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Abstract 
For the pulping process in a pulp & paper plant that uses woodchips as raw material, the 
moisture content (MC) of the woodchips is a major process disturbance that affects 
product quality and consumption of energy, water, and chemicals. Existing woodchip MC 
sensing technologies have not been widely adopted by the industry due to unreliable 
performance and/or high maintenance requirements that can hardly be met in a 
manufacturing environment. To address these limitations, we propose a non-destructive, 
economic, and robust woodchip MC sensing approach utilizing channel state information 
(CSI) from industrial Internet-of-Things (IIoT) based Wi-Fi. While these IIoT devices are 
small, low-cost, and rugged to stand for harsh environment, they do have their limitations 
such as the raw CSI data are often very noisy and sensitive to woodchip packing. Thus, 
direct application of machine learning (ML) algorithms leads to poor performance. To 
address this, statistics pattern analysis (SPA) is utilized to extract physically and 
statistically meaningful features from the raw CSI data, which are sensitive to woodchip 
MC but not to packing. The SPA features are then used for developing multiclass 
classification models as well as regression models using various linear and nonlinear ML 
techniques to provide potential solutions to woodchip MC estimation for the pulp and 
paper industry. 

Keywords: systems engineering, machine learning, feature engineering, channel state 
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1. Introduction 
The US pulp and paper industry ranks the third in energy consumption among US 
industries. The pulping process, which converts woodchips into pulp by displacing lignin 
from cellulose fibers, is one of the most energy intensive processes and has been identified 
as a major opportunity to improve energy productivity and efficiency of the industry 
(Brueske et al., 2015). Currently, vast majority of the US pulp is produced by chemical 
pulping processes and most of them utilize continuous Kamyr digesters. For Kamyr 
digesters, the incoming woodchip moisture content (MC) is a major disturbance that 
affects the cooking performance.  

Currently, the woodchip MC is not measured in real-time due to the lack of affordable, 
reliable, and easy-to-maintain sensors. As a result, the performance of existing control 
solutions is often unsatisfactory and process engineers often overcook the woodchips to 
ensure pulp quality, which results in significant loss of pulp yield, overuse of heat/energy 
and chemicals. Chemical overuse also adds burdens to the downstream processes, such 
as washing and evaporation, and results in increased energy and chemical usages for 
downstream processes as well. To address this need, this work proposes a non-
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destructive, economic, and robust approach based on 5 GHz IIoT short-range Wi-Fi and 
use channel state information (CSI) to estimate MC in woodchips. Both classification and 
regression techniques are studied for MC estimation. For classification, we investigate 
linear discriminant analysis (LDA), support vector machine (SVM), artificial neural 
network (ANN), bagging with LDA, and ensemble boosting XGBoost. For regression, 
we study ANN, k-nearest neighbor regression (KNNR), Gaussian process regression 
(GPR), and support vector regression (SVR) with radial basis function (RBF) kernel.  

The remainder of this work is organized as follows: Section 2 describes the experimental 
setup and software tools used   in this study, as well as the features proposed and the 
modeling techniques utilized in this work. Section 3 presents results and discussions of 
this work, and Section 4 draws conclusions. 

2. Data collection and feature engineering 
2.1. Channel state information for moisture estimation 

Using Wi-Fi cards such as IWL5300, it is convenient to collect CSI measurements that 
record the channel variation during propagation of wireless signals. After being 
transmitted from a source, the wireless signal is expected to experience impairments 
caused by obstacles before the signal reaches the receiver. CSI can reflect indoor channel 
characteristics such as multipath effect, shadowing, fading, and delay. In this work, we 
collect CSI using CSItool, which is built on IWL5300 NIC using a custom modified 
firmware and open-source Linux wireless drivers. The channel response of the ith 
subcarrier can be represented as: 

 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = |𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖| exp{∠𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖} (1) 

where |𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖| is the amplitude and ∠𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 is the phase response of the ith subcarrier. 

2.2. Data description 

In this work, data are collected for 20 different MC classes or levels ranging from 53.39% 
to 11.81% on the wet basis (see Eqn (2)). A single antenna is used on the transmitter side 
which is configured in injection mode to send CSI and 3 antennas are used on the 
receiving side to take advantage of diversity. Woodchips are places in an airtight container 
between the transmitter and receiver to collect data. 10,000 packets are sent from the 
transmitter to the receivers for each sample collection. Total mass (𝑚𝑚𝑇𝑇) is measured 
during each experiment and oven drying method was performed after all experiments 
were conducted to determine the oven dry weight (𝑚𝑚𝐷𝐷). 𝑚𝑚𝑇𝑇 and 𝑚𝑚𝐷𝐷 are then used to 
determine the mass of water (𝑚𝑚𝑊𝑊) and MC as the following.  

𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑊𝑊
𝑚𝑚𝑇𝑇

× 100% = 𝑚𝑚𝑊𝑊
𝑚𝑚𝑊𝑊+𝑚𝑚𝐷𝐷

× 100%                                                                                     (2) 

The 20 different MC levels are plotted in Figure 1(a), which shows that MC levels are 
narrowly separated at the high MC region and even more so at the low MC region. The 
minimum difference between MC levels is 0.05%, which is more than sufficient for 
pulping process optimization and control. 

2.3. Methodology and feature engineering 

To address the shortcoming of raw CSI features that lead to poor classification and 
prediction performance, in this work, statistics pattern analysis (SPA) is utilized to 
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generate more robust and predictive features. In SPA, the statistics of the process 
variables, instead of process variables themselves, are used for modeling. This is based 
on the hypothesis that these statistics are sufficient and even better in capturing process 
characteristics than original process variables. This hypothesis has been supported in 
various applications, including fault detection (He et al., 2019; He & Wang, 2011, 2018; 
Wang & He, 2010), fault diagnosis (He & Wang, 2018), and virtual metrology or soft 
sensor (Shah et al., 2019, 2020; Suthar et al., 2019). SPA is selected in this work to extract 
robust and predictive features from raw CSI data. It is worth noting that SPA does not 
require preprocessing of the CSI data (e.g., outlier detection and handling, noise 
removal/reduction) that has been required in previous studies (Hu et al., 2019; Yang et 
al., 2018). A schematic for SPA based feature engineering is shown in Figure 1 (b). After 
a deeper exploration of candidate features and statistics, mean difference of consecutive 
subcarrier in CSI amplitude are chosen which leads to 87 features considering all 3 
antennas on the receiving side. 

(a) (b) 

Figure 1 (a) 20 different moisture levels tested in this work; (b) SPA based feature 
engineering for MC estimation 

3. Results and discussion 
In this work, we conduct investigations from three perspectives: (1) comparing raw CSI 
data vs engineered features; (2) comparing the performance of different classification 
approaches; and (3) comparing the performance of different regression approaches. For 
each model, 9 samples are randomly selected as training samples from 10 shuffled 
samples at the same MC level for each of the 20 MC levels, which results in 180 training 
samples. The remaining shuffled sample for each of the MC levels is used for testing. In 
this work we use Monte Carlo validation and testing (MCVT) procedure 100 times for 
performance comparison. To assess various classification approaches, the mean and 
standard deviation of classification accuracy of the 100 MCVT simulations are reported. 
For regression approaches, the mean and standard deviation of root mean square error 
(RMSE) for the 100 MCVT simulations are reported. 

First, raw CSI data are used for MC level classification. The results are similar across 
different classification techniques. Due to limited space, only results from LDA are 
discussed here. Figure 2 (a) shows the overall classification accuracy of all classes when 
the raw CSI data were used. The comparison indicates that LDA classifier using both 
amplitude and phase difference performs the best with 86.15% classification accuracy, 
followed by LDA classifier using phase difference with 83.85% classification accuracy, 
while the LDA classifier using amplitude alone results in the lowest classification 
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accuracy of 76.10%. Figure 2 (b) plots the confusion matrix for the LDA classifier using 
both CSI amplitude and phase difference, which allows us to dig deeper into the 
classification results. As can be seen from Figure 2 (b), classification accuracy of 
individual classes ranges from 15% to 100%. It can also be seen that classification 
accuracy alone is not a good performance indicator. For example, the far-off 
misclassifications (i.e., the predicted class of a sample is off its true class by more than 
one level) will have worse consequences than the nearest-neighbor misclassifications 
(i.e., the predicted class is off true class by one level, either above or below) if they were 
used to control the white liquor usage or digester temperature. It can be seen from Figure 
2 (b) that the classification results using raw CSI data are poor as there are samples 
misclassified far off their true classes. There are totally 478 misclassified samples, of 
which 30 are far-off misclassifications (highlighted by red circles in Figure 2 (b)). Also, 
the overall classification accuracy is not satisfactory. 

Next the 87 rationally engineered features (i.e., the mean difference of consecutive 
subcarrier in CSI amplitude) are used for MC level classification and the results are 
summarized in Table 1. The classification accuracies shown in Table 1 indicate that 
all methods perform well with higher than 95% classification accuracy. The 
significantly improved performance compared to that of the raw CSI data demonstrates 
that the engineered features are more informative and characterize the MC in woodchips 
far better than the raw CSI data. Among all classification methods studied in this work, 
the bagging LDA performs the best with 98.75% average classification accuracy. The 
standard deviation of its classification accuracy is the lowest of 2.29%, indicating the 

(a) (b) 

Figure 2 (a) Overall classification accuracy using different raw CSI data with LDA classifier 
based on 100 Monte Carlo runs. (b) Classification confusion matrix of 100 MCVT when both 
amplitude and phase difference are used. The far-off misclassifications (i.e., the predicted class 
differs from the true class by more than one MC level) are highlighted by red circles. 

Table 1 Classification accuracy using engineered features 

Method Classification Accuracy 
Mean Std. dev. 

SVM 95.50 3.79 
ANN 95.85 4.15 
XGBoost 96.40 3.70 
LDA 97.55 2.89 
Bagging (LDA) 98.75 2.29 
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bagging LDA is also the most robust or consistent classifier among all methods studied 
in this work.  

Finally, we study different regression methods for MC estimation. When raw CSI data 
are used, all regression methods perform poorly, similar to the classification results when 
the raw CSI data are used. Due to limited space, they are not shown here. When the same 
87 engineered features are used for regression-based MC estimation, a well-tuned ANN 
with two hidden layers outperforms other regression-based approaches as shown in Table 
2. KNNR performs comparable to ANN while GPR and SVR with RBF kernel have 
relatively higher average RMSE’s for 100 MCVT simulations. 

 

Figure 3 shows the measured vs predicted MC values for ANN and SVR(RBF). It can be 
seen from Figure 3(a) that the ANN predicted MC values agree very well with the actual 
or measured MC values. In comparison, while SVR captures the MC trend, its predictions 
have much higher standard deviation compared to ANN. It is worth noting for all the 
above-mentioned results, the models and their hyperparameters were tuned using random 
search followed by Bayesian optimization (Bergstra & Bengio, 2012). 

4. Conclusions 
In this work, we investigate the potential of an IIoT short-range Wi-Fi based woodchip 
MC sensing technology to overcome some limitations of the existing technologies. The 
proposed technology takes the advantages of IIoT devices (e.g., toughness, connectivity, 

Table 2 Regression for MC estimation using engineered features 

Method RMSE 
Mean Std. dev. 

ANN 0.51 0.3921 
KNNR 0.6573 0.5055 
GPR 1.9223 0.5714 
SVR(RBF) 2.0179 0.523 

 
(a) 

 
(b) 

Figure 3 Measured vs predicted MC by (a) ANN and (b) SVR(RBF) 
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low-cost, small-size, etc.), while overcoming their shortcomings (e.g., the machine 
learning challenges of messy big data) through SPA-based feature engineering. We 
investigate the use various classification and regression approaches for the estimation of 
20 different moisture levels. We demonstrate that with SPA-based features, all 
classification approaches studied in this work can successfully classify 20 different MC 
levels, some of which are separated by small margins. We also investigate the use of 
different regression approaches for continuous MC estimation. While SVR and GPR 
capture the trend of measured MC values but with relatively high RMSE’s, methods 
including ANN and KNNR predict the moisture levels accurately. The relationship 
between the CSI and woodchip MC is very complex, which requires further work to get 
a better understanding of this relationship for further improvement of this work. 
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