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Abstract
We develop an approach to improve the learning capabilities of robotic systems by combining learned predictive models
with experience-based state-action policy mappings. Predictive models provide an understanding of the task and
the dynamics, while experience-based (model-free) policy mappings encode favorable actions that override planned
actions. We refer to our approach of systematically combining model-based and model-free learning methods as
hybrid learning. Our approach efficiently learns motor skills and improves the performance of predictive models and
experience-based policies. Moreover, our approach enables policies (both model-based and model-free) to be updated
using any off-policy reinforcement learning method. We derive a deterministic method of hybrid learning by optimally
switching between learning modalities. We adapt our method to a stochastic variation that relaxes some of the key
assumptions in the original derivation. Our deterministic and stochastic variations are tested on a variety of robot
control benchmark tasks in simulation as well as a hardware manipulation task. We extend our approach for use with
imitation learning methods, where experience is provided through demonstrations, and we test the expanded capability
with a real-world pick-and-place task. The results show that our method is capable of improving the performance and
sample-efficiency of learning motor skills in a variety of experimental domains.
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1 Introduction
Reinforcement learning (RL) algorithms can generally
be divided into two categories—model-free and model-
based. Model-free methods avoid the need to model the
environment or dynamics by learning a direct policy
mapping between states and actions Schulman et al. (2017);
Haarnoja et al. (2018a,b). The policy is learned through
experience, so we consider model-free methods to be
“experience-based”. Model-based methods typically learn
a dynamics model and a reward function to predict the
next state and next reward given the current state and a
potential next action. These outputs can be sequentially
used to predict into the future the expected rewards for a
set of actions. These methods have contrasting strengths
and weaknesses. Model-free approaches require significantly
more data and diverse experience to learn the task than
model-based methods Chua et al. (2018), but model-free
approaches often produce better performance than model-
based methods. The prediction capabilities of model-based
methods makes them more “sample-efficient” in solving
robot learning tasks Williams et al. (2017); Chua et al.
(2018); Abraham et al. (2020), but the models are often
highly complex and can require special structure Nagabandi
et al. (2018); Havens et al. (2019); Sharma et al. (2019);
Abraham et al. (2020); Abraham et al. (2017); Abraham and
Murphey (2019). Is there a way to leverage the beneficial
aspects of each of these methods to enable robotic systems
to rapidly learn tasks with a limited amount of experience?

Recent work tries to address this question by explor-
ing alternate ways of structuring environment models by

combining probabilistic models with deterministic com-
ponents Chua et al. (2018). Other work has explored
using latent-space representations to reduce model com-
plexity Havens et al. (2019); Sharma et al. (2019). Related
methods use high fidelity Gaussian Processes to create mod-
els, but these methods are limited by the amount of data
that can be collected Deisenroth and Rasmussen (2011).
Finally, some researchers try to improve experience-based
methods by adding exploration as part of the objective Pathak
et al. (2017). However, all of these approaches focus on
improving either model-based or model-free methods sep-
arately rather than combining model-based planning with
experience-based learning.

Methods that combine model-based planning and
experience-based learning tend to do so in stages Chebotar
et al. (2017); Bansal et al. (2017); Nagabandi et al. (2018).
First, a model is used to collect data for a task to jump-start
the learning process. Then, supervised learning is used to
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update a policy Levine and Abbeel (2014); Chebotar et al.
(2017) or an experience-based method is used to continue the
learning from that stage Nagabandi et al. (2018). Moreover,
the model is often used as an oracle, which provides labels
to a base policy. The aim of these methods is to train a policy
that does not rely on the model after training. While these
approaches do improve learning, they do not algorithmically
leverage the two learning approaches in an optimal manner,
resulting in objective mismatch Lambert et al. (2020). The
sequential optimization solves two different problems; the
model-based controller seeks to improve the objective, while
the policy seeks to match the model-based controller.

Our approach algorithmically combines model-based and
experience-based learning by using the learned model to
predict how well an experience-based policy will behave,
and then optimally update the resulting actions. Using hybrid
control as the foundation for our approach, we derive a
controller that optimally uses model-based actions when the
policy is uncertain, and allows the algorithm to fall back on
the experience-based policy when there is high confidence
that the actions will result in a favorable outcome. As a
result, our approach does not rely on improving the model
(but can easily integrate high fidelity models), but instead
optimally combines the actions generated from model-based
and experience-based methods to achieve high performance
in the specified task. Our contributions in this work can be
summarized as follows:

• We present a hybrid control theoretic approach to robot
learning motor skills.

• We derive deterministic and stochastic algorithmic for-
mulations of our proposed hybrid learning approach.

• We introduce a measure for determining the agreement
between learned model and policy.

• We demonstrate the flexibility of our approach
with various learning approaches such as off-policy
reinforcement learning Haarnoja et al. (2018a) and
behavior cloning Pomerleau (1998).

• We demonstrate improved sample-efficiency and
task performance over state-of-the-art model-based
methods Ansari and Murphey (2016); Williams et al.
(2017), model-free methods Haarnoja et al. (2018b),
and methods that combine model-based and model-
free methods Feinberg et al. (2018); Buckman et al.
(2018); Janner et al. (2019); Montgomery and Levine
(2016); Nagabandi et al. (2018).

The paper is structured as follows: Section 2 provides
background knowledge of the problem statement and
its formulation; Section 3 introduces our approach and
derives both deterministic and stochastic formulations of
our algorithm; Section 4 provides simulated results and
comparisons as well as experimental validation of our
approach; Section 5 provides comparisons to related work
that combines model-based and model-free methods; and
Section 6 concludes the work and discusses future work.

2 Background
In this work, we build on the framework of Markov
Decision Processes (MDP) and aspects of hybrid control
theory. Robot reinforcement learning problems are often

formulated as MDPs. The MDP formulation assumes the
Markov property—that the result of an action taken in a given
state only depends on the current state and does not depend
on the prior history. The Markov property applies to both
model-based and model-free methods, which are used in this
work. Prior work which combines model-free and model-
based methods often rely on hand-tuned objective functions
or ultimately solve two different objective functions for
the different learning methods. In this work, we introduce
hybrid control theory as a structured approach to combining
multiple control strategies with a single objective function.

Markov Decision Processes: A Markov Decision Pro-
cess (MDP) is a mathematical framework for a discrete-
time stochastic process. The goal of the MDP formulation
is to find a mapping from state to action that maximizes the
total reward acquired from interacting in an environment for
some fixed amount of time. An MDP can be represented as
M = {S,A, r, p}, which contains a set of accessible contin-
uous states s ∈ S the robot can be in, a set of continuous
bounded actions a ∈ A that a robot may take, rewards r,
and a transition probability p(st+1 | st, at). For stochastic
actions, the transition probability represents the probability
of transitioning from one state st to the next st+1 given an
action at applied at time t. For deterministic actions, the
transition probability specifies a fixed next state st+1 given
state st and action at. With the MDP framework, the total
reward goal can be written as the objective

π? = arg max
π

Ea∼π(· | s)

[
T−1∑
t=0

r(st)

]
, (1)

where the solution is an optimal policy π?.
Model-free approaches learn a stochastic policy a ∼

π(· | s) that maximizes the reward r at a state s. Model-based
approaches solve the MDP problem by modeling a transition
function st+1 = f(st, at) and a reward function rt = r(st)*.
Model-based methods either use these functions to construct
a policy or directly generate actions through model-based
planning Chua et al. (2018). When the transition model
and the reward function are known, the MDP formulation
becomes an optimal control problem. We can use any set of
existing methods Li and Todorov (2004); Tang et al. (2018)
to solve for the best set of actions (or policy) to maximize the
reward†.

Hybrid Control Theory for Mode Scheduling: In mode
scheduling problems, the goal is to maximize a reward
function through the synthesis of two (or more) control
strategies. A common example of mode switching is when
a vertical takeoff and landing vehicle switches from flight
mode to landing mode. In hybrid control theory, these control
strategies are often called modes. Thus, mode switching
can also be called policy switching Axelsson et al. (2008);
Vasudevan et al. (2013). We can use hybrid control theory to
determine the optimal time to switch from one control policy
to another. Most mode scheduling problems are formulated

∗We exclude the dependency on the action for clarity, but we could always
append the state vector with the action and obtain the action dependency.
†Optimal control problems are often specified to minimize a cost instead of
maximizing a reward; however, the analysis remains the same.
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in continuous time and are subject to dynamics of the form

ṡ(t) = f(s(t), a(t)) = g(s(t)) + h(s(t))a(t), (2)

where f(s, a) : S ×A → S is the transition function. The
state transition function is comprised of the free dynamics
g(s) : S → S , the control map h(s) : S → S ×A, and an
action a(t). This formulation also encompasses nonlinear
state transition functions.

The continuous time dynamics function requires us to
reformulate the objective function from (1). First, we
introduce an objective function as a deterministic function
of the state and control:

arg max
τ,λ

J =

∫ tH

t=0

r(s(t))dt

subject to ṡ(t) = f(s(t), a(t)), s(0) = s0

(3)

where

a(t) =

{
â(t), if t ∈ [τ, τ + λ]

adef(t) otherwise
, (4)

tH is the time horizon (in seconds), and s(t) is generated
from some initial condition s(0) using a model (2) and an
action sequence (4). The goal in hybrid control theory is
to find the optimal time τ to switch from some default set
of actions adef to another set of actions â for application
duration λ to best improves the performance of the objective
in (3) subject to the dynamics (2). The following section
derives the algorithmic combination of the MDP learning
formulation with the hybrid control foundations into a joint
hybrid learning approach.

3 Hybrid Learning
The goal of this section is to introduce hybrid learning as a
method for optimally synthesizing model-based and model-
free learning methods. In Section 2, we introduced Markov
Decision Processes and described how model-based and
model-free methods follow the MDP formulation. Although
both methods assume an underlying MDP, only the model-
based method learns this transition probability. The transition
probability is a key feature linking the MDP formulation
to hybrid control theory. Most mode scheduling problems
are constrained by a dynamics function, which governs the
transition from a current state st to a next state st+1 given a
current action at. Thus, the MDP transition probability and
the mode scheduling dynamics function have the same form.
In this work, we use the model-based prediction capability to
develop a hybrid control approach to determine the optimal
time to switch from the action specified by experience-based
policy to an alternate model-based action.

We first introduce a deterministic formulation of the
algorithm with theoretical proofs describing the foundations
of our method. We then derive a stochastic method as a
way to relax the assumptions made in the deterministic
formulation. In both the deterministic and stochastic
formulations, we solve the learning problem indirectly. We
break down the overall learning problem into solvable sub-
problems, which collectively imply the original learning
problem has been solved. Finally, we extend our method
to use expert demonstrations as experience. Both the

deterministic and stochastic approaches can be improved
by providing informative experience in the form of expert
demonstrations.

3.1 Deterministic Method
Consider a continuous time MDP formulation of the
objective in (3) and the dynamics in (2), where f and
r are learned using arbitrary regression methods (e.g.,
neural network least squares, Gaussian processes), and the
experience-based policy π is learned through a model-
free approach (e.g., policy gradient Sutton et al. (2000)).
We assume the learned policy has the form π(a | s) =
N (µ(s),Σ(s)), where N is a normal distribution and µ(s),
Σ(s) are the mean and variance of the policy as a function
of state. Additionally, we define the default action in (4) as
the mean of the policy π and ignore uncertainty for the time
being‡, so adef(t) = µ(s(t)). To determine the form of â, let
us first calculate how sensitive the objective in (3) is at any τ
to switching from µ(s)→ â for an infinitely small λ§.

Lemma 1. Assume f , r, and µ are differentiable and
continuous in time. The sensitivity of the objective in (3) with
respect to the duration time λ of switching from µ(s) to â at
any time τ ∈ [0, tH ] is defined as

∂

∂λ
J (τ) = ρ(τ)>(f2 − f1)|τ (5)

where f1 = f(s(t), µ(s(t))), f2 = f(s(t), â(t)), and ρ(t) ∈
S is the adjoint variable. The adjoint variable is the the
solution to the the differential equation

ρ̇(t) = −∂r
∂s
−

(
∂f

∂s
+
∂µ

∂s

> ∂f

∂a

)>
ρ(t) (6)

with terminal condition ρ(tH) = 0. The derivative of the
objective in (3) with respect to time duration λ is also
known as the mode insertion gradient Axelsson et al. (2008);
Vasudevan et al. (2013).

Proof. First, we define the trajectory

s(tH) = s(0) +

∫ τ

0

f(s(t), µ(s(t)))dt

+

∫ τ+λ

τ

f(s(t), â(t))dt

+

∫ tH

τ+λ

f(s(t), µ(s(t)))dt

(7)

generated from a(t) =

{
â(t), if t ∈ [τ, τ + λ]

adef(t) otherwise
where

adef(t) = µ(s(t)). Next, we take the derivative of (3) with
respect to the time duration λ to get the expression

∂

∂λ
J =

∫ tH

τ+λ

∂r

∂s

> ∂s

∂λ
dt. (8)

‡We add the uncertainty into the hybrid problem in the stochastic derivation
of our approach for hybrid learning
§We avoid the problem of instability of the robotic system from switching
control strategies as later we develop and use the best action for all τ ∈
[0, tH ] instead of searching for a particular time when to switch.
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Using (7), we define the derivative of the state s with respect
to the time duration λ as

∂s(t)

∂λ
= f2 − f1 +

∫ t

τ+λ

(
∂f

∂s
+
∂µ

∂s

> ∂f

∂a

)>
∂s(σ)

∂λ
dσ

(9)
where σ is a placeholder for time under the integrand and
f1 = f(s(t), µ(s(t))) and f2 = f(s(t), â(t)) are boundary
terms from applying Leibniz’s rule. The derivative in (9) is

a linear convolution with initial condition
∂s

∂λ
(τ) = f2 − f1,

so we can rewrite (9) using a state-transition matrix as

∂s(t)

∂λ
= Φ(t, τ)(f2 − f1) (10)

where

Φ(t, τ) = exp

(∂f
∂s

+
∂µ

∂s

> ∂f

∂a

)>
(t− τ)

 . (11)

Plugging (10) into (8) and pulling the initial condition term
out from under the integrand gives

∂

∂λ
J (τ) = lim

λ→0

∫ tH

τ+λ

∂r

∂s

>
Φ(t, τ)dt (f2 − f1) . (12)

Taking the limit of (12) as λ→ 0 gives the instantaneous
sensitivity from switching from µ→ â at any time τ . We
define this sensitivity term as the adjoint variable

ρ(τ)> =

∫ tH

τ

∂r

∂s

>
Φ(t, τ)dt. (13)

Plugging the adjoint variable back into (12) gives the mode
insertion gradient

∂

∂λ
J (τ) = ρ(τ)> (f2 − f1) , (14)

where the adjoint can be rewritten as the differential equation

ρ̇(t) = −∂r
∂s
−

(
∂f

∂s
+
∂µ

∂s

> ∂f

∂a

)>
ρ(t) (15)

with terminal condition ρ(tH) = 0.

Lemma 1 gives us the proof and definition of the mode
insertion gradient (5). The mode insertion gradient tells us
the change in the objective function when switching from the
default policy behavior µ to some other arbitrarily defined
control â for a small time duration λ. The mode insertion
gradient can show how an arbitrary action changes task
performance relative to the learned policy. In this work, we
additionally use the mode insertion gradient as a method for
obtaining the best action the robot can take given the learned
predictive model of the dynamics and the task rewards. We
can take a direct approach by asking the following question:
Given a suboptimal policy π, what is the best action the
robot can take to maximize the objective in (3), at any time
t ∈ [0, tH ], subject to the uncertainty (or certainty) of the
policy defined by Σ(s)?

We approach this new sub-problem by specifying the
auxiliary optimization problem

a?(t) = arg max
â(t) ∀t∈[0,tH ]

∫ tH

0

∂

∂λ
J (t) + log π (â(t) | s(t)) dt.

(16)
This new problem maximizes the mode insertion gradient by
finding the action a? that results in the greatest change in
the objective. The problem also penalizes the action a? for
deviating from the policy when there is high confidence in
the policy from prior experience. The penalty is introduced
by the log π term .

Theorem 1. Assuming f , r, and π are continuous and
differentiable in s, a and t, the best possible action to
improve the performance of (3) and is a solution to (16) for
any time t ∈ [0, tH ] is

a?(t) = Σ(s(t))h(s(t))>ρ(t) + µ(s(t)) (17)

where the adjoint ρ(t) is defined in (6) and h(s) : Rn →
Rn×m is the affine mapping from actions to the dynamics.

Proof. The mode insertion gradient can be rewritten (5) as

∂J
∂λ

= ρ>
(
f(s, â)− f(s, µ(s)

)
= ρ>

(
g(s) + h(s)â− g(s)− h(s)µ(s)

)
= ρ>h(s)

(
â− µ(s)

)
(18)

where f(s, a) = g(s) + h(s)a, and we drop the dependency
on time for clarity. Inserting the mode insertion gradient into
(16), taking the derivative with respect to the point-wise â,
and setting the equation equal to zero gives

ρ>h(s) (â− µ(s))− Σ(s)−1 (â− µ(s)) = 0. (19)

Solving for â gives the best actions a?

a?(t) = Σ(s(t))h(s(t))>ρ(t) + µ(s(t)), (20)

which is the action that maximizes the mode insertion
gradient subject to the certainty of the policy π for all t ∈
[0, tH ].

The proof in Theorem 1 provides the best action a robotic
system can take given a default experience-based policy.
Each action generated uses the sensitivity of changing the
objective based on the predictive model’s behavior while
relying on the experience-based policy to regulate when the
model information will be useful. We convert the result in
Theorem 1 into our first algorithm, a deterministic approach
to hybrid learning (see Alg. 1).

With the proposed approach, we are able to numerically
determine the contribution of the learned predictive models
towards improving the task. We show (17) provides the best
possible action given the current belief of the dynamics f
and the task reward r. Next, we use the control Hamiltonian
to show we can find a local optima of the objective in (17).

¶Update step can also be done inside the for loop after enough samples have
been collected in D
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Algorithm 1 Hybrid Learning (Deterministic)

1: Randomly initialize continuous differentiable models f(s, a),
r(s, a) with parameters ψ and policy π(a | s) with parameter
θ. Initialize memory buffer D, prediction horizon parameter
tH , exploration noise ε.

2: while task not done do
3: reset environment and exploration noise ε
4: for i = 1, . . . , T do
5: observe state s(ti)

. simulation loop
6: for τi ∈ [ti, . . . , ti + tH ] do

. forward predict states using any
integration method (Euler shown)

7: s(τi+1) = s(τi) + f(s(τi), µ(s(τi)))dt
8: r(τi) = r(s(τi), µ(s(τi)))
9: end for

. backwards integrate
10: ρ(ti + tH) = 0
11: for τi ∈ [tH + ti, . . . , ti] do

12: ρ̇(t) = −∂r
∂s
−
(
∂f

∂s
+
∂µ

∂s

> ∂f

∂a

)>
ρ(t)

13: ρ(τi−1) = ρ(τi)− ρ̇(τi)dt
14: end for
15: a?(ti) = Σ(s(ti))h(s(ti))

>ρ(ti) + µ(s(ti)) + ε(t)
16: apply to robot
17: append data D ← {s(ti), a?(ti), rt, s(ti+1)}
18: end for

. Update model and policy¶

19: Update f, r by sampling N data points from D using
any regression method

20: Update π using any experience-based method
21: end while

Corollary 1. Assuming ∂
∂aH 6= 0 where H = r(s) +

log π(a | s) + ρ>f(s, a) is the control Hamiltonian for the
objective in (3), then ∂

∂λJ = ‖h(s)>ρ‖Σ(s) > 0 and is zero
when the policy satisfies the control Hamiltonian condition
∂
∂aH = 0.

Proof. Inserting (17) into (5) yields

∂J
∂λ

= ρ>
(
g(s) + h(s)

(
Σ(s)h(s)>ρ+ µ(s)

)
− g(s)− h(s)µ(s)

)
= ρ>h(s)Σ(s)h(s)>ρ

= ‖h(s)>ρ‖Σ(s) > 0. (21)

From Pontryagin’s Maximum principle, a solution is a local
optima of the objective function if it satisfies the following

∂

∂a
H = −Σ(s)−1 (a− µ(s)) + h(s)>ρ = 0 (22)

when a = Σ(s)h(s)>ρ+ µ(s) or ρ = 0. Therefore, if the
policy π is a solution, then the adjoint ρ = 0 and π must be a
solution to the optimal control problem (3).

Corollary 1 tells us the action defined in (17) generates the
best action to improve the performance of the robot given
valid learned models. Corollary 1 also states that if the policy
is already a solution, then our approach for hybrid learning
does not modify the known solution and simply returns the
policy’s action.

The preceding proofs have a strict requirement of
continuity and differentiability of the learned models and the
policy. As these constraints are not always possible and often
learned models have noisy derivatives, our goal is to try to
reformulate the objective in (3) into an equivalent problem
that can be solved without these strict assumptions. One
approach is to reformulate the problem in discrete time as an
expectation. This formulation is introduced in the following
section.

3.2 Stochastic Method
For the stochastic approach, we relax the continuity,
differentiability, and continuous-time restrictions specified
in the deterministic objective in (3) by first restating the
objective as an expectation

maxEv∼π(· | s) [J (v)] , (23)

where J (v) =
∑T−1
t=0 r(st) is subject to transition dynamics

st+1 = f(st, vt), and v = [v0, . . . vH−1] is a sequence of
H randomly generated actions from the experience-based
policy π. Rather than trying to find the best time τ and
discrete duration λ, we approach the problem from an hybrid
information theoretic view. In this framework, we want to
find the best actions to augment π and improve the objective.

We find the best augmented action by defining two
distributions P and Q. Distribution P is the uncontrolled
system response distribution,|| and distribution Q is the open-
loop control distribution. Distributions P and Q are described
by probability density functions

p(v) =
T−1∏
t=0

π (vt | st) (24)

and

q(v | a) =

T−1∏
t=0

exp
(
− 1

2 (vt − at)>Σ(st)
−1(vt − at)

)√
(2π)m|Σ(st)|

(25)
respectively, where q(v | a) uses the same variance Σ(s)
as the policy π(a | s) = N (µ(s),Σ(s)). The uncontrolled
distribution P represents the default predicted behavior of the
robotic system under the learned policy π. The open-loop
control distribution Q allows us to define a probability of
an augmented action, but more importantly, distribution Q
provides a free variable, which we will use to optimize the
learned models.

Following the work in Williams et al. (2017), we use
Jensen’s inequality and importance sampling on the free-
energy definition Theodorou and Todorov (2012) of the
control system using distribution Q to get the relationship

F(v) = − 1

γ
log (EP [exp (γJ (v))])

≤ − 1

γ
EQ

[
log

(
p(v)

q(v | a)
exp (γJ (v))

)]
(26)

‖We refer to uncontrolled as the unaugmented control response of the
robotic agent subject to a stochastic experience-based policy π.
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where γ ∈ R+ here is what is known as the inverse
temperature parameter. In (26), if p(v)

q(v | a) ∝ 1/ exp (γJ (v)),
then the inequality becomes a constant. Further reducing the
free-energy gives

F(v) ≤ −EQ

[
J (v)− 1

γ
log

(
p(v)

q(v | a)

)]
, (27)

which is the optimal control problem we want to solve plus
a bounding term. The bounding term keeps the augmented
actions close to the policy. By making the bound a constant,
we can use the free-energy formulation to solve the hybrid
control problem indirectly.

Now, we can define an optimal distribution Q? as a density
function

q?(v) =
1

η
exp (γJ (v)) p(v), (28)

where η =
∫

Ω
exp (γJ (v)) p(v)dv and Ω is the sample

space.** We can use the ratio p(v)
q?(v) ∝ 1/ exp (γJ (v)) to

make the free-energy a constant. However, we can not
directly sample from Q?. We want to generate a separate
set of actions at defined in q(v | a) to augment the policy
π given the learned model f , so our goal is to push q(v | a)
towards q?(v). As done in Williams et al. (2017, 2016), this
goal corresponds to the optimization

a? = arg min
a

DKL (Q? | Q) . (29)

This optimization minimizes the Kullback-Leibler diver-
gence of the optimal distribution Q? and the augmented
open-loop distribution Q.

Returning to our original problem of how to find the best
actions to augmented π and improve the objective in (23),
we now we want to construct a distribution to augment the
policy distribution p(v) and improve the objective.

Theorem 2. The recursive, sample-based, solution to (29)
is

a?t = at +
∑
k

ω(vkt )δakt (30)

where ω(v) =
exp (γJ (v)) p(v)∑
k exp (γJ (v)) p(v)

, k denotes the sample

index, and vt = at + δat.

Proof. Expanding the objective in (29), we can show

a? = arg min
a

EQ?

[
log

(
q?(v)

q(v | a)

)]
= arg min

a

∫
Ω

q?(v) log

(
q?(v)

p(v)

p(v)

q(v | a)

)
dv

= arg min
a

(∫
Ω

q?(v) log

(
q?(v)

p(v)

)
dv

−
∫

Ω

q?(v) log

(
q(v | a)

p(v)

)
dv

)

= arg max
a

∫
Ω

q?(v) log

(
q(v | a)

p(v)

)
dv. (31)

Defining the policy π(vt|st) = N (µ(st),Σ(st)) as normally
distributed, we can show

q(v | a)

p(v)
∝ exp

(∑
t

(
− 1

2
(vt − at)>Σ−1(vt − at)

+
1

2
(vt − µ(st))

>Σ−1(vt − µ(st))
))

= exp

(∑
t

(
− 1

2
a>t Σ−1at + a>t Σ−1vt

+
1

2
µ(st)

>Σ−1(µ(st)− 2vt)
))

(32)

where Σ = Σ(s) is used for clarity. Plugging this expression
into (31) gives

a? = arg max
a

(∑
t

(
− 1

2
a>t Σ−1at

+ a>t

∫
Ω

q?(v)Σ−1vtdv

+
1

2
µ(st)

>
∫

Ω

q?(v)Σ−1(µ(st)− 2vt)dv
))

. (33)

We can solve (33) for at at each time by setting the derivative
with respect to at equal to zero. Thus, we get the optimal
solution

a?t =

∫
Ω

q?(v)vtdv. (34)

The expression q?(v) ∝ exp (γJ (v)) p(v) allows us to
rewrite (34) as

a?t =

∫
Ω

q?(v)vtdv

=

∫
Ω

1

η
exp (γJ (v)) p(v)vtdv

= EP

[
1

η
exp (γJ (v)) vt

]
, (35)

where η =
∫

Ω
exp (γJ (v)) p(v)dv. Using the change of

variable vt = at + δat, we get the recursive, sample-based
solution

a?t = at +
∑
k

ω(vkt )δakt (36)

where

ω(v) =
exp (γJ (v)) p(v)∑
k exp (γJ (v)) p(v)

. (37)

With the stochastic formulation, we can generate samples
from the stochastic policy and evaluate its utility based on
the current belief of the dynamics and the reward function.
Because samples directly depend on the likelihood of the
policy, any actions deviating too far from the policy will be
penalized proportional to the confidence of the policy. The
inverse is also true—when the policy has low confidence

∗∗Similar to the mode insertion gradient from the deterministic approach,
the optimal density function can be used to determine how much the policy
π needs to be augmented to maximize the objective.
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(high variance), the sample span will increase and the model-
based information will have higher weight. Additionally,
we do not have to place continuity and differentiability
constraints on the learned models and can utilize arbitrarily
complex models in this algorithm. We outline the stochastic
algorithm for hybrid learning Alg. 2.

Algorithm 2 Hybrid Learning (Stochastic)

1: Randomly initialize continuous differentiable models f(s, a),
r(s, a) with parameters ψ and policy π(a | s) with parameter
θ. Initialize memory bufferD, prediction horizon parameterH ,
sample size parameter K, inverse temperature parameter γ.

2: while task not done do
3: reset environment
4: for t = 1, . . . , T − 1 do
5: observe state st

. simulation loop
6: for k ∈ {0, . . . ,K − 1} do
7: for τ ∈ {0, . . . , H − 1} do
8: vkτ ∼ π(· | skτ )

. forward predict state and reward
9: skτ+1, r

k
τ = f(skτ , v

k
τ ), r(skτ , v

k
τ )

10: jkτ = rkτ
11: end for
12: end for

. update actions
13: for τ ∈ {0, . . . , T − 1} do
14: J (vkτ )←

∑T−1
t=τ j

k
t

15: δakτ ← vkτ − aτ

16: ω(vkτ )←
exp

(
γJ (vkτ )

)
p(vkτ )∑

k exp (γJ (vkτ )) p(vkτ )

17: aτ ← aτ +
∑K−1
k=0 ω(vkτ )δakτ

18: end for
19: apply a0 to robot
20: append data D ← {st, a0, rt, st+1}
21: end for

. Update model and policy††

22: Update f, r by sampling N data points from D using any
regression method

23: Update π using any experience-based method
24: end while

3.3 Imitation Learning

One limitation of reinforcement learning approaches is the
large amount of data required for training—even for sample-
efficient methods. Both the deterministic and stochastic
hybrid learning approaches could be improved by being
provided with informative, expert demonstrations of the
task. Therefore, we extend our method to use expert
demonstrations as experience. Imitation learning Argall et al.
(2009); Ross and Bagnell (2010) focuses on using expert
demonstrations to either mimic a task or to initialize learning
complex data-intensive tasks. We use imitation learning,
specifically behavior cloning, as an initialization for how
a robot should accomplish a task. Hybrid learning as
described in Section 3.1 and 3.2 is then used as a method
to embed model-based information to compensate for the
uncertainty in the learned policy, improving the overall
performance through planning. We outline the algorithmic
implementation hybrid learning with behavior cloning in
Appendix C.

4 Experiments
This section compares the previously described methodology
to state of the art model-based and model-free methods. First,
we evaluate our deterministic and stochastic variations on a
range of simulated benchmark control tasks from OpenAI
Gym Brockman et al. (2016). Then, we extend the evaluation
of our stochastic method to the real-world with a robotic arm
manipulation experiment. Finally, we present two behavior
cloning experiments; one experiment uses an OpenAI Gym
environment, and the other demonstrates a real-world pick-
and-place experiment with a robotic arm. All implementation
details are included in Appendix B. Each experiment shown
in this section was trained on ten different random seeds.
Unless otherwise stated, the solid curves in the following
figures correspond to the mean, and the shaded regions
correspond to the standard deviation over the ten trials.‡‡

4.1 Simulated Benchmarks
We evaluate our approach on a subset of environments
from the OpenAI Gym benchmarks Brockman et al. (2016).
Specifically we look at the cartpole swingup environment,
the Acrobot swingup environment, the hopper environment,
and the half-cheetah environment, which are described in
more detail in Appendix B. We evaluate our proposed
approach on common RL benchmarks to verify our measure
for model and policy alignment. In particular, the goal is
to show that our method 1) is more sample efficient, 2)
obtains higher rewards than the comparison methods even
though it is a model-based RL method, and 3) improves
the performance of the individual model and policy that are
being learned over time.

Deterministic Results: We compare our hybrid learn-
ing approach to model-based method in Ansari and Mur-
phey (2016) and model-free method (Soft Actor-Critic)
in Haarnoja et al. (2018b). While model-free methods have
exploration naturally encoded in their formulation, the deter-
ministic model-based and hybrid learning approaches require
added exploration noise to induce exploring other regions of
state-space. Fig. 1 summarizes our deterministic benchmark
results. The top row shows snapshots of each Gym environ-
ment. The middle row shows that our method outperforms
both the model-based and model-free method for all four
tested environments. Our hybrid learning approach uses the
confidence bounds generated by the stochastic policy to infer
when best to rely on the policy or predictive models. As
a result, hybrid learning enables learning in unstructured
environments comparable to model-free methods with the
sample-efficiency of model-based learning approaches. For
the swingup tasks, the model-based method learns the task
but converges to a less optimal policy than our hybrid
approach. For the locomotion tasks, the model-based method
suffers from its inability to model discontinuous dynamics.

The bottom row shows the mode insertion gradient for
the hybrid learning method for each environment. The
mode insertion gradient can be interpreted as a measure of

††Update step can also be done inside the for loop after enough samples
have been collected in D
‡‡For our results and code please visit https://github.com/
MurpheyLab/HybridLearning.
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Figure 1. Performance curves of our proposed deterministic hybrid learning algorithm on multiple environments during training (averaged over 10
random seeds). All methods use the same structured learning models. Our method is shown to improve the model-based benchmark results (due to
the use of experience-based methods) while maintaining significant improvements on the number of interactions necessary with the environment to
obtain those results. The mode insertion gradient is also shown for each example which illustrates the model-policy agreement over time. Note:
Markers are included for distinguishing between methods only and do not represent all data points.
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Figure 2. Performance curves of our proposed stochastic hybrid learning algorithm on multiple environments during training (averaged over 10
random seeds). Our approach improves both the sample-efficiency and the highest expected reward. Note: Markers are included for distinguishing
between methods only and do not represent all data points.

agreement between the policy and the learned model. The
swingup examples show an eventual reduction in the mode
insertion gradient. We interpret this as the convergence of
the learned model and policy. The locomotion examples
do not converge in the number of environment interactions
observed. The lack of convergence indicates that the learning
process has not yet stabilized, which is consistent with the
episode rewards learning curves (in the middle row).

Stochastic Results: We next compare the stochastic
formulation of hybrid learning to a stochastic neural-network
model-based controller (NN-MPPI) Williams et al. (2017)
and the same model-free controller as the deterministic
formulation (SAC) Haarnoja et al. (2018b). The goal of
these experiments is to show that this hybrid learning
formulation still outperforms these state of the art learning

techniques without imposing continuity and differentiability
requirements. Fig. 2 summarizes our stochastic benchmark
results. The model-free parameters are held constant
from the deterministic results to remove any impact of
hyperparameter tuning. Fig. 2 shows that for both swingup
tasks, the stochastic formulation outperforms the model-free
method but performs similarly to the improved model-based
method. Even with the improved model-based method, the
model-based method converges to a less optimal policy for
the Acrobot than our hybrid approach. For the locomotion
tasks, our stochastic formulation maintains the improved
performance and sample-efficiency over the model-based
method and the model-free method. Exploration is naturally
encoded into the stochastic algorithm, which results in more
stable learning when there is uncertainty in the task.
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Figure 3. Comparison of final model-based and model-free policies for both deterministic and stochastic methods. For the hybrid learning method,
we show the final model-only and policy-only results separately as well as in combination. Each boxplot displays the results of 100 tests (10 seeds,
10 episodes each). The interquartile region (IQR) contains 50% of the data (from Q1 to Q3) and is shown as a filled box with notches at the median.
The whiskers span [Q1 - 1.5×IQR, Q3 + 1.5×IQR]. Any data points falling outside the whiskers are designated as outliers and are shown as
unfilled circles. The means are shown as white circles. For all methods, the hybrid policy-only and full hybrid learning outperform all other methods.
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Figure 4. Comparison of model and policy evolution during stochastic
hybrid learning. Episode rewards and environment interactions have
been normalized to allow comparisons between different environments.
For the swingup tasks, both the models and policies quickly learn the
task. For the locomotion tasks, models also learn over the course of
training, but the policies learn at a faster rate. These plots show that the
hybrid learning approach pushes performance of both the model and
the policy. Note: Markers are included for distinguishing between
methods only and do not represent all data points.

Although we no longer have a mode insertion gradient for
the stochastic method, we can analyze the individual learned
model and policy obtained from hybrid learning. In Fig. 4,
both the environment interactions and episode rewards are
normalized to allow comparisons between the different
environments. For all environments, hybrid learning is shown
to improve the learning capabilities of both the learned
predictive model and the policy through the hybrid control
approach. The policy is “filtered” through the learned model
and augmented, allowing the robotic system to be guided by
both the prediction and experience. Thus, both the predictive
model and the policy benefit, ultimately performing better
as a standalone approach using hybrid learning. Fig. 4 shows
that for different tasks, the model and policy learn at different
rates, but both evolve over time with our hybrid learning
approach.

Comparisons: We can compare learned models and
policies at 50,000 steps for both the deterministic and
stochastic implementations. Fig. 3 shows 10 tests of each
final model-based, model-free, and hybrid learning method.

In addition to the full hybrid method, we show the individual
model-based and model-free policies trained during hybrid
learning as “Hybrid Learning Model-Only” and “Hybrid
Learning Policy-Only” respectively. In addition to having
greater performance with the full implementation of hybrid
learning, our approach tends to push the performance of
both the model and policy. For the swingup tasks, the
model-based method outperformed the hybrid model only
evaluation, but both the full hybrid learning and hybrid
policy only evaluations outperform all other methods.
This result indicates that the hybrid learning approach
does not require model improvements once it has learned
a “good enough” model. For the locomotion tasks,
the deterministic policy-only hybrid learning on average
outperforms the deterministic full hybrid learning approach.
For the stochastic method, the results are reversed with the
full hybrid learning approach outperforming the policy-only
approach. These results indicate that if the goal is to produce
animations in simulation, the policy-only controller is likely
sufficient to control the simulation. If the goal is to control
real-world systems with uncertainty, maintaining the full
hybrid controller allows continued benefit from the learned
predictive model and experience-based policy.

4.2 Robot Learning from Experience
Next, we apply hybrid learning to an experiment with a
Sawyer robot to validate hybrid learning for real robot tasks.
For this experiment, the goal is for the robot to access a block
surrounded by clutter. The true positions of the “clutter”
blocks and the “target” block are unknown to the robot. The
robot’s state is comprised of vectors from the robot’s end-
effector to each block. The “target” block is always placed in
the same start location, but the “clutter” blocks are randomly
placed around the “target” block. The robot is rewarded for
pushing the “clutter” blocks out of the way and accessing the
“target” block (see Fig. 5 for task illustration).

What makes this task difficult is that the robot must
learn to push the “clutter” blocks out of the way rather
than directly reaching towards the “target” block. Since our
method naturally relies on the predictive models when the
policy is uncertain, the robot is able to plan through the
clutter to achieve the task. Fig. 5 shows that our proposed
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Figure 5. Hybrid learning results on the Sawyer robot (averaged over 10 trials). The time series on the right provides a visualization of the task.
The task is to access a target block (shown in green) surrounded by clutter (five other blocks) through environment interactions. Our stochastic
hybrid learning method is able to achieve the task by effectively using both predictive models and experience-based methods. For additional
visualization, see Extension 1. Note: Markers are included for distinguishing between methods only and do not represent all data points.
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Figure 6. Hybrid learning with behavior cloning results on the Franka panda robot (averaged over 5 trials). The time series on the right provides a
visualization of the task. The task is to stack a block on top of another using expert demonstrations. Our method is able to learn the block stacking
task within three expert demonstrations and provides solutions that are more repeatable than with behavior cloning. For additional visualization, see
Extension 1. Note: Markers are included for distinguishing between methods only and do not represent all data points.
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Figure 7. Results for hybrid stochastic control with behavior cloned
policies (averaged over 10 trials) using the Ant Pybullet environment
(shown right). Expert demonstrations (actions executed by an expert
policy on the ant robot) are used as experience to boot-strap a learned
stochastic policy (behavior cloning) in addition to predictive models
which encode the dynamics and the underlying task of the ant. Our
method is able to adapt the expert experience to the predictive models,
improving the performance of behavior cloning and performing as well
as the expert. Note: Markers are included for distinguishing between
methods only and do not represent all data points.

hybrid learning approach out performs both the model-based
and model-free methods. During testing, we observed that
the model-based approach tries to directly “reach” for the
block without first clearing the clutter, which often results
in pushing the target block outside workspace. Although
the model-free method rarely pushes the block outside
the workspace, it takes significantly longer for the model-
free method to discover the pushing dynamics. Our hybrid
approach learns to push the clutter blocks out of the way
before accessing the target block. These tactics can also be
viewed in Extension 1.

4.3 Behavior Cloning
The final set of experiments illustrates our algorithm
with imitation learning. For both experiments, expert
demonstrations are used to generate the experience-based
policy through behavior cloning and the learned predictive
models adapt to the uncertainty in the policy.

Simulated Benchmark Results: We test hybrid imitation
on the 3D Pybullet Ant environment Coumans and Bai
(2016). The goal is for the four legged ant to run as far as
it can to the right (from the viewer’s perspective) within the
allotted time. At each iteration, we provide the agent with
an expert demonstration generated from a Proximal Policy
Optimization (PPO) Schulman et al. (2017) solution. Each
demonstration is used to construct a predictive model as
well as a policy (through behavior cloning). The stochastic
hybrid learning approach is used to plan and test the robot’s
performance in the environment. Environment experience is
then used to update the predictive models while the expert
demonstrations are solely used to update the policy.

In Fig. 7, we compare hybrid learning against behavior
cloning. Our method is able to achieve the task at the
level of the expert within six (200 step) demonstrations,
where the behavior cloned policy is unable to achieve the
expert performance. Interestingly, the ant environment is less
susceptible to the covariate shift problem (where the state
distribution generated by the expert policy does not match
the distribution of states generated by the imitated policy
Ross and Bagnell (2010)), which is common in behavior
cloning. This suggests that the ant experiences a significantly
large distribution of states during the expert demonstration.
However, the resulting performance for the behavior cloning
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Figure 8. Comparison to related work combining model-based and model-free methods (averaged over 10 random seeds). Our approach
improves both the sample-efficiency and the highest expected reward. Additional details and pairwise comparisons are included in Appendix D.
Note: Markers are included for distinguishing between methods only and do not represent all data points.

is worse than that of the expert. Our approach is able
to achieve similar performance as behavior cloning with
roughly two fewer demonstrations and performs just as well
as the expert demonstrations.

Robot Learning from Examples Results: We also test
our approach on a pick-and-place experiment with the
Franka Panda robot. The real hardware system is more
likely to have the covariate shift problem. The goal for the
robot is to learn how to stack one block on top of another
block using demonstrations (see Fig. 6). As with the ant
simulated example in Fig. 7, a demonstration is provided at
each attempt at the task and is used to update the learned
models. Experience obtained in the environment is solely
used to update the predictive models. We use a total of ten
precollected demonstrations of the block stacking example
(given one at a time to the behavior cloning algorithm before
testing). At each testing time, the robot arm is initialized at
the same spot over the initial block. Since the demonstrations
vary around the arm’s initial position, any state drift is a
result of the generated imitated actions and will result in the
covariate shift problem leading to poor performance.

Fig. 6 shows our approach is capable of learning the
task in as little as two demonstrations where behavior
cloning suffers from poor performance. Since our approach
synthesizes actions when the policy is uncertain, the robot
is able to interpolate between regions where the expert
demonstration was lacking, enabling the robot to achieve the
task.

5 Related Work
Our hybrid learning approach is able to leverage both
the model and the policy during both training and real
time operation. This is a major difference between our
approach and other reinforcement learning methods which
combine model-based and model-free approaches. Many of
the approaches in related work only use the model to help the
model-free policy learn better, but do not have any use for the
model once the model-free policy training is complete.

Model-Based Value Expansion (MVE) Feinberg
et al. (2018), Stochastic Ensemble Value Expansion
(STEVE) Buckman et al. (2018), and Model Based Policy
Optimization (MBPO) Janner et al. (2019) use only the
model-free policy to interact with the environment both

during training and after training. The model is learned
offline using data accumulated by the model-free policy, but
there is no model-based controller associated with the model.
Instead, the policy is used to “imagine” future transitions
in the model-based environment for short rollouts. These
model rollouts are used during the update step to augment
Q-learning (for MVE and STEVE) or the policy directly (for
MBPO).

Guided Policy Search (GPS) Montgomery and Levine
(2016) takes a different approach by using a model-based
controller to interact with the environment. Each iteration,
GPS fits a dynamics model to the most recently collected
data, and then uses these models to constrain the policy
updates. In this algorithm, only the model-based controller
interacts with the environment during training, and the goal
is to train a policy which can be used without the model after
training.

Model-based learning with model-free fine-tuning (MB-
MF) Nagabandi et al. (2018) takes another approach. First,
a model-based random shooting controller is used to learn
a coarse-grained representation of the dynamics. Then, the
learned dynamics are transferred to a model-free method via
data aggregation. Finally, the model-free policy is fine tuned
through interactions with the environment. Both the model-
based controller and the model-free policy interact with the
environment, but they do so sequentially—during any given
trial, only one of them plays a role. Although the model is no
longer needed once the model-free policy is trained, the idea
with this algorithm is that the model could be reused to learn
another task with the same agent without needing to relearn
a model, similar to the method we present here.

In Fig. 8, we tested the stochastic hybrid learning
algorithm and other methods which combine model-based
and model-free learning. Details of the comparison methods
can be found in Appendix D. The results show that the
methods we present here outperform these related methods.
In addition to the learning gains, the hybrid learning
controller presented here maintains both the model and the
policy after training. This may provide benefits during future
controller execution—if the hybrid learning trained policy
encounters an untested state during operation, it will have
the model-based controller to fall back on to compensate for
this uncertainty.
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6 Conclusion

In this work, we present hybrid learning as a method for
formally combining model-based learning with experience-
based policy learning based on hybrid control theory. Our
approach derives the best action a robotic agent can take
given the learned models, both model-free and model-based.
We tested our approach in various simulated and real-world
environments using a variety of learning conditions and show
that our method improves both the sample-efficiency and the
resulting performance of learning motor skills.

Future directions of this work will focus on testing
real world applications of hybrid learning. Our robot arm
experiments demonstrated the ability of agents to learn
online in a relatively simple physical test environment. In
our Sawyer testing, the state was simplified to include the
locations of each object relative to the end-effector. Future
work could represent the state as an image and extend
hybrid learning to visuo-motor tasks. Or the state could
be expanded to include additional sensors such as contact
sensors, accelerometers, etc. Our hybrid learning framework
will enable extensive hardware testing–due to its real-time
implementation–to determine how learning performance
changes when adding new sensors into the state space and
when modifying reward functions.

Key considerations for real world testing are safety, time,
and memory. Future work will explore methods of imposing
safety constraints during operation. The time required to
determine the next candidate action is dependent on the
prediction horizon, the network sizes, and the number of
candidate samples (for stochastic hybrid learning). As these
variables increase, parallel processing will eventually be
necessary.

Currently, exploration is done through random sampling.
Future work will explore methods of incorporating
exploration goals into the algorithm. As the state space
grows, random sampling may no longer be sufficient to span
the state space. Alternate forms of exploration could help
reduce the number of candidate samples required and reduce
computation time.

As computation and memory allow, particularly if parallel
processing has been introduced for other reasons, it would be
useful to explore model-based control using ensembles. One
potential approach could train an ensemble of models and
use the model uncertainty to determine which model-based
controller to fall back on when the policy is uncertain. In
general, bringing the robustness benefits of techniques such
as path integral control Williams et al. (2018) to our method
can only improve its overall performance, but there may be
many approaches that would all be equally viable.
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A Index to Multimedia Extension

Extension Media Type Description

1 Video Overview of contributions
and visualization of real-
world robot experiments.

B Implementation Details
General Implementation Details: All simulated exam-

ples use the reward functions specified in the Pybul-
let Coumans and Bai (2016), Roboschool OpenAI (2017),
or MuJoCo environments Todorov et al. (2012) unless other-
wise specified. Table 1 provides a list of all hyperparameters
used for each environment tested. Any parameter not explic-
itly mentioned as deterministic or stochastic formulations of
hybrid learning are equivalent.

The goal for both the cartpole swingup environment
and the Acrobot swingup environment is to swing the
pendulum up to the vertical position. We refer to both of
these examples as “swingup tasks”. We chose these tasks
to demonstrate the performance capabilities of the model-
based method. Pendulum swingup tasks are well understood,
low dimension, underactuated control problems for which
we anticipated the model-based method would out-perform
the model-free method. Given enough samples, the model-
free method should also be able to learn these tasks, but
the model-free method would require many more samples
to learn the task.

The goal for both the hopper environment and the half
cheetah environments is to learn a gait to move forward in
a 2D environment as quickly as possible. We refer to both
of these examples as “locomotion tasks”. We chose the two
locomotion tasks to demonstrate the advantages of model-
free methods. Model-free methods have been used to learn
control tasks in high-dimensional spaces, so we anticipated
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Environment Simulator H T K λ Policy Dim Learning Rate

Cartpole Swingup Roboschool 5 1000 60 0.1 128 0.003
Acrobot Swingup Gym 5 500 20 0.1 128 0.003

Hopper MuJoCo 5 1000 60 0.2 128 0.003
Half-Cheetah MuJoCo 10 1000 60 0.2 128 0.003

Sawyer n/a 10 200 40 0.1 128× 128 0.0003
Ant Pybullet 20 400 40 1.0 128× 64 0.01

Franka Panda n/a 40 200 40 1.0 32× 24 0.01

Table 1. Parameters for all examples used in the paper (only when applicable). Each example using the deterministic formulation of hybrid
learning (Alg. 1) uses added action exploration of the form ε = 0.999t where t is the total number of environment interactions.

the model-free method would out-perform the model-based
methods for the locomotion tasks.

Models: For each deterministic simulated benchmark
example, we use a deterministic model-predictive con-
troller Ansari and Murphey (2016) for the model-based
method. For all other experiments, we use a neural-network
based implementation of model-predictive path integral for
reinforcement learning Williams et al. (2017) for our model-
based method.

For all model-based and hybrid learning simulated
examples, the dynamics are represented by st+1 = st +
f(st, at), where f(st, at) = W2 σ(W1[st, at] + b1) + b2.
The transition function f(st, at) is modeled as a single layer
neural network with 128 hidden nodes. For all tasks, we use
the rectifying linear unit (RELU) nonlinearity (also listed
in Table 1). W1 ∈ R200×(n+m), W2 ∈ Rn×200, b1 ∈ R200,
b2 ∈ Rn are learned parameters.

The reward function is modeled as a two layer network
with 200 hidden nodes and the RELU activation function.
Both the reward function and dynamics model are optimized
using Adam Kingma and Ba (2014) with learning rates
specified in Table 1. The model is regularized using the
negative log-loss of a normal distribution where the variance,
Σmodel ∈ Rn×n, is a hyperparameter that is simultaneously
learned based on experience. The predicted reward utility is
improved by the error between the predicted target and target
reward equal to L = ‖rt + 0.95 r(st+1, at+1)− r(st, at)‖2.
The structure of this loss function is similar to temporal-
difference learning Boyan (1999); Precup et al. (2001).
The inclusion of the reward term from the next state and
next action helps the algorithm learn in environments with
rewards that do not strictly depend on the current state, as is
the case with some MuJoCo locomotion examples. A batch
size of 128 samples are taken from the data buffer D for
training.

Policy: For the model-free and hybrid learning examples,
we use Soft Actor-Critic (SAC) to update our model-free
policy. We use the hyperparameters for SAC specified by
the shared parameters in Haarnoja et al. (2018b) including
the structure of the soft Q functions and automatic gradient-
based temperature tuning method and excluding the batch
size and policy. Instead, we match the batch size of
128 samples used with model learning and use a simpler
policy representation. Our policy is parameterized by a
normal distribution with a mean function defined as a
single layer network with the RELU nonlinearity and 128
hidden nodes. The diagonal of the variance is also specified

using a single layer network with 128 hidden nodes and
the RELU nonlinearity. The parameters for SAC are held
constant across all experiments to remove any impact of
hyperparameter tuning.

The ant and Franka robot examples with behavior cloning
use the policy structure defined in Table 1. The policy is
structured similarly to the parameterization mentioned in
the simulated benchmarks above. The negative log loss of
the normal distribution is used for behavior cloning expert
demonstrations with a learning rate of 0.01 for each method.

Reward Function: We modified the Gym Acrobot
environment Brockman et al. (2016) to test in the continuous
space and updated the reward function to include a
dependency on the action and the state. The reward function
is defined as

r = −0.001a2 − cos(θ1)− cos(θ1 + θ2)

where a, θ1, θ2 are the control, the shoulder joint angle, and
the (relative) elbow joint angle respectively.

Robot Experiments: In all robot experiments, a camera
is used to identify the location of objects in the environment
using landmark tags and color image processing.

For the Sawyer robot example, the robot has no knowledge
of the physical properties of the blocks (including size,
weight, and material) or the true location of objects in the
world. The state is comprised of the position of each of
the six blocks in the workspace relative to the robot’s end-
effector. The “target block” is always the a fixed location
in the state vector, but the five “clutter” blocks are sorted
from closest to furthest from the end-effector to enable
generalization. Without this sorting, the experimenter would
also need to shuffle the “clutter” blocks around the “target”
block, which would extend the testing duration. The action
space is the robot’s end-effector velocity. The reward is
defined as

r(s, a) = −‖pee2t‖ − ‖pδt‖ − 0.01‖a‖2

where pee2t, pδt, and a are the pose of the target block relative
to the end-effector, the change in target block position
relative to the prior time step, and the control respectively.
Each trial can be a maximum of 200 steps, but due to physical
workspace constraints, we terminate the episode if the robot
pushes the target block outside of the workspace. To account
for this early termination, we post-processed the data to
add a penalty proportional to the number of episode steps
remaining when the block was pushed out of reach.
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For the Franka robot, the state is defined as the end-
effector position, the block position, and the gripper state
(open or closed) as well as the measured wrench at the end-
effector. The action space is defined as the commanded end-
effector velocity. The reward function is defined as

r(s, a) = rstage(s)− 1.0e−6 (‖Fee‖+ ‖a‖)

where

rstage(s) =

{
−1.25‖pee − pstack‖, if grasped block
−‖pee − pblock‖, if not grasped block

denotes the stage at which the Franka is in at the block
stacking task, where pee, pblock, pstack, Fee, and a denote the
end-effector pose, the block pose, the target stacking
position, the measured wrench at the end-effector, and the
control respectively.

C Hybrid Learning with Behavior Cloning
In this section, we extend to our hybrid learning approach to
use expert demonstrations as experience. We use imitation
learning, specifically behavior cloning, as an initialization
for how a robot should accomplish a task. This approach
wraps around either the deterministic and stochastic hybrid
learning approaches presented in Section 3. We outline the
algorithmic implementation hybrid learning with behavior
cloning in Alg. 3.

Algorithm 3 Hybrid Learning with Behavior Cloning

1: Randomly initialize continuous differentiable models f(s, a),
r(s, a) with parameters ψ and policy π(a | s) with parameter
θ. Initialize memory buffer D and expert data buffer Dexp,
observation horizon parameter T .

2: while task not done do
. get expert demonstrations

3: for t = 0, . . . , T − 1 do
4: observe state st, expert action at
5: observe st+1, rt from environment
6: Dexp ← {st, at, rt, st+1}
7: D ← {st, at, rt, st+1}
8: end for

. update models using data
9: update ψ using D any regression method

10: update θ using Dexp with behavior cloning
. test in environment

11: for t = 0, . . . , T − 1 do
12: observe state st
13: get action at Alg. 1 or 2
14: observe st+1, rt from environment
15: D ← {st, at, rt, st+1}
16: end for
17: if task not done, continue
18: end while

D Related Work Implementation Details
This section details the modifications made to related
work implementations to compare to the hybrid results
presented in this paper. Table 3 provides a lists the general
hyperparameters used for each related work algorithm tested.
Hyperparameters specific to each algorithms are specified
below. Several algorithms assumed access to or learned a

termination function. For these comparisons, we excluded
the termination function from all implementations. Many of
the comparison methods required pretraining their models,
so we added 1000 steps of pretraining with random actions to
our stochastic hybrid learning algorithm. We also increased
the size of our neural network model to 2 layers for these
comparisons. Each comparison algorithm is described below.

Model-Based Value Expansion (MVE) : MVE uses only
the model-free policy to interact with the environment.
Experience is used to fit a dynamics model. During each
update, the model is used to imagine future transitions
for rollouts of fixed short duration horizons (H). These
imagined transitions are incorporated into the Q-value target
estimation (critic) update. The original implementation only
learned a dynamics transition function and assumed access
to a reward function and a termination function Feinberg
et al. (2018). We removed the termination function and added
a learned reward function. Fig. 9 shows the performance
curves for hybrid learning and MVE.
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Figure 9. Pairwise comparison between our method and MVE. These
are the same results presented in Fig. 8. Note: Markers are included for
distinguishing between methods only and do not represent all data
points.

Hyperparameter Value

explore chance 0.05
model updates per epoch 1000
policy updates per epoch 1000
environment steps per epoch 250

Table 2. MVE specific hyperparameters.

Stochastic Ensemble Value Expansion (STEVE) :
STEVE builds on MVE by performing rollouts on all horizon
lengths between 0 and H. This algorithm additionally adds
the ability to learn an ensemble of models. The original
implementation learned a dynamics transition function, a
reward function, and a termination function Buckman et al.
(2018). We removed the termination function and tested only
a single model for these comparisons. Fig. 10 shows the
performance curves for hybrid learning and STEVE.

Model-Based Policy Optimization (MBPO) : MBPO
optimizes a policy under a learned model Janner et al.
(2019). Similar to MVE and STEVE, only the policy
interacts with the environment and collects data. The
original implementation assumed the termination function
was known and used an ensemble of dynamics models.
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Algorithm Pretrain H Model-Free Method Model Dim Policy Dim Learning Rate

MVE 1000 3 DDPG 200× 200 128 0.003
STEVE 1000 3 DDPG 200× 200 128 0.003
MBPO 1000 3 SAC 200× 200 128 0.003
GPS n/a n/a n/a n/a (GMM) 128 0.003

MB-MF 1000 3 PPO, TRPO 200× 200 128 0.003

Table 3. Parameters for related work comparisons (when applicable).
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Figure 10. Pairwise comparison between our method and STEVE.
These are the same results presented in Fig. 8. Note: Markers are
included for distinguishing between methods only and do not represent
all data points.

Hyperparameter Value

ensemble size 1
explore chance 0.05
model updates per epoch 1000
policy updates per epoch 1000
environment steps per epoch 250

Table 4. STEVE specific hyperparameters.

Additionally, the original implementation used all data
collected from the environment to train the models during
each update model update iteration. We removed the
termination function and tested only a single model for these
comparisons. We also used a subset of the collected data for
model updates. Fig. 11 shows the performance curves for
hybrid learning and MBPO.
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Figure 11. Pairwise comparison between our method and MBPO.
These are the same results presented in Fig. 8. Note: Markers are
included for distinguishing between methods only and do not represent
all data points.

Hyperparameter Value

ensemble size 1
model train frequency 250
model train batch size 10,000
model rollouts per policy update 20
policy updates per epoch 20,000
environment steps per epoch 1000

Table 5. MBPO specific hyperparameters.

Guided Policy Search (GPS) : GPS interacts with the
environment via the model-based controller rather than
the model-free policy. The dynamics are modeled to be
Gaussian-linear time varying and the reward function is
assumed to be known. The dynamics are modeled as a
Gaussian mixture model (GMM), and the algorithm assumes
the reward function is known. The policy is trained via
behavior cloning with constraints preventing the policy
updates from deviating too far from the last implemented
trajectory. The original implementations of GPS often used
shorter horizon tasks than the full gym benchmarks, but we
used the original length episodes for comparison purposes.
We used the Mirror Descent variant of Guided Policy
Search (MD-GPS) Montgomery and Levine (2016). Another
difference between this simulation and the others is that it
cannot handle true early termination due to the time varying
controller. The gym hopper environment “ends” when the
hopper falls out of a desired configuration. For GPS testing
of the gym hopper environment, the “done” output is ignored
and instead the “alive bonus” (typically one in the gym
environment) is toggled to zero when done is called by the
simulator. Fig. 12 shows the performance curves for hybrid
learning and GPS.
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Figure 12. Pairwise comparison between our method and GPS.
These are the same results presented in Fig. 8. Note: Markers are
included for distinguishing between methods only and do not represent
all data points.
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Hyperparameter Value

timesteps per iteration 5000
kl step 1
dynamics GMM clusters 20
policy GMM clusters 20

Table 6. GPS specific hyperparameters.

Mode-Free Model-Based (MB-MF) : MB-MF uses a
multi-stage approach Nagabandi et al. (2018). First, a
controller is learned using a random shooting method. Then
the controller is transferred to a model-free policy using
data aggregation. Finally, the policy is fine-tuned using a
model-free method. The original method presented in the
paper was able to fully observe all environment states, but
the version implemented here only had access to the default
gym environment (partially observable) state. Fig. 13 shows
the performance curves for hybrid learning and MB-MF.
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Figure 13. Pairwise comparison between our method and MB-MF.
These are the same results presented in Fig. 8. Note: Markers are
included for distinguishing between methods only and do not represent
all data points.

Hyperparameter Value

search population size 1000
timesteps per epoch 1000
model based timesteps 10,000
data aggregation epochs 100
data aggregation iterations 7

Table 7. MB-MF specific hyperparameters.
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