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Abstract—The availability of inexpensive 3D-printed
quadrupedal robots motivates the development of learning-
based methods compatible with low-cost embedded processors
and position-controlled hobby servos. In this work, we show
that a linear policy is sufficient to modulate an open-loop
trajectory generator, enabling a quadruped to walk over
rough, unknown terrain, with limited sensing. The policy is
trained in simulation using randomized terrain and dynamics
and directly deployed on the robot. We show that the resulting
controller can be implemented on resource-constrained
systems. We demonstrate the results by deploying the policy
on the OpenQuadruped, an open-source 3D-printed robot
equipped with hobby servos and an embedded microprocessor.

I. INTRODUCTION

Current high-end legged robots (e.g., [1]-[4]) are cost-
prohibitive for many potential users such as schools and
small businesses. Low-cost hobbyist robots such as Stanford
Pupper [5] and OpenQuadruped [6], increase accessibility
but have limited features because of their 3D printed parts,
low-powered microcontrollers, and hobby servo motors. Un-
fortunately, algorithmic development for these quadrupedal
robots often requires powerful computers and graphics cards
to both train and deploy the controllers and deep neural
networks that enable robots to exhibit complex behaviors
like walking over rough and uneven terrain or recovering
from falls [7]-[10]. Generally, the graphics cards used to
execute complex algorithms and train neural networks (e.g.,
a GeForce RTX 2080 Ti retailing for $1200) exceed the
cost of a typical hobbyist robot (e.g., the OpenQuadruped
at $600) [6], [11]. These robotic systems become even more
inaccessible if we consider the required additional sensing
and computation needed to map terrains [12] and execute
high-frequency torque control [13].

If we want robotic systems to be more accessible, it is
necessary to acknowledge that access to arbitrary amounts
of compute is not always available, and develop light-
weight algorithms that explicitly consider the constraints
and limitations found with low-cost hobbyist robots [14].
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Fig. 1. Legged locomotion over complex terrain. Example of a trajectory
taken by the OpenQuadruped robot using sim-to-real transfer of a linear
policy on difficult terrain.

Thus, this paper focuses on illustrating that learning simple
linear policies can augment and improve locomotion skills
for a class of low-cost robotic systems subject to sensing
and control limitations. We show that such policies lead to
sufficient locomotion over unknown rough and uneven terrain
in a variety of simulated and experimental evaluations.

The current state-of-the-art in the field of quadrupedal
walking robots has demonstrated the ability to traverse rough
terrain using only proprioception and position-controlled
legs [7]. Using the Policies Modulating Trajectory Gen-
erators (PMTG) architecture [15] to combine open-loop
leg trajectories with feedback from a neural network, [7]
showed that the ANYmal robot is capable of traversing a
wide variety of difficult terrain without explicitly sensing
it. Although the 12-layer deep neural network from [7]—
trained in simulation using a multi-stage process with an
observation history of 100 time-steps—can be successfully
deployed on the more than $100,000 ANYmal robot, it is not
conducive to implementation on a sub $1000 robot with only
a single embedded microprocessor controlling 3D printed,
hobby-servo actuated legs. Not only do these inexpensive
systems have limited memory and processing power, but the
hobby-servo motors used in these systems often lack the
position feedback required by the network used in [7].

To bridge the gap between effective but resource-intensive
walking methods and inexpensive hardware, we adopt an
overall architecture similar to that of [7]. However, we show
that Bezier curve gaits [3] can be used as a lower-order open-
loop gait model while a learned linear policy (instead of
a deep neural network) modulates the gaits for improved
locomotion on rough terrain. The policy can be efficiently
trained on a CPU and be deployed on the low-powered
embedded systems commonly used with the low-cost robots
(e.g. [16], [17]). Similar techniques have been shown to work
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on sloped terrain in simulation [18].

The primary contribution of this work is to show that
walking over rough terrain using only inertial measurements
is possible with a linear policy obtained through a direct
policy search method [19] with domain randomization [20]
on a CPU that can be readily deployed in the real world. By
randomizing the terrain and robot dynamics during training,
the policies can generalize to simulation errors, enabling
direct transfer of policies to the real robot. Although such
simple policies cannot be expected to match the performance
of existing work [7], [9], they significantly improve the
ability of inexpensive robots to traverse rough terrain without
expensive computation, sensing, or actuation. Because these
linear policies are effective and can be implemented on
existing low-cost robotic platforms they are crucial to the
overall development and accessibility of low-cost walking
robots.

We also provide open-source plans for the OpenQuadruped
robot used in our experiments [6], and an open-source
simulation environment [21].

II. PROBLEM STATEMENT

We pose the problem as a partially observable Markov
decision process (POMDP) where we have a set of uncertain
observations of the robot’s state o, € O, a reward function
r+ = R(s¢,a¢) defining the quality of the locomotion task
as a function of the state s; € S, and an action space
a; € A containing the set of control inputs to the system.
A policy a; = 7(0s,0) = 0T oy parameterized by 6 maps oy
to a;.! Given this formulation, the goal is to find the policy
parameters 6 that maximize the reward over a finite time
horizon 7' using only partial observations of the state oy.
More precisely,

T—1
0* = argmaxE Z fytrt] , ()

0 t=0
where 0 < « < 1 is a discount factor, §* is the optimal policy
parameters, and E is the expected value over the randomized
parameters described in Section III.

In simulation, we have access to the full robot state,
which we use to construct the reward function for training;
however, full state information is unavailable on the real
robot. Therefore, we train our policy in simulation using a
partial observation of the state o, to mimic on-robot sensing.

A. Reinforcement Learning for Gait Modulation

The problem statement (1) serves as a template for de-
veloping and learning policies that adapt open-loop gaits
for legged locomotion. During each episode, the policy 7 is
applied to modulate and augment a gait generator. This gait
generator (described subsequently) outputs body-relative foot
placements which the robot follows using position control.

Let ¢ be a label for the quadruped’s legs: FL (front-
left), FR (front-right), BL (back-left), BR (back-right). An

'In this work the actions map to inputs to a Bezier curve gait generator
and robot foot position residuals.
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Fig. 2. System diagram. All controllers (including policy updates)

run at 600 Hz. The gait generation and policy modulation are calculated
simultaneously allowing fast generation of foot poses that are robust to
limited sensing and rough terrain.

open loop gait is a one-dimensional closed parametric curve
Ty(S(t), ¢, B) embedded in R? and specifying the position of
a foot in the frame of its corresponding hip. Here, S(¢) : R —
[0,2] is a cyclical phase variable, ( € R™ are the directional
control inputs, and 8 € R™ contains the gait parameters (in
this paper, m = 2). The control inputs ¢ and gait parameters
[ determine the shape of the gait trajectory. The controls
enable the robot to move in any lateral direction and rotate
about its central axis. Control inputs, parameters, and gaits
are discussed in Section IV.

The policy (Afyy.,8) = (o, 0) augments the foot
positions via additive foot position residual Af,,. and
modifies the open-loop gait generator such that (1) is max-
imized using only partial observations o;. Here Af,,, =
(AL AfER AfBL AfBE] augments each foot po-

TYz TYz TYz TYz
sition, with Aff = € R®, and 3 = {¢,8} where ¢ is the
clearance height of the foot above the ground and J is a
virtual ground penetration depth.

The final foot positions are computed as a combination of

the gait generator output and the policy residual:

f;cyz :F(S(t)a<7/8)+AfwyZ7 (2)

where f,,. € R'? is the stacked vector of each three-
dimensional foot position that the robot tracks and I contains
T'y for each leg. Given the foot positions, the robot computes
the inverse kinematics to move its leg joints to the appropri-
ate angles as shown in Fig. 2.

The challenge is to solve (1) in simulation using only the
observations o; such that the resulting policy is suitable for
use on a real robot subject to rough terrain and uncertain
physical parameters. We present Gait Modulation with Bezier
Curves (GMBC), summarized in Algorithm 1, which uses the
Bezier curve gait generator for I' described in Section IV
as a solution to (1). GMBC uses a simple policy search
method to directly solve (1). We add domain randomization
during the simulated training (see Section III) to improve the
performance of linear policies over rough terrain and sim-
to-real transfer.

III. DOMAIN RANDOMIZATION

We employ two techniques that adapt (1) for improving
the performance of sim-to-real transfer of gait modulat-
ing policies. Specifically, this approach merges the ideas



Algorithm 1 Gait Modulation with Bezier Curves (GMBC)
Given: Policy 7 with parameter 6, (Bezier) Curve Generator
T", External motion command (, robot sensor observations
o¢, Leg phase S(t)

1: obtain gait modulation from 7 with learned parameter 6
Afacyzv B = 71'(015’ 9)

calculate (Bezier) gait foot placement

return f,,, + A f;,. to robot for IK joint control
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from [20] to randomize not only the dynamics parameters
of the simulated robot, but also the terrain that it traverses.
We then solve (1) using a policy search method (augmented
random search (ARS) [19]) to learn a linear policy as a
function of observations subject to sampled variation in
the dynamics and domain of the simulated episodes.> We
describe the domain randomization procedure below.

We first modify the physical dynamic parameters that
typically differ between simulation and reality, including
the mass of each of the robot’s links and the friction
between the robot’s foot and the ground. This distribution
for which we train the gait modulating policy is defined as
Odyn ~ Payn, Where o is the vector of randomized dynamics
parameters and P4y, is a probability distribution that treats
each parameter independently (see Table I). At each training
epoch, we sample from Pyy, and run a training iteration using
the sampled dynamics parameters.

TABLE I
DOMAIN RANDOMIZED PARAMETERS

Randomized Parameter o Range
Base Mass (Gaussian) 1.1kg +£20%
Leg Link Masses (Gaussian) 0.15kg £20%
Foot Friction (Uniform) 0.8to 1.5
XYZ Mesh Magnitude (Uniform) Om to 0.08m

We additionally randomize the terrain through which the
legged robot moves (see Fig 3). We parameterize the terrain
as a mesh of points sampled from oy ~ P, Where e
is the displacement on the uniform mesh grid, and Py, is
a bounded uniform distribution for which we vary the grid
(see Table I). As with dynamics randomization, we sample
terrain geometry from Py, and train an iteration of ARS on
the fixed sampled terrain.

We combine sources of domain randomization by leting
o ~ IP be the joint distribution of Pgy, and Py over which
we take the expectation in (1), where o is the joint domain
sample. The training details are described in Algorithm 2
using ARS and GMBC from Algorithm 1. During training,
the external commands ¢ are held fixed and defined by the
task (e.g., move forward at a fixed velocity).

In the next section, we describe the specifics of the Bezier
curve gait generator I used throughout this work.

2An episode being a single T step run of the simulation with a fixed
initial (randomly sampled) state.

Simulation environment. Illustration of the domain randomized
terrain used for training in simulation. The terrain height varies up to 40%
of robot height shown in the image [21], [22].

Fig. 3.

Algorithm 2 RL Simulation training for DR-GMBC using
Augmented Random Search [19]
Initialize: policy parameters 6y, domain distribution P, re-
ward function R, GMBC (Algorithm 1), iteration number
k = 0, construct ARS.

1: while training not converged do

2 o ~ P sample domain parameters

3: ARS step of (1) with domain randomization+GMBC

4

5

9k+1 — ARS(?‘(‘7 Qk, R, o, k)
k+—k+1

6: end while

7: return 6y

IV. EXTENDED BEZIER CURVES WITH MOTION
COMMANDS

We use an extended and open-loop version of the Bezier
curve gaits developed in [3], combining multiple 2D gaits
into a single 3D gait that enables transverse, lateral, and
yaw motion. The policy then modulates the gait parameters
to adapt to uneven terrain and removes the need to sense
impacts and forces at the foot.

A gait trajectory is a closed curve that a foot follows
to execute a desired locomotion skill. The gait trajectory
consists of two phases: swing and stance. During swing,
the foot moves through the air to its next position. During
stance, the foot contacts the ground and moves the robot
using ground reaction forces. A gait is parameterized by a
phase S(t) € [0,2), which determines the foot’s location
along the trajectory. The leg is in stance for S(¢) € [0,1) and
in swing for S(¢) € [1,2). A trajectory generator Y(S(t),7)
then maps phase and step length 7 to a set of trajectories in
R2. We use a trajectory consisting of a Bezier curve during
swing and a sinusoidal curve during stance, see Section VI-A
for more details.

The gait has as input three control inputs which direct

the movement of the robot: ( = [,0 w Lspan], where
p € [—F,%] is the trajectory’s rotation angle relative to

the robot’s forward direction, i is the robot’s yaw velocity,
and Ly, is half the stride length. Locomotion consists of
a planar translation f!7 = T(S(t), Lyan) and yaw trajectory

Jiw =T (S(t),w). These trajectories also depend on curve
parameters 3 = [¢) d] (see Fig. 4 and Section VI-A for

illustration).
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Bezir gait generator schematic. Schematic of foot placement based on Bezier gait generator: fs,.. Desired directional and velocity inputs

are passed to the gait generator to modify the foot position based on a phase close S(¢) which executes the desired movements. The modulating policy
augments the gait generator and its subsequent parameters in response to on-board inertial sensing to improve locomotion over unknown terrain.

Using the control inputs, the planar trajectories ;Z

fye are converted into 3D foot-position trajectories fL; .
and fyor *, where each leg ¢ has the same translational
velocity but different yaw velocity. Finally, we transform the
yaw and translational curves into a frame relative to each
leg’s rest position f5tand to get the final foot trajectory for

Yz
leg ¢:

and

yaw
zyz,l +

stand . (3)

¥/ _ rtr

xyz — Jzxyz + TYZ
This scheme enables movements encompassing forward,
lateral, and yaw commands, and straight-line motion which
can extend to more complex motions. Here, ( , fi) and

(fg*, f¢*) are the coordinates of ” € R2 and v e

R2 respectively. Rotating planar trajectory " by p ylelds
the 3D foot trajectory:
e = [fg cosp fiTsinp fI7]. )

Yaw control of the legged robot is obtained by a four-
wheel steered car model [23]. To trace a circular path, each
foot path’s angle must remain tangent to the rotational circle,
as shown in Fig. 4. To make the robot yaw (i.e., rotate about
its z-axis) each foot must move to position gﬁyz(t), where

9y (t) = fuya(t — 1) — frand, )
The distance and angle of this step in the xy plane are:
gt
(94)? + (¢4)? and gf,, = arctan | = |,
g

x

L _
gmag -

where g£ and g/, are the = and y components of g%, .. Each
leg then translates at an angle

d.rc = gdng + ¢stdnd + 2 (6)

for a given yaw motion with the standing phase being equal
to the following

sl'md
arctan f,m,d ¢/ =FR, BL

¢
¢stand = * fsland (7)
— arctan W ¢ =FL, BR

where f54d and f;tand are the x and y components of ;ﬁ;rzld_

The leg rotation angle ¢, . provides the final yaw trajectory:

yaw

zyz,l [fyaw cos d)arc fq sin ¢£rc fgaw] (8)

The description of the gait generation procedure is outlined
in Algorithm 3, and the generated Bezier curve is shown in
Fig. 2.

Algorithm 3 Bezier Curve Generator I' - Per Leg /¢
Inputs: ¢
Map t to foot phase S¢(t) using (14)
( q 7f£r) = ( (t)aLspan)
(fyaw7 fyaw) = (Sf (t)a @)
xyz = [f” cos p f;” sin p fz”]
grc = ganf + (rbqtand + 7T

%Z;UZ - fyaw cos ¢m’c fq sin ¢grc fgaw]
TYZ = :Z;z

ya stand
fLyz A + TYZ
return 7

to the robot for joint actuation
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V. RESULTS

We present several experiments to evaluate our approach
for improving legged locomotion with a simple linear policy.
We first describe the simulated training in more detail. We
then evaluate the learned linear policies based on:

1) Generalization to randomized dynamics and terrain.

2) Improvement over open-loop gait generators with and
without domain randomization.

3) Sim-to-real transfer performance on a real robot.

A. Simulated Training

As mentioned in Algorithm 2, we use the augmented
random search (ARS) method to train a policy to modulate
GMBC (Algorithm 1) using the objective function defined
in (1). To match the sensors on the real robot, we train the
policy using an observation comprised of body roll » and
pitch p angles relative to the gravity vector, the body 3-
axis angular velocity w, the body 3-axis linear acceleration
0, and the internal phase of each foot Sy(t), making o, =
[r,p,w,¥,S(t)]" € R'2. Training took 12 hours on a laptop
with an Intel Core 17-8565U CPU.

A linear policy is chosen so that it can run in real-time on
inexpensive hardware while improving the open-loop gaits
as much as possible. The policy is defined as

ay = T(Ot,e) = QTOt,

where § € R'2X14, Here, the policy outputs the nominal
clearance height and virtual ground penetration depth of the
Bezier curve and residual foot displacements that are added
to the output of the Bezier curve.
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Fig. 5. Policy output. Example policy output during testing for a single
leg. The simple linear policy successfully modulates robot using only inertial
measurements.

To prevent infeasible foot positions and Bezier curve
parameters, we center the policy output within the domain
m(o,0) € [—1,1]*. The output is then remapped to the
acceptable range of Bezier curve parameters and a bounded
domain of foot residuals. We use this combination of Bezier
curve modulations and foot residuals to allow for large
trajectory deviations while maintaining a continuous and
feasible desired path. For each simulated example, the high-
level motion commands are fixed at Lgpq, = 0.035m, and
p = 0. A proportional controller sets the yaw rate i to keep
the robot’s heading at zero. Fig. 5 provides an example of
the output of the learned linear policy for a single leg.

Augmented random search (ARS) randomly searches for
policy parameters that maximize the cumulative returns. For
each ARS optimization step, we run 16 episodes with ran-
domly sampled policy parameters with a parameter learning
rate of 0.03 and parameter exploration noise of 0.05. That is,
each of the 16 episodes samples a new parameter 6 = 64 Af
where Af ~ N(0,0.05) where N is a normal distribution
with mean 0 € R'2X!4 and variance 0.05. Each episode lasts
T = 5000 steps (50 seconds). The reward function is

re = Az — 10 (|r| + [p|) = 0.03) |w], ©)

where Ax is the global distance traveled by the robot in
the horizontal z-direction in one time step. We found that
dividing the final episode reward by the number of time
steps improves the policy’s learning due to a reduction in
penalization for sudden falls after an otherwise successful
run. The reward function ultimately encourages survivability.
For domain randomized training, we resample a new set of
domain parameters (see Sec. III) at each training episode of
ARS.

B. Effects of Domain Randomization and Linear Policy

To study the effectiveness of domain randomization, we
train linear policies with and without randomization and
benchmark them on unseen terrain and dynamics. We mea-
sure the distance the robot travels using each method before it
fails. We compare these results to the open-loop Bezier curve
gait generator by running 1000 trials with random dynamics
and terrain. We count survivability (how many times the
robot did not fall or exceeded a roll and pitch of 60°) within
the simulation time of 50,000 steps (500 seconds).

Performance curves in sim

0.5
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e
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Fig. 6. Performance curves in simulation. Evaluated reward curves
for simulation training with and without domain randomization. Despite the
improved training performance without randomization, policies trained with
domain randomization transfer better to unforeseen dynamics and terrain as
shown in Table II.

As shown in Table. II, robots trained with domain random-
ization (DR-GMBC) that survive travel farther than those
trained without randomization (i.e., with fixed dynamics and
terrain). Out of 1000 trials, 146 out of 305 (45%) DR-GMBC
survivals traveled past 90m (we cut off trials at 100m due
to simulation time constraints), and only 26 out of 327 (8%)
GMBC survivals did the same, showing a 5.6 x improvement.
Both methods outperformed the open-loop gait trials, which
never made it past Sm and did not survive a single run.

The training curves for the domain randomized linear
policy and non-randomized trained policies in Fig. 6 predict
that the non-randomized policy is expected to perform signif-
icantly better than domain randomized policies, in contrast to
the simulation results. This discrepancy between the training
and actual performance highlights the potential for simple
linear policies to perform well in legged locomotion tasks
and provides evidence that training performance is not a
useful indicator for testing policy-based locomotion skills in
sim-to-real settings.

TABLE II
EACH METHOD WAS TESTED FOR 1000 TRIALS, EACH LASTING 50,000
TIMESTEPS. OVERALL, ROBOTS TRAINED WITH DR-GMBC AND
SURVIVE TRAVEL FARTHER THAN THOSE TRAINED WITH GMBC.

DR-GMBC GMBC Open-loop
Distance # Died  # Lived \ # Died  # Lived \ # Died # Lived
< 5m 488 64 450 121 1000 0
S5m to 90m 207 95 222 180 N/A N/A
> 90m 0 146 1 26 N/A N/A

C. Sim-to-Real Transfer

The previous simulations illustrate the generalization ca-
pabilities and improved performance of DR-GMBC linear
policies. We now describe three experiments conducted on
OpenQuadruped [6], an inexpensive open-source robot. The
600Hz policy update and execution uses approximately 2%
CPU on a Raspberry Pi 4 B.

The first experiment tests DR-GMBC on a robot whose
task is to traverse the 2.2 m track shown in Fig. 7 (a) covered
with loose stones whose heights range between 10 mm to 60



Fig. 7. Experiment designs. Illustration of experimental testbeds: a)
Experiment 1: Rocky Test Track (2.2m), b) Experiment 2: 60mm Loose
Stone Descent, ¢) Experiment 3: Omnidirectional Performance on Flat
Ground.

mm (roughly 30% of the robot’s standing height). The second
experiment evaluates the robot’s ability to descend from the
peak of loose stones at the maximum 60 mm height onto flat
ground shown in Fig. 7 (b). The goal of the last experiment is
to show the generalization capabilities of DR-GMBC linear
policies trained in simulation for following unseen high-level
motion commands ¢ by having the robot follow the 1 x 1 m
square shown in Fig. 7(c).

Experiment 1: Traversing Unknown Terrain In this
experiment, we test the policy on terrain that was not seen
in training. Additionally, the stones are loose, making the
terrain non-stationary and potentially difficult to traverse.
Due to the lack of a global odometry, a human operator
provided high-level yaw rates to steer the robot as it traversed
the stones. To prevent human bias, the robot randomly
selected with a 50% probability the DR-GMBC gait or a
benchmark open-loop Bezier curve gait. The experiment
continued until both methods were used for at least 10 trials.

As shown in Table III, we observed a 1.408x increase
in average traversed distance using DR-GMBC compared to
the open-loop gait. Although the track was only 2.2 m long,
DR-GMBC improved the survivability by 4.28 x compared
to the open-loop Bezier gait. Furthermore, our approach does
not require sensing leg joint positions or foot contact.

TABLE III
EXPERIMENT 1: ROCKY TEST TRACK (2.2M).

DR-GMBC  Open-loop Bezier Gait
Distance Mean (of 2.2) 1.93 1.37
Std. Dev 0.30 0.44
Success Rate (of 1) 0.60 0.14
Distance Improvement 40.73%
Success Improvement 4.28 x

Experiment 2: Descending from Loose Stones We set
the robot on a raised platform consisting of 60 mm stones to
perform a descent test. We record the successful and failed
(falling over) descents for both DR-GMBC and open-loop
controllers. The operator, unaware of which policy is used,
drives the robot forward until it descends or falls. The DR-
GMBC agent fell 3 out of 11 times, and was 2.36x more
successful than the open-loop controller, which fell 9 out of
13 times.

TABLE IV
EXPERIMENT 3: OMNIDIRECTIONAL SPEED ON FLAT GROUND.

Gait FWD (m/s) LEFT (m/s) BWD (m/s) RIGHT (m/s)
DR-GMBC AVG 0.21 0.29 0.15 0.25
DR-GMBC STD 0.04 0.04 0.03 0.05
Open-Loop AVG 0.20 0.26 0.26 0.21
Open-Loop STD 0.02 0.04 0.09 0.04

Experiment 3: External Command Generalization This
experiment runs the robot on flat terrain to validate the
generalization of DR-GMBC to external yaw and lateral
commands after the sim-to-real transfer. The experiment
additionally provides evidence that improved robustness to
rough terrain does not negatively affect performance on flat
terrain, even though the policy was trained exclusively for
rough terrain.

The operator drives the robot around a 1m X 1m track,
performing forward, backward and strafing motions, with
some yaw commands to correct the robot’s heading if nec-
essary. The experiment allowed us to measure locomotion
speed by correlating video timestamps with marks on the
ground. In our tests, the DR-GMBC policy, compared to the
open-loop gait, was 11.5% faster strafing left, 19.1% faster
strafing right, and had the same forward speed. Backward
speed fell by 57.6%. This outlier result was due to the policy
pushing the two rear 23kg hobby servos to reach their torque
limits, dipping the robot. As a result, the policy, anticipating
a fall, would dampen the robot’s motion. Simulations indicate
that with more powerful motors, backwards walking would
experience no performance degradation. Despite this result,
the linear policy was still sufficiently able to transfer from
sim-to-real and enhance the locomotion performance of the
OpenQuadruped over unknown terrain.

VI. CONCLUSION

In this work, we illustrated that simple linear policies are
sufficient for controlling low-cost hobby quadrupedal robots



over uneven unknown terrain. By using an modified open-
loop gait generator, we are able to sufficiently modulate the
gaits with a train a linear policy on a CPU and deploy it
on a low-cost embedded system. We also illustrate that the
resulting linear policy can operate on partial observations
that are often associated with the limited sensing capabilities
of these low-cost robots to generate stable locomotion on
unobserved rough terrain. The method is shown to be em-
pirically robust, achieving a 5.6x farther distance (>90m)
on arbitrary terrains through randomized training in fewer
than 600 training epochs. Real robot tests show 4.28 x higher
survivability and farther travel than a robot using solely an
open-loop gait, despite the terrain being vastly different from
simulation. For future work, we are interested in extending
this method to torque-controllable systems to achieve more
dynamic behaviors without terrain sensing.

APPENDIX
A. 2D Bezier Curve Gait
We discuss the Bezier curve trajectories developed in [3].

1) Trajectory Generation: Each foot’s trajectory is

7(1—-2S5(t
( m(1—£s)(1)) 0<S(t) <1,
2T

6 cos

T(S(t),7) = { L9cos ™ ar— 7
> a(r W) BR(S() 1) 1<) <2
=0 (10)
a closed parametric curve with
Bi(S(t) = (Z)(l—-sa>ﬂ"—k%9u>. (11)

Here B} (S(t)) is the Bernstein polynomial [24] of degree
n with n + 1 control points cy(7,7) € R2. Our Bezier
curves use 12 control points (see Table V). The parameter 7
determines the curve’s shape and 0 < S(¢) < 2 determines
the position along the curve. The stance phase is when
0 < S(t) <1 and the swing phase is when 1 < S(t) < 2.

TABLE V
BEZIER CURVE CONTROL POINTS. [3]

Control Point (q, z) Control Point (q, z)
co (—7,0.0) cr (0.0, 1.1%)
c1 (—1.47,0.0) cg,co  (—1.57,1.14)
Co,C3,Cq (—=1.57,0.99) c10 (—1.47,0.0)
cs, Co (0.0,0.9%) c11 (7,0.0)

2) Leg Phases: During locomotion, each foot follows
a periodic gait trajectory. The total time for the legs to
Complete a gait CyCle is Tstride = Tswing “l‘Tstancu where Tswing
is the duration of the swing phase and 7pce 1S the duration
of the stance phase. We determine 7y, empirically (0.2

: T :
seconds in our case) and set Tsygnce = =, >, where vq is a
fixed step velocity and Lgp,y, is half of the stride length.

The relative timing between the swing and stance phases
of each leg determines which legs touch the ground and
which swing freely at any given time. Different phase
lags between legs correspond to different locomotion types

such as walking or galloping. This periodic motion lets us
determine each leg’s position relative to £, the time of
the most recent front-left leg impact. Since our robot does not
sense contacts, we reset t%lipsed to 0 every Ti;rige Seconds.

We define the clock for each leg ¢ to be
te= t;lICjPSS - ASZ(t)Tstridea (12)

where ASy is the phase lag between the front-left leg and ¢.
We set the relative phase lag ASy to create a trotting gait:

ASr1 0.0
ASpr| |05
ASgr | = 05 (3)
ASpr| o0

Next, we normalize each leg’s clock, mapping t, to
the parameter Sy(t) such that the leg is in stance when
0 < S¢(t) < 1 and in swing when 1 < Sy(¢t) < 2:

T 0 < te < Totance
t+Tsiride _ ) _ )
Sg(t) _ W stride < e < Tswzng (14)
w 7T€wing < té <0
swing
te—Tstance
[T51;)27Lg Tstance < te < Tstride

Legs are in swing for the first two cases in (14) and stance
otherwise. We can now compute the foot position for leg ¢
using (10). This scheme suffices for forward walking, but we
need the methods of Section IV to walk laterally and turn.
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