (we again approximate a by integers, for which the statement is
just Lucas’ Theorem, Lemma 3.2), and we arrive at Definition 6.2.

In this section we will see that Berstein-Sato roots satisfy other nice properties beyond this mild compatibility
with the definition from characteristic zero. To begin with, the set of Bernstein-Sato roots is independent
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of the initial choice of generators for a (Corollary 6.5) and, in analogy with the characteristic zero case,
Bernstein-Sato roots are negative and rational (Theorem 6.7). We will also show that they encode some
information about the F-jumping numbers of a (Theorem 6.11). Moreover, they give the correct notion for
monomial ideals [QG]. After providing another characterization of Bernstein-Sato roots (Proposition 6.13)
we give a few examples.

6.2 Preliminary results

We begin with a few results that will be crucial in understanding the vanishing of the eigenspaces N as e
goes to infinity.
Lemma 6.3. Fiz integers 0 <e <d, a € F}, and B € Fg*e. Then the image of NE in N(da g s zero if and

only if N(daﬁ) = 0. If particular, if N, = 0. Then Nf;ﬂl.) =0 foral0<j<p.

Proof. The “only if” implication is clear. For the “if” direction, let n = ||, k = |8] and m = |(«a, 8)|. Thus
m =n + p°k. By Theorem 3.11 it is enough to show that for all 0 <t < r we have

d d
am+tp C Dd . am+tp +1.

Let a € NJ be such that [a| = m + tp? and we will show that f& € D?. qm+tr’+1,
Let ap and a; be the unique r-tuples of nonnegative integers with a = ag + p°a; and ap € {0,...,p° — 1}".
Let n’ := |ag|. Since by assumption the map
De - a” ée fFoar® De. am+tpd ~4
De . qn/+1 ¥ Dd . gm+tpi+l Fa

is zero (c.f. Remark 3.19), the image of f‘LOQng is zero. It follows that fo € D? . am+P"+1 a5 required. [

Recall from Section 5 that if o € Z, and e > 0 we denote NS := N{

(a0rre 1) and that these modules have
a filtered A,-module structure.

Proposition 6.4. Let R be a regular F'-finite ring, a C R be an ideal and fix o € Z,, with p-adic expansion
a = ag + paj + p?ag + ---. Then the following are equivalent.

(1) The p-adic number « is a Bernstein-Sato root of a.
(2) For all e > 0 we have Nioorae ) 70
(8) There is a sequence e, /' oo such that N/» o) #0.

(0,015

Proof. As N is discrete it follows from Proposition 5.11 that N, = lim(Ng). The fact that (1) implies (2)
then follows from Lemma 6.3: if N¢ = 0 for some e then N¢ = 0 for all ¢/ > e. Statement (2) implies
(3) trivially. For (3) implies (1) suppose for a contradiction that « is not a root; that is, lim N = 0 (c.f.
Proposition 5.11). As N! is a finitely generated R-module (in fact, so are all of the N°¢) and the maps
N¢ — N¢*t! are R-module homomorphisms it follows that for all d > 0 we have im(N} — N9) = 0. From
Lemma 6.3 we see that N = 0 for all d > 0, which contradicts (3). O

Corollary 6.5. The set of Bernstein-Sato roots of a is independent of the initial choice of generators.

Proof. It follows because the sets {a € F}, : N # 0} are independent of this choice (Corollary 3.12). O
Lemma 6.6. Let eg be a stable exponent, e > 0 and v € F,. Then the following are equivalent:
e eote _
(1) For all § € F;* we have NigZy =0.

(2) For all B € Fy° and j € F, we have Nfgj%e =0
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(3) For all 3’ € Feot! we have N(eﬁ‘)frwl;r@ =0.

Proof. It follows from Lemma 4.11 that statement (1) is equivalent to the fact that

soom (L I1) Ly

e’ pe

contains no F-jumping numbers of a. Another application of Lemma 4.11 gives that statement (2) is equiv-
alent to the fact that for all 0 < j < p the set

(i +phl J+plyl+1
Set1,j ( petl petl +N

contains no F-jumping numbers of a. As we have S, = U?;é Set1,; the equivalence between (1) and (2)
follows. Finally, (2) is trivially equivalent to (3). O

6.3 Rationality and negativity of the Bernstein-Sato roots
In this subsection we prove the following statement. Recall we say a p-adic number is rational if it lies in
Zp)-

Theorem 6.7. Let R be a reqular, F'-finite ring and a C R be an ideal. Then the Bernstein-Sato roots of a
are negative rational numbers.

The analogous result in characteristic zero was proven by Kashiwara in [Kas77] by using resolution of
singularities.

A posteriori (c.f. Theorem 6.11) we see that the rationality of Bernstein-Sato roots is analogous to the
rationality of the F-jumping numbers. In [BMS08] one sees that rationality of F-jumping numbers follows
from their discreteness together with the fact that if A is an F-jumping number for a then so is pA. The
following lemma is the analogue of this latter property for Bernstein-Sato roots.

Lemma 6.8. Let o € Zy,. If poa + Z contains a Bernstein-Sato root then so does o + Z.

Proof. Let us suppose that « + Z contains no roots and we will show that pa + Z contains no roots. Thus
let j € Z and let us show that pa+ 7 is not a root. First we change « if necessary to assume that 0 < j < p.

Let 8 € F;°. By assumption we have that 18] — Zfigl a;p' + o is not a root and, by Proposition 6.4, we can
find e > 0 large enough so that
N€0+€

(507~~-7Beo—17(¥egv~--7(¥eo+e—1) -

0.
As the set I} is finite, this e may be chosen independently of . By Lemma 6.6 we have

eo+et+l _
N(/Bl7a€07"‘7a€0+671) =0

for all §’ € ]F;OH. This holds in particular for 8" = (j,a0,...,®¢—1) and again by Proposition 6.4 we
conclude that j + pa is not a root. O

We will also need the following result from [BMSO08].

Proposition 6.9 ([BMS08, Prop. 2.14]). Let R be a regular F-finite ring and a C R be an ideal. Given
A € Rag, there exists some € > 0 such that whenever A < r/p® < A\ + € we have 7(a*) =C% - a".

Corollary 6.10. Let (e;) and (r;) be sequences of nonnegative integers such that e;/r; \y A. Then for all
i > 0 we have 7(a*) =Cg - a”.

We are now ready to prove the theorem. We will use results from the appendix (Section 7).
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Proof of Theorem 6.7. Given a € Z, we denote by a™ the new p-adic number o™ = a, + pon1 +
pPanio + -+ +. Observe that a = p"a(™ mod Z for all a € Z,. Let BS(a) be the image of BS(a) in Z,/Z.
That is, BS(a) :={a+Z:a € BS(a)} C Z,/Z.

From Lemma 6.8 it follows that BS(a) is closed under the operation [a + Z — o) + Z]. As BS(a) is finite
by Proposition 6.1, so is BS(a).

It follows that if o is a Bernstein-Sato root then there exist positive integers n < m such that o™ + Z =
al™) + 7. We then have

m—n

a= pma(m) = pma(") =p a mod Z.
Therefore there exists some ¢ € Z such that a = p"~"a + c and thus a = ¢/(p™ ™" — 1) € Z;), which shows
that « is rational.

Let us now show that « is negative. As a € Z,) by we may write « = m + p?y where m € {0,1,...,p% — 1}
and v € Zg,) with —1 <4 <0, i.e. v has a periodic expansion (c.f. Lemma 7.1). In fact, we may assume
that (p? — 1)a € Z and that d is a stable exponent. Let A := —, , and we want to show that m < p?\.

Suppose for a contradiction that m > p?\. Fix s € {0,1,...,r — 1} and let K., := ag + pas + -+ +
pletVita )4 g + spletVe. By Lemma 7.2, we have K. s = m+p?A(ped1) + sp(e+1)9. We claim that for

e large enough we have C§§+1)d cafes = C}(§+1)d - afest1 If we then take e large enough so that this holds

for all s € {0,1,...,r — 1} then, by Theorem 3.11 we have N((Z:l_)fla( va) = 0 which, by Proposition 6.4,
is a contradiction.

To prove the claim, consider the chain of ideals

1)d 1)d 1)d d ed d (e+1)d
C}(;Jr )d | (Ke. ) C}(§+ Jd | (Ke o+l >...D C}(ng ) AP =1)+pT+sp

(at each stage, add 1 to the exponent of a).

A@ed—1)+1

Since d is a stable exponent, the ideal on the right is 7(a  »? +S) (c.f. Lemma 4.10). Observe that the
sequence

— Ke’s =A+s+ w
¢ pletDd — § plerDd
decreases to A + s by the assumption m — p?\ > 0. By Corollary 6.10 we have, for e large enough,

Ke,s

Cgﬂ)d cafes = 7(a?)

and thus, by making e even larger if necessary, the ideals on the left and right of the chain coincide. In

1)d
Kes — C}f* )d | (Ke o+l

particular, Cgﬂ)d -a as required. O

6.4 Bernstein-Sato roots and F-jumping numbers
Our next theorem shows that some information about the F-jumping numbers of a is encoded in this set of

Bernstein-Sato roots. Let us denote by F'J(a) the set of F-jumping numbers of a, and recall that BS(a) is
the set of Bernstein-Sato roots of a. With this notation, the theorem is as follows.

Theorem 6.11. Let R be a regqular, F-finite ring, a C R be an ideal. Let BS(a) denote the set of Bernstein-
Sato roots of a and FJ(a) denote the set of F-jumping numbers of a. Then we have

BS(a) +Z = —FJ(a) N Zg + Z.

We will make use of results from the appendix (Section 7) in the proof.

27

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



Proof. Let A\ € Z,) with 0 < A <1 be such that A + Z contains an F-jumping number of a. We will show
that —\ € BS(a) + Z and this will prove that BS(a) +7Z 2 —FJ(a) N Z,) + Z. Let d be large enough so
that (p? — 1)\ € N and so that d is a stable exponent and let 7 := —\. Observe that for all ¢ > 0 we have

A(p? - 1)
ped

Ape? —1)+1

<)\§ ped

where A\(p® — 1) € N. By Lemma 7.2 we have A(p°? — 1) = 79 +py1 + - + p* 191 = |[y<eal. From

Lemma 4.11 we conclude that for all e there exists some 5 € Fg such that N(d;'f;i ) # 0. As IFg is a finite

N{gend #0. From Proposition 6.4 it follows

set there exists some 3y and a sequence e,, /* oo such that (Boree.
that |Bo| — |va] + v is a root and thus v € BS(a) + Z as required.

Suppose now that a € BS(a). By Theorem 6.7 we have that a € Z,). Choose v € Z,) as in Lemma 7.3 —
that is, —1 <~ < 0 has a periodic expansion that is eventually equal to the expansion of ¢, and in particular
Y+ 7Z =a+7Z. Let A := —v, and we will show that A + s is an F-jumping number for some s € N, which
will complete the proof.

Let d be the length of the period of v and let ¥ = (yo,...,74—1) be the period. We may assume d is large
enough to be a stable exponent and so that v; = a; for all i > d. As « is a root it follows from Proposition

6.4 that for all e > 0 we have N4 # 0. The first (e + 1)d digits of the expansion of « are

(OZO»"'aadfla%a"'v%)

where 7 is repeated e times. By Lemma 7.2 we have |(7,...,7)| = A(p®? — 1) and, by Lemma 4.11, the set

AP —1) Apt-1)+1
ped ? ped

}+{0,...,7~—1}

contains an F-jumping number of a for all e > 0. As {0,...,r — 1} is finite there exists some 0 < s < r and
a subsequence e, " oo such that

()\(pe"d —1) At — 1)+ 1} »

pend ’ pe"d

contains an F-jumping number. It follows that A 4+ s is an F-jumping number as required. O

6.5 Another characterization of Bernstein-Sato roots

Here we provide one more characterization of the Bernstein-Sato roots of an ideal a that simplifies a lot of
computations. As usual, let R be regular and F-finite and let a C R be an ideal. We denote by N°¢ the

modules N¢ constructed in Section 3 (after a choice of generators (fi, ..., fr) for a). Recall that, given a
positive integer e, we denote by v$(p®) the set of v-invariants of level e for a (c.f. Definition 4.1, Proposition
4.2).

Lemma 6.12. The v-invariants for a come in a decreasing chain

va(®) 2v3(p") 2+ 2va () 2wi () 2+

e+l]

Proof. Given an ideal .J, we have JIP (JIP NP1 Tt then follows from the definition that v (pe+!) =
gl e
vy (). O

a

We can now state our new characterization.

Proposition 6.13. Let R be a regular F-finite ring of characteristic p and a C R be an ideal. Then the
following sets are equal.

(a) The set of Bernstein-Sato roots of the ideal a.
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(b) The set of p-adic limits of sequences (ve) C N where v, € v3(p®).
(c) The set

where (7) stands for p-adic closure.

Proof. The equality between (b) and (c) is a general fact about metric spaces, which we prove in Lemma
6.14. We therefore prove that (a) and (b) are equal.

Suppose that « is a Bernstein-Sato root of a and let @« = ag + pa; + --- be its p-adic expansion. By
Proposition 6.4, for all e > 0 we have N, - From Theorem 3.11 (b) it follows that for all e there

(0,001, 0e—
exists some s, € {0,1,...,r—1} such that, if v. = ag+pas +---+p°~tae_1+p°se, then Cg-ave # Cf%-a”f“,
that is ve € v3(p®) (c.f. Proposition 4.2). Since « is the p-adic limit of the sequence (v.), it follows that «
is in (b).

Now suppose that « is the p-adic limit of a sequence (v,) with v, € v$(p®); that is, C% - a¥e # C% - a¥e ™1
By Corollary 4.3 we may assume that v, < rp® for all e. By Lemma 6.15 we have v, — |v./p®|p® =
ao + paj + -+ + p°~tae_q and, by Theorem 3.11 (b), we have N(eag e 1) # 0 for all e. It follows from

.....

Proposition 6.4 that « is a Bernstein-Sato root of a. O
Lemma 6.14. Let X be a metric space and Xg 2 X1 2 Xo D -+ be a decreasing sequence of subspaces of
X. LetY be the subspace of X given by Y := {lim; o0 (z¢) : ®e € Xc}. Then
Y =X,
e=0

where X, is the closure of X, in X.

Proof. If y € Y we may write y = lim; o0 (z;) where z; € X;. Given e > 0, z; € X, for all i« > e and
therefore y € X,.

Suppose now that z € N2 X.. This means that for all e there is a sequence (x.;)%, C X, such that
z = lim; oo (2e,i). Given e we can therefore find an integer i(e) such that d(z,z.;.)) < 1/e. Then z =
lime 00 (e i(e)) and since x, ;) € X, for all e, z is in Y. O

Lemma 6.15. Let (v.) C N be a sequence of positive integers such that vei; = v mod p® for all e. Let
a € Z, be the p-adic limit of the sequence (v.). If & = ag + pay + p?an + -+ is the p-adic expansion of a
(i.e. a;j € {0,1,...,p— 1} for all j), then for all e we have

14 _
Ve — Lpﬂpe —ag+par+-+p Tl

Proof. We have the following equivalences:
v,
Ve — Lp{Jpe =v.=a=ao+pay+-+p“ ta._; mod p°.

Since both v, — LZ—ZJpe and g + - - - + p°“Lae_1 are integers between 0 and p® — 1 the statement follows. [J

6.6 Examples

(1) Let p > 5 and consider the principal ideal a = (f) where f = 22 + y3. Then for all ¢ > 2 the
v-invariants are given by

I/.(pe) _ %(pe - 1) 4+ Ngp¢if p=1 mod 3
! %pe—%pe_l—l—i-Nope ifp=2 mod 3
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(see [MTWO5] and [Mus09, Ex. 3.4]). From Proposition 6.13 we conclude that the Bernstein-Sato
roots of a are given by
— —1}ifp=1 d
psge)  [15/6. -1 itp=1 mod s
{-1}ifp=2 mod 3.

Observe the agreement with Bitoun’s result: the Bernstein-Sato roots are precisely the F-jumping
numbers in (0, 1] N Z .

(2) Consider the monomial ideal a = (22,4%). Then we claim that the v-invariants are given by

¢ —1 bp® —1

20 = {12 vt

Indeed, all the ideals C% - a® are monomial ideals and, therefore, n is in vl (p®) if and only if there
exists some monomial p = 2%’ such that g € C% - a™ and pu &€ C% - a”!. This is true, in turn,
precisely when n = max{s > 0 : y?" € a®}. Since a® = (24>’ : u 4+ v = s), this is equivalent to

n = max{u+v:u,v € No,2u < ap®—1,3v < bp® — 1}, i.e. n = [(ap® —1)/2] + [(bp® —1)/3].

(i) Suppose that p = 2 and that e is even. Then for all a € N we have |ap® — 1)/2| = ap®~! — 1,
while
bt — 1 cp® —1if b= 3¢
P — oo
| 3 J=9(c—3p°—L1ifb=3c—1

(c—32)p°—2ifb=3c—2,

where we always take ¢ € N. We conclude that, for even e,

4
ve(p®) = {ap81+cpe2:a,c€N U{ap81+(c)p63:a,c€N}

2 5
U{ape_l+(c—3)pe—3:a,c€N}

and therefore BS(a) = {—4/3,—5/3,—2} by Proposition 6.13.
(ii) Suppose that p = 3. Then for all e we have |bp® — 1/3] = bp°~! — 1, while
ap® — 1 cp® —1ifa=2c
LIS SN
(c=3)p° —5ifa=2c—1,

where ¢ € N, so we conclude that
1 3
ve(p) = {cpe +bp°! — 2} U {(c -5+ bt — 2}

and therefore BS(a) = {—3/2, —2}.

6.7 Open questions

The analogy with results from characteristic zero begs the following questions.
Question 6.16. Suppose that the F-pure threshold « of a lies in Z,). Is the largest Bernstein-Sato root of
a equal to —a?

We know the answer to this question is affirmative whenever a is a principal ideal by [Bit18], or when a is a
monomial ideal and p > 0 by [QG].

Question 6.17. In characteristic zero a root of the Bernstein-Sato polynomial comes with a multiplicity. Is
there an analogue of the multiplicity of a root in characeristic p?

Question 6.18. In [Mus19], Mustati has shown that, over C, if a C R is an ideal generated by (f1, fa,..., fr)
and we consider the element F' = fiy1 + --- + fry, of Rly1,...,y,] then by(s) = br(s)/(s + 1). In positive
characteristic the Bernstein-Sato roots of F' must lie in (0, 1] by [Bit18] so a completely analogous statement
cannot be true, but we wonder if a similar statement can be found in positive characteristic.
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7 Appendix: p-adic expansions

We denote the p-adic integers by Z,. Recall that Z, is the completion of Z, at its maximal ideal (p) and
thus we have an inclusion Z,) C Z,. We will say a p-adic number « is rational if a € Z,).

Given some « € Z, we denote by a; the unique integers with 0 < «; < p such that a = ag+pa; +pag+---.
By an abuse of notation we will also denote by «; the corresponding classes of these numbers in F,,. We refer
to the list (ag, a1, ...) as the expansion of a. We say it is periodic (resp. eventually periodic) if there exists
some d such that a;1q = «; for all ¢ > 0 (resp. for all ¢ > 0 large enough). We call such d a period for .

Recall that given A € Q we have A € Z, if and only if there exists some d > 0 with A(p? — 1) € Z (for
example one may apply Euler’s theorem to the denominator of \).

Lemma 7.1. Let a € Z,. Then the expansion of a is eventually periodic if and only if « is rational.
Moreover, the list is periodic if and only if « is rational with —1 < a < 0. A positive integer d with
a(p? — 1) € Z is a period for a.

Proof. Let us first show that if o € Z(,) with —1 < o < 0 then this expansion is periodic. There exists
some d > 0 and some a € Z such that o = —a/(p? — 1) with 0 < a < p?. Let a = Z?;()l a;p' be the base p

expansion for a. Then

= (a0 + - +p"laa )1 +pt +p* +-)

=ag+-- +pt?

+app®+---+p

aqg—1+
2

and thus the expansion is periodic with period d. Conversely, if o has a periodic expansion then o =
—a/(p? — 1) for some d and a as above and thus —1 < a < 0.

Now let a € Z,), and we will show it has an eventually periodic expansion. Observe it suffices to check
the case where ay # 0: if a has an eventually periodic expansion so does p™a. If « is negative we have
a = — N for some —1 < 8 < 0 and some N € Ny. By what we already proved, 8 has a periodic expansion
and, since it is negative, we have [3; # 0 for infinitely many i. It follows that for some j > 0 we have

N<Bo+pbi+-+Bj_1p !

and thus the expansions of «; = 3; for all i > j. It follows that « has an eventually periodic expansion, as
required.

Finally, the statement for negative numbers follows because whenever oy # 0 the expansion for —« is given
by

—a=(p—ag) +p(p—1-a))+p’(p—1—az)+ -
It remains to show that if o has an eventually periodic expansion then « is rational. But again by adding

the appropriate integer integer we may assume that « has a purely periodic expansion, and then the result
follows from what we have already proved.

The last statement is clear from the proof. O

Lemma 7.2. Let A\ € Z,y with 0 < X\ <1 be such that )\(pd —1) e N and let v:= —\. Then for alle >0
we have

Yo+ Pyt + P Yeam1 = At - 1).
Proof. Let | := A\(p? — 1). By assumption [ is an integer and 0 < [ < p?. We can thus consider its base

p-expansion
I=1lp+pl+-+p" o,
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where 0 < [; < p for all i. In Z, we have

=l(1+p'+p*+--1)

=g+ ply +p212 + - +pd_1ld_1+
+pdl0 +pd+1l1 +pd+2l2 4. +p2d71ld—1+
+p*g+ -

and thus this is the p-adic expansion for . It follows that

Yo +pyn AP e =1L p o ) =

as required. O

Lemma 7.3. Let o € Z,y. Then there is some v € Z,) with —1 < v < 0 such that the p-adic expansions
of a and 7y are eventually equal. In particular, there is some n € Z such that « =n + 7.

Proof. By Lemma 7.1 we know that the expansion for « is eventually periodic. This means we may write
a =m+p"y where 0 < m < p™ and v € Zj, has a periodic expansion with period d > 0 — in particular,
—1 <~ <0 by Lemma 7.1. By making m bigger if necessary we may furthermore assume that d divides
n. With these assumptions o and « have expansions that are eventually equal and thus the statement

follows. o
Remark 7.4. If « is not an integer then + is the unique representative of o + Z contained in (—1,0). If «
is a nonnegative integer then v = 0 and if « is a negative integer then v = —1.
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