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The sets T1 and T2 both satisfy recursive properties. A tree is in T1 if and only if the root has
at least one child that initiates a tree in T1. Similarly, a tree is in T2 if and only if the root has at
least two children that initiate trees in T2. Why does T1 have a continuous phase transition while
T2 does not? The goal of this paper is to answer this question, and more generally to explain the
connection between the recursive property that an event satisfies and the phase transition that
the event undergoes. It will take some work to state our results, but let us start with an informal
account.

First, the event T2 will never have a continuous phase transition under any family of child
distributions. For this event, we say that the threshold function h(�) is identically 2, meaning that
regardless of the count � of children of the root of the tree, the event T2 holds if and only if at least
two of the children initiate a tree in T2. For T1, the associated threshold function is identically
1. (We will define threshold functions more formally in Section 1.2.) Theorems 1.2 and 1.5 give
a criterion for whether a continuous phase transition occurs at a child distribution χ given the
threshold function h of the event. In particular, a continuous phase transition can occur at a child
distribution χ only if

∑

� : h(�)= 1

χ(�)� = 1.

This is satisfied for T1 whenever the child distribution has mean 1, but it is never satisfied for T2.
The criterion given by Theorems 1.2 and 1.5 for when continuous phase transitions occur is

one of the two main results of the paper, although it is not particularly difficult to show using
results from [14]. The bulk of the work in this paper is to prove the other main result, Theorem
1.8, which runs in the opposite direction as our examples so far. Suppose we start with a recur-
sive property, without any example of a set of trees satisfying the property. Proposition 1.1 and
Theorems 1.2 and 1.5 work together to prove that there exists some set of trees satisfying the
recursive property, and that at a certain Galton–Watson measure the probability of this set of
trees undergoes a continuous phase transition. But these results do not describe this set of trees.
Theorem 1.8 characterises this set in many circumstances.

To state our results, we must establish what exactly we mean when we say a set of trees satisfies
a recursive property. A more general version of this framework is given in [14]. Our terminology
here is consistent with this more general version, though we will only introduce what we need
here.

1.1. General notation

For a probability distribution χ on the non-negative integers, we will abbreviate quantities like
χ({n}) to χ(n). We use GWχ to denote the Galton–Watson measure with child distribution χ

on the space of rooted trees. Let nt(v) denote the number of children of a vertex v in a rooted
tree t. We refer to the subtrees originated by the children of the root of a tree as its root-child
subtrees. We abuse notation slightly and use expressions like Bin(n, p) and Poi(µ) to denote
both a distribution and a random variable with that distribution, in statements like P[Bin(n, p)=
k]=

(n
k

)
pk(1− p)n−k. For a random variable N on the non-negative integers, Bin(N, p) denotes

a random variable whose law is the mixture of binomial distributions governed by the law
of N (i.e. P[Bin(N, p)= k]=

∑∞
n=0 P[N = n]P[Bin(n, p)= k]). We denote the falling factorial

n(n− 1) · · · (n− k+ 1) by the notation (n)k. Let N= {0, 1, 2, . . .}.

1.2. Encoding recursive properties

As we hinted earlier, we will describe recursive properties by giving a threshold function h. For
a tree whose root has � ≥ 0 children, we think of h(�) as the minimum number of its root-child
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subtrees with a given property to force the tree itself to have that property. If an event is consistent
with the recursive property encoded by h, we call it an interpretation of h. To formalise this, for a
rooted tree t let �(t) denote the number of children of the root of t. For a set of trees T , let c(t, T )
denote the number of root-child subtrees of t that are elements of T . For a given child distribution
χ and threshold function h, we say that a GWχ -measurable set of trees T is an interpretation of
(χ , h) if

t ∈ T ⇐⇒ c(t, T )≥ h
(
�(t)

)
for GWχ -a.e. rooted tree t. (1)

For example, the set T1 of infinite trees is an interpretation of (χ , h) where h(�)≡ 1 and the set
T2 of trees containing an infinite binary tree starting from the root is an interpretation of (χ , h)
where h(�)≡ 2. In both of these cases, (1) holds for all trees t, not just for GWχ -a.e. tree t, which
renders χ irrelevant. In such cases we will often call our event an interpretation of h, omitting
reference to the child distribution. (Excluding negligible sets in the definition is required for some
of the results in [14].)

For context, let us describe how these recursive properties fit into the broader class considered
in [14]. Suppose that the root of t has � children, and that n1 originate trees with some property
while n0 of them do not. Suppose that the counts n0 and n1 determine whether t itself has the
property, and let the map A : N2 → {0, 1} specify this, with A(n0, n1)= 1 when t has the the prop-
erty and A(n0, n1)= 0 when it does not. In [14], this map A is called a tree automaton, and an
event consistent with the recursive property described by the automaton is called an interpreta-
tion of it. Recursive properties defined by a threshold function h correspond to automata of the
form A(n0, n1)= 1{n1 ≥ h(n0 + n1)}, which in [14] are called monotone automata. We restrict
ourselves to such automata because we have stronger results for them, primarily because the
Margulis–Russo lemma provides a powerful tool for their analysis (see [14, Section 5.1]).

The tree automata described above are called two-state, in that each tree has one of two possible
states (having the property or not having the property) and the state of a tree is determined by the
states of its root-child subtrees. In [14], automata are considered with more than two states, which
again increases the complexity of the theory.

In this paper, we will often impose the additional condition that h(�) is (nonstrictly) increasing
in �. This is also a form of monotonicity for the recursive property; it amounts to declaring that if
a tree t has the property, then it still has it after attaching an additional subtree to the root.

1.3. Fixed points

As we will soon see, the probability of an interpretation under the Galton–Watson measure sat-
isfies a fixed-point equation determined by the threshold function and child distribution. The
classical example is the probability that a Galton–Watson survives (i.e. probability of the set T1
discussed in Section 1.2). Taking Tλ ∼GWPoi(λ), let x= P[Tλ ∈ T1]. Since Tλ ∈ T1 if and only if at
least one of the root-child subtrees of Tλ is in T1, and each of the Poi(λ) root-child subtrees has
probability x of being in T1,

x= P[Poi(λx)≥ 1]= 1− e−λx (2)

by Poisson thinning. This equation has two solutions when λ > 1, and in this case x turns out to
be the larger of the two (the smaller is 0).

To give the fixed-point equation in a general case, we define the automaton distribution map
�(x) for a given child distribution χ and threshold function h. (The terminology automaton dis-
tribution map comes from a generalisation in [14] that maps distributions to distributions.) With
L∼ χ , we define

�(x)= P[Bin(L, x)≥ h(L)]=
∞∑

�=0

χ(�)P
[
Bin(�, x)≥ h(�)

]
. (3)
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Figure 1. Let χt be the probability measure placing the vector of probabilities
(
1
3 − t, 0, 1

2 ,
1
6 + t

)
on values 0, 1, 2, 3. Let

h(0)= h(1)= h(2)= 1 and h(3)= 2. The graphs above depict�t(x), the automaton distribution map of (χt , h). The recursive

tree system (χt , h) is critical at t= 0 in the sense of Definition 1.4. As t increases, a single interpretable fixed point emerges

and increases to 1 as t rises to 1/3.

In words,�(x) is the probability that at least h(L) out of L root-child subtrees of a Galton–Watson
tree have some property that holds for each of them with probability x.

Observe that the right-hand side of (2) is the automaton distribution map for χ = Poi(λ) and
h(�)≡ 1. Thus (2) is the statement that the probability of the interpretation T1 under GWχ is
a fixed point of the automaton distribution map. In fact, it holds in general that for any child
distribution χ and threshold function h, the probability of an interpretation T of (χ , h) is a fixed
point of its automaton distribution map: Let T ∼GWχ and let x= P[T ∈ T ]. Conditional on the
number of children of the root of T, each root-child subtree in T lies in T independently with
probability x, since the root-child subtrees are themselves independently sampled from GWχ .
Because T is an interpretation of A, the tree’s membership in T is determined from its root-child
subtrees’ membership in T according to h. Thus �(x)= P[T ∈ T ]= x.

We are interested in circumstances in which the automaton distribution maps have 0 as a fixed
point, since we are investigating phase transitions emerging from 0. Thus we typically require the
threshold function h to satisfy h(�)≥ 1 for all � ≥ 0. (Strictly speaking, to make 0 a fixed point we
only need h(�)≥ 1 for � in the support of the child distribution, but the value of h(�) for � outside
of this support is irrelevant anyhow.)

1.4. Results

Fix a threshold function h, and let �χ be the automaton distribution map for (χ , h). Our aim is to
understand the circumstances in which χ is critical, in the sense that there is an event satisfying
the recursive property encoded by h whose probability emerges from 0 as χ is perturbed (we will
make this definition precise in Definition 1.4). Since an event satisfying the recursive property has
probability given by a fixed point of �χ , a new fixed point must emerge from 0 as χ is perturbed.
Based on the idea that �χ changes continuously in χ , intuition suggests that � ′

χ (0)= 1 is neces-
sary in order to have a fixed point emerge from 0 as χ is varied (see Figure 1 for an example of a
fixed point emerging). This thought is on the right track, but it raises some questions:

a. Suppose that χ can be perturbed so that a fixed point of �χ emerges from 0. Is it always
the case that this fixed point has an interpretation? That is, is there an event satisfying the
recursive property whose probability is given by the fixed point (and which therefore has a
phase transition)?
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b. Can we characterise the critical child measures χ in a more direct way than stating
properties of �χ ?

c. Suppose that �χ has a fixed point emerging from 0 as χ is perturbed, and we can deter-
mine that indeed χ is critical, i.e. that there exists an interpretation associated with this
fixed point undergoing a phase transition. Can we state what the interpretation is in any
satisfying way?

Before we address these questions and present our results, let us recall and define some nota-
tion. For a given child distribution χ , we will be posing questions about the interpretations of
(χ , h), as defined in Section 1.2. We call (χ , h) a recursive tree system, and we take as part of the
definition that h(�)≥ 1 for all � ≥ 0. As we explained in Section 1.3, any interpretation of (χ , h)
has GWχ -measure satisfying the fixed-point equation �(x)= x, where � is the automaton dis-
tribution map of (χ , h). If T is an interpretation of (χ , h) with GWχ (T )= x0, then we say that T
is the interpretation associated with the fixed point x0 (we write the interpretation rather than an
interpretation because we show in Proposition 1.1 that a given fixed point can have at most one
interpretation). We refer to the fixed points of � as the fixed points of (χ , h). For a system (χ , h),
we define its kth tier as the set of values � ≥ 1 in the support of χ with h(�)= k. That is, tier k for
(χ , h) is defined as

tier(k)= tierχ ,h(k)=
{
� ≥ 1 : h(�)= k and χ(�)> 0

}
. (4)

Question a is resolved by the following criterion for when a fixed point of (χ , h) admits an
interpretation:

Proposition 1.1. Let χ have finite expectation and more than one point of support, let � be the
automaton distribution map of the recursive tree system (χ , h), and let 0< x0 < 1 be a fixed point
of (χ , h). There exists an interpretation of (χ , h) associated with x0 if and only if �

′(x0)≤ 1. When
an interpretation of x0 exists, it is unique up to GWχ -negligible sets.

We give a proof in Section 2, though it just amounts to tying together results from [14].
Proposition 1.1 does not address the case of x0 = 0 or x0 = 1 because such fixed points have trivial
interpretations associated with them, namely the empty set in the case of 0 and the set of all rooted
trees in the case of 1.

To address question b, we give a formula for the derivatives of � at zero in terms of χ . The
notation (�)m in (5) and (6) denotes the falling factorial �(� − 1) · · · (� −m+ 1).

Theorem 1.2. Let χ be a child distribution with finite mth moment, and let � be the automaton
distribution map of the recursive tree system (χ , h). Then for m≥ 1,

�(m)(0)=
∞∑

�=m

(− 1)m+h(�)

(
m− 1

h(�)− 1

)
χ(�)(�)m, (5)

=
m∑

j=1

(− 1)m+j

(
m− 1

j− 1

) ∑

�∈tier(j)
χ(�)(�)m. (6)

We highlight them= 1, 2 cases of this theorem:

� ′(0)=
∑

�∈tier(1)
χ(�)�, (7)

� ′′(0)=
∑

�∈tier(2)
χ(�)�(� − 1)−

∑

�∈tier(1)
χ(�)�(� − 1). (8)

It follows from Theorem 1.2 that the value of �(m)(0) depends only on the mass that χ places
on the firstm tiers. We state this formally since we will often use it:
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Corollary 1.3. Assume that χ and χ̃ have finite mth moments. Let � and �̃ be the automaton dis-
tribution maps of the recursive tree systems (χ , h) and (χ̃ , h), respectively. If χ(�)= χ̃(�) whenever

h(�)≤m, then �(m)(0)= �̃(m)(0).

Now, we can relate conditions on the derivatives of � at 0 back to the child distribution. With
this in mind, we will state our criteria for where continuous phase transitions occur. Let �∞
denote the space of probability measures on the non-negative integers with all moments finite.
On �∞, for any n≥ 0 we can define a metric

dn(χ1, χ2)=
∞∑

k=1

kn
∣∣χ1(k)− χ2(k)

∣∣ .

We topologise �∞ by declaring that χn → χ if dn(χn, χ)→ 0 for all n≥ 0. We work in this space
to avoid pathologies; see Remark 1.7 for more details.

Definition 1.4. For a recursive tree system (χ , h) with χ ∈ �∞, we say that (χ , h) is critical if for
any ε > 0, all neighbourhoods of χ in�∞ contain a measure π such that there is an interpretation
T of (π , h) satisfying 0<GWπ (T )< ε. Equivalently, (χ , h) is critical if there exists a sequence
χn ∈ �∞ converging to χ such that (χn, h) has an interpretation Tn with GWχn(Tn)↘ 0.

Theorem 1.5 Let χ ∈ �∞ have more than one point of support. The recursive tree system (χ , h)
with automaton distribution map � is critical if and only if � ′(0)= 1 and � ′′(0)≤ 0.

Remark 1.6. One might object that to correctly capture the idea of a phase transition, we should
insist on a single interpretation T satisfying GWχn(T )↘ 0, rather than a sequence of interpreta-
tions Tn with GWχn(Tn)↘ 0. For example, suppose h(�)≡ 1, χ = Poi(1), and χn = Poi(1+ 1/n).
Then for the set of infinite trees T1, we have GWχn(T1)↘ 0. In fact, this more stringent require-
ment is equivalent to our original one, as we now show. First, we claim that for different child
distributions χ and χ ′, the measures GWχ and GW

χ
′ restricted to infinite trees are mutually

singular. To see this, observe that for GWχ -a.e. infinite tree t, the empirical distribution of the
numbers of children of the vertices at level n of the tree converges to χ . Hence the supports of
GWχ and GW

χ
′ on infinite trees are disjoint.

Next, any interpretation contains only infinite trees by our requirement that h(�)≥ 1. To see
this, let T be an interpretation, and observe that a single-vertex tree is not a member of T since 0
of its 0 root-child vertices are in T , and h(0)≥ 1. Then since single-vertex trees are not members
of T , no height-1 tree can be in T , and hence no height-2 tree can be in T , and so on.

Thus, if we have a sequence of interpretations Tn of (χn, h) satisfying GWχn(Tn)↘ 0, we can
stitch them together into a single interpretation T defined to be equal to Tn on the support of
GWχn . However, we will see in Theorem 1.8 that for a large class of phase transitions, we can
define a single interpretation T in a more satisfying way so that GWχn(T )↘ 0.

Remark 1.7 The details of the topology on �∞ are not particularly important to this paper, but
let us define it in more detail and explain what goes wrong with a looser sense of convergence.
To make it so that χn → χ if and only if dn(χn, χ)→ 0 for all n≥ 0, consider the product space∏∞

n=0 �∞ where the nth copy of �∞ is taken as the metric space (�∞, dn). Now consider the
map ι : �∞ →

∏∞
n=0 �∞ given by ι(χ)= (χ , χ , . . . ). We assign �∞ the topology induced by ι,

i.e. the one formed by pullbacks of open sets in the product space.
Problems arise if we use a coarser topology on�∞. For example, suppose we use the metric d0,

which in this space metrises the topology of convergence in law. Now, for the threshold function
h(�)≡ 1, even the measure δ0 is critical. Indeed, define

χn = (1− 2/n)δ0 + (2/n)δn.

Then d0(χn, χ)→ 0 and GWχn(T1)↘ 0, where T1 is the set of infinite rooted trees.
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Figure 2. Graphs of �t(x)− x, where �t is the automaton distribution map of (χt , h) with χt =
(
1
20 − t

)
δ0 +

(
1
2 + t

)
δ2 +

9
20 δ5, and h(0)= h(2)= 1 and h(5)= 4. The system (χt , h) is critical at t= 0 in the sense of Definition 1.4, and we can see a

fixed point emerging from 0 as t increases. Because�t(x)≥ x in a neighbourhood of 0 for t> 0, the interpretation associated

with this fixed point is described in Theorem 1.8. See Example 1.8 for more details.

Finally, we address question c and try to describe the event undergoing the continuous phase
transition. Our result, Theorem 1.8, characterises the interpretation associated with the smallest
non-zero fixed point when its automaton distribution map �(x) satisfies �(x)> x on some inter-
val (0, ε) for ε > 0. This means that the result describes the event undergoing a phase transition
so long as the graph of the automaton distribution map rises above the line y= x as the phase
transition occurs. This occurs in the phase transitions illustrated in Figures 1 and 2, but not in
the phase transition shown in Figure 3. We also mention that Theorem 1.8 requires h(�) to be
increasing.

The characterisation of the interpretation depends on the behaviour of the automaton distribu-
tion map near 0. We define some terminology about this now. Form≥ 1, we say that the recursive
tree system (χ , h) ism-concordant if the firstm derivatives of� at 0 match those of the function x.

That is, (χ , h) ism-concordant if � ′(0)= 1 and �(k)(0)= 0 for 2≤ k≤m. Form≥ 2, we say that

(χ , h) is m-subcordant (resp. m-supercordant) if it is (m− 1)-concordant and �(m)(0)< 0 (resp.
�(m)(0)> 0). We say that (χ , h) is 1-concordant, 1-subcordant, or 1-supercordant if � ′(0)= 1,
� ′(0)< 1, or � ′(0)> 1, respectively. When h is clear from context, we will abuse notation and
refer to χ itself as being m-concordant, m-subcordant, or m-supercordant. Note that assuming
smoothness of � (which holds for χ ∈ �∞ by Lemma 2.3), if �(x)> x holds on some interval
(0, ε), then (χ , h) ism-supercordant for somem≥ 1.

Finally, we define the notion of an admissible subtree. We say that a subtree s of a rooted tree t
is admissible with respect to a threshold function h if s contains the root of t and ns(v)≥ h(nt(v))
for all vertices v ∈ s. We can think of an admissible subtree as a sort of witness to an interpretation.
For example, consider h(�)≡ 1, the threshold function encoding a property that holds for a tree if
and only if it holds for at least one of the tree’s root-child subtrees. As we mentioned earlier, this
recursive tree system has two fixed points when χ has mean greater than 1, and the interpretation
of the non-zero fixed point is survival of the Galton–Watson tree. A subtree S of the Galton–
Watson tree T is admissible if and only if S has no leaves (i.e. nS(v)≥ 1 for all v ∈ S). An admissible
subtree thus serves as a witness to the Galton–Watson tree being infinite. Indeed, the event of T
being infinite could equally well be described as T having an admissible subtree (see Proposition
1.9 for a generalisation).
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Figure 3. Graphs of �t(x)− x illustrating a continuous phase transition not satisfying the conditions of Theorem 1.8.

Here �t is the automaton distribution map for (χt , h) where χt = 1
24 δ0 +

(
1
2 − 3t2

)
δ2 +

(
1
6 + t

)
δ3 +

(
7
24 + 3t2 − t

)
δ6, and

h(0)= h(2)= 1, h(3)= 2, and h(6)= 5. The top plot is our standard view of�t(x)− x as in Figures 1 and 2. In the bottom plot,

we zoom in around x= 0 and see that two fixed points emerge from zero as t increases. By Proposition 1.1, the first fixed

point for each system has no interpretation but the second one does. But we cannot apply Theorem 1.8 to characterise this

interpretation. See Section 5 for further discussion.

Theorem 1.8 Let χ ∈ �∞ have more than one point of support. Consider the recursive tree system
(χ , h) with automaton distribution map �, and assume that h(�) is increasing in �. Suppose that
(χ , h) is m-supercordant, and let x0 be the smallest non-zero fixed point of �. Then x0 is inter-
pretable, and its associated interpretation is the event that T ∼GWχ contains an admissible subtree
S in which all but finitely many vertices v satisfy nS(v)≤m.

Though it falls outside this narrative of understanding phase transitions, we mention that in all
cases, the highest fixed point of a recursive tree system has a similar characterisation:

Proposition 1.9 Let χ ∈ �∞ have more than one point of support. Consider the recursive tree sys-
tem (χ , h) with automaton distribution map �. Let x1 be the largest fixed point of �. Then x1 is
interpretable, and its associated interpretation is the event that T ∼GWχ contains an admissible
subtree.
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We close the section with an example of a family of systems (χt , h) undergoing a continuous
phase transition, as shown in Figure 2.

Example 1.10 Define χt and h by

χt(�)=

⎧
⎪⎪⎨
⎪⎪⎩

1/20− t for � = 0,

1/2+ t for � = 2,

9/20 for � = 5,

and h(�)=

⎧
⎪⎪⎨
⎪⎪⎩

1 for � = 0,

1 for � = 2,

4 for � = 5,

and let �t be the automaton distribution map of the recursive tree system (χt , h). By
Theorem 1.2,

� ′
t(0)= 2χt(2)= 1+ 2t,

� ′′
t(0)= −2χt(2)= −1− 2t.

The system (χ0, h) is critical by Theorem 1.5, since � ′
0(0)= 1 and � ′′

0(0)= −1. For t > 0, the
system is 1-supercordant (i.e. � ′

t(0)> 1).

In Figure 2, we show the graphs of �t(x)− x, so that fixed points of �t appear as roots. At
t = 0, the system has two non-zero fixed points, at x≈ 0.73 and x≈ 0.93. As t grows, a fixed point
x0(t) emerges from 0. We have � ′

t(x0(t))< 1, evident from the graph of �t(x)− x where x0 is
a down-crossing root. By Proposition 1.1, the fixed point x0(t) is interpretable. By Theorem1.8,
the interpretation of (χt , h) associated with x0(t) is the event T0 that T ∼GWχ has an admissible
subtree S in which all but finitely many vertices v ∈ S satisfy nS(v)≤ 1. Since h(�)> 0 for all � ≥ 0,
an admissible subtree has no leaves, and thus all but finitely many vertices have nS(v)= 1.

Recall that S⊆ T is admissible if it contains the root of T and for each v in S, we have nS(v)≥
h(nT(v)). In this case, if a vertex v has 5 children in T, it can only be in S if at least 4 of those
children are also in S; if v has 2 children in T, it can only be in S if at least one of those children is
in S; and if it has no children in T, it cannot be in S. Thus on the event T0, the tree T contains an
admissible subtree where all but finitely many vertices have 2 children in T.

We can see directly that GWχ0(T0)= 0 by observing that the subtree of T ∼GWχ0 consisting
only of the vertices with 2 or fewer children forms a critical Galton–Watson tree (its child distri-

bution is 1
2δ0 + 1

2δ2). Thus it has no chance of being infinite. Consequently, for any vertex v in
T, there is no chance that T(v) contains an admissible subtree consisting of only vertices with 2
children in T.

Viewing the graph in Figure 2, we observe that �t has derivative greater than 1 at its middle
fixed point, which means that it has no interpretation by Proposition 1.1. The largest fixed point
has the interpretation that T ∼GWχt contains an admissible subtree, by Proposition 1.9.

1.5. Related work

A finite random structure like a random graph will not typically experience a true phase transi-
tion. The analogous concept in this area is a sharp threshold for some property, meaning that the
property holds with probability that transitions from 0 to 1 in a parameter window that tends
to 0 as the system grows. The motivating phase transitions of this paper—the continuous phase
transition for survival and the first-order transition for existence of a binary subtree in a Galton–
Watson tree—have analogues for Erdös–Rényi random graphs in this sense: the existence of giant
component [2, Chapter 11], and the existence of a 3-core [18, 19]. The first of these examples is
essentially a continuous phase transition while the second is essentially first-order. For example,
when one reaches the threshold for a 3-core to exist, it immediately makes up a positive linear
fraction of the graph’s vertices. These examples have been studied extensively, though not in the
sort of general framework considered in this paper.
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As for more general studies of phase transitions and sharp thresholds, in finite systems, there is
a line of inquiry centred on giving conditions for a property to have a sharp threshold [8, 9, 15, 21].
Many of these results use the theory of Boolean functions and the Margulis–Russo formula (see
[11] for background), also used in this paper for the proof of Proposition 1.1 via [14]. These results
on sharp thresholds for finite random structures have been applied in impressive ways to prove
results on phase transitions for infinite systems [4, 5]. There is also considerable nonrigorous
literature by physicists on distinguishing between continuous and first-order phase transitions
(see, e.g [3, 7]).

For Galton–Watson trees specifically, Podder and Spencer investigate probabilities of events
that can be described in first-order logic (no connection to first-order phase transitions) in [16,
17]. These events have the same sort of recursive description as the events considered here, gener-
ally with more than two states. But their fundamental result [17, Theorem 1.2] is that these events
never undergo phase transitions at all. In [12], Holroyd and Martin consider various two-player
games whose moves are modelled by directed steps on a Galton–Watson tree. They investigate
events of a player winning the game in various senses, which have a similar recursive nature as
the events considered here, and they give results about the continuity or discontinuity of phase
transitions for these events [12, Theorem 5].

1.6. Sketches of proofs

The proofs of Theorems 1.2 and 1.5 are fairly straightforward. For Theorem 1.2, we express �(x)
as a sum of polynomials and carry out combinatorial calculations to compute their derivatives.
Proving Theorem 1.5 is just a matter of Taylor approximation of �(x) near x= 0 combined with
Proposition 1.1, our interpretability criterion from [14]. Section 2 is devoted to these two proofs.

The proof of Theorem 1.8 is more involved. Given anm-supercordant (χ , h) with smallest non-
zero fixed point x0, we truncate χ to form a new child distribution χ̄ , setting χ̄(�)= 0 for � in tiers
m+ 1 and above. From Theorem 1.2, we know that the system (χ̄ , h) remains m-supercordant.
The hard part of the proof is to show that (χ̄ , h) has only a single non-zero fixed point. We carry
this out by decomposing χ̄ as a mixture of what we call primitive m-critical measures that have
nice combinatorial properties. From Proposition 1.9, we know that the single non-zero fixed

point of (χ̄ , h) is associated with the interpretation that T ∼GWχ̄ contains an admissible sub-

tree. Embedding T into T ∼GWχ , we can view this event as T containing an admissible subtree
made up only of vertices with � children where h(�)≤m. This event is not an interpretation of
h—it does not satisfy the recursive property described by h—but it is a subevent of the correct
interpretation for x0, which we are able to exploit to prove Theorem 1.8.

2. Analytic properties of the fixed-point equation

We start with the proof of Proposition 1.1. This proof belongs more in [14] than here, but we give
it so that it is spelled out somewhere.

Proof of Proposition 1.1. The proof is just a matter of tying together some more general results
from [14]. The fixed point x0 has an interpretation if and only if the associated pivot tree is sub-
critical or critical [14, Theorem 1.7]. (See [14] for the meaning of pivot tree.) This pivot tree is
subcritical or critical if and only if � ′(x0)≤ 1 [14, Lemma 5.3].

Remark 2.1 The proof of [14, Lemma 5.3] contains a step of computing � ′(x) by interchanging
the order of a derivative and an expectation. This step is not justified in the proof, but it is easily
shown to hold if χ has finite expectation, one of our assumptions for Proposition 1.1.

Now we start our work towards the proofs of Theorems 1.2 and 1.5. We define the
polynomials
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B=
n,k(x)=

(
n

k

)
xk(1− x)n−k, (9)

B≥
n,k
(x)=

n∑

j=k

B=
n,k(x). (10)

For x ∈ [0, 1], we have B=
n,k
(x)= P[Bin(n, x)= k] and B≥

n,k
(x)= P[Bin(n, x)≥ k]. Note that we take(0

0

)
= 1 and

(n
k

)
= 0 if k> n or k< 0. Using this notation and assuming h(�)≥ 1, we have �(x)=∑

�=1 χ(�)B≥
�,h(�)

(x). Thus we can understand the derivatives of � by working out the derivatives

of B≥
n,k
(x), which we do now.

Proposition 2.2 For m≥ 1,

dm

dxm
B≥
n,k
(x)= (n)m

m∑

j=1

(− 1)j+m

(
m− 1

j− 1

)
B=
n−m,k−j(x). (11)

Proof. By direct calculation,

d

dx
B=
n,k(x)= n

(
B=
n−1,k−1(x)− B=

n−1,k(x)
)
. (12)

Hence

d

dx
B≥
n,k
(x)= n

n∑

j=k

(
B=
n−1,j−1(x)− B=

n−1,j(x)
)
,

and this sum telescopes to yield nB=
n−1,k−1

(x), establishing them= 1 case.

Now assume the result for m and we prove it for m+ 1. Differentiating the right-hand side of
(11) using (12) gives

dm+1

dxm+1
B≥
n,k
(x)= (n)m

m∑

j=1

(− 1)j+m

(
m− 1

j− 1

)
(n−m)

(
B=
n−m−1,k−j−1(x)− B=

n−m−1,k−j(x)
)

= (n)m+1

(
m+1∑

j=2

(− 1)j+m+1

(
m− 1

j− 2

)
B=
n−m−1,k−j(x)

−
m∑

j=1

(− 1)j+m

(
m− 1

j− 1

)
B=
n−m−1,k−j(x)

)

= (n)m+1

m+1∑

j=1

(− 1)j+m+1

(
m

j− 1

)
B=
n−m−1,k−j(x),

using the identity
( n
k−1

)
+

(n
k

)
=

(n+1
k

)
in the last line.

Lemma 2.3 Let� be the automaton distributionmap for a system (χ , h). Let χn be the truncation of
χ to n, i.e. the probability measure satisfying χn(�)= χ(�) for � ∈ {1, . . . , n} and χn(0)= χ{0, n+
1, n+ 2, . . .}. Let �n be the automaton distribution map for (χn, h). If χ has finite mth moment,

then �(m) exists and is the uniform limit of �
(m)
n on [0, 1] as n→ ∞.
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Proof.We have �n(x)=
∑n

�=1 χ(�)B≥
�,h(�)

(x) and �(x)= limn→∞ �n(x). It suffices to show that

�
(k)
n converges uniformly on [0, 1] to some limit as n→ ∞ for 0≤ k≤m [20, Theorem 7.17]. For

k≥ 1, we apply (11) and bound B=
n,k
(x) by 1 to obtain

∣∣∣∣∣
dk

dxk
B≥

�,h(�)
(x)

∣∣∣∣∣ ≤ (�)k

k∑

j=1

(
k− 1

j− 1

)
= (�)k2

k−1 ≤ �k2k.

The same statement for k= 0, that |B≥
�,h(�)

(x)| ≤ 1, also holds. Hence for all 0≤ k≤m,

∣∣∣∣∣

∞∑

�=n+1

χ(�)
dk

dxk
B≥

�,h(�)
(x)

∣∣∣∣∣ ≤ 2k
∞∑

�=n+1

χ(�)�k,

which vanishes as n→ ∞ by our assumption that χ has finite mth moment. This demonstrates

that �
(k)
n converges uniformly as n→ ∞, completing the proof.

Proof of Theorem 1.2. Let χn be the truncation of χ to n and let�n be the automaton distribution
map of (χn, h), as in the previous lemma. Applying Proposition 2.2 to each summand of �n(x)=∑n

�=1 χ(�)B≥
�,h(�)

(x) gives

�(m)
n (x)=

n∑

�=1

χ(�)(�)m

m∑

j=1

(− 1)j+m

(
m− 1

j− 1

)
B=

�−m,h(�)−j(x).

Observing that B=
n,k
(0)= 1{n≥ 0 and k= 0}, we obtain

�(m)
n (0)=

n∑

�=1

χ(�)(�)m(− 1)h(�)+m

(
m− 1

h(�)− 1

)
.

Applying Lemma 2.3, we take n→ ∞ to prove (5). Equation (6) follows by grouping together the
terms with h(�)= j.

Note that this theorem can fail without the moment assumption:

Example 2.4 Let χ(�)= 1/�(� − 1) for k≥ 2, a measure whose expectation is infinite.
Let h(�)≡ 2. Observe that

P
[
Bin(�, x)≤ 1

]
= (1− x)� + �(1− x)�−1x= (1− x)� + �(1− x)�−1

(
1− (1− x)

)

= �(1− x)�−1 − (� − 1)(1− x)�.

Now, let L∼ χ and compute

�(x)= P
[
Bin(L, x)≥ h(�)

]
= 1− P

[
Bin(L, x)≤ 1

]

= 1−
∞∑

�=2

χ(�)P
[
Bin(�, x)≤ 1

]

= 1−
∞∑

�=2

(
(� − 1)(1− x)�−1 − �(1− x)�

)
.

The sum in the last line telescopes and is equal to 1− x for x ∈ [0, 1], yielding �(x)= x. But this
means that � ′(0)= 1 even though Theorem 1.2 would give � ′(0)= 0.

We revisit this recursive tree system in Example 3.4 and show how we arrived at it.
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Lemma 2.5 For any m≥ 1, the function χ �→ �(m)(0) is continuous on �∞.

Proof. Suppose χn → χ in�∞ and let�n denote the automaton distributionmap of χn. We need

to show that �
(m)
n (0)→ �(m)(0). We have

∣∣∣∣∣∣

∑

�∈tier(j)
χn(�)(�)m −

∑

�∈tier(j)
χ(�)(�)m

∣∣∣∣∣∣
≤

∞∑

�=1

|χn(�)− χ(�)| �m,

which vanishes as n→ ∞ by definition of convergence in �∞. Hence, by (6) from Theorem 1.2,

we have �
(m)
n (0)→ �(m)(0).

Proof of Theorem 1.5. First, suppose that� ′(0)= 1 and� ′′(0)< 0.We need to show that for any
ε, there exist child distributions arbitrarily close to χ in �∞ with an interpretable fixed point in
(0, ε). To show this, we perturb χ slightly to push its automaton distribution map up, creating a
new fixed point very close to 0. We accomplish this by transferring some small amount of mass to
tier 1, which will cause � ′(0) to increase, as in the phase transition shown in Figure 2.

Wewill choose k from tier 1 and take j to be either 0 or some element of a different tier, and then
transfer mass from j to k. First, we must justify that we can find j and k. From (7) and � ′(0)= 1,
we know that tier 1 is non-empty. Choose k arbitrarily from it. If χ(0)> 0, take j= 0. If χ(0)= 0,
then χ has expectation strictly greater than 1. By (7), tier 1 does not contain all the mass of χ , and
therefore some other tier is non-empty; choose j from it.

Now, for t > 0, define χt by starting with χ and then shifting mass t from j to k. Let �t be the
automaton distribution map of χt . Fix ε > 0. Since χt → χ in �∞, we just need to show that for
sufficiently small t, the map �t has an interpretable fixed point in (0, ε). By Theorem 1.2,

� ′
t(0)= � ′(0)+ kt = 1+ kt, (13)

and

� ′′
t(0)< � ′′(0)< 0. (14)

By (13), we have �t(x)> x for sufficiently small x> 0. Choosing t to be small enough relative to
� ′′(0) and applying Taylor approximation, we can force �t(x)< x for some x< ε, implying the
existence of a fixed point x0 with � ′

t(x0)< 1, which is hence interpretable by Proposition 1.1.
Now, suppose � ′(0)= 1 and � ′′(0)= 0. Again we must show the existence of child distribu-

tions arbitrarily close to χ with an interpretable fixed point in (0, ε). We take the same approach
as above, perturbing χ to increase � ′(0) and decrease � ′′(0), but we must be careful about the
rates of increase and decrease. Choose k from tier 1 as before. From � ′′(0)= 0 and (8), we know
that χ assigns positive mass to tier 2; choose j from it. Now define

χt(�)=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

χ(�)+ t2 if � = k,

χ(�)− t if � = j,

χ(0)+ t − t2 if � = 0,

χ(�) otherwise,

for small values of t, and let �t be the automaton distribution map of χt . By (7) and (8),

� ′
t(0)= � ′(0)+ t2k= 1+ t2k,

� ′′
t(0)= � ′′(0)− tj(j− 1)− t2k(k− 1)= −tj(j− 1)− t2k(k− 1).

Thus �t(x)> x immediately to the right of 0, and Taylor approximation again shows that when t
is sufficiently small �t(x)< x for some x< ε. This proves the existence of a fixed point x0 ∈ (0, ε)
with � ′

t(x0)< 1.
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Now we consider the converse. Suppose � ′(0) �= 1. By Lemma 2.5, we can choose a neigh-
bourhood U ⊆ �∞ around χ so that for all π ∈U, the automaton distribution map of (π , h)
has first derivative at 0 uniformly bounded away from 1 and second derivative at zero uniformly
bounded. By Taylor approximation, all these maps have no fixed points on (0, ε) for some small
ε > 0, demonstrating that χ is not critical.

Last, suppose � ′(0)= 1 and � ′′(0)> 0. By Lemma 2.5, we can choose a neighbourhood U ⊆
�∞ around χ such that all automaton distribution maps �π of (π , h) for π ∈U have second
derivative at zero uniformly bounded above 0 and third derivative uniformly bounded. Hence
for some ε > 0, each map �π is strictly convex on [0, ε]. The function �π (x)− x is also strictly
convex and hence has at most two roots on [0, ε]. One of them is at 0. By convexity, any other
root of �π (x)− x on [0, ε] must occur with the graph crossing the x-axis from below to above as
x increases. Thus �π has derivative greater than 1 at this fixed point, and by Proposition 1.1 it has
no interpretation. Since no systems (π , h) for π ∈U have an interpretable fixed point in (0, ε), the
measure χ is not critical.

3. Truncations

Let themaximum threshold of (χ , h) be the maximum value of h(�) over all � satisfying χ(�)> 0.
Define them-truncation of χ as the child distribution χ̄ where for � ≥ 1,

χ̄(�)=

{
χ(�) if h(�)≤m,

0 if h(�)>m,

with χ̄(0) set to make χ̄ a probability measure. In other words, χ̄ is obtained from χ by lopping
off tiersm+ 1 and higher, shifting their weight to 0. Recall from Corollary 1.3 that the automaton
distribution maps of (χ , h) and (χ̄ , h) match to m derivatives at 0. Thus (χ̄ , h) is a system of
maximum threshold m or less whose automaton distribution map approximates that of (χ , h)
near 0.

The point of this section is to prove the following result, which is a major step in proving
Theorem 1.8:

Proposition 3.1 Let χ ∈ �∞ and let h(�) be increasing. Suppose that (χ , h) is m-supercordant.
Then its m-truncation has a unique non-zero fixed point.

The key to this proposition is a thorough understanding of m-concordant recursive tree sys-
tems of maximum thresholdm, which we callm-critical. If (χ , h) has at most one element in each
tier, we call it primitive. We will work extensively with primitivem-critical recursive tree systems.
An example of such a system is

χ(�)=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2/5 for � = 0,

1/2 for � = 2,

1/20 for � = 5,

1/20 for � = 6,

, h(�)=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 for � = 0,

1 for � = 2,

2 for � = 5,

3 for � = 6.

We can check using Theorem 1.2 that this system is 3-concordant (i.e. it has � ′(0)= 1 and

� ′′(0)= �(3)(0)= 0). It is 3-critical because it is 3-concordant and has maximum threshold 3,
and it is primitive because tiers 1, 2, and 3 each have one element (recall that the tiers exclude 0 by
definition).

These recursive tree systems have many good properties. In Proposition 3.8, we show that
m-critical systems decompose into mixtures (i.e. convex combinations) of primitive m-critical
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systems. And for the primitive m-critical systems (χ , h), the automaton distribution map has a
useful connection with a martingale (Xn)n≥1 we describe now.

First, we define a time-inhomogenous Markov chain (Rn)n≥1 as follows. Let R1 = 1. Then,
conditional on Rn, let

Rn+1 =

{
Rn with probability n+1−Rn

n+1 ,

Rn + 1 with probability Rn
n+1 .

(15)

There is an alternative construction of (Rn)n≥1 that yields some insight. Start with the permu-
tation σ1 of length 1. At each step, form σn+1 from σn by viewing σn in one-line notation and
inserting the digit n+ 1 uniformly at random into the n+ 1 possible locations. For example, if
σ3 = 213, then σ4 is equally likely to be each of 4213, 2413, 2143, and 2134. Then let Rn = σ−1

n (1),
the location of 1 in the one-line notation of σn. When we insert n+ 1 into σn to form σn+1, it has
probability (n+ 1− Rn)/(n+ 1) of landing to the right of 1 and probability Rn/(n+ 1) of landing
to the left of 1, matching the dynamics given in (15). We note one consequence of this perspective:

Lemma 3.2 The random variable Rn is uniformly distributed over {1, . . . , n}.

Proof. First, we argue by induction that σn is a uniformly random permutation of length n, with
n= 1 as the trivial base case. To extend the induction, let τ be an arbitrary permutation of length n
and let τ ′ be the permutation of of length n− 1 obtained by deleting n from the one-line notation
form of τ . Then σn can be equal to τ only if σn−1 = τ ′, and we compute

P[σn = τ ]= P[σn−1 = τ ′] P[σn = τ | σn−1 = τ ′]=
1

(n− 1)!
·
1

n
=

1

n!

by the inductive hypothesis and definition of σn.

To complete the proof, observe that Rn
d= σ−1

n (1) and is hence uniform over {1, . . . , n}.

Finally, we give the sequence (Xn)n≥1 and show that it is a martingale. We define it in terms of
Rn and the polynomials B≥

n,k
(x) defined in (10).

Lemma 3.3 Fix x ∈ [0, 1] and define

Xn = B≥
n,Rn

(x).

Then (Xn)n≥1 is a martingale adapted to the filtration Fn = σ (R1, . . . , Rn).

Proof. First, we claim that

B≥
n,k
(x)= B≥

n+1,k+1
(x)+

n+ 1− k

n+ 1
B=
n+1,k(x). (16)

To see this, consider n+ 1 independent trials with success probability x. Then eliminate one at
random and consider the event that there are at least k successes in the remaining n trials. The left-
hand side of (16) is the probability of this event, which occurs if either (a) there were k+ 1 or more
successes in the original set of trials, or (b) there were exactly k successes but the trial removed was

a failure. Then (a) occurs with probability B≥
n+1,k+1

(x) and (b) with probability n+1−k
n+1 B=

n+1,k
(x),

proving (16).
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Now, we compute

E[Xn+1 | Fn]=E

[
n+1∑

k=Rn+1

B=
n+1,k(x)

∣∣∣∣∣ Fn

]

=
n+ 1− Rn

n+ 1

n+1∑

k=Rn

B=
n+1,k(x)+

Rn

n+ 1

n+1∑

k=Rn+1

B=
n+1,k(x)

= B≥
n+1,Rn+1(x)+

(
n+ 1− Rn

n+ 1

)
B=
n+1,Rn

(x)= B≥
n,Rn

(x),

applying (16) in the last line. Hence E[Xn+1 | Fn]= Xn, confirming that the sequence is a
martingale.

We will make use of this martingale by applying the optional stopping theorem to assert that
x= X1 =EXT for various stopping times T. This expectation has the form

EXT =
∞∑

n=1

P[T = n] P[Bin(n, x)≥ Rn | T = n].

For a recursive tree system (χ , h) where χ(n)= P[T = n], if T is chosen so that Rn = h(n) when
T = n, this expression is nearly the same as�(x). The following example is off track for the section,
but it illustrates how to use this idea.

Example 3.4 (Example 2.4 revisited) In Example 2.4, we showed that the system (χ , h) with
χ(n)= 1/n(n− 1) for n≥ 2 and h(n)≡ 2 has automaton distributionmap�(x)= x by an explicit
calculation. Now we give a new proof that demonstrates how we arrived at the example. Let T be
the first time the chain Rn jumps from 1 to 2; that is, T =min{n : Rn = 2}. By the chain’s dynamics,
for n≥ 2

P[T ≥ n]= P[Rn−1 = 1]=
n−1∏

k=2

k− 1

k
=

1

n− 1
,

and

P[T = n | T ≥ n]= P[Rn = 2 | Rn−1 = 1]=
1

n
.

Putting these together, we have P[T = n]= 1/n(n− 1) for n≥ 2. Also observe that T < ∞ with
probability 1, since P[T ≥ n]→ 0 as n→ ∞.

Now, we set χ(n)= P[T = n] and h(n)≡ 2. Since |Xn| ≤ 1, the optional stopping theorem
applies and yields

x=EXT =
∞∑

n=2

P[T = n] P
[
Bin(n, x)≥ Rn | T = n

]
=

∞∑

n=2

χ(n)P
[
Bin(n, x)≥ 2

]
= �(x).

The next result uses the optional stopping theorem in the same way to compute primitive m-
critical systems with a given set of support. Recall that primitive means that each tier has at most
one element, i.e. the values h(�) are distinct for all � ≥ 1 in the support of the child distribution.

Lemma 3.5 For any sequence of integers 1≤ �1 < · · · < �m, there is a unique probability mea-
sure χ supported within {0, �1, . . . , �m} so that the system (χ , h) with h(�k)= k is m-concordant.
We denote this measure χ by the notation crit(�1, . . . , �m). For this system (χ , h) with automaton
distribution map �:
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a. χ satisfies

χ(�1)=
1

�1
,

χ(�k)=
1

(�k)k

k−1∑

j=1

(− 1)k+j+1

(
k− 1

j− 1

)
χ(�j)(�j)k, for 2≤ k≤m.

If �1 = 1, then χ = δ1 and �(x)= x. If �1 ≥ 2, then the following properties hold as well:

b. χ places positive mass on each of {0, �1, . . . , �m}; in particular, (χ , h) has maximum
threshold m and is therefore m-critical;

c.
(
x− �(x)

)
/χ(0) is a convex combination of the polynomials

B≥
�m,r

(x), r ∈ {m+ 1, . . . , �m};

d. (χ , h) is (m+ 1)-subcordant.

Proof. Fix a sequence 1≤ �1 < · · · < �m and let h(�k)= k. We will first prove that if there exists
m-concordant χ supported on {0, �1, . . . , �m}, then a. holds. This shows that such a χ is unique,
if it exists, since we can apply a. inductively to determine χ(�1), . . . , χ(�m). (Note that it is not
obvious a priori that the values of χ(�k) given by these formulas are positive numbers or that their
sum is 1 or smaller, which is why we cannot construct χ by this formula.) After this, we will prove
existence of χ , and last we show b.–d.

To prove a. under the assumption of existence of χ , we simply apply Theorem 1.2. In the
k= 1 case we use (7), yielding 1= � ′(0)= χ(�1)�1 and proving that χ(�1)= 1/�1. Similarly, for

2≤ k≤m, we have 0= �(k)(0) and we apply (6) to deduce the rest of a.
Now, we show that χ exists. Consider the chain (Rn)n≥1 defined previously, and let

T =min{�k : R�k = k},

with T = ∞ if R�k �= k for k= 1, . . . , n. The random variable T is a stopping time for the filtration
(Fn)n≥1 defined in Lemma 3.3. To get a feeling forT, consider the perspective of Rn as the location
of 1 in the one-line notation of a growing random permutation σn, as described before Lemma 3.2.
The idea for T is that we only consider stopping at times �1, �2, . . ., and that we stop at the first
time �k where 1 is in position k in σ�k .

We define χ be setting χ(�k)= P[T = �k] for k= 1, . . . ,m and setting χ(0)= P[T = ∞].
Clearly this is a probability measure supported within {0, �1, . . . , �m}. We now compute

�(x)=
∞∑

�=1

χ(�)B≥
�,h(�)

(x)=
m∑

k=1

P[T = �k]B
≥
�k,k

(x).

As in Example 3.4, this closely resembles EXT for the martingale (Xn)n≥1 defined in Lemma 3.3,
since B≥

�k,k
(x)= XT when T = �k. Indeed, by the optional stopping theorem,

x= X1 =EXT∧�m =
m∑

k=1

P[T = �k]E[XT | T = �k]+ P[T = ∞]E[X�m | T = ∞]

= �(x)+ χ(0)

�m∑

r=1

P[R�m = r | T = ∞]B≥
�m,r

(x).

We claim that if T = ∞, then R�m ≥m+ 1. Indeed, if T > �1, then R�1 �= 1, and hence R�1 ≥ 2.
Since (Rn)n≥1 is increasing, we then have R�2 ≥ 2. If T > �2, then R�2 �= 2, and hence R�2 ≥ 3.
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Continuing in this way, if T > �j then R�j ≥ j+ 1. In particular, if T = ∞, then R�m ≥m+ 1,
proving the claim. Hence P[R�m = r | T = ∞]= 0 for r ≤m, yielding

�(x)= x− χ(0)

�m∑

r=m+1

P[R�m = r | T = ∞]B≥
�m,r

(x). (17)

Now we can confirm that the system (χ , h) we have constructed is m-concordant. Since the
polynomials B≥

�m,r
(x) for r ≥m+ 1 are divisible by xm+1, we rewrite (17) as

�(x)= x− χ(0)xm+1F(x),

where F(x) is a polynomial. Since

dk

dxk

∣∣∣∣
x=0

(
xm+1F(x)

)
= 0

for k= 1, . . . ,m, we see that � ′(0)= 1 and �(k)(0)= 0 for 2≤ k≤m. Thus we have shown exis-
tence of χ so that (χ , h) is an m-critical system with support {0, �1, . . . , �m}. We have already
shown that that there can be at most one probability measure with this property. Henceforth we
denote the measure χ we have constructed by crit(�1, . . . , �m).

When �1 = 1, we have T = 1 a.s., which makes χ = δ1 and �(x)= x. From now on we assume
�1 ≥ 2. To prove b., we must show crit(�1, . . . , �m) assigns strictly positive mass to each of
0, �1 . . . , �m. We just need to show that the events {T = �k} for k= 1, . . . ,m and the event
{T = ∞} have positive probability.We claim that T = �k occurs if R1, R2, . . . , R�k is the sequence

1, 2, . . . , k, k, . . . , k.

Indeed, for j< k either R�j = �j or R�j = k. Since �1 > 1, we have �j > j, and hence we stop only
when we reach �k, proving the claim. Similarly, and T = ∞ occurs if R1, . . . , R�m is

1, 2, . . . , m+ 1, m+ 1, . . . , m+ 1.

By the dynamics of the chain (Rn), it has positive probability of taking on these sequences.
Property c. follows directly from (17) together with χ(0)> 0 from b. It remains to prove d. by

showing that�(m+1)(0)< 0. From c. we have �(x)≤ x. If �(m+1)(0)> 0, then by Taylor approxi-

mation we would have�(x)> x for sufficiently small x, a contradiction. Hence�(m+1)(0)≤ 0. To

rule out �(m+1)(0)= 0, we make use of uniqueness. Choose any �m+1 > �m and extend h by set-

ting h(�m+1)=m+ 1. If �(m+1)(0)= 0, then (χ , h) is (m+ 1)-concordant and supported within
{0, �1, . . . , �m+1}. But by what we have already proven, the unique measure with these proper-

ties places positive weight on �m+1, a contradiction since χ(�m+1)= 0. Hence �(m+1)(0)< 0,
completing the proof.

Remark 3.6 Lemma 3.5 has a combinatorial interpretation. Let Sn denote the set of permuta-
tions of {1, . . . , n}. Fix 1< �1 < · · · < �m, and for π ∈Sm consider the sequence of permutations
π1, . . . , πm = π where πk ∈S�k is obtained from π by deleting values larger than �k from the
one-line notation of π . For example, if (�1, �2, �3)= (3, 4, 6) and π = 621435, then

(π1, π2, π3)= (213, 2143, 621435).

Now, let Ak consist of all π ∈Sm such that π−1
k

(1)= k but π−1
j (1) �= j for j< k. In other words,

Ak is made up of the permutations π in which 1 is in position j in πj for the first time when j= k.
For example, in the example above, 621435 ∈A2, because 1 is not in position 1 in π1 but is in
position 2 in π2.
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Counting the number of permutations in Ak corresponds to computing P[T = k] in the proof
of Lemma 3.5 Thus, for χ = crit(�1, . . . , �m), we have |Ak| = �m!χ(k). Lemma 3.5a then yields:

|A1| =
�m!
�1

,

|Ak| =
1

(�k)k

k−1∑

j=1

(− 1)k+j+1

(
k− 1

j− 1

) ∣∣Aj

∣∣ (�j)k, for 2≤ k≤m.

In this form, the formula suggests an explanation via the inclusion–exclusion principle, though
we could not come up with one.

Lemma 3.5 gives us an excellent understanding of primitivem-critical systems. We will extend
our knowledge to the nonprimitivem-critical systems in Proposition 3.8. First we need a technical
lemma.

Lemma 3.7 Let (χ , h) and (χ̄ , h) both be m-concordant with maximum threshold m or less. Assume
that χ has finite support, that h(�) is increasing, that h(�)≤ � for � ≥ 1, and that tierχ ,h(k) is non-
empty for each k ∈ {1, . . . ,m}. Suppose that for all k ∈ {1, . . . ,m}, the vector (χ̄(p))p∈tier(k) is a
scalar multiple of (χ(p))p∈tier(k). Then χ = χ̄ .

Proof. Let � and �̄ be the automaton distribution maps of (χ , h) and (χ̄ , h), respectively. Let
αk be the scalar satisfying (χ̄(p))p∈tier(k) = αk(χ(p))p∈tier(k). We will show that αk = 1 for all k ∈
{1, . . . ,m} by induction on k. The idea is that m-concordancy together with α1 = · · · = αk−1 = 1
together with Theorem 1.2 implies that αk = 1.

For the k= 1 case, we see from (7) that �̄ ′(0)= α1�
′(0). Since χ and χ̄ are m-concordant,

we have � ′(0)= �̄ ′(0)= 1, showing that α1 = 1. Next, assume α1 = · · · = αk−1 = 1, and we show
that αk = 1. Bym-concordancy of χ and χ̄ , the inductive hypothesis, and (6),

0= �(k)(0)=
∑

�∈tier(k)
χ(�)(�)k +

k−1∑

j=1

(− 1)k+j

(
k− 1

j− 1

) ∑

�∈tier(j)
χ(�)(�)k,

and

0= �̄(k)(0)= αk

∑

�∈tier(k)
χ(�)(�)k +

k−1∑

j=1

(− 1)k+j

(
k− 1

j− 1

) ∑

�∈tier(j)
χ(�)(�)k.

By our assumption that tier(k) is non-empty and that h(�)≤ �, the term
∑

�∈tier(k) χ(�)(�)k is
non-zero. It follows that αk = 1.

Proposition 3.8. Let (χ , h) be m-concordant with maximum threshold m or less. Assume that χ

has finite support, that h(�) is increasing, and that h(�)≤ � for � ≥ 1. Then

a. χ is a convex combination of measures crit(�1, . . . , �m) where each �k is in tier k of (χ , h);

b. if χ �= δ1, then (χ , h) has maximum threshold exactly m and is hence m-critical.

Proof. For each k ∈ {1, . . . ,m} and � ∈ tier(k), define

a� =
χ(�)(�)k∑

i∈tier(k) χ(i)(i)k
. (18)

Note that the denominator in this expression is non-zero: the sum includes χ(�)(�)k, and χ(�)> 0
for � ∈ tier(k) by definition of tier(k), and � ≥ k by our assumption that h(�)≤ �. Now, we define

χ̃ =
∑

�1∈tier(1)
· · ·

∑

�m∈tier(m)

a�1 · · · a�mcrit(�1, . . . , �m). (19)
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If tiers 1, . . . ,m are non-empty, then this sum is a convex combination, since
∑

�k∈tier(k) a�k = 1

and hence

∑

�1∈tier(1)
· · ·

∑

�m∈tier(m)

a�1 · · · a�m =

(
∑

�1∈tier(1)
a�1

)
· · ·

(
∑

�m∈tier(m)

a�m

)
= 1.

As a convex combination ofm-concordantmeasures, χ̃ itself ism-concordant. Indeed, its automa-
ton distribution map �̃ satisfies �̃ ′(0)= 1 and �̃(k)(0)= 0 for 2≤ k≤m since it is then a convex
combination of functions satisfying the same derivative condition. In fact, we will eventually
show that χ = χ̃ and that the assumption of non-empty tiers is automatically satisfied under the
assumptions of this proposition. See Example 3.9 to see this decomposition in practice.

We first argue that χ = χ̃ under the assumption that tiers 1, . . . ,m of (χ , h) are non-empty.
With the aim of applying Lemma 3.7, we will show that the vector (χ̃(p))p∈tier(k) is a scalar multiple
of (χ(p))p∈tier(k) for each k= 1, . . . ,m. To prove this, we define

b1 =
1∑

i∈tier(1) χ(i)i
,

and

bk(x1, . . . , xk−1)=
1∑

i∈tier(k) χ(i)(i)k

k−1∑

j=1

(− 1)k+j+1

(
k− 1

j− 1

)
χ(xj)(xj)k,

for k≥ 2. The denominators on the right-hand side of these equations are non-zero by our
assumption of non-empty tiers and that h(�)≤ �. Now, fix an arbitrary k ∈ {1, . . . ,m}. For any
�k ∈ tier(k), we have

a�kcrit(�1, . . . , �m){�k} = χ(�k)bk(�1, . . . , �k−1)

by Lemma 3.5a, using the notation crit(�1, . . . , �m){i} to denote the mass placed on the value
i by the measure crit(�1, . . . , �m). Now, let p ∈ tier(k). Since crit(�1, . . . , �m) is supported on
{�1, . . . , �m}, the following holds for any �1, . . . , �k−1, �k+1, . . . , �m with �i ∈ tier(i):

∑

�k∈tier(k)
a�1 · · ·a�mcrit(�1, . . . , �m){p}

= a�1 · · · a�k−1
apa�k+1

· · · a�mcrit(�1, . . . , �k−1, p, �k+1, . . . , �m){p}
= a�k−1

a�k+1
· · · a�mχ(p)bk(�1, . . . , �k−1).

Now we use this to compute

χ̃(p)=
∑

�1∈tier(1)
· · ·

∑

�m∈tier(m)

a�1 · · · a�mcrit(�1, . . . , �m){p}

= χ(p)

kth sum omitted︷ ︸︸ ︷∑

�1∈tier(1)
· · ·

∑

�m∈tier(m)

a�1 · · · a�k−1
a�k+1

· · · a�mbk(�1, . . . , �k−1).

Thus, for each p ∈ tier(k), we have shown that χ̃(p) is equal to χ(p) scaled by a factor not depend-
ing on p. This completes the proof that (χ̃(p))p∈tier(k) is a scalar multiple of (χ(p))p∈tier(k) for each
k= 1, . . . ,m.

As we noted earlier, χ̃ ism-concordant. Lemma 3.7 applies and shows that χ = χ̃ . Thus part a.
of the proposition is proven under the extra assumption of non-empty tiers.

Finally, we show that this assumption holds whenever χ �= δ1. This proves b., and it proves a
when χ �= δ1. This will complete the proof, since a. is trivial when χ = δ1 since χ = crit(1). Thus,
we suppose that (χ , h) satisfies all the conditions of the proposition and has an empty tier. Let
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k be the smallest value so that tier k is empty. From (7) and � ′(0)= 1, we have k≥ 2. Let χ̄ be
the k-truncation of χ , which is equal to the (k− 1)-truncation since tier k is empty. Now (χ̄ , h) is
(k− 1)-concordant with maximum threshold k− 1, and h(�) is still increasing, and χ̄ has finite
support. Also tiers 1, . . . , k− 1 are all non-empty in χ̄ . Thus all conditions of this proposition are
satisfied with m as k− 1 as well as the non-empty tiers assumption, and therefore χ̄ decomposes
into a convex combination of measures crit(�1, . . . , �k−1) with �i ∈ tier(i).

By definition of the k-truncation, the measures χ and χ̄ place the same weight on all values in

tiers 1, . . . , k. By Corollary 1.3, this implies that �̄(k)(0)= �(k)(0). And since χ ism-concordant,

we have �(k)(0)= 0 and can conclude that �̄(k)(0)= 0 as well.
Now, consider the decomposition of χ̄ into a convex combination of measures of the

form crit(�1, . . . , �k−1). Let ��1,...,�k−1
denote the automaton distribution maps of these mea-

sures, and note that �̄ is a convex combination of these maps. By Lemma 3.5d, each measure

crit(�1, . . . , �k−1) is either k-subcordant or is equal to δ1. In the first case, �
(k)
�1,...,�k−1

(0)< 0, and

in the second�
(k)
�1,...,�k−1

(0)= 0. Since �̄(k)(0)= 0, we have crit(�1, . . . , �k−1)= δ1 for all measures

in the decomposition of χ̄ , and therefore χ̄ = δ1. But if the k-truncation of χ is δ1, then χ itself is
equal to δ1. Hence χ = δ1 if any of tiers 1, . . . ,m are empty.

Here is an example of the decomposition of a critical system into primitive ones. We find it
helpful for understanding both Lemma 3.5 and Proposition 3.8.

Example 3.9 Let

χ(�)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

64/135 for � = 0,

1/3 for � = 2,

1/9 for � = 3,

1/27 for � = 4,

2/45 for � = 5,

and h(�)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for � = 0,

1 for � = 2,

1 for � = 3,

2 for � = 4,

2 for � = 5.

We claim that (χ , h) is 2-critical. Indeed, it has maximum threshold 2, and by (7) and (8), the
automaton distribution map � satisfies

� ′(0)= χ(2)(2)+ χ(3)(3)= 1,

� ′′(0)= χ(4)(4)(3)+ χ(5)(5)(4)− χ(2)(2)(1)− χ(3)(3)(2)= 0.

By Proposition 3.8, we can express χ as a mixture of the measures crit(2, 4), crit(2, 5),
crit(3, 4), and crit(3, 5). First, we compute these measures, which can be done most easily using
Lemma 3.5a:

crit(2, 4){�} =

⎧
⎪⎪⎨
⎪⎪⎩

5/12 for � = 0,

1/2 for � = 2,

1/12 for � = 4,

crit(3, 4){�} =

⎧
⎪⎪⎨
⎪⎪⎩

1/2 for � = 0,

1/3 for � = 3,

1/6 for � = 4,

crit(2, 5){�} =

⎧
⎪⎨
⎪⎩

9/20 for � = 0,

1/2 for � = 2,

1/20 for � = 5,

crit(3, 5){�} =

⎧
⎪⎨
⎪⎩

17/30 for � = 0,

1/3 for � = 3,

1/10 for � = 5.
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We can find a decomposition of χ using the technique from the proof of Proposition 3.8. We
apply (18) to compute

a2 =
χ(2)(2)

χ(2)(2)+ χ(3)(3)
=

2

3
, a4 =

χ(4)(4)(3)

χ(4)(4)(3)+ χ(5)(5)(4)
=

1

3
,

a3 =
χ(3)(3)

χ(2)(2)+ χ(3)(3)
=

1

3
, a5 =

χ(5)(5)(4)

χ(4)(4)(3)+ χ(5)(5)(4)
=

2

3
.

Now (19) gives

χ = a2a4crit(2, 4)+ a2a5crit(2, 5)+ a3a4crit(3, 4)+ a3a5crit(3, 5)

= (2/9)crit(2, 4)+ (4/9)crit(2, 5)+ (1/9)crit(3, 4)+ (2/9)crit(3, 5).

It follows from Lemma 3.5 and Proposition 3.8 that m-critical systems have no non-zero fixed
points. We show this together with some other simple consequences of these lemmas:

Proposition 3.10 Suppose that (χ , h) is m-critical and that χ �= δ1. Assume that χ has finite sup-
port, h(�) is increasing, and that h(�)≤ � for � ≥ 1. Then the system’s automaton distribution map
� satisfies �(x)< x for x ∈ (0, 1], and

(
x− �(x)

)
/χ(0) is a convex combination of polynomials

B≥
�,r(x) for � ∈ tier(m) and r ≥m+ 1.

Proof. The statement about
(
x− �(x)

)
/χ(0) is a direct consequence of Lemma 3.5 and

Proposition 3.8: We use Proposition 3.8 to decompose χ as

χ =
∑

�1,...,�m

a�1,...,�mcrit(�1, . . . , �m),

where the sum ranges over all �k ∈ tier(k) for k= 1, . . . ,m and the coefficients a�1,...,�m are non-
negative and sum to 1. Let ��1,...,�m denote the automaton distribution map for crit(�1, . . . , �m),
and observe that the automaton distribution map � of (χ , h) also decomposes as

�(x)=
∑

�1,...,�m

a�1,...,�m��1,...,�m(x).

When �1 ≥ 2, the expression x− ��1,...,�m(x) is a linear combination of the polynomials

B≥
�m,r

(x), r ∈ {m+ 1, . . . , �m}

with non-negative coefficients summing to crit(�1, . . . , �m){0} by Lemma 3.5c. In fact, this holds
when �1 = 1 as well, since then x− ��1,...,�m(x)= 0 and crit(�1, . . . , �m){0} = 0. Hence,

x− �(x)= x−
∑

�1,...,�m

a�1,...,�m��1,...,�m(x)=
∑

�1,...,�m

a�1,...,�m

(
x− ��1,...,�m(x)

)

is a linear combination of polynomials B≥
�m,r

(x) for �m ∈ tier(m) and m+ 1≤ r ≤ �m, with non-

negative coefficients summing to
∑

�1,...,�m

a�1,...,�mcrit(�1, . . . , �m){0} = χ(0). (20)

Finally, we show that �(x)< x for x ∈ (0, 1]. Since x− �(x) is a linear combination with non-
negative coefficients of polynomials B≥

�m,r
(x) that are non-negative on [0,1], we have �(x)≤ x for

x ∈ [0, 1]. Since these polynomials are strictly positive for x ∈ (0, 1], the statement holds so long
any of them are included in the decomposition of x− �(x). Since each summand on the left-
hand side of (20) is non-zero whenever �1 ≥ 2 by Lemma 3.5b, this is true unless a�1,...,�m = 0 for
all �1 ≥ 2. But since crit(�1, . . . , �m)= δ1 if �1 = 1, this would imply that χ = δ1.
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The following is a trivial but useful observation:

Lemma 3.11 For any x ∈ (0, 1] and positive integer r satisfying h(r)≤ r, the system (χ , h) has x as
a fixed point if and only if

χ(r)=
x−

∑
� �=r χ(�)B≥

�,h(�)
(x)

B≥
r,h(r)

(x)
. (21)

Proof. Since B≥
r,h(r)

(x)= P[Bin(r, x)≥ h(r)] is positive by our assumption that x> 0 and h(r)≤ r,

equation (21) is equivalent to

χ(r)P[Bin(r, x)≥ h(r)]+
∑

� �=r

χ(�)P[Bin(�, x)≥ h(�)]= x.

That is, equation (21) is equivalent to the statement �(x)= x.
Suppose that (χ , h) has maximum support n and is m-critical, and that h(�) is increasing and

satisfies h(�)≤ � for � ≥ 1. By Proposition 3.10, this system has no fixed points other than 0. Now
suppose that r ≥ n+ 1 and h(r)=m+ 1, and that we wish to modify χ by shifting mass from 0
onto r to create a given fixed point. (There is no obvious reason we would want to do this, but
it turns out to be a key step in the proof of Proposition 3.1.) The previous lemma suggests that
we can do so by setting χ(r) to make (21) hold. But this might not be possible, since (21) may
demand that χ(r) be too small (i.e. negative) or too large (i.e. greater than χ(0)). The following
result combines with Lemma 3.11 to show that neither of these occurs.

Lemma 3.12 Suppose that (χ , h) is m-critical and χ �= δ1. Assume that χ is supported on {0, . . . , n},
that h(�) is increasing, and that h(�)≤ � for all � ≥ 1. Fix some integer r ≥ n+ 1 and suppose that
h(r)=m+ 1. Define ϕ(x) for x ∈ (0, 1] by

ϕ(x)=
x−

∑n
�=1 χ(�)B≥

�,h(�)
(x)

B≥
r,m+1(x)

. (22)

Then ϕ(x) ∈ (0, χ(0)], and ϕ(x) is strictly increasing.

Proof. Let � be the automaton distribution map of (χ , h), and note that the numerator on the
right-hand side of (22) is equal to x− �(x). By Proposition 3.10, this quantity is strictly positive,
proving that ϕ(x)> 0. Proposition 3.10 also lets us express x− �(x) as a linear combination of
polynomials B≥

�,j(x) for � < r and j≥m+ 1, with non-negative coefficients. Lemma 3.13 to follow

shows that B≥
�,j(x)/B

≥
r,m+1(x) is strictly increasing for all � < r and j≥m+ 1, proving that ϕ is

strictly increasing. Finally, direct evaluation shows that ϕ(1)= 1−
∑n

�=1 χ(�)= χ(0), and since
ϕ is increasing we have ϕ(x)≤ χ(0) for x ∈ (0, 1].

Lemma 3.13 Let 1≤ j≤ p and 1≤ k≤ r. If p< r and j≥ k, or if p≤ r and j> k, then

B≥
p,j(x)

B≥
r,k
(x)

(23)

is strictly increasing in x for x ∈ (0, 1].

Proof. First we consider the case where j= k and r = p+ 1. The event {Bin(p+ 1, x)≥ j} occurs
if the first p coin flips yield at least j successes, or if they yield exactly j− 1 successes and the final
coin flip is a success. Hence

P[Bin(p+ 1, x)≥ j]= P[Bin(p, x)≥ j]+ xP[Bin(p, x)= j− 1],
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giving us

P[Bin(p, x)≥ j]

P[Bin(p+ 1, x)≥ j]
= 1−

xP[Bin(p, x)= j− 1]

P[Bin(p+ 1, x)≥ j]

= 1−

( p
j−1

)
xj(1− x)p−j+1

∑p+1
n=j

(p+1
n

)
xn(1− x)p−n+1

= 1−

( p
j−1

)

∑p+1
n=j

(p+1
n

)
xn−j(1− x)j−n

.

The expression xn−j(1− x)j−n is increasing in x for n≥ j and strictly increasing for n> j. Since j≤
p, the sum contains at least one strictly increasing term.Hence this expression is strictly increasing.

Next, consider the case where j= k+ 1 and p= r. Here, we have

P[Bin(p, x)≥ k+ 1]

P[Bin(p, x)≥ k]
=

P[Bin(p, x)≥ k]− P[Bin(p, x)= k]

P[Bin(p, x)≥ k]
= 1−

P[Bin(p, x)= k]

P[Bin(p, x)≥ k]
.

Hence it suffices to show that P[Bin(p, x)≥ k]/P[Bin(p, x)= k] is strictly increasing. We express
this quantity as

P[Bin(p, x)≥ k]

P[Bin(p, x)= k]
=

∑p

n=k

(p
n

)
xn(1− x)p−n

(p
k

)
xk(1− x)p−k

=
p∑

n=k

(p
n

)
(p
k

)xn−k(1− x)k−n.

As in the previous case, the expression xn−k(1− x)n−k is increasing in x for n≥ k and is strictly
increasing for n> k, and at least one of the strictly increasing terms appears.

Finally, the general case follows from the two special cases by expressing (23) as a product of
quotients considered in the special cases. For example,

B≥
5,3(x)

B≥
7,2(x)

=
B≥
5,3(x)

B≥
6,3(x)

B≥
6,3(x)

B≥
7,3(x)

B≥
7,3(x)

B≥
7,2(x)

,

and is hence the product of strictly increasing functions.

Proof of Proposition 3.1. Let (χ , h) be them-truncation of anm-supercordant system, and let �
be its automaton distribution map. We must show that � has a single fixed point on (0,1]. We
observe that (χ , h) ism-supercordant itself, since by Theorem 1.2 the firstm derivatives of � at 0
are equal to those of the automaton distribution map of the original m-supercordant system (see
Corollary 1.3).

If h(�)≤ � does not hold for all � ≥ 1, define a new system (χ̃ , h̃) where for � ≥ 1,

χ̃(�)=

{
χ(�) if h(�)≤ �,

0 if h(�)> �,
, h̃(�)=

{
h(�) if h(�)≤ �,

� if h(�)> �,

with χ̃(0) set tomake χ̃ a probability measure. Note that h̃(�) is still increasing. Since B≥
�,h(�)

(x)= 0

when h(�)> �, the systems (χ , h) and (χ̃ , h̃) have identical automaton distribution maps, and we

can work with (χ̃ , h̃) in place of (χ , h). Thus we will assume without loss of generality that h(�)≤ �

for all � ≥ 1.
We first give a proof for the case that tierm of (χ , h) consists of a single value r. Since the system

is supercordant, by Taylor approximation we have �(x)> x for x ∈ (0, ε) for some sufficiently
small ε > 0. Since�(1)≤ 1, the graph of� eventually dips down below or onto the line y= x, and

https://doi.org/10.1017/S0963548321000237 Published online by Cambridge University Press



222 T. Johnson

Figure 4. Let χ place vector of probabilities
(
1
10 , 0,

1
2 ,

1
5 ,

1
5

)
on values 0, 1, 2, 3, 4, and let h(0)= h(2)= 1 and h(3)= h(4)= 2.

The system (χ , h) is 2-supercordant; its automaton distribution map can be computed to be �(x)= x+ 13
10 x

2 − 2x3 + 3
5 x

4,

with fixed point x0 = (10−
√
22)/6≈ 0.885. The system (χ̃ , h) with the same fixed point but only a single value in tier

2 is found by computing p= ϕ(x0)≈ 0.406, where ϕ is given in (24), and then letting χ̃ place vector of probabilities(
1
2 − p, 0, 12 , p, 0

)
on 0, 1, 2, 3, 4. The automaton distribution map �̃ of (χ̃ , h) is shown above together with�.

hence � has some non-zero fixed point. Now we show it has at most one. Let χ̄ be the (m− 1)-
truncation ofχ . The system (χ̄ , h) is (m− 1)-concordant by Corollary 1.3. Its maximum threshold
ism− 1 or less by definition of truncation. By Proposition 3.8b, it is (m− 1)-critical. Define a map
ϕ : (0, 1]→R by

ϕ(x)=
x−

∑r−1
�=1 χ(�)B≥

�,h(�)
(x)

B≥
r,m(x)

=
x−

∑r−1
�=1 χ̄(�)B≥

�,h(�)
(x)

B≥
r,m(x)

. (24)

By Lemma 3.11, the non-zero fixed points of (χ , h) make up the set ϕ−1
(
χ(r)

)
. By Lemma 3.12

applied to (χ̄ , h), the function ϕ(x) is strictly increasing. Thus ϕ−1
(
χ(r)

)
contains no more than

one point, and (χ , h) has at most one non-zero fixed point. This shows that (χ , h) has exactly one
non-zero fixed point x0, with �(x)> x for x ∈ (0, x0) and �(x)< x for x ∈ (x0, 1].

To extend the proof to the case where tier m contains more than one value, again assume that
(χ , h) has maximum threshold m and is m-supercordant. As before, by Taylor approximation
�(x) has at least one fixed point on (0,1]. Since the fixed points form a closed subset of (0,1], there
is a largest fixed point; call it x0. Let r be the smallest value in tier m of (χ , h). Our strategy now
will be to construct a new system (χ̃ , h) where all of tierm is concentrated on r. By the special case
of the proposition we have already proven, this system has a unique non-zero fixed point. Then
we will compare this system’s automaton distribution map to � and show that � must also have
a unique fixed point (see Figure 4).

To carry this out, first let χ̄ be the (m− 1)-truncation of χ and define ϕ by (24) again. Let
p= ϕ(x0). Now we define a new probability measure χ̃ supported on {0, . . . , r} by

χ̃(�)=

⎧
⎪⎪⎨
⎪⎪⎩

χ̄(�) if 1≤ � ≤ r − 1,

χ̄(0)− p if � = 0,

p if � = r.

Note that this is a valid probability measure since p ∈ (0, χ̄(0)] by Lemma 3.12 applied to (χ̄ , h).
Now we consider the system (χ̃ , h). By Lemma 3.11, it has x0 as a fixed point. By the special case
of this proposition we have already proven, the system (χ̃ , h) has no other non-zero fixed points
besides x0, and �̃(x)> x for 0< x< x0, where �̃ is the automaton distribution map of (χ̃ , h).
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We claim that �(x)≥ �̃(x) for 0< x< x0. Indeed, comparing the two functions, we have

�(x)− �̃(x)=
∞∑

�=r

χ(�)B≥
�,m(x)− pB≥

r,m(x).

Hence

�(x)− �̃(x)

B≥
r,m(x)

= χ(r)+
∞∑

�=r+1

χ(�)
B≥

�,m(x)

B≥
r,m(x)

− p.

By Lemma 3.13, this expression is strictly decreasing in x. It equals 0 at x= x0 since �(x)=
�̃(x0)= x0, and hence it is positive when 0< x< x0, establishing the claim.

Since�(x)≥ �̃(x) for 0< x< x0, and we have already shown that �̃(x)> x for 0< x< x0, the
function � has no non-zero fixed points smaller than x0. Since x0 was taken to be the largest fixed
point of � , it is the only one.

4. Proofs of main theorems

Recall the notation nt(v) for the number of children of v in a rooted tree t and the definition that
S is an admissible subtree of a rooted tree T if S contains the root of T and nS(v)≥ h(nT(v)) for all
vertices v in S. Also recall that t(v) denotes the subtree of t consisting of v and all its descendants.

Proof of Proposition 1.9. Let

T1 = {T contains an admissible subtree}.
The largest fixed point x1 of (χ , h) always has a corresponding interpretation [14, Proposition 5.6].
To prove that T1 is this interpretation, we first establish that T1 is an interpretation (i.e. it behaves
consistently with the threshold function h). Then, we show that for any interpretation T , there
exists an admissible subtree on the event T , and hence T1 must have the largest probability of any
interpretation.

To show that T1 is an interpretation, we must show the following: Let t be a tree with root ρ

that has � children. Then we have t ∈ T1 if and only if t(v) ∈ T1 for at least h(�) children v of ρ.
To prove this, first observe that if s is an admissible subtree of t containing a vertex v, then s(v) is
an admissible subtree of t(v). Now, suppose t ∈ T1. It thus contains an admissible subtree s. For
each child v ∈ s of ρ, we have t(v) ∈ T1 since s(v) is an admissible subtree of t(v). And since s is
admissible, ns(ρ)≥ h(�). Conversely, suppose there are at least h(�) children v of ρ such that t(v) ∈
T1. Each subtree t(v) contains an admissible subtree. The concatenation of all of them together
with ρ is then admissible. This completes the proof that T1 is an interpretation.

Now, let T be an arbitrary interpretation of (χ , h), and we argue that on the event T there
exists an admissible subtree S of T. To form S when T occurs, let it include ρ. Then let it contain
all children v1 of ρ for which T(v1) ∈ T , and then let it contain all children v2 of these children for
which T(v2) ∈ T , and so on. Since a tree t with root ρ is in T if and only if at least h(nt(ρ)) of its
root-child subtrees are in T , the tree S is admissible.

To complete the proof, observe that GWχ (T1) is a fixed point of (χ , h) since T1 is an inter-
pretation. For any interpretation T1, we have GWχ (T )≤GWχ (T1), since T ⊆ T1. Thus T1 must
correspond to the largest interpretable fixed point, which is x1.

Next, we show that any admissible subtree contains aminimal admissible subtree within it. This
is akin to showing that a tree in which all vertices have at least two children contains a subtree in
which all vertices have exactly two children.

Lemma 4.1 Let s be an admissible subtree of t with respect to the threshold function h. Then there
exists a subtree s′ ⊆ s that is also an admissible subtree of t for which n

s′(v)= h(nt(v)) for all v ∈ s′.

https://doi.org/10.1017/S0963548321000237 Published online by Cambridge University Press



224 T. Johnson

Proof.We construct s’ one level at a time. We start by including the root of t in it. Now, suppose
we have constructed it to level n. Consider a level n vertex v in s′. By admissibility it has at least
h(nt(v)) children in s. Arbitrarily choose exactly h(nt(v)) of them to include in s′. Proceeding like
this for all of the level n vertices in s′ and then continuing on to successive levels produces s′ ⊆ s
that is an admissible subtree of t.

Proof of Theorem 1.8. Let r be the highest value in tierm of (χ , h). Let T0 be the event described
in the statement of this theorem, that T contains an admissible subtree S in which all but finitely
many vertices v satisfy nS(v)≤m. First, we show that T0 is an interpretation. The argument is
mostly the same as for T1 being an interpretation in the proof of Proposition 1.9. Let t be a tree
with root ρ that has � children. First, suppose that t(v) ∈ T0 holds for at least h(�) of the children
v of ρ. For each such vertex v, the root-child subtree t(v) thus contains an admissible subtree s(v)
for which all but finitely many vertices u ∈ s(v) satisfy ns(v)(u)≤m. Combining each subtree s(v)
together with ρ yields an admissible subtree of t for which all but finitely many vertices have m
or fewer children, showing that t ∈ T0. Conversely, suppose that t ∈ T0, and let s be an admissible
subtree of t for which all but finitely many vertices v ∈ s satisfy ns(v)≤m. In general, for any
admissible subtree s of t and v ∈ s, the tree s(v) is an admissible subtree of t(v). And if all but
finitely many vertices in s have m or fewer children, then the same is true for any subtree s(v).
Thus for any child v of ρ in s, we have t(v) ∈ T0. By admissibility of s, we have ns(ρ)≥ h(�). Hence
t(v) ∈ T0 for at least h(�) children v of ρ. This completes the proof that T0 is an interpretation and
its probability is therefore one of the fixed points of � .

Nowwemust determine which fixed point is associated with T0. Since (χ , h) ism-supercordant,
by Taylor approximation we have�(x)> x for x ∈ (0, ε) for a sufficiently small ε. We cannot have
�(x)> x for all x ∈ (0, 1] since �(1)≤ 1. Hence � has a smallest non-zero fixed point x0. Our
goal now is to show that GWχ (T0)= x0.

Let χ̄ be the m-truncation of χ , and consider the system (χ̄ , h). Its automaton distribution
map �̄ has a unique non-zero fixed point x̄0 by Proposition 3.1. Directly from the definition of
the automaton distribution map, we have �̄(x)≤ �(x). Also (χ̄ , h) remains m-supercordant by
Corollary 1.3, and hence the graph of �̄ is above the line y= x near 0. These last two facts prove

that x̄0 ≤ x0. Let T ∼GWχ̄ . Since x̄0 is the only non-zero fixed point of �̄ , by Proposition 1.9 the

interpretation T of (χ̄ , h) associated with x̄0 is that T contains an admissible subtree.

Couple T with T by defining T as the connected component of the root in the subgraph of T
consisting of the root together with each vertex whose parent v satisfies nT(v)≤ r. We claim that

under this coupling, T holds if and only if T contains an admissible subtree S made up entirely
of vertices v satisfying nS(v)≤m. To prove this, first observe that under this coupling, we have

nT(v)= nT(v)1{nT(v)≤ r} for v ∈ T. If S is an admissible subtree of T, then it has no leaves by the

positivity of h; hence nT(v)≥ nS(v)≥ 1 for v ∈ S. Therefore nT(v)= nT(v) for all v ∈ S. This proves

that S is an admissible subtree not just of T but also of T. For every vertex v ∈ S besides the root,
the parent u of v satisfies nT(v)= nT(v)≤ r. Since S has no leaves, every vertex in S is the parent of

some other vertex, and hence nT(v)≤ r for all v ∈ S. This proves that if T holds, then T contains
an admissible subtree S made up entirely of vertices v satisfying nT(v)≤ r. By Lemma 4.1, there
exists a subtree S′ ⊂ S that is also an admissible subtree of T and which satisfies n

S′(v)= h(nT(v))

for all v ∈ S′. Since nT(v)≤ r and h(r)=m, we have n
S′(v)≤m for all v ∈ S′.

Conversely, suppose T contains an admissible subtree Smade up entirely of vertices v satisfying
nS(v)≤m. By admissibility, all v ∈ S also satisfy nS(v)≥ h(nT(v)). Hence h(nT(v))≤m, proving

that nT(v)≤ r. Thus S is a subtree of T. We then have nT(v)= nT(v) for all v ∈ S, showing that S

is an admissible subtree of T and proving that T holds. This proves that T holds if and only if
T contains an admissible subtree made up entirely of vertices v satisfying nT(v)≤ r. It is worth
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emphasising that T is not an interpretation of (χ , h): with L the number of children of the root of

T, we might have T(v) ∈ T for at least h(L) children v of the root but have T /∈ T because L> r.

Now let T n denote the event that T contains an admissible subtree that from level n onward
contains only vertices v satisfying nT(v)≤ r. We have

T 0 ⊆ T 1 ⊆ T 2 ⊆ · · · , and

∞⋃

n=0

T n = T0. (25)

We claim that

GWχ

(
T n

)
=

n times︷ ︸︸ ︷
� ◦ · · · ◦ � (x̄0).

To see this, recall that x̄0 =GWχ̄ (T ). Since T occurs if and only if T 0 occurs under the coupling

of T and T, we have GWχ (T 0)=GWχ̄ (T )= x̄0. Thus �(x̄0) is the probability that the root of T

has at least h(L) children whose descendent subtrees satisfy event T 0, where L is the number of

children of the root. This event is exactly T 1. Continuing in this way, the n-fold iteration of �

applied to x̄0 is the probability of T n.

From (25), we can compute GWχ (T0) by finding limn→∞ GWχ

(
T n

)
. Because x< �(x)≤ x0

for x ∈ (0, x0], iteration of �(x) starting at any x ∈ (0, x0] produces an increasing sequence
converging to a value that must be a fixed point of � by continuity of � . This limit must there-

fore be x0, the smallest non-zero fixed point. We therefore have GWχ

(
T n

)
→ x0, proving that

GWχ (T0)= x0.

5. Conclusions and remaining questions

In this paper, we give simple criteria for determining if a continuous phase transition will occur
at (χ , h) (Theorem 1.5). When a continuous phase transition occurs, we characterise the event
undergoing the phase transition when it occurs in the most natural way, with the graph of the
automaton distribution map rising above the line y= x as the phase transition occurs (Theorem
1.8). But some examples of continuous phase transitions do not fit this description. In Figure 3, we
give a family of child distributions in which two fixed points emerge from 0 simultaneously as the
phase transition occurs. The event undergoing the phase transitions is associated with the second
of these, and Theorem 1.8 does not apply. (In fact, in the example in Figure 3, the interpretation
associated with the second fixed point can be described as the existence of an admissible subtree
of T ∼GWχt in which all but finitely many vertices v satisfy nT(v)≤ 3, along the lines as when
Theorem 1.8 applies. This holds in this case because truncating χt by shifting the mass from 6 to
0 yields a new system with a single non-zero fixed point, as in Proposition 3.1. But it is possible to
tweak the example so this fails.) It also seems possible to construct examples along the same lines
as the one in Figure 3 but with the automaton distribution map repeatedly wiggling up and down
along y= x so that multiple interpretable fixed points emerge from 0 simultaneously. It is not clear
to us how to describe the events undergoing phase transitions in circumstances like these.

When a continuous phase transition occurs and GWχt (T ) emerges from 0 at t = 0, it would
be interesting to investigate the behaviour of this probability. For example, what behaviours can
it show close to t = 0? And how does this behaviour compare to known or conjectured properties
of phase transitions in statistical physics?

One might also want to generalise away from monotone automata and away from two-state
automata (see Section 1.2). For nonmonotone two-state automata, Proposition 1.1 fails but amore
general criterion [14, Theorem 1.7] still allows us to determine whether a given fixed point has an
interpretation or not. But the situation is very different; for example, the highest fixed point is not
always interpretable [14, Examples 5.7, 5.8]. For multistate automata, only one direction of this
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criterion is proven, and the automaton distribution map becomes a map from R
k to R

k and is
generally harder to analyse.

The simplest case of Theorem 1.8 to understand is for a system (χ , h) that is 1-supercordant.
Then the interpretation T0 associated with the smallest non-zero fixed point is that T ∼GWχ has
an admissible subtree S in which eventually all vertices v have nS(v)= 1. Thus, T0 is equivalent to
the event that T contains an admissible subtree S such that the number of vertices at the nth level
of S is bounded in n.

Is there a description of T0 in terms of existence of an admissible subtree with specified growth
when (χ , h) is m-supercordant for m≥ 2? In this case, any admissible subtree must continue
branching forever (i.e. its size at level n cannot remain bounded over all n). Indeed, any admissi-
ble subtree whose size at level n remains bounded must have all but finitely many of its vertices v
satisfying h(nT(v))= 1. But restricting T to such vertices yields a Galton–Watson tree with child
distribution χ̄ , where χ̄ is the 1-truncation of χ . If �̄ is the automaton distribution map of (χ̄ , h),
then �̄ ′(0)= � ′(0)= 1 by Corollary 1.3, and hence χ̄ has expectation 1 by (7), and this Galton–
Watson tree is therefore critical. Hence, for any v ∈ T, it cannot occur that T(v) has an admissible
subtree consisting entirely of vertices v satisfying h(nT(v))= 1, since the subtree formed by these
vertices is a critical Galton–Watson tree and is thus finite. But we conjecture that T has an admis-
sible subtree of small growth on the event T0 (leaving it vague precisely what small growth should
mean), while for all other interpretations T it occurs with positive probability that all admissible
subtrees have exponential growth.

We present two examples to give some limited evidence for this conjecture. Consider the exam-
ple shown in Figure 1, where χt places probability 1/2 on 2 and 1/6− t on 3, and h(2)= 1 and
h(3)= 2. The system (χt , h) is 2-supercordant for t > 0, and it has a single non-zero fixed point
x0 = x0(t). The exact value of x0 is not important in this example, though in this case we can
compute it to be x0 = 9t/(6t − 1) by solving the equation �t(x)= x directly. By Theorem 1.8 or
Proposition 1.9, this fixed point has the interpretation T0 that T ∼GWχt contains an admissible

subtree. We sketch a proof that T has an admissible subtree of growth eO(
√
n) on T0.

Let L be the number of children of the root of T, and let N be the number of these children v
for which T(v) ∈ T0. Given L= 2, which occurs with probability 1/2, the probability that N = 1 is
P[Bin(2, x0)= 1]= 2x0(1− x0) by self-similarity of T. Similarly, the probability that N = 2 given
L= 2 is x20. Hence

P[L= 2, N = 1 | T0]= 1− x0 and P[L= 2, N = 2 | T0]=
x0

2
.

Since L �= 0 given T0, we have P[L= 3 | T0]= x0/2.
Now, consider the minimum number of vertices at level n over all admissible subtrees of T,

given that T0 holds. We can construct a random variable Xn with this distribution as follows. Let
X0 = 1. Now, inductively define

Xn+1 =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Xn with prob. P[L= 2, N = 1 | T0]= 1− x0,

min (Xn, X
′
n) with prob. P[L= 2, N = 2 | T0]= x0/2,

Xn + X′
n with prob. P[L= 3, N = 2 | T0],

min (Xn + X′
n, Xn + X′′

n, Xn
′ + Xn

′′) with prob. P[L= 3, N = 3 | T0],

where Xn
′ and X′′

n are independent copies of Xn. We claim that Xn is distributed as mentioned
before. Indeed, this holds trivially for X0. Proceeding inductively, if Xn, Xn

′, and Xn
′′ are thought

of as the minimum number of vertices at level n in an admissible subtree of T(v) for the three
potential children of the root v, thenXn+1 = Xn when L= 2 andN = 1, andXn+1 =min (Xn, X

′
n)

when L= 2 and N = 2, and so on.
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Figure 5. Graphs of �t(x)− x, where �t is the automaton distribution map of (χt , h) with χt =
(
1
2 + t

)
δ2 +

(
1
2 − t

)
δ3, and

h(2)= 1 and h(3)= 3. An interpretable fixed point emerges from 0 as t increases. The point 1 is a fixed point in all examples,

and for t≥ 1/6 it is the only fixed point.

It is often difficult to analyse the growth of recursively defined distributions like these, and we
avoid doing so by comparing the growth of Xn to a process analysed in [1] known as the min-plus
binary tree. Particles of weight 1 start at the bottom of a binary tree of depth n. Each particle then
moves up the tree. Each particle collides with another one moving up the tree at each step, and
with probability 1/2 either they merge or the smaller particle annihilates the larger one. The size
of the particle arriving at the root has distribution given by the recursive contruction where Y0 = 1
and then

Yn+1 =

{
min (Yn, Yn

′) with probability 1/2,

Yn + Yn
′ with probability 1/2,

with Yn
′ an independent copy of Yn. One can show that Xn is stochastically dominated by Yn. By

[1, Theorem 1], we have P[Yn ≤ eπ
√
N/3]→ 1 as n tends to infinity.

Now, we give an example with multiple interpretable fixed points and demonstrate that on the
event associated with the higher one, the expected number of vertices in the smallest admissible
tree to level n can grow exponentially. Let

χt(�)=

{
1/2+ t for � = 2,

1/2− t for � = 3,
and h(�)=

{
1 for � = 2,

3 for � = 3,

and let �t be the automaton distribution map of (χt , h) (see Figure 5). For 0< t < 1/6, the map
�t has two non-zero fixed points, x0 = x0(t) and 1, both interpretable. The event associated with
x0 is that T ∼GWχt has an admissible subtree S that eventually consists only of vertices v with
nS(v)= 1. Thus the number of vertices of S at level n remains bounded in n. The event associated
with the fixed point 1 is the set of all trees. We argue that the smallest admissible subtree of T
may be large for 0< t < 1/6. Indeed, let Xn be the minimum number of vertices at level n over all
admissible subtrees T. Then

Xn+1
d=

{
min (Xn, Xn

′) with probability 1/2+ t,

Xn + Xn
′ + Xn

′′ with probability 1/2− t,

and EXn+1 ≥ 3(1/2− t)EXn. Since t < 1/6, we have 3(1/2− t)> 1, and hence EXn grows expo-
nentially.
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