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Abstract—International Mobile Subscriber Identity (IMSI)
sharing based aggregated communication aims to connect mul-
tiple Internet of Things (IoT) devices to the mobile operator’s
core network over the same subscriber line. IoT devices with
low data rates and long data sending intervals are first grouped
together and assigned the same subscriber identity. They then
take turns to perform their data exchanges using the same
cellular connection, yielding huge saving in resource (e.g., number
of active bearers) usage. Current solutions however do not
consider different device traffic characteristics, the flexibility in
traffic patterns, and dynamic network environments where new
IoT devices join and existing ones leave the network. In this
paper, we study the problem of grouping of IoT devices that
will share the same subscriber identity based on their traffic
patterns which can also be slightly shifted. We also study the
efficient regrouping of these devices as the set of devices in the
network changes. We first solve the optimal grouping and traffic
aggregation problem for the initial and updated network states
using Integer Linear Programming (ILP). Then, to avoid the
high complexity of ILP solutions, we develop heuristic based
solutions. Through extensive simulations, we show that heuristic
based algorithms can provide close to optimal ILP based results
while running much faster. The results also show that shifting
based grouping provides more resource saving compared to no
shifting based aggregation and the proposed solution for dynamic
environments can maintain the resource saving with a much lower
complexity.

Index Terms—Massive IoT, IMSI sharing, core network, ma-
chine type communications (MTC), resource optimization.

I. INTRODUCTION

Internet of Things (IoT) technology has revolutionized our
daily lives through many applications (e.g., smart cities [1],
environmental monitoring [2], home automation [3]) that use
various types of devices with ubiquitous connectivity. This has
caused a paradigm shift from human based communications
to machine based communications and increased the volume
of machine-type devices (MTD) [4]. Thus, mobile network
operators (MNO) have faced new challenges due to the limited
wireless spectrum and scarce resources available in their core
networks.

In order to address such challenges generated by massive
IoT networks, there have been many studies performed with
solutions in different network layers and new standards (e.g.,
Narrowband or NB-IoT [5]) for next generation IoT networks
have been developed. These efforts mostly focus on solving the
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radio side issues such as spectrum efficiency [6], [7], energy
efficiency [8]-[10] through the usage of massive Multiple-
Input-Multiple-Output (MIMO), relays [10], mmWave sys-
tems [11] and multi-operator based resource sharing [12].

In this study, we focus on the utilization of mobile core net-
work resources (e.g., bearers or data paths in Evolved Packet
Core (EPC)) in order to provide scalable communication
architecture for massive number of MTDs. As gateways in a
core network are primarily designed to handle the traffic from
mobile users, the resources and limitations are set considering
current communication characteristics of mobile users. Thus,
for example, for the MTDs that rarely send data, the resources
regarding their connection to the core network will be un-
derutilized if each MTD directly connects to the macrocell
base station (BS) and the core network separately. Note that
power saving mode (PSM) [13] introduced in 3rd Generation
Partnership Project (3GPP) Release 12 turns the device’s radio
off when the device is not sending data and reduces the load
on macro BS by releasing the channel resources allocated
to the device. However, in the core network side, the device
continues to use some resources as it is still registered with
the network. For example, in the case of EPC, the connection
between Serving Gateway (SGW) and Mobility Management
Entity (MME) is deleted by switching to PSM, but Packet Data
Network Gateway (PGW) and MME still keep the connection
(i.e., bearer) information of the device thus continue to utilize
their memory resources.

One common approach to reduce the usage of connection
resources at the core network for such MTDs is to connect
the nearby MTDs to a local gateway device and have them
send their data traffic using this gateway’s connection. Note
that this can be achieved through a star topology or multiple
hops among devices using device-to-device (D2D) commu-
nication [14], [15]. The main issue with such an approach
is that due to the limited range of the D2D technology
(e.g., Bluetooth Low Energy (BLE), WiFi-direct) used, it will
only be a local solution and the number of MTDs that can
be connected to the gateway will be limited. Moreover, the
capacity of the single backhaul connectivity from the gateway
to the macro BS should be large enough to carry all traffic
from the connected devices. There are also solutions that
aim to manage the connection of MTDs to a macro BS
using a group-based Radio Resource Connection (RRC) and
bearer establishment [16] but again these solutions can only
be applied for the MTDs in the range of the same macro BS.

For a more scalable solution, recently a group-based con-
nection to the core network has been introduced through the
sharing of subscriber identity among the devices [17]. The
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goal is to connect a group of MTDs with same data sending
intervals over the same subscriber identity i.e., International
Mobile Subscriber Identity (IMSI) and have them take turns
for their data communication. This allows grouping of devices
at the level of core network; thus, the MTDs within the same
serving region of a core network gateway (i.e., which can
include many macro BSs) can potentially be grouped together.
Note that from the core network side, the communication from
each of the devices in the same group will be considered as
if it is coming from the same device which is turning on
and off (i.e., establishing bearer and releasing it). The core
network maintains only one bearer for them, thus achieves a
huge resource saving. While this initial study [17] looks at
the challenges and develops solutions (i.e., call flow updates)
towards realization of such an approach, it does not study
how the grouping of the MTDs should be made based on the
traffic patterns of devices. Recently, we have looked at this
problem, and developed a genetic algorithm based solution for
grouping of MTDs with different data sending intervals [18].
In this study, we also take these approaches further and by
considering some flexibility in the traffic patterns of IoT
devices, we let the devices shift their traffic slightly so that
more devices can be grouped together and the resource saving
can be further increased. Moreover, we consider the dynamic
nature of IoT environments where new IoT devices can join
the network and some existing ones can leave the network and
study the rearrangement of device groups to maintain resource
saving at every network state/moment. The challenging part in
all these scenarios is to design practical algorithms that have
low complexities; thus we look for heuristic based solutions.

Our contributions! can be summarized as follows:

o We define the traffic shifting based aggregated IoT
communication problem and develop the Integer Linear
Programming (ILP) based models to solve it optimally at
each network moment.

« We introduce a greedy heuristic based polynomial-time
algorithm for grouping of devices at a given moment by
leveraging a new metric based on traffic characteristics.

e We also provide another polynomial-time algorithm that
rearranges the grouping of devices after new IoT devices
join and some others leave the network.

« We provide extensive simulations to evaluate the pro-
posed algorithms in various scenarios and show their
benefits in resource saving.

The rest of the paper is organized as follows. We pro-
vide background information and discuss the related work
in Section II. In Section III, we provide the system model
and problem statement together with ILP formulations. In
Section IV, we then elaborate on the heuristic based solutions.
In Section V, we present the evaluation of the proposed
solutions through simulations under different settings. Finally,
we end up with conclusion in Section VI.

The preliminary version of this study appeared in [19], in which we
considered only the shifting of device traffic patterns without considering
the dynamic environments.

II. BACKGROUND
A. IMSI Sharing based Aggregated Communication

Overview. Subscriber identity sharing based connection and
communication [17], [20] aims to efficiently use the core
network resources by aggregating the traffic of multiple IoT
devices which have usually low data rates and long data
sending intervals. This is achieved by assigning a common
IMSI number (which is used by MNOs to identify subscribers
and is a key component of the Subscriber Identity Module
(SIM) profile) to a group of IoT devices that have a common
data sending interval and letting the core network consider
them as the same device. The data communication of each
device over this common connection line is achieved by having
them take turns without overlapping their traffic patterns.
There is also a recent patent application [21] by Qualcomm
related to the development of apparatuses and methods for
managing the subscription for a network of such wireless
devices communicating in aggregation fashion.

Note that the IMSI sharing based aggregated communication
reduces the utilization of core network resources such as the
number of cellular bearers, for which there is usually a limit
on core network gateways e.g., PGW in EPC. Considering
all the IoT devices in the service region of a core network
gateway, which usually covers hundreds of base stations or
eNodeBs, it provides a resource optimization in a wider area
compared to earlier approaches. On the other hand, in these
studies [17], [20], only the devices that share a common data
sending interval are considered and the list of devices that
will share the same subscriber identity or IMSI (which is
achieved at the initial provisioning of these devices with mul-
tiple instances of the same physical SIM) are pre-determined
and not allowed to change. In a more recent work [18],
this aggregation method has been extended considering all
IoT devices with varying data upload cycles and with a
dynamically determined list of devices that will share the
same subscriber ID. Dynamic grouping of devices is achieved
through new generation subscriber ID solutions including but
not limited to virtual SIMs [22] and e-SIM cards [23], [24].
These solutions help subscribers change their mobile operators
without changing their SIM cards but could easily be used
for online provisioning of the network connectivity for IoT
devices and assign them a new subscriber ID dynamically [25].

Call flow updates. Once the MTDs that will share the same
connectivity (and subscriber ID) are determined by the MNO,
the previous studies [17], [18], [20] address the necessary
minimal changes that need to be made in the traditional call
flows of several operations under this IMSI sharing model.

e Device Attach. When a new IoT device turns on, it sends
an attach request to the core network. If the current time
slot is in use by another IoT device that is sharing the
same IMSI with this new device, its request is rejected
and a new request is made after an assigned back-off
timer expires. The procedure is repeated until a successful
attachment is accomplished.

e Data Communication. The time is divided into equal
slots and each device sharing the same link takes turns
to connect and send their data to their corresponding
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Fig. 1: Overview of IMSI sharing based aggregated IoT communi-
cation in EPC, as a representative of mobile core network.

destinations. A guard time is introduced between the time
slots to avoid potential overlap that may occur due to
delay in communication.

o Paging. Home Subscriber Server (HSS) coordinates with
MTC server to keep track of the active IoT device of an
aggregated cellular line, and manages the paging of the
right device accordingly.

Consider the EPC network in Fig. 1, as a representative
core network architecture which is currently the most common
system in use. The IoT devices that share the same IMSI are
considered as the same device by the core network. However,
the list of the IoT devices using the same IMSI are still being
tracked by the MTC server in the background through the
usage of external identifiers (EID) and MTC interworking
function (MTC-IWF) [13] that is serving as an intermediary
function between the core network and the MTC server. Note
that MTC server does not deal with IP addresses and cellular
IDs (e.g., IMSI), which is managed by PGW, and just uses
EIDs to communicate with the IoT devices. The mapping
of IMSI and application port ID to EID is achieved through
communication of MTC-IWF with HSS. The interested readers
can refer to [17], [18], [20] for further details.

B. Related work

There are several studies in the literature that aim to address
the increasing connection demand from massive number of
IoT devices. These solutions include modifications and re-
architecturing of core network and its functions [26], sep-
arating the control and user planes with Software Defined
Networks (SDN) and Network Function Virtualization (NFV)
(e.g., [27], MMLite [28], CleanG [29], [30], Softcell [31]) and
device side based solutions (e.g., virtual bearers [32], group-
based communication [33]). While some of these approaches
are promising and yet to be tested in actual deployments, most
of them come with some limitations for practical applications.
For example, the solution proposed in [32] requires devices
to be in D2D communication range of each other, and the
solution proposed in [33] requires devices to be in the same
eNodeB service area. Similarly, while a lightweight, func-
tionally decomposed, and stateless MME design is proposed

Groups devices
Study | Goal connected with traffic | Dynamic
to s ttern network
[16] Multi-cast commu- | eNo me No
nication for soft-
ware updates etc.
[17] Connect multiple | core same No
devices under | network
same IMSI
[32] Backhaul sharing | Local IoT | any No
through D2D | gateway
communication
[33] Reduce signaling | eNodeB e No
load [70,75]/120
This Connect multiple | core varying and | Yes
study | devices under | network shifted
same IMSI rzoMaTs?/eo

TABLE I: Comparison of proposed solution with closest
previous studies that also aim traffic aggregation by grouping.

MTD
. L. [20,24]/80 .
in [28], the optimization and resource saving happens in only

one core network gateway, thus the solution is limited and
does not provide benefit to the entire core network.

Different from these works, a more scalable and practical
approach using IMSI sharing based aggregated connection and
communication model is studied in [17], [18], [20] without
changing the current architecture of core network drastically.
The idea is to group a set of IoT devices and let them
share the same subscriber identity and take turns for their
actual data communication. Since the data communication
happens infrequently for most of the machine type IoT devices
(e.g., humidity measurement in field two times a day) and
there is usually some flexibility especially when the collected
data is not critical, we consider the shifting of scheduled
communication times (to an earlier or later time) slightly to
further decrease the number of active cellular bearers used.
Moreover, we consider dynamic network environments where
new IoT devices join and existing ones leave the network
occasionally, and aim to maintain the grouping of devices
as best as possible to increase resource saving. Note that the
aggregated communication studied in this work is different
from group-based or multi-cast communication considered in
some previous work (e.g., [16]) as the latter usually considers
simultaneous data (e.g., software updates) transmission toward
a set of devices, thus cannot be applied for devices with differ-
ent spatio-temporal traffic patterns. A summary of differences
of this study from the other studies is also given in Table I.

III. SYSTEM MODEL

A. Assumptions

Data traffic model. We assume that there is a set G =
{I,I5... Iy} of M ToT devices or MTDs? where each of
them sends their data (e.g., measurements, computations) to
their servers in some constant intervals. Their data sending
intervals and the required connectivity duration within each
of these intervals vary due to different application specific
requirements but are known. To this end, we assume that for
each device I; € G, the data upload happens at every \; time
units and each data upload occurs for a duration of §; time

2We use IoT devices and MTDs interchangeably throughout the text.

3 Internet of
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Fig. 2: Original and shifted traffic model for IoT devices.

units, starting at s; and ending at e;, within each \; duration
(i.e., 0; = e; — s;), as shown in Fig. 2. We have chosen this
model for simplicity, however, it could be extended to more
complicated models (e.g., Gaussian distribution with a mean).
We assume that the time is also divided into equal slots and
all time related parameters are a multiple of the slot size so
that the problem can be modeled in a discrete manner. We
also assume that each MTD uses its own bearer initially, and
after aggregation process they are partitioned into groups. The
group of MTDs that use the i*"" bearer is denoted by G;, and
for convenience, we will also refer to the i*® bearer as G;.

Flexible traffic model. As it is shown in Fig. 2, we consider
some slight shifts in the traffic pattern of the IoT devices. That
is, the timing of each data upload instance for an IoT device
can either happen earlier or later than its originally scheduled
upload time without exceeding a given time threshold denoted
with 7T,.x. Note that this threshold can be defined by the
network management considering the application requirements
(e.g., 5 minutes shifting for humidity measurements that is
happening twice a day may be considered fine).

In the preliminary version of this study [19], we also consid-
ered an inconsistent model for the traffic pattern changes. That
is, we let the individual data sending instances of the same
IoT device to be shifted (i.e., delayed or scheduled earlier)
differently without exceeding the threshold. While this gives
more flexibility to the data uploads of the IoT devices, and
hence provides an opportunity to group more [oT devices in
the same cellular line, due to its complexity in modeling as
well as only a slight benefit over consistently shifted traffic
pattern model, we did not consider it in this extended version.

Dynamic network model. The number of IoT devices de-
ployed and connected to the network of MNOs has been
growing massively. Similarly, the existing IoT devices have
been replaced, moved or upgraded. In order to model such
a dynamic network environment, we first define each time
frame without a change in the set of devices as a network
moment, and use two parameters to define the node joins and
leaves between consecutive moments. That is, we assume that
z of the existing IoT devices in the current moment will be
leaving the network and there will be y new devices will be
joining the network in the next moment. Note that depending
on the relation between x and y values the network size can
be affected differently i.e., when « < y, the network size
will grow; when x > y, it will shrink; otherwise it will stay
the same. In any case, the existing group structure among IoT
devices can be affected dramatically and regrouping of devices
or introduction of new cellular lines may be needed to carry

[ Notations [ Description

I; MTD or IoT device ¢

M Number of MTDs

G (GH The set of all MTDs (at time t)

G The group of MTDs on " bearer, which is also
denoted as bearer G;.

Grew The set of new MTDs joined to the network.

Ai Data sending interval of MTD i

d; Duration of data communication in each data sensing
interval for MTD 14

Si Starting time of data communication within each
interval by MTD 4

e Ending time of data communication within each
interval by MTD ¢

T (T5) Least Common Multiple (LCM) of data sending
intervals () of all MTDs (in group j)

T,y Number of MTDs leaving and joining the network
in every moment, respectively, in dynamic environ-
ments

b; Set to 1 if bearer 7 is used by at least one MTD and
at any time (otherwise 0)

bk Set to 1 if bearer j is used by at least one MTD at
time slot k (otherwise 0)

IM SI]t. Temporary IMSI number or bearer ID assigned to
MTD j at network moment ¢

bijk Set to 1 if MTD < uses bearer j at the time slot k
(otherwise 0)

Tmax Maximum shifting allowed

dif f; Set to 1 if IMSI number for MTD j is not equal to
its IMSI number in previous moment.

TABLE II: Notations and their descriptions.

the traffic of all IoT devices.
The notations used throughout the paper and their descrip-
tions are summarized in Table II.

B. Problem Statements and ILP Models

Initial Network. The objective of aggregating the traffic from
multiple MTDs through IMSI sharing is to minimize the
number of active bearers used by all devices and optimize
the resource usage in core network. When there is no shifting
allowed in the originally scheduled traffic patterns of MTDs,
the devices can still be grouped to some extent as long as there
is no overlap in the traffic patterns of different devices in the
same group. If the devices are allowed to shift their upload
times slightly (i.e., less than 7y,,x) within their long data
sending intervals, there will be more opportunity to decrease
the number of groups and the number of actual bearers that
will be used, and thus the resource saving will be increased.
Using ILP, we define the problem (P1) of finding the optimal
aggregation at the initial network moment considering the
flexible traffic model (which can be shifted) as follows:

(P1):
M
min ij (1)
j=1
-
st. bj=mind 1, b o, Vje[1,M] (2)
k=1

M
bjk =min{ > bk, 1o, V) € [1, M],Vk € [1,T]
=1

3)
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M
Zbijk <1,Vje[l,M],Vke[1,T] 4)
i=1

JA e [_Tmaxy +Tmax] :

95

Z bij(rxi+((si+A+d)mod(,))) = O

d=1

Vi, j € [1, M],¥r € [0, T/X\; — 1] 5)

bij((r—1)xi+d) = bijerai+a), Vd € [1, Ad]

Vi, j €1, M],¥Yr € [1,T /X — 1] (6)
where, - _ LoM (M. )
b — 1, if I; uses bearer j at time slot k,
uk =0, otherwise :

Objective function in (1) aims to minimize the number of
bearers used actively, where b; is set to 1 if there is an MTD
device using it. The usage of each bearer (there can be up
to M total active bearers when each MTD uses a separate
bearer) is determined by (2) and (3), by checking if there is at
least one MTD using it at any time slot. Note that as the data
sending intervals (\) can be different for different MTDs, we
first find the longest common multiple (LCM) of their data
sending intervals and use it as a common timeline defined by
T = LCM(\;,Vi). (4) allows usage of each slot by a single
MTD at most and (5) requires that there exists at least one
and only one (3!) shifting amount (A) between —7,., and
Tmax Which makes all §; consecutive slots utilized for the i*"
MTD (.e., I;) at a given bearer j. Here r is used to find out
the timing of repeated data upload times within the common
timeline (7). We also use (6) to make sure the shifting between
the different data sending intervals of an MTD at the bearer
it uses is achieved consistently.

Dynamic Network. The above model only solves the optimal
grouping of the IoT devices (i.e., aggregation of their traffic)
within a given network moment; thus, it will only be used
at the beginning. In dynamic environments, we also need
to consider the transition from the current moment to the
next. Here, our goal is not only to decrease the number of
bearers used but also to minimize the changes made in group
structure from previous moment as any change in subscriber
identity of existing devices requires reprovisioning of devices
thus incurs some control traffic and delay. However, as the
latter is a secondary goal, we use scalarization method to
apply such prioritization in the objective function (7) of
this second problem (P2) of finding optimal aggregation in
dynamic environments as follows:

(P2) :
M M
min <Z IMSJf) x L+ diffi (7)
=1 i=1
.
st IMSI =j,if Y bije > 1,Vi,j € [1,M] (8)
k=1
e J1, IMSI!# IMSII!
diffi = {O, otherwise ’ ©)

5

Here, (8) ensures that the devices on the same bearer uses
the same IMSI number. We also simply assign the ID of the
bearer (e.g., j) that the devices are on as the temporary IMSI
number of these devices, which could be mapped to a real
IMSI number from a SIM card. (9) finds the devices whose
IMSI will change in the current moment (i.e., t) compared
to previous one (i.e., t—1). In objective function (7), we
use a constant £ such that the sum of IMSI changes of all
devices in the system will not affect the optimization more
than decreasing the number of different IMSIs (i.e., groups or
bearers) used by the devices. Note that in the first part of the
optimization function we take the sum of IMSI numbers of
all devices. This not only ensures that the number of groups
used is minimized but also puts devices into bearers in order
without leaving an empty bearer in between (e.g., to avoid
using bearers 1 and 5 instead of 1 and 2). This design choice
is used to minimize the IMSI changes of devices between
consecutive moments.

An MNO knowing the traffic patterns of all devices can
then run these ILP based optimal models to determine which
IoT device will be in which bearer at every network moment
and update their network registration information (e.g., IMSI
numbers) through an online provisioning process as discussed
in Section II. On the other hand, while these ILP models will
find the optimal (i.e., minimum) number of bearers possible
that can allocate all MTD traffic at the beginning and at every
new moment with new set of MTD devices, respectively, their
running time will be very long even with a small number of
MTDs (e.g., 10-15) in the network. Thus, if the optimization
models have to be run frequently (e.g., when the set of IoT
devices or their traffic characteristics change often), it may
not be a practical solution. To this end, in the next section, we
provide heuristic based solutions with reduced complexities.

IV. HEURISTIC BASED SOLUTIONS
A. Initial Aggregation

1) Overview: In order to aggregate the traffic of multiple
MTDs on the minimum number of bearers possible, we
consider an iterative approach and try to select the best option
at every step greedily. The overview of this process is provided
in Fig. 3. Initially, we assume that each device is on a separate
bearer or group. Then, we first find all eligible bearer pairs that
can be merged. This is determined by checking if there is an
overlapping allocated time slot by both of these bearers. Out
of all eligible bearer pairs (having no overlap), we first find the
pair that provides the highest addition score (AS) as follows:

(I, 1) = axg max AS (L, I,).
VI, ,I,€G
133751’9

(10)

Then, we merge these two bearers’ traffic into one bearer (we
call it root bearer and denote with G,.:), and release the
other one.

In consecutive steps, we check all other MTDs on their
own bearers to see if they are eligible to be merged with this
root bearer traffic. Among eligible ones, we find the one that
gives the highest addition score and bring its traffic into the
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Fig. 3: Overview of heuristic based initial aggregation (HIA)
procedure.

root bearer. That is, assuming G’ denote the set of MTDs not
merged in any other bearer yet, we find

I;nal' = argmax AS(IZ, Groot)'
VI.eG’

Y

This process continues until no more new MTD traffic is
eligible to be merged into the current root bearer. Then, we
continue the process with the formation of a new root bearer
out of the remaining single-MTD bearers not aggregated yet.
We again find the pair of bearers that gives the best score,
merge their traffic on one of them and try to add other
device/bearer traffic on this bearer one by one until no more
eligible bearer remains. Here, note that, if there is no eligible
pair of bearers that can be merged and assigned as root bearer,
we stop the entire process and leave each of the single-MTD
bearers as a separate bearer without any aggregation. A formal
description of this greedy heuristic based approach is given in
Algorithm 1. Root bearer formation is done in lines 4-11 and
addition of other bearers on it one by one is achieved in lines
16-32. If no more root bearer can be formed, each remaining
MTD is kept on its own bearer as shown in lines 35-39.

2) Addition Score (AS) Function: In this iterative and
greedy heuristic based approach, the critical part is the score
function. As our goal is to aggregate the traffic of as many
MTDs as possible on a single bearer, at each aggregation
step we aim at aggregating the bearers that will have a higher
likelihood for the aggregation of others on the same bearer. To
this end, after studying several criteria empirically, we ended
up with the following three criteria:

o Active Timeline (A): It is the duration from the first allocated
time slot until the last allocated one. For bearer or group j,
G, we find the minimum start time and maximum end time
of all IoT devices on this bearer, and take the difference:

Aj = €. — 5. where
s . =min{s;, VI, € G;}

min
€l ar = max{e;, VI, € G;}.

o Utilization (U): It refers to the percentage of time slots
allocated within the active timeline. Given that b;;;, = 1

Algorithm 1: Initial Aggregation (G)

Input: &7 Initial_set of MTDs
1 T EinetHe best pair
2 VIR B&iter-id to assign MTDs
3 while
4 foreach (I,,I,) s.t. I,,I, € G, I, # I, do
5 if I, and I, are eligible to be merged then
6 if (Iz,1y) > ASpae then
7 Calmﬁ4|e az = AS(LE’ Iy>
s || SN = 1)
9 et
10 end\’; e
11 end
12 if AS,.q. # 0 then
13 Ga — {I;naat7I;rzarc}
14 G=G\G,
15 E=G, ASju:=0
16 while [E| > 0 do
17 foreach I, € F do
18 if I, can be merged on G, then
19 if AS(I,,G,) > ASp4. then
20 ASpaz = AS(I:,Gy)
21 e =1,
22 end
23 end
24 end
25 if AS),q. # 0 then
26 Go =Gy U{L.}
27 E=FE\{L}
28 ASaz =0
29 else
30 | E=10
31 end
32 end
33 a=a+1
34 else
35 foreach I € GG do
36 G, ={I}
37 G=G\G,
38 a=a+1
39 end
40 end
41 end

when MTD ¢ allocates bearer j at time slot k, for all MTDs
on a given bearer or group j, G;, we calculate

J
Cmaw

E ag | /A;, where
k:S‘ZrLin

1, if 3I; € Gj S.t. bijk =1

0, otherwise

U =

ap —

e Border Score (B): This indicates how close the active
timeline is to the end points of the entire timeline. As
the allocated time slots get close to the sides of the entire
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Fig. 4: Example: Only devices (11, I2) and (I2, I3) @

to be merged on the same bearer as their traffic p

not overlap. They both have the same active time.

but latter has larger utilization score, thus is selecte

timeline, the likelihood of allocating another M
same bearer increases. Thus, we first find the mi
distances to the start and end of entire timeline
start and end of active timeline and take their sur
for bearer or group j, Gj, we compute

L : - J J : . J J
BJ - mln{ﬁ — Smins Smin} + mln{ﬁ ~ Chnaz> emaw}'

Here, 7; is the timeline considered for bearer j and defined
We consider these criteria in a prioritized manner with the
following order:

min(A;) > max(U;) > min(B5;).

That is, we first aggregate the bearers that would result in
a shorter active timeline after aggregation. Then, if there are
multiple of those bearer pairs with the same active timeline,
we prefer the pair that would provide higher utilization (due to
either more MTDs involved or larger traffic served). Finally,
if there is still a tie, we prioritize the bearer pair that would
result in an active timeline closer to the borders. Consider
the example in Fig. 4 with three MTDs. Here, we can either
aggregate devices I; and Is or the devices Iy and I3, as 4
and I3 are not eligible to be merged due to overlapping traffic.
Computing active timeline score for both, we get A = 12.
Then, we look at the second selection criteria of utilization,
and we get U = (2+4+2)/12 = 66.66%, and U = (246 +
2)/12 = 83.33%, respectively. Thus, we prefer to aggregate
I5 and I3 traffic. Note that border score for both cases is the
same i.e., B = 4+ 4 = 8, but we do not consider it in this
example as it is the third criteria.

Running time. In Algorithm 1, there can be at most (%)
single-MTD bearer pairs that need to be checked to find the
best candidate for a root bearer. If any other single device can
be added to the current root bearer, the cost of finding the
best one will be less than O(M). If none can be added to the
root bearer and a new root bearer needs to be determined over
score comparison of pairs in the remaining set of unassigned
devices, there will be another (1v12— 2) pairwise comparison.
The worst case scenario will happen if the process always
continues with root bearer selection without adding any third
device to the bearer, and it will generate a total of O(M?3)
eligibility check and score calculations. Note that, the cost of
score calculations does not change with shifting, but eligibility

Remove all MTDs which left
the network from the bearers

No such
pair

2. Removal | No such pair

1. Initial Add

Find the
pair with highest
Removal Score

Find the (new
MTD and existing bearer)
pair with highest
Addition Score

Add the new MTD to ] Remove all MTDs in
that existing bearer < the selected bearer
2 having traffic overlaps
3 with the new MTD
4. New bearers g
Apply HIA to form «
@ new bearers for here any
remalnIZﬁyMTDSI i Yes remain_ing unassign_ed
MTD with overlapping
traffic?
Is there any
No MTD without a

bearer assigned?

Fig. 5: Overview of heuristic based dynamic aggregation
(HDA) procedure consisting of four steps.

check cost increases. Without shifting, it only compares each
time slot within 7 to see if there is an overlap, making overall
complexity O(M3T). However, with shifting, a shifting in
range of [—Taz, Tmaz] 1S considered for each device. Thus,
it requires a comparison of O(72,,,) combinations, each with
T cost, making the overall cost as O(M37T 72

max ) N

B. Dynamic Aggregation during Transitions between Moments

1) Overview: When the set of devices or their traffic
patterns change in a dynamic network environment, a new net-
work moment starts; thus, existing groups or aggregated bearer
formations should be revisited. We illustrate an overview
of this process in Fig. 5. Note that at every moment, we
could use Algorithm 1 to get a new grouping from scratch
among the new set of devices without taking into account the
previous group assignments of devices that are also present
in the current moment. However, this might result in some
unnecessary changes (i.e., new provisioning) in device IMSI
assignments which come with additional delay and control
traffic cost.

Thus, in order to mitigate this, when the new devices join
the network and some existing ones leave, we first try to add
newly joined MTDs to the available groups (step 1). This is
performed similar to the process of adding other devices to
the root bearer in Algorithm 1 (lines 16-32). However, this
time we consider all possible new device (i.e., I, € Gpew)
and existing group (i.e., G € Gcyr) pairs and determine the
order of adding by keep finding the pair with maximum score
after every addition. That is, we find

(17", G") = argmax AS(I,, Gj),
VI.€Gnew
GjE€Geur
and add I7"** to G7"**, and exclude I7"** from G- We
repeat this process until no more addition is possible.

Note that the first step may end up with locating each new

device to an existing bearer if their traffic patterns do not

(12)

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on March 04,2022 at 02:54:18 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2022.3155923, IEEE Internet of

Things Journal

overlap (i.e., Gpew = (). However, if that is not the case, we
could ideally generate new bearers and assign the remaining
new devices to them. But before doing that, as the second
step, we first consider removing some of the existing MTDs
temporarily in order to optimize the new bearer allocations.
The steps of this smart removal process is given in Algorithm 2
(lines 2-23), in which we first find the pair of an existing group
and a new MTD with the highest removal score (RS) (lines
5-13) and then remove the MTDs in that group that overlap
with this new MTD (line 16) and put them into a set Gy,
of MTDs (together with the new MTD) that will need to be
assigned a new group id and IMSI together (lines 17-18). We
continue similarly by finding the next best pair until no more
overlap is found. Note that the step 2 will end either due to
the processing of all new MTDs joined or if no more overlaps
exist between existing groups and remaining new MTDs. If
it is the latter case, we carry all remaining new MTDs to the
set of MTDs to be assigned a new group (line 23). Then, we
start the recursive addition process again (i.e., step 3) until
no more addition is possible after which we start step 4 and
create new bearers for the remaining devices (as in lines 35-39
in Algorithm 1).

2) Removal Score (RS) Function: The critical part during
this process is the removal score function, for which we
consider the following three criteria:

o Count of Intersecting MTDs (C): 1t is equal to the number
of MTDs in an existing bearer j’s timeline having a data
sending interval intersection with the newly joined MTD.
That is, assuming that I, is temporarily assigned to G
and abusing the notation b;;;, (which is set to 1 when MTD
1 allocates bearer j at time slot k), we get

Cj(lnew) = |{I S Gj | dk € T, bInewjk = l,b[jk = 1}| (13)

Removing the MTDs from a bearer with more number of
intersecting MTDs provides more opportunity to allocate
them in other bearer options (during final addition process)
and helps reduce the total number of bearers. This is
because, each of these removed MTDs can be assigned to
different bearers, providing more efficient bearer allocation
opportunity. In Fig. 6, bearer G; has two MTDs (I, I3)
intersecting with the new MTD.

o Duration of Intersection (D): This refers to the portion of
intersecting data sending intervals between the new MTD
and an existing bearer j’s timeline. That is:

Dj(Inew) = D | (0rpenjn +bjx = 2). (14)

VkeT

Recall that bj;, is set to 1 when bearer j is used by at least
one MTD at time slot k. The lesser the duration of the
intersection, the more likely it is that removing MTDs from
that group will help reduce the total number of bearers.
This is because smaller intersection gives more chance for
further aggregation especially when shiftings are considered.
In Fig. 6, Z,,¢,, has intersection from time slot 6 to 14 with
MTDs that are already in the bearer j’s timeline.

Algorithm 2: Dynamic Aggregation (Geyr, Gnew)

Input: G.,,: Set of existing groups of MTDs
Grew: Set of new MTDs joined
1 Keep merging (I7"**, G7***) from (12) until no more
possible.
2 RS0z =0
3 Gipg = 0 // Set of MTDs to be assigned a group
4 while G,,c., # 0 do

5 foreach I,.,, € G, do

6 foreach G; € G, do

7 if I),c. overlaps with an MTD in G; then
8 if RS(Inew,Gi) > RSpa. then

9 Rsma:z: = RS(Inewv Gz)

10 (Ibest7 Gbest) = (Inewy Gz)

11 end

12 end

13 end

14 end

15 if RS;naz # 0 then

16 Remove each MTD in G4 that overlaps with

ITpest and add to Gy,

17 tha = tha U Ibest

18 Gneu) = Gnew \ {Ibest}

19 else

20 ‘ break

21 end
22 end

23 Gnew = tha U Gnew

24 Keep merging (1'%, G7**®) from (12) until no more
possible.

Add each remaining device to one individual bearer as
in lines 35-39 of Alg.1.

25

e Duration of Non-intersection (£): This is the non-
intersecting duration of data sending intervals of intersecting
MTDs and the new MTD, which is defined, for bearer j, as

Ei(Inew) = Y | (b1 +bjx = 1). (15)
VkET
The more duration of non-intersection, the more likely it is
that removing MTDs from that group will help reduce the
total number of bearers. The main reason for this is that
by removing these MTDs from existing groups, more space
can be freed thus more unassigned devices can fit in. In
Fig. 6, non-intersecting parts are from time slot 4 to 6 and
also from 14 to 18.
We consider these criteria again in a prioritized manner as
in addition score calculation using the following order:

max(C;) > min(D;) > max(&;).

That is, we first prefer the cases that provide more number
of intersecting MTDs. If there is a tie, next, we consider the
one with lesser intersection duration. If the tie does not break,
we then select the one with more non-intersection duration (a
random selection is made if the tie continues).

Running time. In Algorithm 2, during the initial addition
process (line 1), in the worst case, all MTDs could be in a
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Fig. 6: Example scenario for smart removal process between
an existing bearer and group (G;) from previous moment and
a new MTD (I,,¢q) joined.

separate bearer (i.e., M bearers from previous moment) and
with joining of y new devices, we may need to check all yM
pairs over a timeline of 7 duration. With shifting allowed, this
has O(y72,,.MT) complexity. It is possible that in the worst
case, most of the new MTDs may fit to the existing bearers one
by one and later need to be removed (e.g., due to one very long
MTD) during smart removal process. Selection of which one
will be added next requires calculation of scores for each of
the remaining new MTD and existing bearer pair combinations
(e, (y—1)M, (y —2)M ...). Overall cost of initial addition
can then get close to O(y*72,,..MT). In the removal process,
in the worst case, we can remove all MTDs in existing groups
one by one, which can cost O(y?MT), as we do not consider
shiftings during removal process. Finally, after a removal pro-
cess that ends up with removing all MTDs from all bearers, we
start the last addition process (lines 24-25) and get new bearers
similar to Algorithm 1 with complexity O(M3772,,..). Thus,
the overall complexity of this deterministic Algorithm 2 per
network moment is O(MT72,,.(M? + y?)). However, this
complexity can be improved further for more scalability by
computing both the addition and removal scores of considered
pairs at every step in parallel as they will be independent. This
can reduce the overall complexity to O(M T y), which includes
reduced Algorithm 1 complexity of O(MT).

C. Toy Example

In this part, we provide how the proposed algorithms work
on an example set of MTDs and two network moments. We
consider a set of 5 MTDs, each of which initially uses a
separate bearer (e.g., I; on bearer (G1) as shown in Fig. 7a.
The traffic patterns are also shown in Fig. 7a. That is, for
example, [; is sending its data between 4-9th time units in
every 20 time units. As the LC'M of the data sending intervals
of these 5 MTDs is 20, we show all the repetitions of data
communication for each device in this entire common timeline.
When the initial aggregation algorithm is run with no shifting
model, it finds that there are several eligible pairs that can be
merged e.g., (s, I5) and (I1, I4). Calculating their addition
scores, the algorithm finds that (I3, I5) has the maximum
score, thus merges their traffic on one of the bearers (i.e., G3).
Trying to add other MTDs on this root bearer does not help
further, thus a new pairwise checking process starts among the
remaining MTDs (i.e., I, Is, I4). In the second iteration, (11,
1) is selected and merged to form a new root bearer (i.e., G1).
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Fig. 7: Initial moment of the network with five MTDs and
active bearer utilization in different scenarios.

As I3 is the only remaining and cannot be added to this root
bearer and no new root bearer can be formed, the algorithm
concludes and keeps I3 on a separate bearer (i.e., G3). This
concludes the initial aggregation process without shifting with
3 active bearer usage for 5 MTDs’ traffic as shown in Fig. 7b.

When traffic shifting is considered, with 7,4, = 3, we
consider shifting of each MTD’s traffic in range of [—Tqq,
+Tmaz] during each pairwise merge eligibility check of
MTDs. This time, in addition to the previous two pairs found
in no shifting case, thanks to the flexibility through shifting,
the algorithm also finds two more pairs that are eligible to be
merged, namely, (I2, I4) and (14, I5). However, (I3, I5) still
provides the best score, thus is selected to form the initial root
bearer. In the second iteration of the algorithm, as there is only
one eligible pair left (i.e., (I1, I4)), it is selected and its MTDs
are merged on bearer GG;. Remark that the data patterns of Iy
and I, have been shifted by -3 and +3 time-slots, respectively,
to free more space for the future additions (due to the effect
of border score). As no other MTD can be added to this root
bearer, and there is only one MTD (i.e., I3) left not merged
with others yet, the process ends with keeping I3 on a separate
bearer, i.e., G3, as in previous case.

After this initial aggregation, we make one of the MTDs
(i.e., I3) leave and a new MTD (i.e., Is) join the network, as
shown in Fig. 8, and run the dynamic aggregation algorithm
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(c) Grouping MTDs with shifting

Fig. 8: Next moment of the network and active bearer utiliza-
tion after the leave of I3 and the joining of 5.

in Algorithm 2. In the no shifting scenario, with the leave of
I3, only two active bearers (G'1, G2) are used. Since I cannot
be added to these bearers, we start the smart removal process.
As Ig overlaps with both groups/bearers G; and G2, we find
the one that is preferred based on the removal score. The new
MTD I has overlaps with 2 MTDs in each of the bearer’s
timeline; thus, in terms of the first metric in the removal score
function they are equal. Then, we look at the second priority
(i.e., duration of intersection) and prefer G; as it gives a
smaller intersection duration with the new MTD (i.e., 8 vs.
10). We then remove all MTDs in Gy and start the process of
adding unassigned devices (i.e., I1, I4, Ig). As we cannot add
any of them to the only remaining active bearer (i.e., G2), we
look for pairs of them to form a root bearer. As only /; and Iy
are eligible to be grouped without overlap, we put them into
a new root bearer (i.e., GG1). We cannot add Ig to this bearer,
thus it is kept in its own bearer. This process then ends up with
locating these devices into three bearers, as shown in Fig. 8b.

With traffic shifting using 7,,,, = 3, after I3 leaves (from
the state of the bearers in Fig. 7c), only two bearers are used.
With the joining of I, as we cannot fit it into bearers G; and
G, we start the smart removal process. For that, considering
all possible shiftings in range of [-3, +3] for I, we calculate
the smart removal scores of it with each active bearer. This
time, when Ig’s traffic is shifted by +3 time units, we end up

Traffic Load

Parameter Low [ Medium | High
Data communication per interval | 10-15% 15-25% 25-50%
(6 in % within )

Number of MTDs (M) 5-500

Maximum = shifting  allowed 0-6 time slots

(Tmaz)

Data sending interval (\) array
Start time for data sending (s;)
End time of data sending (e;)
Dynamicity

{10,20,40} time slots
Uniformly distributed in \;
10-50%

TABLE III: Simulation parameters and values.

with having only one overlapping device (i.e., I4) in bearer
G1 with Iz (both MTDs’ traffic in G5 overlap with I for
all possible shiftings). Then, we remove I, from bearer G,
and start addition process for unassigned devices (i.e., Iy, I5).
Trying to add them to the existing bearers, we first select I to
add bearer (G; as it provides the highest addition score (with
+3 shifting). We then can also add I, to bearer G5 with +3
shifting. This process then ends up with locating these devices’
traffic into two bearers, as shown in Fig. 8c.

Note that, in the last scenario, if we were to try to fit the
new MTD without removing any existing MTDs (i.e., I4 in
this case), we would end up with 3 bearers. This shows the
benefit of smart removal process in reducing the active bearer
count further. It is also worth remarking that when we run
ILP based solution on this example, we also receive the same
number of bearer usage in each setting as in heuristic based
solutions. The proposed algorithms may not always find the
optimal solution as the ILP solutions, however, as it will be
shown in simulation results, they can provide close to optimal
results in most of the settings.

V. SIMULATION RESULTS

In order to evaluate the performance of the proposed so-
lutions, we perform simulations in different settings. We also
compare the heuristic based approximate solutions with the
optimal solutions obtained by CPLEX from ILP models.

A. Settings

Following the traffic model introduced in Section III, we
first generate a data upload traffic for each MTD. To this
end, we set a data upload interval ()\;) randomly selected
from the set {10, 20,40} minutes. Then, we randomly assign
a data communication duration, §; = s; — e;, within each
data upload interval using three different traffic load models.
In the low traffic load model, we assume 10-15% of the data
sending interval or ); is used for data communication, and we
use 15-25% and 25-50% for medium and high traffic loads,
respectively. The start time of the data upload (s;) within the
data sending interval is determined randomly from [0, A; — d;].
The end time of data communication is then set to e; = s; +9;
automatically. Throughout simulations, we use an MTD count
ranging from 5 to 500. In particular, for comparison with ILP
based optimal results, we use smaller M values as getting
ILP results takes very long with large number of MTDs. For
heuristic only results, we consider MTD counts as high as 500
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and look at the impact of various parameters. For the dynamic
network scenarios, we also consider a dynamicity level which
is defined as the percentage of devices join/leave at every
moment. For main simulations, we consider an equal number
of joins and leaves (i.e., x = y) at every network moment,
but we also look at a non-equal case. Table III provides a
summary of the simulation parameters and their values.

B. Algorithms in Comparison

We compare the performance of the following algorithms.

o ILP-based Optimal Initial Aggregation (ILP-IA): This is
the solution of ILP-based model given in (1), which
considers only initial aggregation.

e ILP-based Optimal Dynamic Aggregation (ILP-DA): This
is the solution of ILP-based model given in (7) consid-
ering the dynamic aggregation throughout the network
moments.

o Heuristic-based Initial Aggregation (HIA): This is the
heuristic-based initial aggregation algorithm given in Al-
gorithm 1.

e Heuristic-based Dynamic Aggregation (HDA): This is the
heuristic algorithm given in Algorithm 2.

o Heuristic-based Dynamic Aggregation without Smart Re-
moval (HDA_noSR): This refers to the variant of the
heuristic-based dynamic aggregation algorithm without
smart removal process (i.e., lines 4-22 in Algorithm 2).

We consider both shifting and no shifting based aggregation
scenarios for each of these algorithms.

Note that while aggregated IoT communication has previ-
ously been studied in [17], [20] with a no shifting model,
their solution assumes that only MTDs with the same data
communication duration (§) within the same data sending
interval (\) will aggregate their traffic on the same bearer.
These studies mainly focus on call flow updates to realize
IMSI sharing based aggregated communication and do not
propose how to actually group IoT devices if their traffic
patterns are different as well as how the groupings should be
updated in dynamic environments. Thus, these solutions are
not directly applicable to our setting as we allow MTDs with
varying A and 0. However, no shifting case (i.e., Tpaz = 0)
especially in static case, or the algorithm ILP-IA can be
considered as an upper bound for the performance of these
benchmark solutions (as in [17], [20] only the devices with
same A and 0 are grouped together) and can be used to
understand the additional savings offered by shifting based
solutions in static case. Note that other solutions [16], [33]
that consider group-based communication for IoT devices are
also not applicable to our setting, as they consider devices
within the service area of the same base station only and they
target multi-cast transmission of only certain types of data
(e.g., software updates) [16] or group-based RRC connection
establishment and release for a set of homogeneous machine
type devices owned by the same company for mainly reducing
the signaling load [33], assuming that the devices that will be
grouped are pre-determined.

11

C. Performance Metrics

We evaluate the performance of proposed solutions based
on the following metrics:

o Percentage of Saving (%): This is defined as the saving in the
number of cellular lines (i.e., bearers) utilized. For a given
number of MTD devices M, if the aggregation model ends
up finding that the number of bearers sufficient to carry the
traffic from all of these M devices is X, then the percentage
of saving is defined as

<MA_4X x 100) %.

o Percentage of MTDs with Updated IMSI: This is the average
percentage of MTDs whose IMSI has changed between
consecutive moments in dynamic network scenarios. When
some existing MTDs leave the network and some new ones
join, reorganizing the groups may help benefit from aggre-
gated communication properly. However, the new grouping
structure may require some existing devices change their
groups, which triggers a control data traffic for reprovi-
sioning of these MTDs with new IMSI numbers. Keeping
such difference in group assignments and associated control
traffic as minimum as possible is a secondary goal after
maximizing the saving. Note that we consider the IMSI
changes only for the MTDs that exist in both network
moments and define their percentage as

(16)

Z

>

t=2

> diffi | /1G]

VI;eG?t

[(Z—=1), A7)

where 7 is the number of moments of the network with

different MTDs, and G! is the set of MTDs at network

moment ¢.

o Running time: In order to show the scalability of the algo-
rithms, we also present their running times with increasing
number of MTDs on an Intel core i7 processor with 16 GB
memory and 2.5 GHz speed.

We look at the impact of different traffic load models,
number of MTDs, dynamicity of the network, and maximum
shifting allowed (i.e., T;nqz) On these metrics. All results
presented are averaged over 20 runs.

D. Results

1) Comparison of ILP and Heuristic Solutions: Initially, we
compare the ILP based optimal solutions with heuristic based
solutions. We first look at the initial aggregation process and
grouping of MTDs when they first join the network. Fig. 9
shows the percentage of saving obtained by both the ILP and
HIA algorithms for different traffic load models as the number
of MTDs in the network increases. First of all, as it is seen in
all three graphs, the percentage of saving increases as the MTD
count increases and converges to a certain value. Even though
we did not obtain results beyond 50 MTDs due to the long
running time of ILP, this is not needed as the saving converges
already. Comparing the savings achieved, we observe that the
highest percentage of saving is achieved when the traffic load
is low. Moreover, the percentage of saving increases for all
cases as the number of MTDs increases. These are because low
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Fig. 9: ILP vs. Heuristic Algorithms in initial aggregation: Percentage of saving in the initial network moment with a) low,

(b) medium and (c) high traffic models (7,4, = 3 for shifting based aggregation).
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Fig. 10: ILP vs. Heuristic Algorithms in dynamic aggregation: (a-c) Percentage of savings and (d-f) Percentage of MTDs
with updated IMSI averaged over 100 moments with 10% dynamicity (7., = 3 for shifting based aggregation).

traffic model gives more opportunity to group more MTDs into
a single bearer and more MTD count increases this opportunity
further for a given traffic load model, respectively. However,
the rate of increase in saving varies in different traffic loads.

Comparing no shifting and shifting based solutions, we
clearly see that shifting offers more saving in all cases thanks
to the flexible data upload times of MTDs. Looking at the
comparison of ILP and heuristic solutions, in general we
observe that heuristic solutions can provide close to ILP
results. The difference between heuristic and ILP results
however gets larger in high traffic case (for the given data
points, on average 9.75% and 6.7% absolute saving difference
with and without shifting, respectively, while medium and low
traffic have (6.33%, 5.22%) and (4.17%, 4.09%) for the same,
respectively.), as it gets harder for the heuristic solution to find
better groupings with highly utilized timelines of MTDs.

Next, we compare the ILP solution with heuristic based
solutions in dynamic environments. Fig. 10 shows the results
with different number of MTDs in three traffic models. Here,
we show results until 25 MTDs as running ILP-DA takes
much longer than ILP-IA. For each MTD count, we performed
simulations over 100 moments with 10% of the existing MTDs
leaving the network and an equal amount of new MTDs with
new traffic patterns joining the network at every new moment.
Looking at the saving results in Fig. 10a, we notice a similar
relation as in Fig. 9a, but the gap between ILP-DA and HDA
is a bit larger (on average 10.2% and 7.3% absolute saving
difference with and without shifting, respectively). This is
probably due to the fact that ILP-DA can achieve slightly
higher saving compared to ILP-IA, but this comes with more
MTDs changing their IMSI through different moments com-
pared to HDA, as shown in Fig. 10d. HDA_noSR algorithm

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on

arch 04,2022 at 02:54:18 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2022.3155923, IEEE Internet of

Things Journal

Low Traffic

13

©
S
©
S

®
o
®
o

~
o
~
o

(2]
S
(2]
=]

o
=]
o
=]

IS
o
IS
o

Percentage of Saving (%)
Percentage of Saving (%)

—=—ILP-IA —+— HIA
—o6— ILP-IA (shifting) —x— HIA (shifting)

w
S
w
S

Medium Traffic 70 High Traffic
:\;60
250 e — X T T
3 g
—— — = — — + — — + — — + — — " 407 =

“6 —
830 ——+ — —+ — —+ — —+ — — + — —
g
320
o

—&—ILP-IA —+— HIA & 10 —&—ILP-IA —+— HIA

—o6— ILP-IA (shifting) —*— HIA (shifting) —o6— ILP-IA (shifting) —*— HIA (shifting)

o

N
=1
N}
o

1 2 3 4 5 6 1 2

1 2 3 4 5 6

0 0 3 4 5 6 0
Maximum Shifting Allowed (7, ) Maximum Shifting Allowed (7, ) Maximum Shifting Allowed (7, )
(a) (b) (©

Fig. 11: ILP vs. Heuristic Algorithms with different maximum shifting threshold (7,ax): Percentage of saving with (a) low,

(b) medium and (c) high traffic patterns (M = 20, Tyez = 3).

Low Traffic

©
o

Medium Traffic

70 ‘ High 'I"rafﬁc

®
S

Percentage of Saving (%)
~ ~
o (4]
v \
\ \
Percentage of Saving (%)
~
o

—=— HDA (shifting) —+— HDA
—©&— HD_noSR (shifting) —*— HDA_noSR

60

Percentage of Saving (%)

)
a

—=— HDA (shifting) —+— HDA
—6— HD_noSR (shifting) —*— HDA_noSR

—=— HDA (shifting)
—6— HD_noSR (shifting) —*— HDA_noSR

—+— HDA

@
S
o
=]

100 200 300

Number of MTDs

()

400 500 200

Low Traffic

Number of MTDs
(b)

Medium Traffic

30
100

200 300

Number of MTDs

(©

300 400 500 400 500

High Traffic

0.8

w

5F
—=&— HDA (shifting) —+— HDA —=&— HDA (shifting)

—6— HD_noSR (shifting) —»— HDA_noSR

w

| | —©— HD_noSR (shifting) —x— HDA_noSR

—+— HDA —=— HDA (shifting) —+— HDA

—6&— HD_noSR (shifting) —*— HDA_noSR

-

N
o

)
—

0.4r

o

02t T~

% of MTDs with updated IMSI
o
3]

% of MTDs with updated IMSI

o

% of MTDs with updated IMSI
IS

0
100 200 300

Number of MTDs

(d)

400 500 200

Number of MTDs

(e)

0
100 200 300

Number of MTDs

®

300 400 500 400 500

Fig. 12: Impact of MTD count: The percentage of savings in dynamic environments (10% dynamicity) with (a) low, (b)
medium and (c) high traffic patterns (7,4, = 3), and corresponding percentages of MTDs with updated IMSI counts in (d),

(e) and (f), respectively.

provides slightly less saving compared to HDA, showing the
benefit of smart removal process. This benefit gets more clear
with more traffic, as shown in Fig. 10b-c, and with large
number of MTDs in the network, as will be shown later.
Comparing percentage of MTDs with updated IMSI, we see
some differences. While HDA algorithm with shifting always
results in more such percentage compared to its no shifting
run, ILP-DA results vary with different traffic loads. That is,
in low and medium traffic (Fig. 10d-e), no shifting based
ILP-DA results in more MTDs with updated IMSI compared
to the ILP-DA with shifting, however this gets opposite in high
traffic. As minimizing the percentage of MTDs with updated
IMSTI is the secondary goal after minimizing the active number
of bearers used, this difference can be understandable. It is also
worth remarking that HDA_noSR algorithm does not cause

any IMSI update for existing MTDs as it only adds the new
joining MTDs to the available bearers or initiate new ones.

Fig. 11 shows the impact of 7,,,, On percentage of saving.
Here, we again use a small MTD count (i.e., M = 20) to be
able to show a comparison with ILP results. In the case of
no shifting, the results do not change but we provide them to
show the benefit of shifting based models over this benchmark
model clearly. We see that as threshold increases, there is more
saving achieved in all traffic load models. However, we see that
in low traffic, the convergence happens more quickly than in
medium traffic whose convergence happens more quickly than
in high traffic case. This is because as the traffic density gets
higher, it becomes less flexible for arrangements among groups
and thus can only achieve the maximum benefit possible with
more flexibility obtained when larger thresholds are used.
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Moreover, heuristic based solution in general provides closer
results to ILP solution. However, as the traffic density gets
higher, the gap between heuristic and ILP results increases
similar to the earlier results presented.

2) Impact of MTD Count: In order to show how the
proposed algorithms perform with larger number of MTDs,
we also obtained results from 100 to 500 MTDs in the
increments of 100. These results are presented for dynamic
environments and do not include ILP results due to longer
running times. In Fig. 12, we show both the percentage of
saving and percentage of MTDs with updated IMSI for three
traffic models. The percentage of saving results in Fig. 12a-c
show the benefit of shifting as in Fig. 9. The saving is also
more or less stable in each of the traffic models. Comparing
HDA and HDA_noSR algorithms, we also observe a much
clearer benefit of smart removal process included in HDA, as
the traffic load increases. This is also true for both shifting
and no shifting cases. However, as it is shown in Fig. 12d-
f, this comes with some changes in IMSI assignments of
MTDs. For example, in high traffic model with shifting and
when M=500, while HDA offers around 10% more relative
saving compared to HDA_noSR, it causes around 5.4% of
MTDs update their IMSI between consecutive moments. On
the other hand, HDA_noSR does not cause any update in IMSI
assignments of existing MTDs as expected.

3) Impact of Dynamicity: In Fig. 13, we look at the results
with different dynamicity levels between consecutive mo-
ments. In particular, we consider from 10% to 50% dynamic-
ity. When there are M =500 MTDs in the initial network, these
refer to 50 and 250 MTDs joining/leaving at every moment,

respectively. Looking at the percentage of saving results in
Fig. 13a-c, we observe a more or less stable saving in all cases.
HDA again offers larger saving compared to HDA_noSR
and shifting helps increase this saving. On the other hand,
HDA causes IMSI updates due to smart removal process, as
shown in Fig. 13d-f. Note that when dynamicity increases the
percentage of MTDs with updated IMSI increases, and in some
cases, this gets very large and can cause a lot of control traffic
(for provisioning of new IMSI numbers). However, in a real
scenario even 10% dynamicity could be very high and we
observe that with 10% dynamicity the percentage of MTDs
with updated IMSI is relatively low (i.e., 0.2-5%).

4) Impact of Maximum Shifting Threshold: We then look at
the impact of maximum shifting threshold (7,,,,,) in dynamic
environments (similar results are shown for initial aggregation
only while providing comparison with ILP in Fig. 11). Fig. 14a
shows the results for 7,4, in range of [0,6]. As the threshold
increases, the percentage of saving first increases and becomes
stable. HDA offers up to 10% additional relative saving
compared to HD_noSR and this comes with up to 3% of MTDs
with updated IMSI. If the control traffic associated with such
IMSTI updates can be handled by the network without affecting
data traffic, then HDA can safely be utilized to increase saving
in aggregated communication.

5) Impact of Data Sending Interval Array: In Fig. 14b, we
look at the impact of the array from which the data sending
intervals of the MTDs are selected on the results. As the figure
shows, with more options and larger A\ values, the saving
reduces in all algorithms. However, in all cases, shifting as
well as the smart removal process considered in HDA help
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increase the saving. Up to 2% of MTDs get updated IMSI
between consecutive moments on average, which refers to
around 10 MTDs thus may not cause too much control traffic.
In the preliminary version of this paper [19], we also showed
a comparison of these results with ILP using a small MTD
count and demonstrated that heuristic algorithms can provide
closer results to ILP. These results are omitted here for the
sake of brevity.

6) Impact of Growing Network: In earlier results with
dynamic environments, we assume that an equal number of
MTDs join and leave the network at every network moment
so that total MTD count in the network stays stable. In order
to see how results change in a growing network, we also
obtained results. To this end, we start with AM=500 MTDs
in the network and let 50 devices leave and 75 new devices
join at every moment. Thus, after 20 moments, the MTD count
in the network reaches M=1000 devices. Looking at results in
Fig. 14c, we see a pretty stable behavior in terms of percentage
of saving. The percentage of MTDs with updated IMSI is also
similarly stable (around 2%), which is omitted in the graph for
clarity.

7) Running Time Comparison: Finally, in Fig. 15, we
compare the running times of heuristic based algorithms
(running times of ILP solutions are much higher as shown in
preliminary version [19], thus skipped here). In these results,
we consider a dynamic environment and run HIA algorithm
for each moment independently (as if the network is initi-

ated at that moment without considering previous moment).
This indeed refers to the algorithm proposed in preliminary
version [19] without considering dynamic environments. In
Fig. 15a, we first compare running times with different data
sending interval arrays. As the results show, running HIA at
every moment takes very long time compared to HDA and
HDA_noSR both when shifting is considered and not consid-
ered. Shifting causes running time increase in all algorithms
due to additional computations needed to check all possible
combinations to benefit from the flexibility offered by shifting.
Comparing HDA and HDA_noSR, we observe that there is
only some slight increase in running time with HDA compared
to HDA_noSR due to the smart removal process in HDA.
However, as it is shown in earlier results, HDA can provide
up to 10% additional saving compared to HDA_noSR.

In Fig. 15b, we compare running times with different
MTDs in the network (with 10% dynamicity). The results are
inline with the results in Fig. 15a in terms of the order of
algorithms with respect to running time. With more MTDs,
the running time of HIA increases heavily compared to HDA
and HDA_noSR. HDA and HDA_noSR also show similar
running time, while HDA offers more saving. Finally, in
Fig. 15¢, we show the average running times per moment over
different number of network moments. As the results show,
the average running times of HDA and HDA_noSR algorithms
decrease with more network moments. This is because in these
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algorithms, there is indeed the high cost of initial grouping
(using HIA) of all nodes at the beginning. As the network
changes with joins and leaves and these algorithms are applied
over more number of moments, their average running time per
moment indeed gets lower thanks to the much lower cost of
regrouping algorithm used (i.e., Algorithm 2). HDA has again
slightly more average running time than HDA_noSR due to
the smart removal process, however it is still much lower than
applying from scratch grouping (i.e., HIA) at every moment.

VI. CONCLUSION

In this paper, we studied traffic shifting based aggregated
communication model for IoT devices in dynamic environ-
ments. The proposed aggregated communication model not
only lets the devices use the same subscriber identity (i.e.,
IMSI) and take turns during their communication but also
considers slight shifting in the original traffic patterns of
devices for further saving in the resource utilization, namely
the number of actively used bearers, in the core network.
We considered a dynamic environment where some existing
devices leave the network and new ones join the network
and form a new network moment. We aimed to aggregate the
traffic from these devices as much as possible and also while
keeping the bearer and IMSI assignments as stable as possible
as the list of the devices in the network changes. To this end,
we first modeled ILP based solutions and then in order to
avoid the complexity of ILP solutions we proposed heuristic
based aggregation algorithms with a much lower complexity.
Simulation results showed that heuristic based solutions can
offer closer results to ILP results with much less complexity
and shifting based aggregation provides more saving in the
number of bearers or cellular connections used to carry the
traffic from all devices. Moreover, the smart removal process
considered between consecutive network moments can offer
additional saving compared to naive method of adding new
arriving MTDs to the existing bearers directly and creating
new ones for not fitting ones (i.e., HDA_noSR algorithm).
These results show that the proposed HDA algorithm offers
a scalable solution and can efficiently work in dynamic envi-
ronments.

In our future work, we will consider more complicated and
data-driven traffic models for the MTDs, and look at the per-
formance of proposed solutions in real environments. We will
also perform experiments for the IMSI sharing among MTDs
in dynamic networks. Finally, we will consider erroneous and
malicious behavior of the devices and study the robustness and
security of the system.
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