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Abstract

For the pulping process in a pulp & paper plant that uses woodchips as raw material, the
moisture content (MC) of the woodchips is a major process disturbance that affects
product quality and consumption of energy, water, and chemicals. Existing woodchip MC
sensing technologies have not been widely adopted by the industry due to unreliable
performance and/or high maintenance requirements that can hardly be met in a
manufacturing environment. To address these limitations, we propose a non-destructive,
economic, and robust woodchip MC sensing approach utilizing channel state information
(CSI) from industrial Internet-of-Things (IIoT) based Wi-Fi. While these IIoT devices are
small, low-cost, and rugged to stand for harsh environment, they do have their limitations
such as the raw CSI data are often very noisy and sensitive to woodchip packing. Thus,
direct application of machine learning (ML) algorithms leads to poor performance. To
address this, statistics pattern analysis (SPA) is utilized to extract physically and
statistically meaningful features from the raw CSI data, which are sensitive to woodchip
MC but not to packing. The SPA features are then used for developing multiclass
classification models as well as regression models using various linear and nonlinear ML
techniques to provide potential solutions to woodchip MC estimation for the pulp and
paper industry.

Keywords: systems engineering, machine learning, feature engineering, channel state
information, IIoT sensors.

1. Introduction

The US pulp and paper industry ranks the third in energy consumption among US
industries. The pulping process, which converts woodchips into pulp by displacing lignin
from cellulose fibers, is one of the most energy intensive processes and has been identified
as a major opportunity to improve energy productivity and efficiency of the industry
(Brueske et al., 2015). Currently, vast majority of the US pulp is produced by chemical
pulping processes and most of them utilize continuous Kamyr digesters. For Kamyr
digesters, the incoming woodchip moisture content (MC) is a major disturbance that
affects the cooking performance.

Currently, the woodchip MC is not measured in real-time due to the lack of affordable,
reliable, and easy-to-maintain sensors. As a result, the performance of existing control
solutions is often unsatisfactory and process engineers often overcook the woodchips to
ensure pulp quality, which results in significant loss of pulp yield, overuse of heat/energy
and chemicals. Chemical overuse also adds burdens to the downstream processes, such
as washing and evaporation, and results in increased energy and chemical usages for
downstream processes as well. To address this need, this work proposes a non-
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destructive, economic, and robust approach based on 5 GHz IIoT short-range Wi-Fi and
use channel state information (CSI) to estimate MC in woodchips. Both classification and
regression techniques are studied for MC estimation. For classification, we investigate
linear discriminant analysis (LDA), support vector machine (SVM), artificial neural
network (ANN), bagging with LDA, and ensemble boosting XGBoost. For regression,
we study ANN, k-nearest neighbor regression (KNNR), Gaussian process regression
(GPR), and support vector regression (SVR) with radial basis function (RBF) kernel.

The remainder of this work is organized as follows: Section 2 describes the experimental
setup and software tools used in this study, as well as the features proposed and the
modeling techniques utilized in this work. Section 3 presents results and discussions of
this work, and Section 4 draws conclusions.

2. Data collection and feature engineering
2.1. Channel state information for moisture estimation

Using Wi-Fi cards such as IWL5300, it is convenient to collect CSI measurements that
record the channel variation during propagation of wireless signals. After being
transmitted from a source, the wireless signal is expected to experience impairments
caused by obstacles before the signal reaches the receiver. CSI can reflect indoor channel
characteristics such as multipath effect, shadowing, fading, and delay. In this work, we
collect CSI using CSItool, which is built on IWL5300 NIC using a custom modified
firmware and open-source Linux wireless drivers. The channel response of the i
subcarrier can be represented as:

CSI; = |CSI;| exp{4CSI;} @)
where |CSI;| is the amplitude and £CS]; is the phase response of the i subcarrier.
2.2. Data description

In this work, data are collected for 20 different MC classes or levels ranging from 53.39%
to 11.81% on the wet basis (see Eqn (2)). A single antenna is used on the transmitter side
which is configured in injection mode to send CSI and 3 antennas are used on the
receiving side to take advantage of diversity. Woodchips are places in an airtight container
between the transmitter and receiver to collect data. 10,000 packets are sent from the
transmitter to the receivers for each sample collection. Total mass (my) is measured
during each experiment and oven drying method was performed after all experiments
were conducted to determine the oven dry weight (mp). my and my are then used to
determine the mass of water (my,,) and MC as the following.

m

W__ % 100% (2)
+mp

MC =% x 100% =

mr mw
The 20 different MC levels are plotted in Figure 1(a), which shows that MC levels are
narrowly separated at the high MC region and even more so at the low MC region. The
minimum difference between MC levels is 0.05%, which is more than sufficient for
pulping process optimization and control.

2.3. Methodology and feature engineering

To address the shortcoming of raw CSI features that lead to poor classification and
prediction performance, in this work, statistics pattern analysis (SPA) is utilized to
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generate more robust and predictive features. In SPA, the statistics of the process
variables, instead of process variables themselves, are used for modeling. This is based
on the hypothesis that these statistics are sufficient and even better in capturing process
characteristics than original process variables. This hypothesis has been supported in
various applications, including fault detection (He et al., 2019; He & Wang, 2011, 2018;
Wang & He, 2010), fault diagnosis (He & Wang, 2018), and virtual metrology or soft
sensor (Shah et al., 2019, 2020; Suthar et al., 2019). SPA is selected in this work to extract
robust and predictive features from raw CSI data. It is worth noting that SPA does not
require preprocessing of the CSI data (e.g., outlier detection and handling, noise
removal/reduction) that has been required in previous studies (Hu et al., 2019; Yang et
al., 2018). A schematic for SPA based feature engineering is shown in Figure 1 (b). After
a deeper exploration of candidate features and statistics, mean difference of consecutive
subcarrier in CSI amplitude are chosen which leads to 87 features considering all 3
antennas on the receiving side.
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Figure 1 (a) 20 different moisture levels tested in this work; (b) SPA based feature
engineering for MC estimation

3. Results and discussion

In this work, we conduct investigations from three perspectives: (1) comparing raw CSI
data vs engineered features; (2) comparing the performance of different classification
approaches; and (3) comparing the performance of different regression approaches. For
each model, 9 samples are randomly selected as training samples from 10 shuffled
samples at the same MC level for each of the 20 MC levels, which results in 180 training
samples. The remaining shuffled sample for each of the MC levels is used for testing. In
this work we use Monte Carlo validation and testing (MCVT) procedure 100 times for
performance comparison. To assess various classification approaches, the mean and
standard deviation of classification accuracy of the 100 MCVT simulations are reported.
For regression approaches, the mean and standard deviation of root mean square error
(RMSE) for the 100 MCVT simulations are reported.

First, raw CSI data are used for MC level classification. The results are similar across
different classification techniques. Due to limited space, only results from LDA are
discussed here. Figure 2 (a) shows the overall classification accuracy of all classes when
the raw CSI data were used. The comparison indicates that LDA classifier using both
amplitude and phase difference performs the best with 86.15% classification accuracy,
followed by LDA classifier using phase difference with 83.85% classification accuracy,
while the LDA classifier using amplitude alone results in the lowest classification
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Figure 2 (a) Overall classification accuracy using different raw CSI data with LDA classifier
based on 100 Monte Carlo runs. (b) Classification confusion matrix of 100 MCVT when both
amplitude and phase difference are used. The far-off misclassifications (i.e., the predicted class
differs from the true class by more than one MC level) are highlighted by red circles.
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accuracy of 76.10%. Figure 2 (b) plots the confusion matrix for the LDA classifier using
both CSI amplitude and phase difference, which allows us to dig deeper into the
classification results. As can be seen from Figure 2 (b), classification accuracy of
individual classes ranges from 15% to 100%. It can also be seen that classification
accuracy alone is not a good performance indicator. For example, the far-off
misclassifications (i.e., the predicted class of a sample is off its true class by more than
one level) will have worse consequences than the nearest-neighbor misclassifications
(i.e., the predicted class is off true class by one level, either above or below) if they were
used to control the white liquor usage or digester temperature. It can be seen from Figure
2 (b) that the classification results using raw CSI data are poor as there are samples
misclassified far off their true classes. There are totally 478 misclassified samples, of
which 30 are far-off misclassifications (highlighted by red circles in Figure 2 (b)). Also,
the overall classification accuracy is not satisfactory.

Next the 87 rationally engineered features (i.e., the mean difference of consecutive
subcarrier in CSI amplitude) are used for MC level classification and the results are
summarized in Table 1. The classification accuracies shown in Table 1 indicate that
all methods perform well with higher than 95% classification accuracy. The
significantly improved performance compared to that of the raw CSI data demonstrates
that the engineered features are more informative and characterize the MC in woodchips
far better than the raw CSI data. Among all classification methods studied in this work,
the bagging LDA performs the best with 98.75% average classification accuracy. The
standard deviation of its classification accuracy is the lowest of 2.29%, indicating the

Table 1 Classification accuracy using engineered features

Classification Accuracy

Method Mean Std. dev.
SVM 95.50 3.79
ANN 95.85 4.15
XGBoost 96.40 3.70
LDA 97.55 2.89

Bagging (LDA) 98.75 2.29
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bagging LDA is also the most robust or consistent classifier among all methods studied
in this work.

Finally, we study different regression methods for MC estimation. When raw CSI data
are used, all regression methods perform poorly, similar to the classification results when
the raw CSI data are used. Due to limited space, they are not shown here. When the same
87 engineered features are used for regression-based MC estimation, a well-tuned ANN
with two hidden layers outperforms other regression-based approaches as shown in Table
2. KNNR performs comparable to ANN while GPR and SVR with RBF kernel have
relatively higher average RMSE’s for 100 MCVT simulations.

Table 2 Regression for MC estimation using engineered features

RMSE
Method Mean Std. dev.
ANN 0.51 0.3921
KNNR 0.6573 0.5055
GPR 1.9223 0.5714
SVR(RBF) 2.0179 0.523

Figure 3 shows the measured vs predicted MC values for ANN and SVR(RBF). It can be
seen from Figure 3(a) that the ANN predicted MC values agree very well with the actual
or measured MC values. In comparison, while SVR captures the MC trend, its predictions
have much higher standard deviation compared to ANN. It is worth noting for all the
above-mentioned results, the models and their hyperparameters were tuned using random
search followed by Bayesian optimization (Bergstra & Bengio, 2012).

4. Conclusions

In this work, we investigate the potential of an IIoT short-range Wi-Fi based woodchip
MC sensing technology to overcome some limitations of the existing technologies. The
proposed technology takes the advantages of IloT devices (e.g., toughness, connectivity,
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Figure 3 Measured vs predicted MC by (a) ANN and (b) SVR(RBF)
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low-cost, small-size, etc.), while overcoming their shortcomings (e.g., the machine
learning challenges of messy big data) through SPA-based feature engineering. We
investigate the use various classification and regression approaches for the estimation of
20 different moisture levels. We demonstrate that with SPA-based features, all
classification approaches studied in this work can successfully classify 20 different MC
levels, some of which are separated by small margins. We also investigate the use of
different regression approaches for continuous MC estimation. While SVR and GPR
capture the trend of measured MC values but with relatively high RMSE’s, methods
including ANN and KNNR predict the moisture levels accurately. The relationship
between the CSI and woodchip MC is very complex, which requires further work to get
a better understanding of this relationship for further improvement of this work.
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