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Abstract

We consider diffusion-limited annihilating systems with mobile A-particles and sta-
tionary B-particles placed throughout a graph. Mutual annihilation occurs whenever
an A-particle meets a B-particle. Such systems, when ran in discrete time, are also
referred to as parking processes. We show for a broad family of graphs and random
walk kernels that augmenting either the size or variability of the initial placements of
particles increases the total occupation time by A-particles of a given subset of the
graph. A corollary is that the same phenomenon occurs with the total lifespan of all
particles in internal diffusion-limited aggregation.
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1 Introduction

We study a class of diffusion-limited annihilating systems (DLAS) in which A-particles
diffuse across a graph interspersed with stationary B-particles. Mutual annihilation
A+ B — @ occurs whenever opposite particle types meet. DLAS were introduced by
physicists as toy models exhibiting anomalous kinetic behavior observed in more compli-
cated reactions. The overarching finding was that spatial concentration fluctuations of
reactants play a significant role in solute decay [GD96, TdAALBT12]. Such fluctuations
arise naturally in physical systems with thermal fluctuations [0Z78, TW83], turbulent
flows [Hil76], and porous media [RKOO].

For two-type systems, Bramson and Lebowitz gave an extensive rigorous analysis
of the setting in which both particle types are mobile and diffuse at the same rate
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DLAS and the increasing convex order

[BL88, BL90, BL91a, BL91b]. Cabezas, Rolla, and Sidoravicius made progress on two-
type systems with asymmetric diffusion rates [CRS18]. More results concerning the
limiting density of particles were obtained in [JJLS20, CJJ"21, PRS19].

The extreme case, in which B-particles are stationary, has also been studied by
combinatorialists and probabilists under the name parking [KW66]. This comes from
viewing A-particles as cars in search of B-particle spots. The impetus of our present
work comes from results for parking on Galton-Watson trees [GP19, CH19, Con20,
BBJ21, CG21]. These articles considered the setting with one B-particle per site along
with an independent and identically distributed number of A-particles (any initially
overlapping A- and B-particles are cancelled out). The graph is directed so that all
A-particles move towards the root in discrete time. The total number of A-particles
to visit the root has two phases: transience (finitely many visits almost surely) and
recurrence (infinitely many visits with positive probability). Another version of a DLAS
with stationary B-particles was introduced in [RSSS19], which studied simultaneous
internal diffusion-limited aggregation on finite graphs. This model corresponds to a
DLAS with a finite number of A-particles at the root of a connected graph and one
B-particle at each nonroot vertex.

An interesting feature of parking on directed Galton-Watson trees is that the phase
behavior depends on more than the average initial particle density. Curien and Hénard
gave a precise characterization of the transience/recurrence phase behavior on critical
Galton-Watson trees that involves the mean and variance of the number of A-particles
as well as the variance of the offspring distribution for the tree [CH19]. The phase
transition was later proven to be sharp by Contat [Con20].

There are no known explicit criteria for recurrence and transience for parking on
supercritical Galton-Watson trees. However, Collett, Eckmann, Glaser, and Martin gave a
precise value of the phase transition in terms of exponential moments for the process on
binary trees with A-particles started exclusively from the leaves [CEGM83]. They were
interested in these dynamics because of a connection to a spin glass model. For the usual
parking process Bahl, Barnet, and Junge demonstrated through an example on d-ary
trees that the phase state depends on more than just the mean initial density of particles
[BBJ21, Proposition 7]. In an attempt to qualitatively describe this phenomenon [BB]21,
Theorem 8] further showed that the total number of visits to the root increases when the
underlying placement of A-particles is made more volatile. An additional definition is
needed to describe the result.

The increasing convex order (icx order) is a less commonly used stochastic ordering
that rewards random variables for being larger or more volatile. We say that X =<;.,. Y
for two random variables X and Y supported on the real numbers R, if for all increasing
convex functions ¢: R — R it holds that E¢(X) < E@(Y') provided the expectations exist.
See [SS07] for a thorough discussion of the icx and related stochastic orders.

Note that the icx order is weaker than the standard order X <.4 Y, which is defined
as P(X > a) < P(Y > a) for all a. An equivalent definition that more closely resembles
the definition of the icx order is that X <, Y if and only if Ep(X) < Ep(Y) for all
increasing functions ¢ for which the expecations exist [SS07, (1.A.7)]. Another familiar
definition of the standard order [SS07, Theorem 1.A.1] is that there exist two random
variables X ,Y defined on the same probability space with X2 XandV £ Y and

P(X <Y)=1. (Here 2 denotes distributional equality.) The icx order has an analogous
formulation [SSO7, Theorem 4.A.5] with the modification that {X, Y} is a submartingale
ie., E[Y | X] > X.

As an example, suppose that X = ¢ with probability one for some constant ¢ € R,
while Y is any other random variable with mean c¢. Then X <., Y by Jensen’s inequality.
However, X and Y are not comparable in the standard order. Here are a few more
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examples to keep in mind.

Example 1.1. Let X and Y be real-valued random variables with X <., Y.
(i) Since z — x is convex and increasing, we have EX < EY.

(i) If X and Y are nonnegative and EX = EY, then the fact that z — 22 is convex and
increasing implies that var(X) = EX? — (EX)? < EY? — (EY)? = var(Y).

(iii) For t € [0,1] the function = +— t* is convex and decreasing. If X and Y are
nonnegative, then EtX > EtY. Taking the limit as ¢ | 0 gives P(X = 0) > P(Y = 0).

(iv) Let (X1)7r>0 and (Y7 )r>o be collections of nonnegative random variables supported
on [0,00) with pointwise limits X = limy_,., X7 and Y = limy_,, Y7 that exist
almost surely. Suppose further that X <., Y7 for all T > 0 As in (iii), we have
EtX7 > Et'7 for all t € [0, 1]. It follows that

P(X < o0) = lim lim Et*7 >lim lim Et'” = P(Y < 00).
t11 T—o0 t1t1 T—o0

Equivalently, P(X = c0) < P(Y = o0).

Let V (and V') be the number of A-particles that arrive to the root for parking
on a directed Galton-Watson tree with an i.i.d. n-distributed (i.i.d. »’-distributed) A-
particles initially at each site, one of which immediately cancels with the one B-particle
also initially at the site. [BBJ21, Theorem 8] proved that if  <;., 7/, then V <., V'.
Combining this with Example 1.1 (iv) implies that recurrence is preserved after increasing
7n in the icx order.

There are a few other results concerning particle systems and nonstandard stochastic
orders. Johnson and Junge proved that the frog model, with A + B — 2A reactions so
that mobile particles activate stationary particles, exhibits the opposite phenomena of
parking: more volatility reduces root visits [JJ18]. Johnson and Rolla later proved via
an example on regular trees that transience and recurrence of that model depends on
more than the average density of the initial configuration [JR19]. A similar relationship
between concentration and expansion occurs with the limiting size of the ball in first
passage percolation [vdBK93, Mar02]. Recently, Hutchcroft studied the effect of a
weaker stochastic order called the germ order on transience and recurrence sets for
branching random walk [Hut22].

1.1 Statement of results

We extend [BB]J21, Theorem 8] to general graphs, initial particle configurations, and
paths. We begin with a more formal construction that follows the notation from [CRS18].
Fix a locally finite graph G. We write € G and H C G to denote that z is an element
and H is a subset of the vertex set of G. The systems we consider here are described
by time-indexed counts at each vertex { = (§,())i>0,zec. When &, (z) > 0, it denotes the
number of A-particles at x at time ¢. If £(z) < 0, then there are |¢,(¢)| many B-particles
at z at time ¢.

We call & = (£o(z))zec the initial conditions. For each z € G and j € Z* let
§%3 = (S77);50: [0,00) — G be a right-continuous path with left limits started at z. We
assign to the jth particle counted by &y(x) the path S®7. We further assign to the jth
A-particle counted by &y(z) a braveness h®J € [0, 1] and to the jth B-particle braveness
h®~J € [0,1], to be used to break ties in deciding which particles to annihilate when
multiple A- and B-particles end up at the same site. We assume that the bravenesses
(h*d )zec,jez)\{o} are distinct. Since B-particles do not have paths or anything else
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to distinguish them, there is no real need to determine which B-particle on a site is
annihilated, but it will be convenient to do so when we consider variant processes.

We call (S,h) = (Stw’j,hw’j)zegﬁjez\{o}ﬂgzo the instructions. Particles follow their
assigned trajectories and when one or more A-particles arrive to a site containing B-
particles, the bravest of the A-particles mutually annihilate with B-particles until there
are no remaining pairs of opposite type particles at the site. We say that (£, .5, h) is
regular if all of the following hold:

+ The initial conditions ({(x)) are independent over x € G; the instructions (5%7)
and (h®7) are both independent over z € G and j € Z\{0}; and the three collections
of random variables are independent of each other as well.

» For j > 0, the S are random walk paths with the same transition kernel, either
entirely in continuous time (i.e., jumping at times given by a unit intensity Poisson
process) or entirely in discrete time (i.e., jumping at positive integer times).

 For j <0, the paths S} J =z so that B-particles are stationary.
+ Each h%J is a uniform random variable on [0, 1].

e The instructions and initial conditions are such that the system is well defined and
can be locally approximated by a system with finitely many particles, in the sense
of Remark 1.2.

Remark 1.2. We say that (£y, S, k) can be locally approximated by a system with finitely
many particles if the following holds: Let G; C Gy C --- C G be any sequence of
finite subgraphs whose union is G. Let H C G be a finite collection of vertices and let
(§,§”>(x))t>07xec be DLAS defined by (S, h) with initial conditions &y(z)1{z € G, }. Then

the sequence (E,E”)(:c))ogtg;p,xe y indexed by n is almost surely eventually constant, and
its limit does does not depend on the choice of G1, G, .. ..

The point of this rather technical condition is simply to avoid pathological examples.
A system defined by (&, S, h) may not yield a well-defined DLAS (§;(x));>0,zec if, for
example, blow-up occurs and infinitely many particles move to a single vertex in a finite
amount of time. It is proven in [CRS18, Appendix A] that local approximation holds when
the initial conditions satisfy sup,cq E&o(«) < oo and the paths are random walks on any
graph with a transitive unimodular group of automorphisms that commutes with the
probability kernel of the random walk. It is not hard to show that it holds for a DLAS
such that a system of noninteracting random walks with the same initial conditions has
finitely many visits in finite time to any site.

Let H C G. Define the occupation time of H by A-particles up to time T > 0 as

T
Vi(H, €0, 8,0) = Ve = 3 /) & (x) > 036 (2)dt. (1.1)

zeH 7 C

We set Vr = oo whenever ) . &o(z)1{&(x) > 0} = co. To avoid this pathology we
assume that either H or the number of A-particles in the system is finite:

min {|H|,>, . & (x)} < oo almost surely. (1.2)

The prototypical choice is H = {z}, so that V measures the occupancy time of a single
site. Another interesting choice is H = G so that V equals the aggregate time all of
the A-particles are in motion. This case is only meaningful when (1.2) holds. We further
remark that (1.2) along with the requirement sup,c ;>0 E[:(7)| < oo ensure that Vr is
almost surely finite for all 7' > 0. -
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Given another DLAS ¢’ define V] to be the analogue of (1.1) for ¢’. A useful condition
for comparing two systems (&, S, k) and (&), S’, h’) is

(&, S, h) and (&, S’, 1) are regular with S 28 andh 1. (1.3)

We write & <icx &) if {o(2) <iew () forall z € G.
Theorem 1.3. Fix H C G. Suppose that (1.2) and (1.3) hold. If § =icy &), then
Vi =ice Vi forallT > 0.

Proof. The result follows when . [§o(7)] < oo and ) . |{y(2)| < oo from Proposi-
tion 2.2 and Proposition 3.1. If there are infinitely many A-particles present, then the
finite approximation assumption in the definition of regularity ensures that V7 is realized
as the limit as R — oo of the systems that only contain the particles from & that lie in
the balls U,c gy B(z, R). Taking such a limit gives the statement for V; when the initial
configuration contains infinitely many particles. O

Our proof comes in two parts. First we show that V7 is an icx statistic (see Defini-
tion 2.1 and Proposition 2.2), and then we show a generalized version of Theorem 1.3
that holds for all icx statistics. This opens the door to establishing that other statistics
besides V7 respect the icx order; see Section 4 for more discussion.

The analogue of Theorem 1.3 for the standard order holds immediately by monotonic-
ity of the process with respect to its initial conditions [CRS18, Lemma 3]. Because our
result uses the weaker icx order, it applies more broadly. In particular, two different
distributions with the same mean can be comparable in the icx order but are never
comparable in the standard order.

To illustrate our theorem and begin our discussion of why the icx order is natural
to consider, we give an example where &y <;c: &) =iz &) and the conclusion Vi <.,
V] =<icx V4 can be seen by direct calculation.

Example 1.4.Set G = Z and H = 0. Let S consist of discrete symmetric nearest
neighbor random walk paths. Now, we define systems in this environment with three
different sets of initial conditions. The DLAS ¢ starts with one B-particle at position 1
and one A-particle at position 2. For ¢/, we place either zero or two B-particles at
position 1 with equal probability and one A-particle at position 2. And £” begins with 0
or 2 B-particles at 1 with equal probability and 0 or 2 A particles at position 1 with equal
probability. In all three systems, there are no particles initially outside of positions 1 and
2. To summarize,

s &o(1) =-1,6(2) =1

0  with probability 1/2,
« &) = {

. . and §,(2) = 1,
—2 with probability 1/2,

0 ith bability 1/2,
-5”(1>={ A PRODADIY /% g 5 (2) =

0 with probability 1/2,
—2 with probability 1/2,

2 with probability 1/2;

« and &(z) = &)(z) = &/(x) = 0 for = ¢ {1,2}.

We have E¢,(z) = E¢)(z) = E¢(z) for all « € G, and Jensen'’s inequality confirms the

intuitively obvious fact that &, &), and & are increasingly volatile, i.e., §o <ice & <ica &0 -

Observe that Vo = 0 a.s., while

Vr

_JO0  with probability 1/2,
N Ly with probability 1/2,
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and

T 0 with probability 3/4,
Ly + L. with probability 1/4,

where Ly and L. are the local times at 0 up to time T of two independent random walks
started at 2. We leave it as an exercise to compute directly that Vi <;c. Vi <ice Vi
(we note that no knowledge of the distribution of Ly is needed). We also observe that
EVr < EV} = EV//, demonstrating that the expectation of V7 can but need not strictly
increase when the initial conditions increase in the icx order.

The reason that V7 is increasing with respect to changes in the initial configuration
in the icx order is because of a convexity property inherent to the model. Essentially,
the gain to V when adding two A-particles to the system is more than the sum of gains
from each A-particle alone. As we can see in the previous example, this is because one
A-particle can help the other by eliminating obstacles on its behalf. More discussion is
presented at the start of Section 1.3.

1.2 Applications
Theorem 1.3 applies to the systems considered in [CH19, DG]J ™19, CJJ"21, JJLS20,
BBJ21, CRS18, RSSS19]. This includes a broad class of transitive unimodular graphs
and Galton-Watson trees. Such graphs are good to keep in mind, but we note that
significantly more general graphs are also covered since we require minimal regularity.
One application of Theorem 1.3 that follows from Example 1.1 (i), (iii), and (iv) is that
increasing the initial condition in the icx order has the following effects.

Corollary 1.5. Fix H C G. If (1.2) and (1.3) hold and &y =<j¢. &, then:
(i) EVy <EVJ forallT >0,
(ii) P(Vo = o0) < P(V. = ), and
(i) P(Vp =0) > P(V} =0) forall T > 0.

To make Theorem 1.3 more concrete we derive as a consequence that taking &, (z)
to be independent +1-valued random variables minimizes V7 in the icx order across all
other initial configurations with the same mean number of particles at each site. Note
that such initial configurations are used in [DG]*19, PRS19, JJLS20, GP19, BBJ21].

Corollary 1.6. Fix a graph G, a finite subset H C G, and possibly distinct values p, €
[0,1] for each x € G. Let U(x) be independent random variables uniformly distributed on
(0,1). Let a(x) and 3(z) be independent and identically distributed random variables on
the nonnegative integers with mean 1. For all x € G define

fo(x) = H{U(z) < po} — H{U(x) > pa}
§o(r) = H{U(z) < peya(z) — 1{U(z) > p.}B(z)

Suppose that (&, S, h) and (&), S, h) are regular and let V and V' be the total occupation
time of H for the two systems, respectively. It holds that V <;., V.

Proof. The results [JJ18, Proposition 15 (b)] and [SS07, Theorem 4.2.A] are easily
adapted to prove that
HU(z) < pe} Rica 1{U’(m) < pw}o/(x)
—1{U(l‘) > px} =icx —l{U/(JC) > px}ﬁl(x)

Summing both sides and applying closure under mixtures of the icx order [SS07, Theorem
4.A.8 (b)] gives that &y(x) <ier &)(x). Theorem 1.3 implies V' <. V. O
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As mentioned below (1.1), the case H = G gives the aggregate time A-particles are
in motion. Suppose further that G is a rooted graph with all non-root sites initially
containing one B-particle and n > 0 A-particles at the root. Using coupling methods
different from ours, the quantity Vr in this setup, referred to as W in [RSSS19], was
shown in [RSSS19, Lemma 4.4] to have the same distribution as L(n) the combined
path length of the particles in n-iterations of the usual, sequential version of internal
diffusion-limited aggregation [LBG92, JLS12]. The authors of [RSSS19] noted that this
equivalence “motivates the study of W for general graphs...” In this line, we obtain the
following consequence of Theorem 1.3.

Corollary 1.7. Let L(n) be the combined lifespans of n particles executing internal
diffusion-limited aggregation from the root of a given graph. Let n and ;' be nonnegative
random variables. If n <. 1/, then L(n) <;c: L(7').

1.3 Proof overview

The first and main part of the proof is Proposition 2.2, where we show V7 is an icx
statistic (see Definition 2.1). The essence of the definition is that the statistic increases
with the addition of a single A-particle (condition (d)), and that the increase from
adding two A-particles at once is greater than the increase from adding two A-particles
individually in two separate systems (condition (e)). Our proof amounts to confirming
the intuition that one of the extra particles may clear space for the other by annihilating
with a B-particle that would destroy each particle separately in individual augmented
systems. This property helps explain why greater volatility in the initial configuration
causes an icx statistic to increase. After all, if the gain from adding two particles is more
than twice that of adding one, we would rather have two particles or none at a site with
probability 1/2 than one particle with probability 1 as illustrated in Example 1.4.

To establish these properties formally, we introduce couplings of systems with extra
A-particles. Our approach is inspired by the tracer construction from [CRS18] but differs
slightly. In light of conditions (d) and (e) from Definition 2.1, we need a way to compare
what happens in systems with extra A-particles. If we simply add two A-particles
to the system and let all other particles proceed with their original instructions, we
obtain a coupling satisfying (d), the monotonicity requirement, but not (e), the convexity
requirement. To make the convexity requirement hold, we must prioritize one of the
added A-particles over the other, which is where our paper diverges from [CRS18]. For
example, it may happen that one of the extra A-particles, call it X, destroys a B-particle
at z, thus allowing the other extra A-particle, call it Y, to survive a later visit to . When
Y arrives to x the law of the DLAS is preserved whether we allow Y to continue its
assigned path, or if we instead have it pick up and extend the path of X. We call this
process either the tracer system or the flipped tracer system depending on which of
the two extra A-particles we prioritize. We will leave the details to the next section, but
from the tracer system we track the effect of adding Y after X, while from the flipped
tracer system we track the effect of adding Y alone. We then prove in Lemma 2.5 that Y’
traverses more of its preassigned path if it is added after X, thus establishing (e). We
note that this comparison fails when B-particles move, as we discuss in Remark 2.8.

The second part of the proof is to show that icx statistics are monotone under changes
to the initial conditions in the icx order. We do this under the assumption that the system
has only finitely many particles (Proposition 3.1). From there it is straightforward to
extend the result to infinite systems.

The overall structure of the proof is similar to the one used in [JJ18] to prove a
comparison result for the frog model. Some differences are that: (a) here we consider a
two-type particle system, (b) we use the icx order rather than the increasing concave
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(icv) order, and (c) the definition of icx statistic is more complicated than the analogous
definition in [JJ18].

To address difference (a), we make use of the basic equivalence between removing
B-particles as adding A-particles. So, it is sufficient to restrict our focus to the impact of
adding A-particles as discussed in the previous paragraph. This makes for no technical
difficulty. Difference (b) is a consequence of differences between DLAS and the frog
model. Superadditive statistics (see Definition 2.1) behave well for DLAS as opposed to
subadditive ones for the frog model. But this difference barely affects the proofs because
the icx and icv orders are interchangeable via [SS07, Theorem 3.A.1].

Difference (c) is more substantial. For all icv statistics considered in [JJ18], it is easy
to prove that they are so. In contrast, establishing that Vr is an icx statistic is most
of the work of this paper. The difference is that statistics in the frog model behave
subadditively when adding particles to the system in the most straightforward way. On
the other hand, the statistics considered in this paper behave superadditively only when
particles are added via the complicated coupling described in Section 2.

We further remark that [JJ18] considers a weaker stochastic order, the probability
generating function order (pgf order), alongside the icv order. We say that X is domi-
nated by Y in the pgf order if the probability generating function Et¥ of X is pointwise at
least as large as that of Y for ¢ € [0, 1]. With more technical difficulty, it is proven in [JJ18]
that the number of visits to the root in the frog model also respects this stochastic order.
The analogous generalization to the convex version of the pgf order for Theorem 1.3
would be to prove that V respects the stochastic order defined by Ep(X) < Ep(Y)
holding for all smooth functions ¢ with all derivatives positive. It is quite possible that
this is true and could be proven by the methods of this paper, but we have not attempted
it since there is no obvious application of the result.

2 Icx statistics and tracer couplings

We begin with a definition that we will relate to the icx order in the next section.
Throughout this section we assume that any DLAS under discussion has finitely many A-
and B-particles in the initial configuration.

Definition 2.1. Let (&, S, h) be regular with ). |§o(7)| < o0 a.s. Let &, be the same
as &y except that &y ,(x) = k for some given x € G. We call a functional f an icx statistic
if forall z € G and k € Z there exists a coupling (®, ®*, Y, ®%Y) such that

@ @< f(éox, S, h)
(D) ®X £ DY £ f(Soks1,5,h)
(c) XY L J(&o,k42,5,h)
(d) X > & a.s. and Y > d a.s.
(e) XY — X — @Y + ¢ >0 as.
The purpose of this section is to prove the following:

Proposition 2.2. V; defined at (1.1) is an icx statistic.

2.1 The tracer system and the flipped tracer system

We now introduce the coupling we use to track the effect of adding extra particles at
a given vertex x. We start with a regular system (&g, S, h). Let k = max(&p(z) + 1,1), and
let X = S** and Y = S***1, We will describe two modified versions of the underlying
DLAS where we add particles with paths X and Y with special behavior.
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In both systems, start with the initial conditions given by &; together with two special
particles at a given site x that we call the X-tracer and the Y-tracer. Each tracer has
two possible states, A and B. The nontracer particles follow their assigned instructions
from (S, h). The X- and Y-tracers follow paths X and Y, respectively, when they are in
state A. When a tracer enters state B, it pauses and remains stationary until it enters
state A again, at which point it continues following its path X or Y starting from when it
was paused.

In the tracer system, we assign the X-tracer braveness —2 and the Y-tracer braveness
—1; that is, the Y-tracer has lower braveness than all other particles except for the
X-tracer, which has the lowest braveness. In the flipped tracer system, we assign the
X-tracer braveness —1 and the Y-tracer braveness —2. The tracer system gives the
X-tracer priority to be in state A, while the flipped tracer system prioritizes the Y-tracer.
In both systems tracers start out in state A.

In the following interaction rules for the system’s evolution, we treat a tracer as if
were an A-particle when it is in state A and as a B-particle when it is in state B. If A-
particles and B-particles finds themselves together on a site, then the bravest A-particle
and the bravest B-particle interact as follows:

(a) If neither particle is a tracer, then they interact as usual by mutual annihilation.

(b) If the A-particle is a tracer and the B-particle is not, then the B-particle annihilates
and the tracer particle switches to state B.

(c) If the B-particle is a tracer and the A-particle is not, then the A-particle annihilates
and the tracer particle switches to state A.

(d) If both particles are tracers, then the Y-tracer takes priority to be in state A in
the tracer system, while the X-tracer takes priority to be in state A in the flipped
tracer system. That is, in the tracer system, if the X-tracer is in state A and the
Y -tracer is in state B, then both tracers switch states; if the X-tracer is in state B
and the Y-tracer is in state A, then no interaction occurs.

The interactions repeat until there are no A- and B-particles together on the site except
possibly the two tracers with the prioritized tracer in state A and the nonprioritized
tracer in state B. Both tracers start in state A when &y(z) > 0. If {o(xz) = —1, then the
X-tracer starts in state B and the Y-tracer starts in state A, and the B-particle at =
is annihilated at time 0. If {y(x) < —2, then both tracers start in state B, and the two
B-particles at x with the greatest braveness are annihilated at time 0.

In the tracer system, let Agx and A}f be the events that the X- and Y-tracers, respec-
tively, are in state A at time t. Let B{X and B} be the complements of A;* and A} . We
define the life of each tracer up to time 7" as

T T
LX:/O 1{A; ) dt and L%:/O 1{A)} dt.

These quantities represent the duration of the X and Y paths that each tracer has
traveled along up to time 7'. Observe that the locations of the tracers at time ¢ are X x
and Y7y. Let AX, AY, BYX, and B} be the analogous events for the flipped tracer system,
and let the life of each tracer up to time ¢ in the flipped system be defined analogously
and denoted by L;X and L} .

In the tracer system let o (z) and f5;(z) denote the number of nontracer A- and
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B-particles, respectively, present on site z at time ¢ > 0. We then define

C(2) = ai(z) — Bi(z) — l{B,gX}l{XLf =z} — l{BtY}l{YL}/ =z}, (2.1)
(X (2) = au(2) = Bul2) + {AT JU{ X x = 2} —1{B] }1{Y}y = 2}, (2.2)
GOV (2) = aulz) = Belz) + L{AF 1 { X x = 2} + 1{A) }1{V;y = 2}. (2.3)

In short, (; gives the particle counts for the tracer system with the tracer particles
ignored in state A and counted as B-particles in state B. Then (;* does the same except
it counts the X-tracer only in state A, while (tX’Y counts both tracers only while in
state A.

Finally, with a;(z) and Et(z) denoting the counts of nontracer A- and B-particles at
site z in the flipped tracer system, we define

G(2) = au(2) = Bi(2) = 1{ By }1{Ysy =2} —1{B}}1{Xpx =2},  (24)
Q(2) = =) = Bul2) + 1{AY J1f{ygy = 2} —1{B}J1{Xzx =2}, 25
G (z) = @u(z) = Bulz) + L{AY J1{Vgy = 2} + 1{AX 1 {Xpx = 2} (2.6)

Note the reversal of the roles of X and Y in (2.4)-(2.6) as compared to (2.1)—(2.3).

2.2 Identities

We write £* for the system with the initial condition at = increased by one A-particle
so that af(z) = ao(z) + 1, af(2) = ap(z) for z # =z, and 5% = fy. Let £2% = (£)®. The
relevance of the tracer system we have defined is that ¢, ¢X, ¢X'Y, ¢, ¢¥, and (VX all
represent particle counts for DLAS, as we will see in Proposition 2.3. Both ¢ and Z turn
out to be identical to £&. The counts ¢¥ and ZY are both instances of DLAS with initial
configuration £Z, but in (¥ the extra particle compared to ¢ follows path X, while in @/
it follows path Y (see Lemma 2.5). Meanwhile (XY and ¢¥:X are both instances of DLAS
with initial configuration £;"*, but they will differ slightly from each other because of
prioritizing paths X and Y differently.

Proposition 2.3.

() C(2) = G(2) = &(2) forallt > 0 and z € G;
) (¢X(2)is0e6 = (& (2))is0ea = (€7(2))is0,565

@D (G5 (2))iso0ca 2 (G5 (2))is00ca 2 (E87(2))im0,2¢0-

Proof, We start by proving (X 4 ¢% and (XY £ ¢#._ First, observe that ¢, and (XY
have initial configurations matching £” and £**. Next, we consider the effect of a jump in
the tracer system from the perspective of (X and (XY All possibilities when a nontracer
A-particle jumps are depicted in Figure 1 (located in the Appendix). Note that if the
random walk paths are in discrete time and multiple A-particles arrive simultaneously,
what is depicted is the last collision to be resolved with the least brave arriving A-particle.
Examining the figure, we see that when such a jump occurs, the counts given by ¢ and
CtX Y evolve according to the rules of DLAS. The possibilities when a tracer particle in
state A jumps are shown in Figure 2 (located in the Appendix). Again, in all cases the
counts given by ¢;* and C;X Y evolve according to the rules of DLAS; the only difference
with a tracer particle jumping is that in some of the cases for (¥, a jump results in no
change. Since (¥, and ¢X¥ have initial distributions matching ¢* and £*¥ and evolve
according to the same rules, their laws match as well.
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Next, we show that ¢ and ¢ are equal a.s. We do so by showing that the particle
system counted by £ at all times matches the nontracer particles in the tracer system
along with an additional B-particle at the location of any tracer particle in state B. This
is initially true by definition of the tracer process. We claim that after every jump, it
continues to hold. Indeed, we just check that this is true for each interaction type (a)—(d)
from the definition of the tracer system.

Finally, we observe that ¢, ¥, and (¥ are defined identically to ¢, ¢X, and ¢XY
except that the roles of X and Y are reversed. Thus ¢ < ¢, (X £ Y, and ¢V £ 0YVX
since the paths X and Y are i.i.d. And the almost sure equality of Z and £ holds by the
same proof as for ¢ and &. O

’

Remark 2.4. The tracer and flipped tracer systems are closely related to the dragged
tracer construction of [CRS18, Section 4.1]. In the terminology of [CRS18], a tracer in
state A is following an A-particle and a tracer in state B is following a B-particle. The
difference between our construction and the one in [CRS18] is rule (d), the prioritization
of one tracer over the other. In the dragged tracer construction, a tracer following an
A-particle does not interact with one following a B-particle. Using this construction,
parts (I) and (III) of Proposition 2.3 hold, but part (II) fails. Essentially, our construction
allows us to simultaneously couple the systems with zero, one, and two particles added
at a site. Without it, we can couple any two of these systems, but not all three together.

The tracers are so-called because they track the differences between these systems:

Lemma 2.5. Forallt > 0 and z € G,

G2 =Gl =HXpx =2} GUV(E) = Glz) = Y{Xpx = 2} + 1{Ypy =2},
() -G =Yy =2, GOY() - Gl) = 1Yy = 2} + 1{Xpx = 2

Proof. These facts are direct consequences of definitions (2.1)-(2.3) and (2.4)-(2.6). O

Lemma 2.5 highlights that the tracer system tracks what happens when we add
the X-tracer first and the Y-tracer second, while the flipped tracer system tracks what
happens when the tracers are added in the opposite order. To prove that the monotonicity
condition (e) from Definition 2.1 holds, we use the tracer system to track the effect of
adding the Y-tracer after the X-tracer is added, and we use the flipped tracer system
to track the effect of adding the Y-tracer alone. The following lemma is the basis of
comparison between these two effects:

Lemma 2.6. It holds for all t > 0 that LY > LY .

Proof. Let T = inf{t: LY < LY} and suppose by way of contradiction it is finite. Since
LY and LY are continuous in ¢, we have LY = LY Lety =Yy = YLy, the location of
the Y-tracer at time 7' in both the tracer and flipped tracer systems By the definition
of T, we have LY > L‘T’ and that the Y-tracer must be in state B in the tracer system
and state A in the flipped tracer system. Now, we argue this is a contradiction. By the
dynamics of the tracer system, the Y-tracer in state B may not sit on the same site as a
nontracer A-particle. From the definition of ¢ given in (2.1), we have (r(y) < 0. On the
other hand, in the flipped tracer system, the Y-tracer in state A may not sit on the same
site as a nontracer B-particle or the X-tracer in state B. From the definition of Z given
in (2.4), we have ET(y) > 0. But by Proposition 2.3 (I) and its analogue for the flipped
tracer system, we have (r(y) = ér(y) = ET(y) a contradiction. O
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Recalling the definition of the occupation time Vi from (1.1), it follows from Proposi-
tion 2.3 (I) that

T
Vr = Z/o Ce(x)1{¢(x) > 0}dt,

rEH

using the equality of &; and ;. Define

VX =% / X (@)1{¢X (@) > 0},

reH

V=3 )Tc? (2)1{¢ (z) > 0}dt,

zeH C

T
V=S [ e @) > oar @.7)

r€H

The random variables VX and V)" give the occupation time at sites H when the X-tracer
and Y-tracer, respectively, are added. Thus VX is defined in terms of the tracer system
while V}/ is defined in terms of the flipped tracer system. The occupation time V:ﬁ( Y
could be defined in terms of either system—if ¢} () replaced ¢;"¥ (z) in its definition,
it would not change its distribution—but its current definition is consistent with the
proof strategy given in the paragraph preceding Lemma 2.6.

Lemma 2.7. ForallT > 0,

Ly
VX —Vp = / 1{X, € H}dt, (2.8)
0
Ly
VY —Vp = / 1{Y; € H} dt, (2.9)
0
Ly Ly
VY —Vp = / 1{X; € H}dt+/ 1{Y; € H} dt. (2.10)
0 0

Proof. We claim that forx € H

¢ (@) 1{¢ (@) > 0} — G(2)1{¢u(x) > 0} = 1{X x = 2}1{¢, () > 0} (2.11)
=1{X;x =2}l ,x. (2.12)

Indeed, by Lemma 2.5 we have (¥ (z) — (;(z) = 1{X x = z}. If (;(2) < 0, then (X (x) <0,
and both terms on the left-hand side of (2.11) are zero. If (;(z) > 0, then CtX(a;) >0,
and (2.11) is equal to 1{Xth = z}. To show (2.12), assume the X-tracer is at z. If it
is in state B, then there can be no nontracer A-particles at z, and from (2.1) we have
¢t(z) < 0. If it is in state A, then there can be no nontracer B-particles at z, and by (d)
the Y-tracer cannot be at z in state B; hence (;(x) > 0 from (2.1). Thus AtX occurs if and
only if (;(x) > 0 under the assumption that X x = x.
Applying (2.11) and (2.12), ’

T
VX —Vp = Z/ X x =2}, dt.
reH 0
Since Lf‘ only increases while the X -tracer is in state A, we arrive at (2.8). Equation (2.9)

is proven identically.
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The proof of (2.10) is similar. We argue that

G (@G (@) > 0} = G(2)1{Gi(x) > 0} 2.13)

:l{Xth :x}1A5+1{YL}’ :$}1A3/~ ’
There are three cases to consider. First, if ¢;(x) > 0, then ¢;*"¥ (z) > 0 by Lemma 2.5.
Thus the left-hand side of (2.13) is equal to 1{X;x = z} + 1{Y,y = z} in this case by
Lemma 2.5. Next, if {;(x) < —2, then both terms on the left-hand side of (2.13) are zero.
Last, if ¢;(z) = —1 then ¢;*¥ is one of —1, 0, and 1, and hence the left-hand side of (2.13)
to 1{¢;*"Y (z) = 1}. All together, we have shown that

GOV (@)1{GY (2) > 0} = G(2)1{¢(x) > 0}
= ({Xpx =2} + 1{Vyy = 2})1{G(2) > 0} + 1{G7 (2) = 1, (i) = -1}

The event that ngy(x) = 1 and (;(x) = —1 can only occur when both tracers are at «
by Lemma 2.5. If both tracers are in state A then (;(z) > 0, while if both tracers are in
state B then CtX ’Y(a:) < 0. Hence this event occurs when both tracers are at z with the
X-tracer in state B, the Y-tracer in state A, and (necessarily) no nontracer particles are
at z. That is,

l{CtX’Y(x) =1, G(r) = -1} = 1{XL5< =, YL}/ = x}lthlAE/.

Meanwhile, when proving (2.12), we showed that AtX occurs if and only if (;(x) > 0
under the assumption that X Lx = . All together, the left-hand side of (2.13) is equal to

HXpx =atlyx + Yy =2}1{G(2) 2 0} + H{X x =, Yy =a}lpxlyy
=YX px = 2}lux + 1{Vpy = 2} (1{G(2) > 0} + H{X x = 2}1px1y,y)

With (2.13) proven, the rest of the proof of (2.10) goes the same as for (2.8) and (2.9). O

Remark 2.8. If B-particles moved, then similar equations to those in (2.1)—(2.6) could
be derived. However the time change would be more involved since parts of X and Y
would be traversed by the tracer in state B. This time change would also complicate
the formulas in Lemma 2.7, since the integrals would be over disconnected subintervals
within [0, 7] traversed by the tracers while in state A, rather than a single connected
subinterval such as [0, L;}( | when B-particles do not move. Nonetheless, the approach
used in [CRS18, Section 4] to track the difference between systems with different starting
configurations when the jump rates of A- and B-particles are possibly distinct ought
to apply to our similarly constructed tracers. Hence Proposition 2.3 and by extension
Lemma 2.5 should both continue to hold.

Issues arise with Lemma 2.6 and Lemma 2.7. The lives of, say, the Y-tracer in the
tracer and flipped tracer systems are given by integrals over possibly different collections
of subintervals. Coupling the size of these subintervals and the tracer locations at these
times does not seem possible. Consequently, we do not believe that the conclusions
of Lemma 2.6 nor Lemma 2.7 generalize to the setting in which B-particle are also
mobile.

2.3 Proof of Proposition 2.2

Proof. Suppose that (&, S, h) is regular with ) . |{o(z)| < co. Fix z and k and define
the tracer and flipped tracer systems with initial configuration & ;. Let V7 be the oc-
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cupation time of H C G for ({ox,S,h). We claim that the coupled random variables
(Vp, VA VY Vf’y) defined at (2.7) satisfy the conditions of Definition 2.1. By Proposi-
tion 2.3, conditions (a)-(c) hold. By (2.8) and (2.9) in Lemma 2.7, condition (d) holds. By
Lemma 2.7 again,

V¥ — VX VY Ve = (VY = V) = (VE = V) — (VY = V)

Ly Py
:/ 1Y, € H}dt—/ 1Y, € H} dt,
0 0

and this is nonnegative since L¥ > f¥ by Lemma 2.6, which shows that condition (e)
holds. O

3 Monotonicity of icx statistics under the icx order

This section connects icx statistics to the icx order. The idea is to increase the initial
configuration in the icx order at one site at a time, and to show that at each step the icx
statistic increases as well. It is more a technical argument about stochastic orders than
it is anything about diffusion-limited annihilating systems, and it uses similar arguments
from [JJ18, Lemma 17] as templates.

Proposition 3.1. Suppose that (1.3) holds. Further assume that y_, . |$(z)| < co and
> .cc&(2)] < oo almost surely. Fix x € G and assume that {y(z) = &)(z) for all z # x.
Suppose that f is a nonnegative icx statistic of (£y, .5, h) as in Definition 2.1 and let

= f(f(/); S, h)'
Iffo(.’l)) jicw 56(1:): then f jicaz f/'
For a function h on the integers, we define the difference operators

Dh(k) = h(k +1) — h(k)
D2h(k) = D[h(k + 1) — h(k)] = h(k +2) — 2h(k + 1) + h(k).

The discrete analogue of convexity is that f satisfies Df(k) > 0 and D?f(k) > 0 for all
integers k. We would expect that if X <;., Y for integer-valued random variables X and
Y, then EA(X) < Eh(Y) when £ is convex. Indeed, this is correct:

Lemma 3.2. Let X and Y be integer-valued random variables and h: Z — R satisfy
Dh(k) > 0 and D?h(k) > 0 for all k € Z. If X <., Y, then Eh(X) < Eh(Y).

Proof. Let h: (—00,00) — R be the linear interpolation of h between adjacent integer
points. Since Dh(k) > 0 and D?h(k) > 0, the function h is increasing and convex on
(—00,00). Thus, X <., Y implies that Eh(X) = Eh(X) < ER(Y) = Eh(Y). O

Proof of Proposition 3.1. Define & ; to be the same as ¢, except that & x(z) = k. Let
W (k) = f(€k,S,h) so that

W((z) £ f and W(E(2) L 1.

Let ¢: [0,00) — [0,00) be an increasing convex function and let h(k) = Ep(W (k)) for
all k£ € Z. Then
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Eh((z)) = Ep(f) and Eh(§(2) = Ee(f'). (3.1)

We will show that Dh(k) > 0 and D?h(k) > 0. Then it will follow from Lemma 3.2 that
Eh(&o(z)) < Eh(&)(2)), since & () =Ziew &y(z) by hypothesis. By (3.1), this shows that
Eo(f) < Ep(f’), which proves [ <. f'.

Thus it only remains to show Dh(k) > 0 and D?h(k) > 0. Let (®, &%, ®Y  &XY) be a
coupling as described in the definition of an icx statistic. Then

Dh(k) = Eo(f(€oe+1, 5, 1)) — Ep(f(Eok. S, h)) = E[p(@¥) — ¢(@)].

Since ®* > @ a.s. and ¢ is increasing, we have Dh(k) > 0.

For the second order condition, we expand D?h(k) as

D*h(k) = E[o(f(éo,p+2,5,h)] = 2E[o(f (éo,641, 5, h)] + E[o(f(Cok, S, )]
=E[p(®*Y) — p(@%) — p(®7) + ¢()]. (3.2)

We claim that

P(OY) — p(@Y) = p(@F + Y — @) — p(¥)
(V) — ().

Y

The first inequality holds because ¢ is increasing and XY > ®X 4+ Y — ® by item (e)
of the definition of icx statistic. For the second inequality, observe that by convexity
w(a+u) —¢(a) > @(b+u) — ¢(b) for any a > b and u > 0, and then take a = &%, b= @,
and u = ®¥ — &. Thus (3.2) is nonnegative, completing the proof. O

4 Further questions

A natural question is whether or not our results extend to DLAS with mobile B-
particles. Our intuition is that they do, since it remains the case that two A-particles
can assist each other to clear out B-particles that would otherwise destroy an A-particle
added individually. But as we discuss in Remark 2.8, if we use our current coupling
with moving B-particles, the tracer and flipped tracer systems have a more complex
relationship, and we cannot prove that Vr is an icx statistic.

Even for the stationary B-particle case, it would be interesting to find functionals
besides occupation time that respect the icx order. For example, we speculate that the
lifespan of a distinguished A- or B-particle might be monotonic (increasing or decreasing,
respectively) in the icx order as more A-particles are added. Similarly, the time of the
first visit to a distinguished vertex by an A-particle as well as the total number of
A-particles still alive at time ¢t might respect the icx order.

Finally, we are interested in whether there is a general framework for understanding
which statistics in different interacting particle systems respect which stochastic orders.
This paper demonstrates that DLAS, with interaction rule A + B — &, is compatible with
the icx order. In [JJ18], it is shown that the frog model, with interaction rule A+ B — 2A,
is compatible with the icv order. Is there a systematic explanation across different
particle systems?
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Case 1: The A-particle jumps onto

a site containing neither B-particles
nor tracers in state B. No interaction
occurs.

A
Pt

(f_f\/\/\/\»_i

A

(X:fif\/\/\/\»_i

A

XV: A A e A

Case 3: The A-particle jumps onto
a site containing no nontracer par-
ticles, the Y-tracer in state B, and

A Figures from the proof of Proposition 2.3

Case 2: The A-particle jumps onto a
site containing nontracer B-particles,
mutually annihilating with one of
them.

—~B*
A B A~~~ . BY
/-YB
A B A~ B
Cx:fif\/\/\/\»__
et
(XY, A B ~n~nrv

Case 4: The A-particle jumps onto a
site containing only the X-tracer in
state B. The A-particle is annihilated

possibly the X-tracer in either state. and the X-tracer enters state A.
The A-particle is annihilated and the

Y -tracer enters state A.

A AT B s A
(:_/Néf\/\/\/\»_i g:imif\/\/\/v__
(X:imi ANANS <X~im_ ANAN A

CXVY:L/N_ AN A CX*Y:L/N_ AN A

Figure 1: When a nontracer A-particle in the tracer system jumps, there are four cases.
The top line in each case shows how the tracer system evolves when the particle jumps.
The tracer particles are indicated by AX, AY, BX, or BY, with A and B giving their
states and X and Y specifying the tracer. The lines below show how the particles are
viewed by ¢, ¢¥, and ¢XY.
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Case 1: The X-tracer in state A jumps Case 2: The X-tracer in state A jumps
onto a site containing no nontracer B- onto a site containing nontracer B-
particles nor the Y-tracer in state B. particles. It annihilates one of them

No interaction occurs. and then enters state B.
AX 'NBY BY
e
B B
SV, VA VA ¢t B A~~~ B
'l /NB
X: A A A xX. A4 B A~ B
'l A
VA A v A4 XA B oAy

Case 3: The X-tracer in state A jumps Case 4: The Y-tracer in state A jumps
onto a site containing the Y-tracer in onto a site containing no nontracer
state B and no other particles. The B-particles. No interaction occurs.
tracers swap states.

X py B))f Y pX A))/(

A B oA~ A A BT A~~~ BT

¢ B A~~~ B ¢ B A~~~ B
e

X: A B ~Arncrv Xi__ AN

vay:f_ AN A CX*Y:f_ ANAN A

Case 5: The Y-tracer in state A jumps onto
a site containing nontracer B-particles. It
annihilates ones of them and then enters

state B. ~Bx BX
A B A~~~ B

B B

g‘:_ﬂ AN B
X.__ B A~~~ B

(Xyzfﬂ AN

Figure 2: When a tracer particle jumps in the tracer system, there are five cases. The
same notation is used here as in Figure 1.
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