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Abstract

Distinguishing between continuous and first-order phase transitions is a major challenge in random dis-
crete systems. We study the topic for events with recursive structure on Galton-Watson trees. For example,
let 7; be the event that a Galton—-Watson tree is infinite and let 7, be the event that it contains an infinite
binary tree starting from its root. These events satisfy similar recursive properties: 7, holds if and only if 7;
holds for at least one of the trees initiated by children of the root, and 7; holds if and only if 7, holds for at
least two of these trees. The probability of 7, has a continuous phase transition, increasing from 0 when the
mean of the child distribution increases above 1. On the other hand, the probability of 7, has a first-order
phase transition, jumping discontinuously to a non-zero value at criticality. Given the recursive property
satisfied by the event, we describe the critical child distributions where a continuous phase transition takes
place. In many cases, we also characterise the event undergoing the phase transition.
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1. Introduction

Understanding phase transitions is a central task in discrete probability and statistical physics. One
of the most basic questions about a phase transition is whether it is continuous or first-order. That
is, when a quantity undergoes a phase transition, does it vary continuously as a parameter is varied,
or does it take a discontinuous jump at criticality? This question is often difficult. For example,
the phase transition for the probability that the origin belongs to an infinite component in bond
percolation on the lattice is thought to be continuous, but it remains unproven in dimensions
3,...,10[10, 13].

This paper investigates phase transitions on Galton—-Watson trees for events satisfying certain
recursive properties. This setting is inspired by two examples. Let 7; be the set of infinite rooted
trees and let 7, be the set of trees containing an infinite binary tree starting from the root. Let T}
be a Galton-Watson tree with child distribution Poi(A). The event {T € 71} has probability 0 for
A < 1. It undergoes a continuous phase transition at A = 1, with its probability rising from 0 as A
increases above 1. On the other hand, the event {T) € 7,} has probability 0 for A < Ayt & 3.35.
Its probability jumps to approximately 0.535 at A = At and increases continuously after that. See
[14, Example 5.5] for a detailed treatment of this example; see [18] for this example in the context
of random graphs; and see [6] for an earlier analysis of 7, and proof that the phase transition is
discontinuous for a different family of child distributions.
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The sets 71 and 7; both satisfy recursive properties. A tree is in 7; if and only if the root has
at least one child that initiates a tree in 77. Similarly, a tree is in 7, if and only if the root has at
least two children that initiate trees in 7,. Why does 7; have a continuous phase transition while
T2 does not? The goal of this paper is to answer this question, and more generally to explain the
connection between the recursive property that an event satisfies and the phase transition that
the event undergoes. It will take some work to state our results, but let us start with an informal
account.

First, the event 7, will never have a continuous phase transition under any family of child
distributions. For this event, we say that the threshold function h(£) is identically 2, meaning that
regardless of the count £ of children of the root of the tree, the event 7; holds if and only if at least
two of the children initiate a tree in 7;. For 7j, the associated threshold function is identically
1. (We will define threshold functions more formally in Section 1.2.) Theorems 1.2 and 1.5 give
a criterion for whether a continuous phase transition occurs at a child distribution x given the
threshold function h of the event. In particular, a continuous phase transition can occur at a child

distribution x only if
> x@we=1.

L h(l)=1

This is satisfied for 71 whenever the child distribution has mean 1, but it is never satisfied for 7.

The criterion given by Theorems 1.2 and 1.5 for when continuous phase transitions occur is
one of the two main results of the paper, although it is not particularly difficult to show using
results from [14]. The bulk of the work in this paper is to prove the other main result, Theorem
1.8, which runs in the opposite direction as our examples so far. Suppose we start with a recur-
sive property, without any example of a set of trees satisfying the property. Proposition 1.1 and
Theorems 1.2 and 1.5 work together to prove that there exists some set of trees satisfying the
recursive property, and that at a certain Galton-Watson measure the probability of this set of
trees undergoes a continuous phase transition. But these results do not describe this set of trees.
Theorem 1.8 characterises this set in many circumstances.

To state our results, we must establish what exactly we mean when we say a set of trees satisfies
a recursive property. A more general version of this framework is given in [14]. Our terminology
here is consistent with this more general version, though we will only introduce what we need
here.

1.1. General notation

For a probability distribution x on the non-negative integers, we will abbreviate quantities like
x({n}) to x(n). We use GW, to denote the Galton-Watson measure with child distribution
on the space of rooted trees. Let #n,(v) denote the number of children of a vertex v in a rooted
tree t. We refer to the subtrees originated by the children of the root of a tree as its root-child
subtrees. We abuse notation slightly and use expressions like Bin(#, p) and Poi(u) to denote
both a distribution and a random variable with that distribution, in statements like P[Bin(n, p) =
k1= (}) k(1 — p)"~*. For a random variable N on the non-negative integers, Bin(N, p) denotes
a random variable whose law is the mixture of binomial distributions governed by the law
of N (i.e. P[Bin(N, p)=k] = Z;’io P[N = n]P[Bin(n, p) = k]). We denote the falling factorial
n(n—1)---(n—k+ 1) by the notation (n). Let N={0, 1,2, .. .}.

1.2. Encoding recursive properties

As we hinted earlier, we will describe recursive properties by giving a threshold function h. For
a tree whose root has ¢ > 0 children, we think of h(£) as the minimum number of its root-child
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subtrees with a given property to force the tree itself to have that property. If an event is consistent
with the recursive property encoded by h, we call it an interpretation of h. To formalise this, for a
rooted tree t let £(t) denote the number of children of the root of . For a set of trees T, let ¢(t, 7")
denote the number of root-child subtrees of ¢ that are elements of 7. For a given child distribution
x and threshold function /i, we say that a GW , -measurable set of trees 7 is an interpretation of

(x,h) if
teT < c(t,T) > h(ﬂ(t)) for GW, -a.e. rooted tree t. (1)

For example, the set 77 of infinite trees is an interpretation of (), h) where h(£) =1 and the set
T of trees containing an infinite binary tree starting from the root is an interpretation of (x, h)
where h(£) = 2. In both of these cases, (1) holds for all trees ¢, not just for GW, -a.e. tree t, which
renders x irrelevant. In such cases we will often call our event an interpretation of h, omitting
reference to the child distribution. (Excluding negligible sets in the definition is required for some
of the results in [14].)

For context, let us describe how these recursive properties fit into the broader class considered
in [14]. Suppose that the root of t has £ children, and that n; originate trees with some property
while 7y of them do not. Suppose that the counts ny and n; determine whether ¢ itself has the
property, and let the map A: N> — {0, 1} specify this, with A(ng, #1) = 1 when t has the the prop-
erty and A(ng, n1) =0 when it does not. In [14], this map A is called a tree automaton, and an
event consistent with the recursive property described by the automaton is called an interpreta-
tion of it. Recursive properties defined by a threshold function h correspond to automata of the
form A(ng, n1) = 1{n1 > h(ng + n1)}, which in [14] are called monotone automata. We restrict
ourselves to such automata because we have stronger results for them, primarily because the
Margulis—-Russo lemma provides a powerful tool for their analysis (see [14, Section 5.1]).

The tree automata described above are called two-state, in that each tree has one of two possible
states (having the property or not having the property) and the state of a tree is determined by the
states of its root-child subtrees. In [14], automata are considered with more than two states, which
again increases the complexity of the theory.

In this paper, we will often impose the additional condition that 4(£) is (nonstrictly) increasing
in €. This is also a form of monotonicity for the recursive property; it amounts to declaring that if
a tree t has the property, then it still has it after attaching an additional subtree to the root.

1.3. Fixed points

As we will soon see, the probability of an interpretation under the Galton-Watson measure sat-
isfies a fixed-point equation determined by the threshold function and child distribution. The
classical example is the probability that a Galton-Watson survives (i.e. probability of the set 7}
discussed in Section 1.2). Taking T ~ GWpy;(x), let x =P[T;, € T1]. Since Tj, € 7 if and only if at
least one of the root-child subtrees of Ty is in 77, and each of the Poi(A) root-child subtrees has
probability x of being in 77,

x=P[Poi(Ax) > 1] =1— e ** (2)

by Poisson thinning. This equation has two solutions when A > 1, and in this case x turns out to
be the larger of the two (the smaller is 0).

To give the fixed-point equation in a general case, we define the automaton distribution map
W(x) for a given child distribution x and threshold function h. (The terminology automaton dis-
tribution map comes from a generalisation in [14] that maps distributions to distributions.) With
L ~ x, we define

W (x) = P[Bin(L, x) > h(L)] ZX P[Bin(¢, x) > h(£)]. 3)
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h(0) = h(1) = h(2) =1 and h(3) = 2. The graphs above depict W;(x), the automaton distribution map of (x;, h). The recursive
tree system (x¢, h) is critical at t = 0 in the sense of Definition 1.4. As t increases, a single interpretable fixed point emerges
and increasesto 1l astrisesto 1/3.

Figure 1. Let x; be the probability measure placing the vector of probabilities (% -t 0 % + t) onvalues0, 1, 2, 3. Let

In words, W(x) is the probability that at least #(L) out of L root-child subtrees of a Galton-Watson
tree have some property that holds for each of them with probability x.

Observe that the right-hand side of (2) is the automaton distribution map for x = Poi(1) and
h(€) = 1. Thus (2) is the statement that the probability of the interpretation 7; under GW, is
a fixed point of the automaton distribution map. In fact, it holds in general that for any child
distribution x and threshold function h, the probability of an interpretation 7 of (x, k) is a fixed
point of its automaton distribution map: Let T ~ GW, and let x=P[T € T]. Conditional on the
number of children of the root of T, each root-child subtree in T lies in 7 independently with
probability x, since the root-child subtrees are themselves independently sampled from GW,.
Because 7 is an interpretation of A, the tree’s membership in 7 is determined from its root-child
subtrees’ membership in 7 according to h. Thus W(x) =P[T € T] =x.

We are interested in circumstances in which the automaton distribution maps have 0 as a fixed
point, since we are investigating phase transitions emerging from 0. Thus we typically require the
threshold function / to satisfy h(€) > 1 for all £ > 0. (Strictly speaking, to make 0 a fixed point we
only need h(£) > 1 for £ in the support of the child distribution, but the value of h(€) for £ outside
of this support is irrelevant anyhow.)

1.4. Results

Fix a threshold function k, and let W, be the automaton distribution map for (x, k). Our aim is to
understand the circumstances in which x is critical, in the sense that there is an event satisfying
the recursive property encoded by i whose probability emerges from 0 as x is perturbed (we will
make this definition precise in Definition 1.4). Since an event satisfying the recursive property has
probability given by a fixed point of W, , a new fixed point must emerge from 0 as x is perturbed.
Based on the idea that W, changes continuously in x, intuition suggests that W', (0) = 1 is neces-
sary in order to have a fixed point emerge from 0 as x is varied (see Figure 1 for an example of a
fixed point emerging). This thought is on the right track, but it raises some questions:

a. Suppose that x can be perturbed so that a fixed point of W, emerges from 0. Is it always
the case that this fixed point has an interpretation? That is, is there an event satisfying the
recursive property whose probability is given by the fixed point (and which therefore has a
phase transition)?
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b. Can we characterise the critical child measures x in a more direct way than stating
properties of W, 2

c. Suppose that W, has a fixed point emerging from 0 as x is perturbed, and we can deter-
mine that indeed x is critical, i.e. that there exists an interpretation associated with this
fixed point undergoing a phase transition. Can we state what the interpretation is in any
satisfying way?

Before we address these questions and present our results, let us recall and define some nota-
tion. For a given child distribution x, we will be posing questions about the interpretations of
(x> h), as defined in Section 1.2. We call (x, h) a recursive tree system, and we take as part of the
definition that h(€) > 1 for all £ > 0. As we explained in Section 1.3, any interpretation of (x, h)
has GW, -measure satisfying the fixed-point equation W(x) = x, where W is the automaton dis-
tribution map of (x, k). If T is an interpretation of (x, h) with GW, (7)) = xo, then we say that 7~
is the interpretation associated with the fixed point x( (we write the interpretation rather than an
interpretation because we show in Proposition 1.1 that a given fixed point can have at most one
interpretation). We refer to the fixed points of W as the fixed points of (x, h). For a system (yx, h),
we define its kth tier as the set of values £ > 1 in the support of x with h(€) = k. That is, tier k for
(x, h) is defined as

tier(k) = tier, p(k) = {E >1: h(¢) =kand x(£) > 0}. (4)

Question a is resolved by the following criterion for when a fixed point of (x, ) admits an
interpretation:

Proposition 1.1. Let x have finite expectation and more than one point of support, let \V be the
automaton distribution map of the recursive tree system (x, h), and let 0 < xo < 1 be a fixed point
of (x, h). There exists an interpretation of (x, h) associated with xq if and only if V'(xg) < 1. When
an interpretation of xo exists, it is unique up to GW, -negligible sets.

We give a proof in Section 2, though it just amounts to tying together results from [14].
Proposition 1.1 does not address the case of xy = 0 or xy = 1 because such fixed points have trivial
interpretations associated with them, namely the empty set in the case of 0 and the set of all rooted
trees in the case of 1.

To address question b, we give a formula for the derivatives of W at zero in terms of x. The
notation (£),, in (5) and (6) denotes the falling factorial £(¢ — 1) - - - (£ — m + 1).

Theorem 1.2. Let x be a child distribution with finite mth moment, and let U be the automaton
distribution map of the recursive tree system (x> h). Then for m > 1,

wm(0) = 1’"”‘“)( ) O ms 5
(0) Z( ) ney—1)*©O© (5)
— - m+ 1
Z( 1) f( 1) Z'x(exe)m. (6)
Letier(j)
We highlight the m = 1, 2 cases of this theorem:
vO)= Y x(Of (7)
Letier(1)
V0= Y x@ee—-1— Y x(®ee—1. (8)
Letier(2) Letier(1)

It follows from Theorem 1.2 that the value of W™ (0) depends only on the mass that x places
on the first m tiers. We state this formally since we will often use it:
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Corollary 1.3. Assume that x and ) have finite mth moments. Let W and U be the automaton dis-
tribution maps of the recursive tree systems (x, h) and (X, h), respectively. If x (€) = X (¢) whenever
h(€) < m, then W™ (0) = W™)(0).

Now, we can relate conditions on the derivatives of W at 0 back to the child distribution. With
this in mind, we will state our criteria for where continuous phase transitions occur. Let [Too
denote the space of probability measures on the non-negative integers with all moments finite.
On I, for any n > 0 we can define a metric

du(xs x2) = Y _ K" [xa (k) = x2(k)] .
k=1

We topologise I, by declaring that x, — x if dy(xs, x) — 0 for all n > 0. We work in this space
to avoid pathologies; see Remark 1.7 for more details.

Definition 1.4. For a recursive tree system (x, k) with x € I1o, we say that (x, h) is critical if for
any € > 0, all neighbourhoods of x in Il contain a measure 7 such that there is an interpretation
T of (7, h) satisfying 0 < GW(7T) < €. Equivalently, (x, h) is critical if there exists a sequence
Xn € Il converging to x such that (x,, k) has an interpretation 7, with GW,,, (7,) \, 0.

Theorem 1.5 Let x € Il have more than one point of support. The recursive tree system (x, h)
with automaton distribution map WV is critical if and only if ¥'(0) = 1 and ¥"'(0) < 0.

Remark 1.6. One might object that to correctly capture the idea of a phase transition, we should
insist on a single interpretation 7 satisfying GW,,, (7) \ 0, rather than a sequence of interpreta-
tions 7, with GW ., (7,) \( 0. For example, suppose h({) = 1, x = Poi(1), and x, = Poi(1 + 1/n).
Then for the set of infinite trees 77, we have GW,,, (71) \( 0. In fact, this more stringent require-
ment is equivalent to our original one, as we now show. First, we claim that for different child
distributions x and x’, the measures GW, and GWX/ restricted to infinite trees are mutually

singular. To see this, observe that for GW, -a.e. infinite tree t, the empirical distribution of the
numbers of children of the vertices at level n of the tree converges to x. Hence the supports of
GW, and GW_ s on infinite trees are disjoint.

Next, any interpretation contains only infinite trees by our requirement that h(€) > 1. To see
this, let 7 be an interpretation, and observe that a single-vertex tree is not a member of 7 since 0
of its 0 root-child vertices are in 7, and h(0) > 1. Then since single-vertex trees are not members
of T, no height-1 tree can be in 7, and hence no height-2 tree can be in 7, and so on.

Thus, if we have a sequence of interpretations 7, of (xu, h) satistying GW,, (7,,) \ 0, we can
stitch them together into a single interpretation 7 defined to be equal to 7, on the support of
GW,,,. However, we will see in Theorem 1.8 that for a large class of phase transitions, we can
define a single interpretation 7 in a more satisfying way so that GW,, (7) \ 0.

Remark 1.7 The details of the topology on I, are not particularly important to this paper, but
let us define it in more detail and explain what goes wrong with a looser sense of convergence.
To make it so that x, — x if and only if d,(x,, x) — 0 for all n > 0, consider the product space
]_[2';0 [, where the nth copy of Il is taken as the metric space (ITso, d,). Now consider the
map ¢: Moo — [[5e, Moo given by t(x) = (X, x> . - . ). We assign I1o, the topology induced by ¢,
i.e. the one formed by pullbacks of open sets in the product space.

Problems arise if we use a coarser topology on I1.,. For example, suppose we use the metric dy,
which in this space metrises the topology of convergence in law. Now, for the threshold function
h(€) =1, even the measure & is critical. Indeed, define

xn=(1—2/n)dg + (2/n)d,.
Then do(xn, x) = 0and GW,, (71) \, 0, where 7; is the set of infinite rooted trees.
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Figure 2. Graphs of W;(x) — x, where W; is the automaton distribution map of (x:, h) with x; = (% - t)ao + (% + t)Bz +

%85, and h(0) = h(2) =1 and h(5) = 4. The system (x¢, h) is critical at t = 0 in the sense of Definition 1.4, and we can see a
fixed point emerging from 0 as t increases. Because W¢(x) > x in a neighbourhood of 0 for t > 0, the interpretation associated
with this fixed point is described in Theorem 1.8. See Example 1.8 for more details.

Finally, we address question c and try to describe the event undergoing the continuous phase
transition. Our result, Theorem 1.8, characterises the interpretation associated with the smallest
non-zero fixed point when its automaton distribution map W (x) satisfies W (x) > x on some inter-
val (0, €) for € > 0. This means that the result describes the event undergoing a phase transition
so long as the graph of the automaton distribution map rises above the line y = x as the phase
transition occurs. This occurs in the phase transitions illustrated in Figures 1 and 2, but not in
the phase transition shown in Figure 3. We also mention that Theorem 1.8 requires h({) to be
increasing.

The characterisation of the interpretation depends on the behaviour of the automaton distribu-
tion map near 0. We define some terminology about this now. For m > 1, we say that the recursive
tree system (x, h) is m-concordant if the first m derivatives of ¥ at 0 match those of the function x.
That is, (x, h) is m-concordant if ¥/(0) = 1 and W) (0) = 0 for 2 < k < m. For m > 2, we say that
(x, h) is m-subcordant (resp. m-supercordant) if it is (m — 1)-concordant and wm(0) <0 (resp.
wm(0) > 0). We say that (x, h) is 1-concordant, 1-subcordant, or 1-supercordant if ¥/(0) =1,
W'(0) < 1, or W'(0) > 1, respectively. When h is clear from context, we will abuse notation and
refer to x itself as being m-concordant, m-subcordant, or m-supercordant. Note that assuming
smoothness of W (which holds for x € 1o by Lemma 2.3), if ¥(x) > x holds on some interval
(0, €), then (x, h) is m-supercordant for some m > 1.

Finally, we define the notion of an admissible subtree. We say that a subtree s of a rooted tree ¢
is admissible with respect to a threshold function 4 if s contains the root of ¢ and ny(v) > h(n:(v))
for all vertices v € s. We can think of an admissible subtree as a sort of witness to an interpretation.
For example, consider h(£) = 1, the threshold function encoding a property that holds for a tree if
and only if it holds for at least one of the tree’s root-child subtrees. As we mentioned earlier, this
recursive tree system has two fixed points when x has mean greater than 1, and the interpretation
of the non-zero fixed point is survival of the Galton-Watson tree. A subtree S of the Galton—
Watson tree T is admissible if and only if S has no leaves (i.e. ng(v) > 1 for all v € S). An admissible
subtree thus serves as a witness to the Galton—-Watson tree being infinite. Indeed, the event of T
being infinite could equally well be described as T having an admissible subtree (see Proposition
1.9 for a generalisation).
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Figure 3. Graphs of W(x) — x illustrating a continuous phase transition not satisfying the conditions of Theorem 1.8.
Here W; is the automaton distribution map for (x, h) where x; = %80 + (% - 3t2)52 + (é + t)53 + (% +3t2 — t)ég, and
h(0) = h(2) =1, h(3) =2, and h(6) = 5. The top plot is our standard view of W(x) — x as in Figures 1 and 2. In the bottom plot,
we zoom in around x = 0 and see that two fixed points emerge from zero as t increases. By Proposition 1.1, the first fixed
point for each system has no interpretation but the second one does. But we cannot apply Theorem 1.8 to characterise this
interpretation. See Section 5 for further discussion.

Theorem 1.8 Let x € [y have more than one point of support. Consider the recursive tree system
(x> h) with automaton distribution map WV, and assume that h(£) is increasing in £. Suppose that
(x,h) is m-supercordant, and let xy be the smallest non-zero fixed point of W. Then x is inter-
pretable, and its associated interpretation is the event that T ~ GW,, contains an admissible subtree
S in which all but finitely many vertices v satisfy ns(v) < m.

Though it falls outside this narrative of understanding phase transitions, we mention that in all
cases, the highest fixed point of a recursive tree system has a similar characterisation:

Proposition 1.9 Let x € [1o have more than one point of support. Consider the recursive tree sys-
tem (x, h) with automaton distribution map V. Let x) be the largest fixed point of V. Then x; is
interpretable, and its associated interpretation is the event that T ~ GW, contains an admissible
subtree.
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We close the section with an example of a family of systems (), h) undergoing a continuous
phase transition, as shown in Figure 2.

Example 1.10 Define x; and h by

1/20—t forf =0, 1 forf=0,
xt(0)=131/2+t forl=2, and h()=11 fort=2,
9/20 for ¢ =5, 4 forf=>5,

and let W; be the automaton distribution map of the recursive tree system (x;, h). By
Theorem 1.2,

WH(0) =2x:(2) =142,
\Il”t(O) = _2Xt(2) =—1-2t.

The system (o, k) is critical by Theorem 1.5, since ¥'((0) = 1 and W"/((0) = —1. For ¢ > 0, the
system is 1-supercordant (i.e. ¥/;(0) > 1).

In Figure 2, we show the graphs of W;(x) — x, so that fixed points of W, appear as roots. At
t =0, the system has two non-zero fixed points, at x & 0.73 and x ~ 0.93. As t grows, a fixed point
xo(t) emerges from 0. We have W';(x((t)) < 1, evident from the graph of W;(x) — x where xj is
a down-crossing root. By Proposition 1.1, the fixed point x¢(t) is interpretable. By Theorem1.8,
the interpretation of (x;, h) associated with xo(t) is the event 7g that T ~ GW, has an admissible
subtree S in which all but finitely many vertices v € S satisty ng(v) < 1. Since h(£) > 0 for all £ > 0,
an admissible subtree has no leaves, and thus all but finitely many vertices have ng(v) = 1.

Recall that S C T is admissible if it contains the root of T and for each v in S, we have ng(v) >
h(nr(v)). In this case, if a vertex v has 5 children in T, it can only be in § if at least 4 of those
children are also in S; if v has 2 children in T, it can only be in § if at least one of those children is
in S; and if it has no children in T, it cannot be in S. Thus on the event 7, the tree T contains an
admissible subtree where all but finitely many vertices have 2 children in T.

We can see directly that GW (7o) = 0 by observing that the subtree of T ~ GW,, consisting
only of the vertices with 2 or fewer children forms a critical Galton-Watson tree (its child distri-
bution is 380 + 38,). Thus it has no chance of being infinite. Consequently, for any vertex v in
T, there is no chance that T(v) contains an admissible subtree consisting of only vertices with 2
children in T.

Viewing the graph in Figure 2, we observe that W, has derivative greater than 1 at its middle
fixed point, which means that it has no interpretation by Proposition 1.1. The largest fixed point
has the interpretation that T ~ GW,, contains an admissible subtree, by Proposition 1.9.

1.5. Related work

A finite random structure like a random graph will not typically experience a true phase transi-
tion. The analogous concept in this area is a sharp threshold for some property, meaning that the
property holds with probability that transitions from 0 to 1 in a parameter window that tends
to 0 as the system grows. The motivating phase transitions of this paper—the continuous phase
transition for survival and the first-order transition for existence of a binary subtree in a Galton—
Watson tree—have analogues for Erdds-Rényi random graphs in this sense: the existence of giant
component [2, Chapter 11], and the existence of a 3-core [18, 19]. The first of these examples is
essentially a continuous phase transition while the second is essentially first-order. For example,
when one reaches the threshold for a 3-core to exist, it immediately makes up a positive linear
fraction of the graph’s vertices. These examples have been studied extensively, though not in the
sort of general framework considered in this paper.
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As for more general studies of phase transitions and sharp thresholds, in finite systems, there is
aline of inquiry centred on giving conditions for a property to have a sharp threshold [8, 9, 15, 21].
Many of these results use the theory of Boolean functions and the Margulis-Russo formula (see
[11] for background), also used in this paper for the proof of Proposition 1.1 via [14]. These results
on sharp thresholds for finite random structures have been applied in impressive ways to prove
results on phase transitions for infinite systems [4, 5]. There is also considerable nonrigorous
literature by physicists on distinguishing between continuous and first-order phase transitions
(see, e.g [3, 7]).

For Galton-Watson trees specifically, Podder and Spencer investigate probabilities of events
that can be described in first-order logic (no connection to first-order phase transitions) in [16,
17]. These events have the same sort of recursive description as the events considered here, gener-
ally with more than two states. But their fundamental result [17, Theorem 1.2] is that these events
never undergo phase transitions at all. In [12], Holroyd and Martin consider various two-player
games whose moves are modelled by directed steps on a Galton-Watson tree. They investigate
events of a player winning the game in various senses, which have a similar recursive nature as
the events considered here, and they give results about the continuity or discontinuity of phase
transitions for these events [12, Theorem 5].

1.6. Sketches of proofs

The proofs of Theorems 1.2 and 1.5 are fairly straightforward. For Theorem 1.2, we express W (x)
as a sum of polynomials and carry out combinatorial calculations to compute their derivatives.
Proving Theorem 1.5 is just a matter of Taylor approximation of W (x) near x = 0 combined with
Proposition 1.1, our interpretability criterion from [14]. Section 2 is devoted to these two proofs.

The proof of Theorem 1.8 is more involved. Given an m-supercordant (x, i) with smallest non-
zero fixed point xy, we truncate x to form a new child distribution y, setting x (¢) = 0 for £ in tiers
m + 1 and above. From Theorem 1.2, we know that the system (), h) remains m-supercordant.
The hard part of the proof is to show that (), h) has only a single non-zero fixed point. We carry
this out by decomposing x as a mixture of what we call primitive m-critical measures that have
nice combinatorial properties. From Proposition 1.9, we know that the single non-zero fixed
point of (i, h) is associated with the interpretation that T~ GWj contains an admissible sub-
tree. Embedding T into T ~ GW ,, we can view this event as T containing an admissible subtree
made up only of vertices with £ children where h(£) < m. This event is not an interpretation of
h—it does not satisfy the recursive property described by h—but it is a subevent of the correct
interpretation for xy, which we are able to exploit to prove Theorem 1.8.

2. Analytic properties of the fixed-point equation

We start with the proof of Proposition 1.1. This proof belongs more in [14] than here, but we give
it so that it is spelled out somewhere.

Proof of Proposition 1.1. The proof is just a matter of tying together some more general results
from [14]. The fixed point x( has an interpretation if and only if the associated pivot tree is sub-
critical or critical [14, Theorem 1.7]. (See [14] for the meaning of pivot tree.) This pivot tree is
subcritical or critical if and only if W'(x) <1 [14, Lemma 5.3]. O

Remark 2.1 The proof of [14, Lemma 5.3] contains a step of computing W’(x) by interchanging
the order of a derivative and an expectation. This step is not justified in the proof, but it is easily
shown to hold if x has finite expectation, one of our assumptions for Proposition 1.1.

Now we start our work towards the proofs of Theorems 1.2 and 1.5. We define the
polynomials
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B = (a0 ©
BZ ()= B (x). (10)
j=k

For x € [0, 1], we have B, (x) = P[Bin(n, x) = k] and Bfk(x) = P[Bin(n, x) > k]. Note that we take
(3) =1and (}) = 0if k> n or k < 0. Using this notation and assuming h(¢) > 1, we have ¥(x) =
Yo X (Z)B?h( ¢(*). Thus we can understand the derivatives of W by working out the derivatives

of Bf k(x), which we do now.

Proposition 2.2 Form > 1,

dm o ” am(m—1
WBmk(x)z(n)szl(_ly+ (j—l) ) ()

Proof. By direct calculation,

d __ _ _
aB;,k(x) = n(B;_l)k_l(x) - B;_l’k(x)). (12)
Hence

d . o _
EB’;”‘(X) =n j:Zk(Bnl,jl (x) — B,y (%)),

and this sum telescopes to yield nB; | | (x), establishing the m =1 case.
Now assume the result for m and we prove it for m + 1. Differentiating the right-hand side of
(11) using (12) gives

am+1 m m m—1 _
dx Tem+1 nk(x) (”)mz(_ly (j_1>(n_ )(Bn m—1,k—j— l(x) n m— lk—J(x))

j=1

m+1
= (M m+1 (Z (—1y*tmtl ('7_ 21>B; 1)
j=2
Z 1)J+m( I)Bn_ mo1k J(x))

j=1 j—1
m+1 ) m
= (”)m-i—l Z ( - 1)j+m+1 Q . I)Bn:ml,kj(x)’
j=1

using the identity (,”,) + (}) = ("}") in the last line. O

Lemma 2.3 Let W be the automaton distribution map for a system (x, h). Let x,, be the truncation of
X to n, i.e. the probability measure satisfying x,(€) = x (€) for £ € {1, ..., n} and x,(0) = x {0, n +
1L,n+2,...}. Let W, be the automaton distribution map for (x, h). If x has finite mth moment,
then W™ exists and is the uniform limit of\I/,Sm) on [0, 1] as n — oo.
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Proof. We have W, (x) =Y j_, X(E)Bezh(()(x) and W (x) = lim,,_, 5o ¥,,(x). It suffices to show that

\1/,3") converges uniformly on [0, 1] to some limit as # — oo for 0 < k < m [20, Theorem 7.17]. For
k> 1, we apply (11) and bound B7, (x) by 1 to obtain

k

k—1 _
< (O Z (j B 1) = ()25 < gkak.

j=1

k
>
2k Bno™

The same statement for k = 0, that |B€2h( K)(x)| < 1, also holds. Hence forall 0 < k <m,

00 dk 00

§ : > k § : k

X(e)@Bg,h(g)(-x) = 2 X(E)Z >
L=n+1 l=n+1

which vanishes as n — oo by our assumption that x has finite mth moment. This demonstrates

that ¥ converges uniformly as n — oo, completing the proof. 0

Proof of Theorem 1.2. Let x,, be the truncation of x to n and let ¥,, be the automaton distribution
map of (), h), as in the previous lemma. Applying Proposition 2.2 to each summand of ¥, (x) =

>l X(E)Bzh(g)(x) gives

n m ‘ _ 1
V) =) x(OOm ) (=1 (7]”_ | )Bz_—m,h(i)—j(x)'
=1 j=1

Observing that B;k(O) = 1{n > 0 and k = 0}, we obtain

R _ yo+m[ m—1

Applying Lemma 2.3, we take n — 00 to prove (5). Equation (6) follows by grouping together the
terms with h(£) =j.

Note that this theorem can fail without the moment assumption:

Example 2.4 Let x(¢{)=1/4({ —1) for k>2, a measure whose expectation is infinite.
Let h(£) = 2. Observe that

P[Bin(¢,x) <1] = (1 —x)" +£(1 —0) x =1 - 0"+ 01— (1 - (1 —x)
=t(1—x)"— (-1 -x"
Now, let L ~ x and compute

W(x) =P[Bin(L, x) > h(¢)] = 1 — P[Bin(L, x) < 1]

=1-)_ x(OP[Bin(¢, x) < 1]
=2

=1- Z((z —DA—x)" = - x)‘).
=2

The sum in the last line telescopes and is equal to 1 — x for x € [0, 1], yielding W (x) = x. But this
means that ¥/(0) = 1 even though Theorem 1.2 would give ¥/(0) = 0.

We revisit this recursive tree system in Example 3.4 and show how we arrived at it.
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Lemma 2.5 For any m > 1, the function x > W™ (0) is continuous on .

Proof. Suppose x, — x in I1 and let W, denote the automaton distribution map of x,. We need
to show that U™ (0) — W (0). We have

D m@O@Om— D xOOm| <Y 1xal®) — x @) €7,
=1

Letier(f) Letier(j)

which vanishes as n — oo by definition of convergence in I1,. Hence, by (6) from Theorem 1.2,
we have W™ (0) — w(™)(0). O

Proof of Theorem 1.5. First, suppose that ¥/(0) = 1 and ¥ (0) < 0. We need to show that for any
€, there exist child distributions arbitrarily close to x in Il with an interpretable fixed point in
(0, €). To show this, we perturb yx slightly to push its automaton distribution map up, creating a
new fixed point very close to 0. We accomplish this by transferring some small amount of mass to
tier 1, which will cause W’(0) to increase, as in the phase transition shown in Figure 2.

We will choose k from tier 1 and take j to be either 0 or some element of a different tier, and then
transfer mass from j to k. First, we must justify that we can find j and k. From (7) and W/(0) =1,
we know that tier 1 is non-empty. Choose k arbitrarily from it. If x (0) > 0, take j = 0. If x(0) =0,
then x has expectation strictly greater than 1. By (7), tier 1 does not contain all the mass of x, and
therefore some other tier is non-empty; choose j from it.

Now, for t > 0, define x; by starting with x and then shifting mass ¢ from j to k. Let ¥, be the
automaton distribution map of x;. Fix € > 0. Since x; — x in [T, we just need to show that for
sufficiently small ¢, the map W; has an interpretable fixed point in (0, €). By Theorem 1.2,

W/4(0) =W'(0) + kt =1+ kt, (13)
and
w”,(0) < ¥'(0) < 0. (14)

By (13), we have W(x) > x for sufficiently small x > 0. Choosing ¢ to be small enough relative to
W”(0) and applying Taylor approximation, we can force W;(x) < x for some x < €, implying the
existence of a fixed point xy with W’;(xg) < 1, which is hence interpretable by Proposition 1.1.

Now, suppose W'(0) =1 and ¥”(0) = 0. Again we must show the existence of child distribu-
tions arbitrarily close to x with an interpretable fixed point in (0, €). We take the same approach
as above, perturbing x to increase W’'(0) and decrease W’/(0), but we must be careful about the
rates of increase and decrease. Choose k from tier 1 as before. From ¥'/(0) = 0 and (8), we know
that x assigns positive mass to tier 2; choose j from it. Now define

x () + 12 if¢ =k,
x(£)—t if ¢ =j,
x(0)+t—1 ife=0,
x (&) otherwise,
for small values of ¢, and let W, be the automaton distribution map of ;. By (7) and (8),
W' (0) = W'(0) + Pk =1+ £k,
W (0) = W(0) — tj(G — 1) — Pk(k — 1) = —tj(j — 1) — t*k(k — 1).

Thus W¢(x) > x immediately to the right of 0, and Taylor approximation again shows that when ¢
is sufficiently small W;(x) < x for some x < €. This proves the existence of a fixed point xy € (0, €)
with W/ (x) < 1.
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Now we consider the converse. Suppose W'(0) # 1. By Lemma 2.5, we can choose a neigh-
bourhood U C I around x so that for all & € U, the automaton distribution map of (=, h)
has first derivative at 0 uniformly bounded away from 1 and second derivative at zero uniformly
bounded. By Taylor approximation, all these maps have no fixed points on (0, €) for some small
€ > 0, demonstrating that x is not critical.

Last, suppose W/(0) = 1 and W"/(0) > 0. By Lemma 2.5, we can choose a neighbourhood U C
My around x such that all automaton distribution maps W, of (7, h) for = € U have second
derivative at zero uniformly bounded above 0 and third derivative uniformly bounded. Hence
for some € > 0, each map Wy is strictly convex on [0, €]. The function W (x) — x is also strictly
convex and hence has at most two roots on [0, €]. One of them is at 0. By convexity, any other
root of W (x) — x on [0, €] must occur with the graph crossing the x-axis from below to above as
x increases. Thus W has derivative greater than 1 at this fixed point, and by Proposition 1.1 it has
no interpretation. Since no systems (i, h) for 7 € U have an interpretable fixed point in (0, €), the
measure x is not critical. UJ

3. Truncations

Let the maximum threshold of (), h) be the maximum value of h(£) over all £ satistying x (£) > 0.
Define the m-truncation of x as the child distribution ¥ where for £ > 1,

x() ifh(€) <m,
0 if h(€) > m,

x (€)=

with x(0) set to make x a probability measure. In other words, x is obtained from x by lopping
off tiers m + 1 and higher, shifting their weight to 0. Recall from Corollary 1.3 that the automaton
distribution maps of (x, k) and (x, h) match to m derivatives at 0. Thus (x, h) is a system of
maximum threshold m or less whose automaton distribution map approximates that of (x, h)
near 0.

The point of this section is to prove the following result, which is a major step in proving
Theorem 1.8:

Proposition 3.1 Let x € [l and let h(€) be increasing. Suppose that (x, h) is m-supercordant.
Then its m-truncation has a unique non-zero fixed point.

The key to this proposition is a thorough understanding of m-concordant recursive tree sys-
tems of maximum threshold m, which we call m-critical. If (x, h) has at most one element in each
tier, we call it primitive. We will work extensively with primitive m-critical recursive tree systems.
An example of such a system is

2/5 forf=0, 1 foré—o,

1/2  fort =2, 1 fort=2,
x () = ) h(¢) =

1/20 forf =5, 2 forl=5,

1/20 for £ =6, 3 fort=6.

We can check using Theorem 1.2 that this system is 3-concordant (i.e. it has W/(0) =1 and
w(0) = w3 (0) = 0). It is 3-critical because it is 3-concordant and has maximum threshold 3,
and it is primitive because tiers 1, 2, and 3 each have one element (recall that the tiers exclude 0 by
definition).

These recursive tree systems have many good properties. In Proposition 3.8, we show that
m-critical systems decompose into mixtures (i.e. convex combinations) of primitive m-critical
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systems. And for the primitive m-critical systems (x, /), the automaton distribution map has a
useful connection with a martingale (X,,),>1 we describe now.

First, we define a time-inhomogenous Markov chain (R,),>1 as follows. Let Ry = 1. Then,
conditional on Ry, let

n+1—R,
n+1 °

Ry

n+1°

R, with probability

Ryp1= (15)

R, +1 with probability

There is an alternative construction of (R,),>1 that yields some insight. Start with the permu-
tation o7 of length 1. At each step, form o,41 from o, by viewing o, in one-line notation and
inserting the digit n + 1 uniformly at random into the n + 1 possible locations. For example, if
o3 = 213, then oy is equally likely to be each of 4213, 2413, 2143, and 2134. Then let R, = 6;1(1),
the location of 1 in the one-line notation of o,,. When we insert n + 1 into o, to form oy,41, it has
probability (n + 1 — R,)/(n + 1) of landing to the right of 1 and probability R, /(n + 1) of landing
to the left of 1, matching the dynamics given in (15). We note one consequence of this perspective:

Lemma 3.2 The random variable R,, is uniformly distributed over {1, ..., n}.

Proof. First, we argue by induction that oy, is a uniformly random permutation of length n, with
n =1 as the trivial base case. To extend the induction, let T be an arbitrary permutation of length n
and let T/ be the permutation of of length n — 1 obtained by deleting # from the one-line notation
form of 7. Then oy, can be equal to 7 only if 0,—; = 7/, and we compute

1 1 1
Plon=t]=Ploy1=11Ploy=t|0op1=17]= P—=—
n—1)! n n
by the inductive hypothesis and definition of o,.
To complete the proof, observe that R, 4 o, 1(1) and is hence uniform over {1, . . ., n}. O

Finally, we give the sequence (X;,),>1 and show that it is a martingale. We define it in terms of
R, and the polynomials Bfk(x) defined in (10).

Lemma 3.3 Fix x € [0, 1] and define
X, =By p (x).

Then (Xy)u>1 is a martingale adapted to the filtration %, =0 (Ry, . .., Ry).

Proof. First, we claim that

n+1—k

> >
Bl () =B () + nrl

By, (0. (16)

To see this, consider n + 1 independent trials with success probability x. Then eliminate one at
random and consider the event that there are at least k successes in the remaining # trials. The left-
hand side of (16) is the probability of this event, which occurs if either (a) there were k + 1 or more
successes in the original set of trials, or (b) there were exactly k successes but the trial removed was
a failure. Then (a) occurs with probability Brzl Lk Jrl(x) and (b) with probability %B;Lk(x),
proving (16).
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Now, we compute

n+1
E[Xn1 | Zn] =E[ > B 4
k:Rn+1
+1 n+1
n+1—R, <~ __ R, _
DTS Z B 1) + n+ 1 Z B 1)
k=R, k=R,+1

> n+1—Ry\ _ -
=B 1R, 1)+ (n——i-l B, 1, (¥) =B g, (%),

applying (16) in the last line. Hence E[X, 4 | #,] =X,, confirming that the sequence is a
martingale. [

We will make use of this martingale by applying the optional stopping theorem to assert that
x = X; = EX7y for various stopping times T. This expectation has the form

o
EX7 =) P[T=n]P[Bin(n,x) > R, | T=n].
n=1
For a recursive tree system (x, h) where x(n) =P[T =n], if T is chosen so that R,, = h(n) when
T = n, this expression is nearly the same as W (x). The following example is off track for the section,
but it illustrates how to use this idea.

Example 3.4 (Example 2.4 revisited) In Example 2.4, we showed that the system (x, h) with
x(n)=1/n(n— 1) for n > 2 and h(n) = 2 has automaton distribution map W (x) = x by an explicit
calculation. Now we give a new proof that demonstrates how we arrived at the example. Let T be
the first time the chain R, jumps from 1 to 2; that is, T = min{n: R, = 2}. By the chain’s dynamics,

forn>2
n—1
k—1 1
P = 1= = _— s
(Tzn=PRyr=1]=[] ——=-—
k=2
and

1
P[T=n|T>n]=P[R,=2|Ry_1=1]=—.
n

Putting these together, we have P[T =n] =1/n(n — 1) for n> 2. Also observe that T' < oo with
probability 1, since P[T > n] — 0 as n — oc.

Now, we set x(n) =P[T =n] and h(n) = 2. Since |X,| <1, the optional stopping theorem
applies and yields

oo oo
x=EXr= Z P[T =n] P[Bin(n, x)>R,|T= n] = Z X(H)P[Bin(n, x) > 2] = W(x).
n=2 n=2
The next result uses the optional stopping theorem in the same way to compute primitive m-
critical systems with a given set of support. Recall that primitive means that each tier has at most
one element, i.e. the values h(£) are distinct for all £ > 1 in the support of the child distribution.

Lemma 3.5 For any sequence of integers 1 <4{; <--- <Ly, there is a unique probability mea-
sure x supported within {0, €1, . .., L} so that the system (x, h) with h({y) = k is m-concordant.
We denote this measure x by the notation crit(£y, . . ., £,,). For this system (x, h) with automaton
distribution map W:
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a. x satisfies

1
1

x() = —— Z (— )"*J“( 1) X)W forz<k<m.

If¢1 =1, then x =8, and V(x) = x. If €1 > 2, then the following properties hold as well:

b. x places positive mass on each of {0,£1,...,€m}; in particular, (x,h) has maximum
threshold m and is therefore m-critical;

c. (x—W(x)/x(0) is a convex combination of the polynomials
Bfm,r(x), re{fm+1,...,0u}

d. (x,h)is (m+ 1)-subcordant.

Proof. Fix a sequence 1 </¢; <--- < £, and let h(£;) = k. We will first prove that if there exists
m-concordant x supported on {0, £, . .., £y,}, then a. holds. This shows that such a yx is unique,
if it exists, since we can apply a. inductively to determine x(£1), ..., x (£»). (Note that it is not
obvious a priori that the values of y (£;) given by these formulas are positive numbers or that their
sum is 1 or smaller, which is why we cannot construct x by this formula.) After this, we will prove
existence of x, and last we show b.-d.

To prove a. under the assumption of existence of y, we simply apply Theorem 1.2. In the
k=1 case we use (7), yielding 1 = W’'(0) = x(¢£1)¢; and proving that x(£;) = 1/¢,. Similarly, for
2 < k < m, we have 0 = W (0) and we apply (6) to deduce the rest of a.

Now, we show that y exists. Consider the chain (R,),>] defined previously, and let

T =min{{;: Ry, =k},

with T=o00if Ry, #kfork=1,...,n The random variable T is a stopping time for the filtration
(Zn)n>1 defined in Lemma 3.3. To get a feeling for T, consider the perspective of R, as the location
of 1 in the one-line notation of a growing random permutation oy, as described before Lemma 3.2.
The idea for T is that we only consider stopping at times £, {2, . . ., and that we stop at the first
time £ where 1 is in position k in oy, .

We define x be setting x(¢x) =P[T=¢] for k=1,...,m and setting x(0) =P[T = o0].
Clearly this is a probability measure supported within {0, €1, . . ., £,;}. We now compute

W) =) x(OBF,x) =Y PIT=4IB; ().
(=1 k=1

As in Example 3.4, this closely resembles EXt for the martingale (X,,),>; defined in Lemma 3.3,
since BZ «(0) = X1 when T = £;. Indeed, by the optional stopping theorem,

m
x=X1 =EXrne, = ZP[T=K1<]E[XT | T=4£;] +P[T=o00]E[Xy, | T = 00]

k=1
em
=W(x)+ x(0) Y PR, =r| T=00]B] ,(x).
r=1

We claim that if T = oo, then R, > m + 1. Indeed, if T > £;, then R;, # 1, and hence Ry, > 2.
Since (R,)u>1 is increasing, we then have Ry, > 2. If T > £;, then Ry, # 2, and hence Ry, > 3.
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Continuing in this way, if T > ¢; then Ry, >j+ 1. In particular, if T= oo, then Ry, >m+ 1,
proving the claim. Hence P[R;,, =1 | T = oo] = 0 for r < m, yielding

L

W(x)=x—x(0) Y PRy, =r|T=00]B; (x). (17)
r=m+1

Now we can confirm that the system (x, h) we have constructed is m-concordant. Since the
polynomials Bgzm .(x) for r > m + 1 are divisible by 1M1 we rewrite (17) as

W(x)=x— x(0)x" ! F(x),

where F(x) is a polynomial. Since

dk m+1

pw x=o(x F(x))=0
fork=1,...,m, we see that ¥'(0) = 1 and ¥ (0) = 0 for 2 < k < m. Thus we have shown exis-
tence of x so that (), h) is an m-critical system with support {0, ¢}, ..., £;,}. We have already
shown that that there can be at most one probability measure with this property. Henceforth we
denote the measure x we have constructed by crit(¢y, . . ., €n).

When ¢; = 1, we have T =1 a.s., which makes y = §; and ¥ (x) = x. From now on we assume
£1>2. To prove b., we must show crit(¢y,...,¢,) assigns strictly positive mass to each of
0, €1 ..., £y,. We just need to show that the events {T =¢;} for k=1,...,m and the event
{T = oo} have positive probability. We claim that T = £, occursif Ry, R, ..., Ry, is the sequence

L2,..,kk..., k

Indeed, for j < k either Ry; = ¢; or Ry; = k. Since £; > 1, we have ¢; > j, and hence we stop only
when we reach £, proving the claim. Similarly, and T = oo occurs if Ry, . . ., Ry, is

L,2,....m+1,m+1,..., m+1.

By the dynamics of the chain (R,), it has positive probability of taking on these sequences.

Property c. follows directly from (17) together with x (0) > 0 from b. It remains to prove d. by
showing that WMt (0) < 0. From c. we have W (x) < x. If W™+ (0) > 0, then by Taylor approxi-
mation we would have W (x) > x for sufficiently small x, a contradiction. Hence wmt)(0) < 0. To
rule out W +1)(0) = 0, we make use of uniqueness. Choose any ¢,,41 > £,, and extend h by set-
ting h(€y41) =m+ 1. If wmtD(0) = 0, then (x, h) is (m + 1)-concordant and supported within
{0, €1, ..., €m+1}. But by what we have already proven, the unique measure with these proper-
ties places positive weight on £,,41, a contradiction since x({p+1)=0. Hence \If(m'H)(O) <0,
completing the proof.

Remark 3.6 Lemma 3.5 has a combinatorial interpretation. Let &, denote the set of permuta-
tionsof {1,...,n}. Fix1 < ¥{; < --- < ¥, and for m € &,, consider the sequence of permutations
Tis. .., Tm =T where my € &y, is obtained from 7 by deleting values larger than £ from the
one-line notation of 7z. For example, if (1, £2, £3) = (3,4, 6) and & = 621435, then

(1, 2, 3) = (213, 2143, 621435).

Now, let A; consist of all 7 € &, such that JTk_l(l) =k but nj_l(l) # j for j < k. In other words,

Ay is made up of the permutations 7z in which 1 is in position j in 7; for the first time when j = k.
For example, in the example above, 621435 € A;, because 1 is not in position 1 in 7; but is in
position 2 in 3.
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Counting the number of permutations in Ay corresponds to computing P[T = k] in the proof
of Lemma 3.5 Thus, for x = crit(¢, ..., ¢,), we have |Ag| = £,,!x (k). Lemma 3.5a then yields:

£on!
A=
|A1] 0
- k—
|[Akl = Z_ Z l)kﬂ*l( ) |A | ks for2 <k <m.
—1

In this form, the formula suggests an explanation via the inclusion-exclusion principle, though
we could not come up with one.

Lemma 3.5 gives us an excellent understanding of primitive m-critical systems. We will extend
our knowledge to the nonprimitive m-critical systems in Proposition 3.8. First we need a technical
lemma.

Lemma 3.7 Let (x, h) and (), h) both be m-concordant with maximum threshold m or less. Assume
that x has finite support, that h(£) is increasing, that h(£) < £ for £ > 1, and that tier, (k) is non-
empty for each ke {1,...,m}. Suppose that for all k € {1 .., m}, the vector (X(p))petier(k) is @
scalar multiple of (x (p))petierk)- Then x = X.

Proof. Let ¥ and W be the automaton distribution maps of (x, h) and (x, h), respectively. Let
oy be the scalar satisfying (X (p))petier(k) = k(X (P))petier(k)- We will show that o =1 for all k e
{1,...,m} by induction on k. The idea is that m-concordancy together witho; =+ - =oj_; =1
together with Theorem 1.2 implies that oy = 1.

For the k=1 case, we see from (7) that ¥/(0) = or; W(0). Since x and j are m-concordant,
we have W/(0) = ¥/(0) =1, showing that o; = 1. Next, assume o} = - - - = @1 = 1, and we show
that op = 1. By m-concordancy of x and x, the inductive hypothesis, and (6),

k—1
(k-1
0=v®o)= )" X(e)(z)k+2(—1)k+f<]._1) Y xOOk

Letier(k) j=1 Letier(j)

and

k—1
- (k—1
0=0®0) =0 Y x(ﬁ)(ﬁ)k+2(—1>k+f(._1) > x(O@).

Letier(k) j=1 Letier(j)

By our assumption that tier(k) is non-empty and that h(¢) < ¢, the term ) ,erk) X (O)(O) is
non-zero. It follows that o = 1. O

Proposition 3.8. Let (x, h) be m-concordant with maximum threshold m or less. Assume that x
has finite support, that h(€) is increasing, and that h(£) < £ for £ > 1. Then

a. x is a convex combination of measures crit(€y, . . ., £,,) where each £y is in tier k of (x, h);
b. if x # 81, then (x, h) has maximum threshold exactly m and is hence m-critical.
Proof. For each k € {1, ..., m} and ¢ € tier(k), define
(O
B Y ictierty X D@

Note that the denominator in this expression is non-zero: the sum includes x (€)(€)g, and x (£) > 0
for ¢ € tier(k) by definition of tier(k), and £ > k by our assumption that h(£) < £. Now, we define

¥ = Z Z ag, - - - ag,crittly, ..., Lpy). (19)

£ etier(1) £ Etier(m)

(18)
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If tiers 1, ..., m are non-empty, then this sum is a convex combination, since ngeﬁer(k) ag, =1
and hence

oy azl...%=< > agl)...( 3 agm)zl.

£ etier(1) £ etier(m) £ etier(1) L etier(m)

As a convex combination of m-concordant measures, X itself is m-concordant. Indeed, its automa-
ton distribution map U satisfies U’ (0)=1and \Il(k)(O) =0 for 2 < k < m since it is then a convex
combination of functions satisfying the same derivative condition. In fact, we will eventually
show that x = X and that the assumption of non-empty tiers is automatically satisfied under the
assumptions of this proposition. See Example 3.9 to see this decomposition in practice.

We first argue that x = X under the assumption that tiers 1,...,m of (x, h) are non-empty.
With the aim of applying Lemma 3.7, we will show that the vector (X (p)) petier(k) is @ scalar multiple
of (X (p))petier(k) for each k=1,. .., m. To prove this, we define

1

="
Zietier(l) x (D)

and

1 k—1

> ictier(y X DDk ;

for k> 2. The denominators on the right-hand side of these equations are non-zero by our
assumption of non-empty tiers and that h(£) < £. Now, fix an arbitrary k € {1, ..., m}. For any
£} € tier(k), we have

br(x1,. . x(—1) =

— kL (f )x(xjxxj)

agkcrit(ﬂl, v )ik = x Wbk, . . .5 Lr—q)

by Lemma 3.5a, using the notation crit(¢;, . . ., £,;){i} to denote the mass placed on the value
i by the measure crit(¢,...,£,). Now, let p € tier(k). Since crit(¢;, ..., {y) is supported on
{€1,...,¢n}, the following holds for any £y, . . ., €x_1, Lx11, - - . » £ With £; € tier(i):

> ag gty ) {p)
Lretier(k)
=ag, - ag_ 0pag,, - ag,crit(Cy, . b1 P byt - L) {p)
=ag_ g, 00, X(P)bk(L, . L),
Now we use this to compute
X(p) = Z e Z ag, - - - ag, crit(y, . . ., £m){p}

£ etier(1) L etier(m)
kth sum omitted

=x(0) D 0 D anag,an,, bl by

£, etier(1) £y etier(m)

Thus, for each p € tier(k), we have shown that X (p) is equal to x (p) scaled by a factor not depend-
ing on p. This completes the proof that (i(p))l,aier(k) is a scalar multiple of (x (p))petier(k) for each
k=1,...,m

As we noted earlier, ¥ is m-concordant. Lemma 3.7 applies and shows that y = . Thus part a.
of the proposition is proven under the extra assumption of non-empty tiers.

Finally, we show that this assumption holds whenever x # §;. This proves b., and it proves a
when x 7 8;. This will complete the proof, since a. is trivial when y = §; since x = crit(1). Thus,
we suppose that (), h) satisfies all the conditions of the proposition and has an empty tier. Let

https://doi.org/10.1017/50963548321000237 Published online by Cambridge University Press



218 T. Johnson

k be the smallest value so that tier k is empty. From (7) and W'(0) = 1, we have k > 2. Let x be
the k-truncation of x, which is equal to the (k — 1)-truncation since tier k is empty. Now (x, h) is
(k — 1)-concordant with maximum threshold k — 1, and h(€) is still increasing, and x has finite

support. Also tiers 1, . . ., k — 1 are all non-empty in x. Thus all conditions of this proposition are
satisfied with m as k — 1 as well as the non-empty tiers assumption, and therefore ¥ decomposes
into a convex combination of measures crit(£1, . . . , £4_;) with ¢; € tier(i).

By definition of the k-truncation, the measures x and j place the same weight on all values in
tiers 1,. . ., k. By Corollary 1.3, this implies that Uk (0) = w®(0). And since X is m-concordant,
we have W®)(0) = 0 and can conclude that U (0) = 0 as well.

Now, consider the decomposition of x into a convex combination of measures of the
form crit(¢y, ..., €g_1). Let Wy, . denote the automaton distribution maps of these mea-
sures, and note that W is a convex combination of these maps. By Lemma 3.5d, each measure

))))) s (0) <0, and

in the second \IJZ(’)M@I(?1 (0) = 0. Since %) (0) = 0, we have crit(¢,, . . . , £k—1) = 81 for all measures

in the decomposition of j, and therefore x = §;. But if the k-truncation of x is &1, then x itself is
equal to §;. Hence x =8, if any of tiers 1, . . ., m are empty. O

Here is an example of the decomposition of a critical system into primitive ones. We find it
helpful for understanding both Lemma 3.5 and Proposition 3.8.

Example 3.9 Let

64/135 for{ =0, 1 for¢=0,
1/3 foré =2, 1 forl=2,
x(W0)=11/9 for £ =3, and h(¢)=131 fort=3,
1/27 for £ =4, 2 forf =4,
2/45 for ¢ =5, 2 forl=>5.

We claim that (x, h) is 2-critical. Indeed, it has maximum threshold 2, and by (7) and (8), the
automaton distribution map W satisfies

v0)=x(2)2)+x3)B) =1,
W7(0) = x(DAB) + x (5)(5)(4) — x(2)(2)(1) — x(3)(3)(2) =0.

By Proposition 3.8, we can express x as a mixture of the measures crit(2,4), crit(2,5),
crit(3, 4), and crit(3, 5). First, we compute these measures, which can be done most easily using

Lemma 3.5a:
5/12 for£ =0, 1/2 for£ =0,
crit(2,4){¢} =4{1/2 forl =2, crit(3,4){¢} = {1/3 forf =3,
1/12  for £ =4, 1/6 for £ =4,
9/20 for € =0, 17/30 for £ =0,
crit(2,5){¢} ={1/2 foré =2, crit(3,5){¢} = { 1/3 for £ =3,
1/20 for ¢ =5, 1/10  for £ =5.
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We can find a decomposition of x using the technique from the proof of Proposition 3.8. We

apply (18) to compute
e 2Q@ 2 e XW@OB) 1
x2Q)+x3)G3) 3 x@@E) +x(G)5)@) 3
OB _1 e 2
x@)+x3)3) 3 T @A)+ xG)B5)@) 3

Now (19) gives
X = azaycrit(2, 4) 4+ azascrit(2, 5) + azaycrit(3, 4) + azascrit(3, 5)
=(2/9)crit(2,4) + (4/9)crit(2, 5) + (1/9)crit(3, 4) + (2/9)crit(3, 5).

It follows from Lemma 3.5 and Proposition 3.8 that m-critical systems have no non-zero fixed
points. We show this together with some other simple consequences of these lemmas:

Proposition 3.10 Suppose that (x, h) is m-critical and that x # 81. Assume that x has finite sup-
port, h(£) is increasing, and that h(£) < £ for £ > 1. Then the system’s automaton distribution map
W satisfies W(x) < x for x € (0, 1], and (x — ‘ll(x))/)((O) is a convex combination of polynomials
Bir(x)forﬁ € tier(m) andr > m + 1.

Proof. The statement about (x—\IJ(x)) /x(0) is a direct consequence of Lemma 3.5 and
Proposition 3.8: We use Proposition 3.8 to decompose x as

X= D an,.e,crit(ly, ..., Ly,
L1selm

where the sum ranges over all £ € tier(k) for k=1,...,m and the coefficients ay,, ¢, are non-
negative and sum to 1. Let W, ., denote the automaton distribution map for crit(¢,, .. ., £,),
and observe that the automaton distribution map W of (), h) also decomposes as

V)= > a0, Y, 0,(%).

When ¢; > 2, the expression x — Wy, ¢ (x) is a linear combination of the polynomials

.....

Bfm)r(x), re{im+1,...,4,}

with non-negative coefficients summing to crit(¢y, . . ., £,4){0} by Lemma 3.5¢c. In fact, this holds
when £; =1 as well, since then x — W, ¢ (x) =0 and crit({y, . . ., £,,){0} = 0. Hence,

,,,,,

X=WE=x— Y a0, Ve 0,0= Y an, 0, x— Ve, ()
-

is a linear combination of polynomials Bfm (x) for £,, € tier(m) and m + 1 < r < £, with non-
negative coefficients summing to

D, ,crit(l, . £n){0} = x(0). (20)
L1selm

Finally, we show that W (x) < x for x € (0, 1]. Since x — W(x) is a linear combination with non-
negative coefficients of polynomials Bezm, .(x) that are non-negative on [0,1], we have W(x) < x for
x € [0, 1]. Since these polynomials are strictly positive for x € (0, 1], the statement holds so long
any of them are included in the decomposition of x — W(x). Since each summand on the left-
hand side of (20) is non-zero whenever £; > 2 by Lemma 3.5b, this is true unless ag,,

all £; > 2. But since crit(€y, . . ., £,,) = &1 if £; = 1, this would imply that x =4;. O

https://doi.org/10.1017/50963548321000237 Published online by Cambridge University Press



220 T. Johnson

The following is a trivial but useful observation:
Lemma 3.11 For any x € (0, 1] and positive integer r satisfying h(r) < r, the system (), h) has x as
a fixed point if and only if
X = Z[;ﬁr X(E)Bzh(g)(x)

By )

x(r)= . (21)

Proof. Since Brzh(r) (x) =P[Bin(r, x) > h(r)] is positive by our assumption that x > 0 and h(r) <7,
equation (21) is equivalent to

X(NP[Bin(r, x) = h()] + ) x(OP[Bin(¢, x) = h()] = x,
L#Er

That is, equation (21) is equivalent to the statement W(x) = x.

Suppose that (), h) has maximum support n and is m-critical, and that h({) is increasing and
satisfies h(£) < £ for £ > 1. By Proposition 3.10, this system has no fixed points other than 0. Now
suppose that r > n + 1 and h(r) = m + 1, and that we wish to modify x by shifting mass from 0
onto r to create a given fixed point. (There is no obvious reason we would want to do this, but
it turns out to be a key step in the proof of Proposition 3.1.) The previous lemma suggests that
we can do so by setting x (r) to make (21) hold. But this might not be possible, since (21) may
demand that x (r) be too small (i.e. negative) or too large (i.e. greater than x(0)). The following
result combines with Lemma 3.11 to show that neither of these occurs.

Lemma 3.12 Suppose that (x, h) is m-critical and x # 1. Assume that x is supported on {0, . . ., n},
that h(€) is increasing, and that h(¢) <{ for all £ > 1. Fix some integer r > n + 1 and suppose that
h(r) =m+ 1. Define ¢(x) for x € (0, 1] by

X — Zzzl X(E)Bgz,h(g)(x)

> (22)
BZm+1(x)

px) =

Then ¢(x) € (0, x(0)], and @(x) is strictly increasing.

Proof. Let W be the automaton distribution map of (), /), and note that the numerator on the
right-hand side of (22) is equal to x — W (x). By Proposition 3.10, this quantity is strictly positive,
proving that ¢(x) > 0. Proposition 3.10 also lets us express x — W(x) as a linear combination of

polynomials sz(x) for £ < rand j > m + 1, with non-negative coefficients. Lemma 3.13 to follow
shows that Bf’j(x) /Brz’m +1(x) is strictly increasing for all £ <r and j > m + 1, proving that ¢ is

strictly increasing. Finally, direct evaluation shows that ¢(1) =1 — Z?zl x (£) = x(0), and since
@ is increasing we have ¢(x) < x(0) for x € (0, 1]. ]

Lemma3.13 Let1 <j<pandl <k<r.Ifp<randj>k orifp <randj>k, then
By

23
B, -

is strictly increasing in x for x € (0, 1].

Proof. First we consider the case where j =k and r = p 4 1. The event {Bin(p + 1, x) > j} occurs
if the first p coin flips yield at least j successes, or if they yield exactly j — 1 successes and the final
coin flip is a success. Hence

P[Bin(p + 1, %) > jl = P[Bin(p, ») > jl + xP[Bin(p, x) =j — 1],
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giving us
P[Bin(p, x) > j] 1 xP[Bin(p, x) =j — 1]
P[Bin(p+1,x)>j1 ~  P[Bin(p+ 1,x) >l

(200 -5
ZP—H (p+1) n(1 — x)p—n+l

(%)

ZP+1 (p+1)x"_1(1 —x)/ n

The expression x" /(1 — x)~" is increasing in x for n > j and strictly increasing for n > j. Since j <
p» the sum contains at least one strictly increasing term. Hence this expression is strictly increasing.
Next, consider the case where j = k + 1 and p = r. Here, we have

P[Bin(p, x) > k+ 1] _ P[Bin(p, x) > k] — P[Bin(p, x) = k] L P[Bin(p, x) = k]
P[Bin(p, x) > k] P[Bin(p, x) > k] o P[Bin(p, x) > k]

Hence it suffices to show that P[Bin(p, x) > k] /P[Bin(p, x) = k] is strictly increasing. We express
this quantity as

P[Bin(p,x) 2 k] _ 3, (1)x"(1 =)~ i ) kg _ gy
P[Bin(p, x) = k] (7)xk(1 — x)p=k — (%) '
As in the previous case, the expression x"¥(1 — x)" ¥ is increasing in x for n > k and is strictly
increasing for n > k, and at least one of the strictly increasing terms appears.
Finally, the general case follows from the two special cases by expressing (23) as a product of
quotients considered in the special cases. For example,

Bz;(x) _ Bz, (x) BZ5(x) B75(%)
BZ,(x)  Bz;(x) B3;3(x) B7,(x)

and is hence the product of strictly increasing functions.

Proof of Proposition 3.1. Let (), /) be the m-truncation of an m-supercordant system, and let W
be its automaton distribution map. We must show that W has a single fixed point on (0,1]. We
observe that (x, 1) is m-supercordant itself, since by Theorem 1.2 the first m derivatives of W at 0
are equal to those of the automaton distribution map of the original m-supercordant system (see
Corollary 1.3). _

If h(€) < £ does not hold for all £ > 1, define a new system (X, k) where for £ > 1,

- x() ifh(€) <¢, - h(e) ifh(e)<e,
X&) = , h(0) =
0 if h(¢) > ¢, ¢ if h(¢) > ¢,

with X'(0) set to make ¥ a probability measure. Note that Z(E) is still increasing. Since Bezh( 0 x)=0

when h(£) > ¢, the~ systems (x, h) and (), h) have identical automaton distribution maps, and we
can work with (¥, ) in place of (), ). Thus we will assume without loss of generality that h(€) < ¢
forall £ > 1.

We first give a proof for the case that tier m of (), h) consists of a single value r. Since the system
is supercordant, by Taylor approximation we have W(x) > x for x € (0, €) for some sufficiently
small € > 0. Since W (1) < 1, the graph of ¥ eventually dips down below or onto the line y = x, and
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Figure 4. Let x place vector of probabilities (Tlo, 0,11, é) onvalues0,1,2,3,4,and let h(0) = h(2) =1 and h(3) = h(4) = 2.
The system (x, h) is 2-supercordant; its automaton distribution map can be computed to be W(x) =x + %Xz —23 4+ %X“,

with fixed point xo = (10 — 4/22)/6 ~ 0.885. The system (X, h) with the same fixed point but only a single value in tier
2 is found by computing p = ¢(xo) ~ 0.406, where ¢ is given in (24), and then letting X place vector of probabilities

(% —p,0, %,p, 0) on0, 1,2, 3,4. The automaton distribution map U of (X, h) is shown above together with W.

hence W has some non-zero fixed point. Now we show it has at most one. Let x be the (m — 1)-
truncation of . The system (x, h) is (m — 1)-concordant by Corollary 1.3. Its maximum threshold
is m — 1 or less by definition of truncation. By Proposition 3.8b, it is (m — 1)-critical. Define a map
¢:(0,1] - Rby

x— Y1 X (OB x— Y40 KB, ()
BZ(x) By (x) ’

p(x) = (24)

By Lemma 3.11, the non-zero fixed points of (), h) make up the set ! (X(r)). By Lemma 3.12

applied to (¥, h), the function ¢(x) is strictly increasing. Thus ¢! ( (r)) contains no more than
one point, and (), 4) has at most one non-zero fixed point. This shows that (x, k) has exactly one
non-zero fixed point xg, with W (x) > x for x € (0, xp) and ¥ (x) < x for x € (xp, 1].

To extend the proof to the case where tier m contains more than one value, again assume that
(x> h) has maximum threshold m and is m-supercordant. As before, by Taylor approximation
W (x) has at least one fixed point on (0,1]. Since the fixed points form a closed subset of (0,1], there
is a largest fixed point; call it xp. Let r be the smallest value in tier m of (x, h). Our strategy now
will be to construct a new system (¥, h) where all of tier m is concentrated on r. By the special case
of the proposition we have already proven, this system has a unique non-zero fixed point. Then
we will compare this system’s automaton distribution map to ¥ and show that ¥ must also have
a unique fixed point (see Figure 4).

To carry this out, first let x be the (m — 1)-truncation of x and define ¢ by (24) again. Let
P = ¢(x0). Now we define a new probability measure X supported on {0, ..., r} by

x(£) ifl<é<r-—1,
X()=1x0)—p ift=0,
p ife=r.

Note that this is a valid probability measure since p € (0, ¥ (0)] by Lemma 3.12 applied to (x, h).
Now we consider the system (), h). By Lemma 3.11, it has xo as a fixed point. By the special case
of this proposition we have already proven, the system (), k) has no other non-zero fixed points
besides xo, and W(x) > x for 0 < x < xg, where W is the automaton distribution map of (, h).
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We claim that W(x) > \Tl(x) for 0 < x < x. Indeed, comparing the two functions, we have

W(x) = B(x) =) X(OBF,,(x) — pB7,,(x).
l=r

Hence

B (%) A B
By Lemma 3.13, this expression is strictly decreasing in x. It equals 0 at x =x, since W(x) =
W(xo) = xo, and hence it is positive when 0 < x < xo, establishing the claim.
Since W(x) > W(x) for 0 < x < xp, and we have already shown that ¥ (x) > x for 0 < x < xo, the
function W has no non-zero fixed points smaller than x. Since xy was taken to be the largest fixed
point of W, it is the only one. O

T 00 B>
POVD s Y 2@ A,

4. Proofs of main theorems

Recall the notation n;(v) for the number of children of v in a rooted tree ¢ and the definition that
S is an admissible subtree of a rooted tree T if S contains the root of T and ng(v) > h(np(v)) for all
vertices v in S. Also recall that #(v) denotes the subtree of ¢ consisting of v and all its descendants.

Proof of Proposition 1.9. Let
T1 = {T contains an admissible subtree}.

The largest fixed point x; of (x, 1) always has a corresponding interpretation [14, Proposition 5.6].
To prove that 7; is this interpretation, we first establish that 7; is an interpretation (i.e. it behaves
consistently with the threshold function k). Then, we show that for any interpretation 7, there
exists an admissible subtree on the event 7, and hence 77 must have the largest probability of any
interpretation.

To show that 7} is an interpretation, we must show the following: Let ¢ be a tree with root p
that has £ children. Then we have ¢ € 7; if and only if t(v) € 7; for at least h(€) children v of p.
To prove this, first observe that if s is an admissible subtree of t containing a vertex v, then s(v) is
an admissible subtree of t(v). Now, suppose t € 7;. It thus contains an admissible subtree s. For
each child v € s of p, we have t(v) € 77 since s(v) is an admissible subtree of #(v). And since s is
admissible, n5(p) > h(£). Conversely, suppose there are at least #(€) children v of p such that t(v) €
T1. Each subtree t(v) contains an admissible subtree. The concatenation of all of them together
with p is then admissible. This completes the proof that 77 is an interpretation.

Now, let 7 be an arbitrary interpretation of (), h), and we argue that on the event 7 there
exists an admissible subtree S of T. To form S when 7 occurs, let it include p. Then let it contain
all children v; of p for which T'(v;) € T, and then let it contain all children v, of these children for
which T(v;) € T, and so on. Since a tree t with root p is in 7 if and only if at least h(n;(p)) of its
root-child subtrees are in 7T, the tree S is admissible.

To complete the proof, observe that GW, (77) is a fixed point of (x, h) since 7; is an inter-
pretation. For any interpretation 71, we have GW, (T) < GW, (T1), since 7 C 7;. Thus 71 must
correspond to the largest interpretable fixed point, which is x;. O

Next, we show that any admissible subtree contains a minimal admissible subtree within it. This
is akin to showing that a tree in which all vertices have at least two children contains a subtree in
which all vertices have exactly two children.

Lemma 4.1 Let s be an admissible subtree of t with respect to the threshold function h. Then there
exists a subtree s' C s that is also an admissible subtree of t for which ns/(v) = h(ny(v)) forallves'.
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Proof. We construct s’ one level at a time. We start by including the root of ¢ in it. Now, suppose
we have constructed it to level n. Consider a level n vertex v in s'. By admissibility it has at least
h(n(v)) children in s. Arbitrarily choose exactly h(n;(v)) of them to include in s'. Proceeding like
this for all of the level n vertices in s’ and then continuing on to successive levels produces s’ C s
that is an admissible subtree of t. O

Proof of Theorem 1.8. Let r be the highest value in tier m of (), h). Let 7 be the event described
in the statement of this theorem, that T contains an admissible subtree S in which all but finitely
many vertices v satisty ng(v) < m. First, we show that 7 is an interpretation. The argument is
mostly the same as for 7 being an interpretation in the proof of Proposition 1.9. Let ¢ be a tree
with root p that has £ children. First, suppose that t(v) € Ty holds for at least h(£) of the children
v of p. For each such vertex v, the root-child subtree ¢(v) thus contains an admissible subtree s(v)
for which all but finitely many vertices u € s(v) satisfy ny,)(1) < m. Combining each subtree s(v)
together with p yields an admissible subtree of ¢ for which all but finitely many vertices have m
or fewer children, showing that ¢ € 7. Conversely, suppose that ¢ € 7y, and let s be an admissible
subtree of ¢ for which all but finitely many vertices v € s satisfy ns(v) < m. In general, for any
admissible subtree s of t and v € s, the tree s(v) is an admissible subtree of #(v). And if all but
finitely many vertices in s have m or fewer children, then the same is true for any subtree s(v).
Thus for any child v of p in s, we have t(v) € 7y. By admissibility of s, we have n;(p) > h(¢). Hence
t(v) € To for at least h(€) children v of p. This completes the proof that 7y is an interpretation and
its probability is therefore one of the fixed points of W.

Now we must determine which fixed point is associated with 7y. Since (x, h) is m-supercordant,
by Taylor approximation we have W(x) > x for x € (0, €) for a sufficiently small €. We cannot have
W(x) > x for all x € (0, 1] since W (1) < 1. Hence W has a smallest non-zero fixed point xy. Our
goal now is to show that GW, (7p) = xo.

Let x be the m-truncation of x, and consider the system (x, ). Its automaton distribution
map W has a unique non-zero fixed point Xy by Proposition 3.1. Directly from the definition of
the automaton distribution map, we have W(x) < W(x). Also (¥, h) remains m-supercordant by
Corollary 1.3, and hence the graph of W is above the line y = x near 0. These last two facts prove
that Xy < xo. Let T ~ GW 3. Since Xy is the only non-zero fixed point of v, by Proposition 1.9 the
interpretation T of (¥, h) associated with X, is that T contains an admissible subtree.

Couple T with T by defining T as the connected component of the root in the subgraph of T
consisting of the root together with each vertex whose parent v satisfies ny(v) <r. We claim that
under this coupling, 7 holds if and only if T contains an admissible subtree S made up entirely
of vertices v satisfying ng(v) < m. To prove this, first observe that under this coupling, we have
ng(v) =nr(v)l{nr(v) <r}forve T.If S is an admissible subtree of T, then it has no leaves by the
positivity of h; hence ng(v) > ng(v) > 1forv e S. Therefore ng(v) =nr(v) forallv e S. This proves
that S is an admissible subtree not just of T but also of T. For every vertex v € S besides the root,
the parent u of v satisfies n7(v) = ny(v) < r. Since S has no leaves, every vertex in S is the parent of
some other vertex, and hence nr(v) < r for all v € S. This proves that if 7 holds, then T contains
an admissible subtree S made up entirely of vertices v satisfying ny(v) < r. By Lemma 4.1, there
exists a subtree §' C S that is also an admissible subtree of T and which satisfies ns/(v) = h(nt(v))
forall ve §. Since ny(v) <rand h(r) =m, we have ny(v) <mforallves.

Conversely, suppose T contains an admissible subtree S made up entirely of vertices v satisfying
ng(v) < m. By admissibility, all v € S also satisfy ns(v) > h(nr(v)). Hence h(nr(v)) < m, proving
that ny(v) <r. Thus S is a subtree of T. We then have nz(v) = nr(v) for all v € S, showing that S
is an admissible subtree of T and proving that 7 holds. This proves that 7 holds if and only if
T contains an admissible subtree made up entirely of vertices v satisfying ny(v) <r. It is worth
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emphasising that 7 is not an interpretation of (), h): with L the number of children of the root of
T, we might have T(v) € T for at least h(L) children v of the root but have T ¢ T because L > .

Now let T, denote the event that T contains an admissible subtree that from level #n onward
contains only vertices v satisfying nr(v) < r. We have

0 CTiCT2S--, and  (JTu=T (25)
n=0

We claim that

n times

— ——
GWX(TH)=\IIO~~~olI/()—CO).

To see this, recall that xo = GW (T). Since T occurs if and only if To occurs under the coupling
of T and T, we have GW, (To) = GWjy (T) = Xo. Thus W(x,) is the probability that the root of T
has at least h(L) children whose descendent subtrees satisfy event To, where L is the number of
children of the root. This event is exactly 7 ;. Continuing in this way, the n-fold iteration of ¥
applied to X is the probability of 7.

From (25), we can compute GW, (75) by finding lim,—, .o GW (7 ). Because x < W (x) < xg
for x € (0, xp], iteration of W(x) starting at any x € (0,x9] produces an increasing sequence
converging to a value that must be a fixed point of W by continuity of W. This limit must there-

fore be xp, the smallest non-zero fixed point. We therefore have GW, (7_‘,1) — X, proving that
GW, (7o) = xo.

5. Conclusions and remaining questions

In this paper, we give simple criteria for determining if a continuous phase transition will occur
at (x, h) (Theorem 1.5). When a continuous phase transition occurs, we characterise the event
undergoing the phase transition when it occurs in the most natural way, with the graph of the
automaton distribution map rising above the line y = x as the phase transition occurs (Theorem
1.8). But some examples of continuous phase transitions do not fit this description. In Figure 3, we
give a family of child distributions in which two fixed points emerge from 0 simultaneously as the
phase transition occurs. The event undergoing the phase transitions is associated with the second
of these, and Theorem 1.8 does not apply. (In fact, in the example in Figure 3, the interpretation
associated with the second fixed point can be described as the existence of an admissible subtree
of T ~ GW,, in which all but finitely many vertices v satisfy n7(v) < 3, along the lines as when
Theorem 1.8 applies. This holds in this case because truncating y; by shifting the mass from 6 to
0 yields a new system with a single non-zero fixed point, as in Proposition 3.1. But it is possible to
tweak the example so this fails.) It also seems possible to construct examples along the same lines
as the one in Figure 3 but with the automaton distribution map repeatedly wiggling up and down
along y = x so that multiple interpretable fixed points emerge from 0 simultaneously. It is not clear
to us how to describe the events undergoing phase transitions in circumstances like these.

When a continuous phase transition occurs and GW,,(7) emerges from 0 at t = 0, it would
be interesting to investigate the behaviour of this probability. For example, what behaviours can
it show close to t = 02 And how does this behaviour compare to known or conjectured properties
of phase transitions in statistical physics?

One might also want to generalise away from monotone automata and away from two-state
automata (see Section 1.2). For nonmonotone two-state automata, Proposition 1.1 fails but a more
general criterion [14, Theorem 1.7] still allows us to determine whether a given fixed point has an
interpretation or not. But the situation is very different; for example, the highest fixed point is not
always interpretable [14, Examples 5.7, 5.8]. For multistate automata, only one direction of this
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criterion is proven, and the automaton distribution map becomes a map from R¥ to R¥ and is
generally harder to analyse.

The simplest case of Theorem 1.8 to understand is for a system (x, /) that is 1-supercordant.
Then the interpretation 7 associated with the smallest non-zero fixed point is that T~ GW, has
an admissible subtree S in which eventually all vertices v have ng(v) = 1. Thus, 7y is equivalent to
the event that T contains an admissible subtree S such that the number of vertices at the nth level
of S is bounded in #.

Is there a description of 7y in terms of existence of an admissible subtree with specified growth
when (x, h) is m-supercordant for m > 2? In this case, any admissible subtree must continue
branching forever (i.e. its size at level # cannot remain bounded over all n). Indeed, any admissi-
ble subtree whose size at level n remains bounded must have all but finitely many of its vertices v
satisfying h(nr(v)) = 1. But restricting T to such vertices yields a Galton-Watson tree with child
distribution ¥, where ¥ is the 1-truncation of x. If ¥ is the automaton distribution map of (¥, h),
then W/ (0) = W/(0) =1 by Corollary 1.3, and hence x has expectation 1 by (7), and this Galton-
Watson tree is therefore critical. Hence, for any v € T, it cannot occur that T(v) has an admissible
subtree consisting entirely of vertices v satisfying h(n7(v)) = 1, since the subtree formed by these
vertices is a critical Galton-Watson tree and is thus finite. But we conjecture that T has an admis-
sible subtree of small growth on the event 7y (leaving it vague precisely what small growth should
mean), while for all other interpretations 7 it occurs with positive probability that all admissible
subtrees have exponential growth.

We present two examples to give some limited evidence for this conjecture. Consider the exam-
ple shown in Figure 1, where y; places probability 1/2 on 2 and 1/6 — ¢ on 3, and h(2) =1 and
h(3) = 2. The system (x;, h) is 2-supercordant for ¢ > 0, and it has a single non-zero fixed point
x0 = x0(t). The exact value of xq is not important in this example, though in this case we can
compute it to be xo = 9¢/(6t — 1) by solving the equation W(x) = x directly. By Theorem 1.8 or
Proposition 1.9, this fixed point has the interpretation 7, that T ~ GW,, contains an admissible
subtree. We sketch a proof that T has an admissible subtree of growth eOWn on T

Let L be the number of children of the root of T, and let N be the number of these children v
for which T(v) € 7y. Given L = 2, which occurs with probability 1/2, the probability that N =1 is
P[Bin(2, xp) = 1] = 2x¢(1 — x¢) by self-similarity of T. Similarly, the probability that N = 2 given
L=2isx}. Hence

P[L=2 N=1|T5]=1—x and ML:2,N=2|%]=%L

Since L # 0 given 7y, we have P[L =3 | Tp] = x0/2.

Now, consider the minimum number of vertices at level n over all admissible subtrees of T,
given that 7y holds. We can construct a random variable X, with this distribution as follows. Let
Xo = 1. Now, inductively define

X, with prob. P[L=2, N=1|T] =1 — xo,

min (X,;, X',,) with prob. P[L =2, N=2|To] =x0/2,
=y x, with prob. P[L =3, N =2 To],

min (X, + X'y, Xy + X0, X +X,,”")  with prob. P[L=3, N=3|To],

where X, and X"/, are independent copies of X,,. We claim that X, is distributed as mentioned
before. Indeed, this holds trivially for X. Proceeding inductively, if X,,, X,,’, and X,,” are thought
of as the minimum number of vertices at level n in an admissible subtree of T(v) for the three
potential children of the root v, then X;,+1 = X,, when L =2and N =1, and X,,41 = min (X,;, X'y,)
when L =2 and N =2, and so on.
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Figure 5. Graphs of W;(x) — x, where W, is the automaton distribution map of (x¢, h) with x; = (% + t)sz + (% - t)a3, and

h(2) =1 and h(3) = 3. An interpretable fixed point emerges from 0 as t increases. The point 1 is a fixed point in all examples,
and for t > 1/6 it is the only fixed point.

It is often difficult to analyse the growth of recursively defined distributions like these, and we
avoid doing so by comparing the growth of X, to a process analysed in [1] known as the min-plus
binary tree. Particles of weight 1 start at the bottom of a binary tree of depth #. Each particle then
moves up the tree. Each particle collides with another one moving up the tree at each step, and
with probability 1/2 either they merge or the smaller particle annihilates the larger one. The size
of the particle arriving at the root has distribution given by the recursive contruction where Yo =1
and then

min (Y,, Y,’) with probability 1/2,
Vi1 =
! Y, + Y, with probability 1/2,

with Y, an independent copy of Y,. One can show that X, is stochastically dominated by Y,,. By

[1, Theorem 1], we have P[Y, < ¢"VN/3] — 1 as n tends to infinity.

Now, we give an example with multiple interpretable fixed points and demonstrate that on the
event associated with the higher one, the expected number of vertices in the smallest admissible
tree to level n can grow exponentially. Let

1/24+t forl=2, 1 forl=2,
xt(6) = and h(¢) =
1/2—t forl=3, 3 fort =3,

and let ¥; be the automaton distribution map of (x;, h) (see Figure 5). For 0 < t < 1/6, the map
W, has two non-zero fixed points, xo = x(t) and 1, both interpretable. The event associated with
xo is that T~ GW,, has an admissible subtree S that eventually consists only of vertices v with
ns(v) = 1. Thus the number of vertices of S at level #n remains bounded in #n. The event associated
with the fixed point 1 is the set of all trees. We argue that the smallest admissible subtree of T
may be large for 0 < ¢t < 1/6. Indeed, let X, be the minimum number of vertices at level n over all
admissible subtrees T. Then
4 [min (X, X,,") with probability 1/2 + £,
Xn+1 =
X, + X, + X, with probability 1/2 — ¢,

and EX,, 4 > 3(1/2 — t)EX,,. Since t < 1/6, we have 3(1/2 — t) > 1, and hence EX,, grows expo-
nentially.
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