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Intermediate adhesion maximizes migration velocity of multicellular clusters
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Collections of cells exhibit coherent migration during morphogenesis, cancer metastasis, and wound healing.
In many cases, bigger clusters split, smaller subclusters collide and reassemble, and gaps continually emerge. The
connections between cell-level adhesion and cluster-level dynamics, as well as the resulting consequences for
cluster properties such as migration velocity, remain poorly understood. Here we investigate collective migration
of one- and two-dimensional cell clusters that collectively track chemical gradients using a mechanism based on
contact inhibition of locomotion. We develop both a minimal description based on the lattice gas model of
statistical physics and a more realistic framework based on the cellular Potts model which captures cell shape
changes and cluster rearrangement. In both cases, we find that cells have an optimal adhesion strength that
maximizes cluster migration speed. The optimum negotiates a tradeoff between maintaining cell-cell contact
and maintaining configurational freedom, and we identify maximal variability in the cluster aspect ratio as a
revealing signature. Our results suggest a collective benefit for intermediate cell-cell adhesion.
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I. INTRODUCTION

Collective cell migration is of critical importance in nearly
all stages of life [1]. Biological processes like embryo-
genesis, morphogenesis, neurogenesis, regeneration, wound
healing, and disease propagation such as cancer metastasis
involve numerous cells acting in a coordinated way [1-3].
Studies have demonstrated that multicellular clusters can
sense chemoattractants more efficiently and precisely than
their isolated constituent cells do [4,5]. Sensory information
is combined with mechanochemical mechanisms, including
actin polymerization and contact-dependent polarity (known
as contact inhibition of locomotion, CIL) [4,6], to produce
directional migration. Recent studies have indicated that
cadherin- and integrin-based adhesions at cell-cell junctions
and cell-extracellular matrix (ECM) contacts respectively are
indispensable for migration of multicellular clusters [1,7,8].
Cell-cell and cell-ECM adhesion are integrated with actin
dynamics to keep clusters together during collective cell mi-
gration [1,9].

Collective migration presents a mechanical tradeoff, as
cells must negotiate a balance between displacing themselves
with respect to the ECM, but not separating themselves from
other cells. In many cases this results in clusters that are
dynamic and loosely packed rather than rigidly structured.
For example, in the case of neural crest cells, a group of
pluripotent cells in all vertebrate embryos that can migrate
very long distances, bigger clusters split, smaller subclus-
ters collide and reassemble, and gaps continually appear
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and disappear [4,10]. This raises the question of whether
there is an intermediate, rather than very strong or weak,
adhesion strength that optimally negotiates this tradeoff and
results in dynamic loose clustering and maximally efficient
collective migration. Cell adhesion is clearly crucial to col-
lective migration, but the mechanisms are not yet well
understood.

Here we use mathematical modeling and simulation to in-
vestigate the role of cell-cell and cell-ECM adhesion strength
in determining collective migration efficiency and the con-
comitant effects on cluster shape and dynamics. Rather than
focusing on the details of the mode of action or molecular
properties of different types of adhesion molecules, we de-
velop a generic model which explores the different regimes
of adhesion strength, so that we may have a general under-
standing of the phenomena. We start with a one-dimensional
model based on the lattice gas model of statistical physics [11]
that allows us to analytically probe the collective migration
velocity of a linear chain of cells as a function of adhesion
strength. We then extend this model to two dimensions using
the cellular Potts model [12-14], which more realistically
captures cell shape, cluster rearrangement, and other essential
aspects of cluster migration.

Numerical results from both the one- and the two-
dimensional model suggest the existence of an intermediate
adhesion strength among cells that leads to the fastest mi-
gration of a multicellular cluster. Specifically, there exists
a regime of intercellular and cell-ECM adhesion strengths
which corresponds to optimally effective migration. We
demonstrate that, in this regime, the clusters possess the max-
imal rearrangement capacity while remaining as a connected
cluster, rather than falling apart and scattering into single iso-
lated cells or strongly sticking together as a compact structure.
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II. METHODS

We first consider a simplified one-dimensional model for
collective migration based on the lattice gas model of statisti-
cal physics, and then a more realistic two-dimensional model
based on the cellular Potts model. Here we first review the
lattice gas model (later, in the Results section, we discuss
our new calculations using this model, as well as our own
modifications to it). We then present the model details of the
cellular Potts model.

A. One-dimensional lattice gas model

We first investigate a one-dimensional collective of cells
using the lattice gas model. Consider N cells arranged in a
one-dimensional lattice of V sites with V > N [Fig. 1(a)]. o;
denotes the state of each lattice site i. 0; = 1 represents a cell
while ECM is labeled by o; = 0.

Assume that interaction exists only between adjacent cells;
the total energy for a given configuration of cells {o;} can then
be expressed as
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where —e is the interaction energy between two adjacent
cells representing their adhesion. We impose oy = o} for

periodicity and ZY:I o; = N to conserve cell number.
The grand partition function for the lattice gas is
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where Zig = Y, e PELs is the canonical partition function,
7 = eP* is the fugacity parameter, with 8 = (kgT)~! and u
denoting the chemical potential. Equation (2) implies
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Inserting Eq. (1) into Eq. (2) and exploiting the fact that N =
SV, 01, Eq. (2) can be recast as

v v
Erg = ZCXP (,36 ZUiUHl +,3MZUi)' “)
ton) i=1 i=1

We now recognize that the grand partition function of the
lattice gas model as expressed in Eq. (4) has the same form
as the canonical partition function of the Ising model [11,15].
Specifically, relating the o; € {0, 1} to Ising spin variables
s; € {—1, 1} viao; = (s; + 1)/2, Eq. (4) reads

Brg = ZiePHV2ePVH, @)
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where Z; is the canonical partition function of the Ising model
with magnetic field H = (¢ + ©)/2 and coupling energy J =
€/4.

The canonical partition function of the Ising model is ex-
actly solvable in one dimension and reads

Zr=x +1r (6)
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FIG. 1. Velocity vs adhesion for one-dimensional collective cell
migration. (a) Schematic showing a collection of cells (colors, o; =
1) and ECM (white, o; = 0) arranged in a linear chain. Each pair of
cells has an interaction energy —e. Arrows indicate motility force
fi- (b) Normalized velocity (v)/vy as a function of adhesion Be for
the undriven model, Eq. (1). (c) Normalized velocity as a function of
adhesion Be for the driven model, Eq. (16).

for a periodic chain, where

re = e cosh(BH) + \/ 287 sinh?(BH) 4+ e=287.  (7)

Thus, Eqgs. (3) and (5)—(7) constitute an analytic expression
for the canonical partition function of the lattice gas model.
We use this fact to calculate the cluster migration velocity in
the Results section.

B. Two-dimensional cellular Potts model

To more realistically model cluster migration in two
dimensions, we use computer simulation. Many cellular au-
tomata models have been developed for this task [16-18];
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FIG. 2. Cellular Potts model for collective migration in a chemical gradient. A schematic of the adaptive cellular Potts model (CPM)
depicting a characteristic snapshot of three multicellular clusters of different sizes. The cluster consisting of two cells, enclosed within a
dashed box (left), is zoomed (right) to show cell-cell energy penalty y and cell-ECM energy penalty «. All cells have respective motility force
vectors (black arrows) and repulsion vectors (gray arrows; away from cell-cell contact as a result of CIL) in a linear chemoattractant gradient.
A single isolated cell (cell 6) has no force acting on it since we have considered CIL as our guiding mechanism for motility.

we use the cellular Potts model (CPM) [19,20]. The CPM
captures realistic properties such as changes in cell shape
and cell size, rearrangement of cells within a cluster, and the
dynamic breakup or reaggregation of subclusters. Diverse bi-
ological phenomena like chemotaxis, cell sorting, endothelial
cell streaming, tumor invasion, and cell segregation have been
modeled using the CPM [19,21,22].

We have considered a discrete two-dimensional lattice.
Each cell is represented by a group of lattice sites x with the
same integral values for their lattice labels o (x) > 0 (Fig. 2).
The empty lattice sites correspond to the extra-cellular matrix

J

o

ooy = 1@

<

o denotes the interaction strength of any cell due to adhesion
with its environment while intercellular adhesiveness is char-
acterized by y. A migrating cell is refrained from growing
or shrinking to unphysical sizes, as well as branching or
stretching into unphysical shapes, due to the presence of the
area restriction term in Eq. (8). Cells undergo fluctuations
in size 6A; around a desired area Ay via 6A; = A;(t) — Ayp.
We have set 14 to be unity [23]. Previous work [12-14,23]
has included a perimeter restriction term in addition to the
area restriction term. For simplicity we omit this term, as we
find that sufficiently large o and y constrain perimeter by
cell-ECM or cell-cell contact.

Our model of migration is based on contact inhibition of
locomotion (CIL), a well-known and central mechanism of
collective cell movement [6]. The formation of cell protru-
sions is locally inhibited when a cell comes into contact with
another cell, and hence the cell ceases to move in that direc-
tion. Instead, the cell generates protrusions away from the site
of contact [24,25], which produces force in the outward direc-

o(x)o(x) =
oc(x)ox)=0
ocx)o(x) >0

(ECM), with lattice label o (x) = 0, providing an environment
through which the cells move. The initial configuration has
several cells arranged in a single cluster. The energy of the
whole system Ecpy has contributions from two factors: the
first one is the adhesion, while the second one is the area
restriction term,

N
Ecom = ) Jowow) + Y ma(8A). (®)

(x,x") i=1

The adhesion energy term J, (x),+ (v 1S given by the following:

within ECM or same cell,
cell-ECM contact, 9
cell-cell contact.

(

tion. Direct evidence of CIL has been observed in migrating
clusters, where outer cells have strong outward polarization
while inner cells weakly protrude [4]. Note that under this
mechanism, directional migration, is purely collective: two or
more cells in contact are polarized, whereas single isolated
cells are not.

We consider the case where cells exist in an external chem-
ical gradient. Drosophila egg chamber cells [26-29], clusters
of lymphocytes [30], neural crest cells [4], and epithelial
organoids [5] exhibit emergent gradient sensing and collec-
tive migration in response to graded chemical cues. Under
the assumption that the chemical concentration influences the
magnitude of the protrusive forces, the presence of a chemical
gradient creates a force imbalance [31,32], allowing the clus-
ter to respond to the gradient. However, as a cluster migrates
up a gradient according to this mechanism, the background
concentration increases, which increases the outward forces
and can cause the cluster to scatter [31]. To prevent scat-
tering, we adopt an adaptive mechanism of gradient sensing
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[5,23,31], in which cells respond to the difference between
the local chemical concentration and the average experienced
over the entire cluster. Evidence for adaptive collective gradi-
ent sensing has been observed in epithelial organoids [5].

Specifically, we take the magnitude of the force experi-
enced by cell i to be

F = ng(xl,, — Xcm), (10)

where 7 sets the force strength, g is the concentration gradient
which is in the x direction (downward in Fig. 2 and subsequent
figures), xﬁ.m and x., are the x coordinates of the center-of-
mass of the cell and of the whole cluster respectively, and the
subtraction expresses the adaptivity. A cluster is a contiguous
set of connected cells, where connectivity is defined by any
amount of shared cell-to-cell border. The cluster center of
mass is the center of mass of all pixels of cells in the cluster.
We set ng = 1 in this work. The direction of the force experi-
enced by cell i is determined according to CIL [23]: we sum
all vectors pointing from cell-pixels in contact with any other
cell to the center of mass of cell i. This net “repulsion” vector
points outward (gray in Fig. 2), whereas the force direction is
flipped when the sign of Eq. (10) is negative (black in Fig. 2).
The forces contribute a work term to the energy functional,
given by

N
W=-) F- A%, (11)
i=1

where AX; is the change in the center-of-mass of each cell
upon a configurational change, discussed next.

Given the energy and work terms, cellular dynamics under
the CPM are simulated using a Monte Carlo process which
is based on the principle of minimizing the energy of the
whole system. Specifically, motility is modeled by an addition
(copying the identity of one cell-pixel, chosen randomly, to its
neighboring site) or removal (copying an ECM pixel to a site
previously occupied by cell) of pixels. Each Monte Carlo step
selects randomly a pair of adjacent lattice sites and attempts
to copy the identity of one to the other. It calculates the energy
of the previous (before copying) and the new (after copying)
configuration. The new configuration is accepted with proba-
bility P, given by

P= {e(AECPWW) AEcpm +W >0

1 AEcpm +W <0, (12)

where AEcpy is the change in energy of the system due to
the attempted move, calculated from Eq. (8), and W is the
work term given by Eq. (11). Note that because of the work
term, the configuration depends on the energy, which in turn
depends on the configuration. Thus, the system relaxes on an
evolving landscape and is therefore driven out of equilibrium.

III. RESULTS

A. Driven lattice gas model exhibits optimal cell-cell adhesion

We first consider the one-dimensional lattice gas model
(Methods) and ask how the average cell velocity depends on
the adhesion strength. As in the CPM described above, we
assume that the force [f; in Fig. 1(a)] is exerted by the edge
cells due to CIL and is proportional to the local concentration

of an external chemical. In one dimension, there are only two
edge cells per cluster of at least two cells (single isolated cells
experience no contacts and therefore no force). In a linear
chemical profile, the net force will be proportional to the linear
extent of the cluster, equivalent to the number of cell-cell
contacts. Assuming that the velocity is proportional to the
force (appropriate at low Reynolds number), the velocity of
a cluster can be expressed as vy Zi 0;0i+1, where the sum
extends over the indices of the cluster and gives its length,
and vy is an arbitrary constant that sets the velocity scale. The
average velocity over all clusters in a particular configuration
{o;} is the sum of all such terms divided by the total number
of clusters, or

v
Vo )i Oi0it1 voELG

N Z:/:l O’i(l _Gi+l) B _6N+ELG.

Here the denominator counts clusters by their rightmost
edges, and the second step recalls Eq. (1). We have chosen to
weight each cluster equally in Eq. (13) for analytic tractability,
but we will see that similar results are obtained if each cell is
weighted equally instead, as in later Results sections.

The average velocity is the sum of Eq. (13) against the
Boltzmann probability,

13)

—unE —BELc 0 9 n
=) = (—’3> Zig.
o] eN +ELG ZLG ZLG 0 eN
(14)

The second step recognizes that n derivatives of the partition
function extract n powers of —FE} s, which when summed as a
geometric series are equivalent to the first expression. Equa-
tion (14) connects the average velocity with the canonical
partition function of the lattice gas, for which we have an
analytic expression (Methods).

Equation (14) depends on the size of the lattice V, the
number of cells N, the velocity scale vy, and the dimensionless
adhesion energy PBe. Therefore, we can ask for a given V
and N, how the normalized velocity (v)/vy depends on the
adhesion strength Be. As an example, for V. = 8 and N = 4,
Eq. (14) evaluates to

(v) 4ePe 4 18P + 12¢3¢ s

vo 14 12eP 4 18e2P< 4 4edfe’ ()
We see in Fig. 1(b) (green curve) that (v)/vg is a monotoni-
cally increasing function of Be.

In general we find analytically that velocity increases
monotonically with adhesion strength for other values of N
and V, and also numerically when cells are weighted equally
in the average [Fig. 1(b)]. This would imply that the optimal
adhesion is infinitely strong. However, thus far, this model
neglects the impact of the motility process itself on the prob-
ability of occurrence of each configuration {o;}. That is, the
probability is determined entirely by the Boltzmann distri-
bution, which depends only on the adhesion energy. Instead,
we expect that the motility forces will influence the ensemble
of configurations, as some configurations that are driven by
collective movement will occur more frequently than they
would in the undriven system.

To account for the influence of motility on the configura-
tion ensemble, we add a driving term to the energy function

032410-4



INTERMEDIATE ADHESION MAXIMIZES MIGRATION ...

PHYSICAL REVIEW E 103, 032410 (2021)

that is proportional to the motility forces. Specifically, we
consider the change in energy to be of the following form:

AE = AE; g — nf;Ax. (16)

Here AE is the change in energy when cell i shifts to a neigh-
boring lattice position. AE;¢ is the change in the adhesion
energy according to Eq. (1), while —n f;Ax is the work that
occurs when the change in cell position Ax aligns with the
motility force f;. The latter term is analogous to the work term
in the CPM, Eq. (11). The sign of this term reflects the fact that
the motility forces on both ends of the cluster point in the gra-
dient direction, due to the adaptivity (see Methods for details).
We continue to take f; = n — 1 to be the number of connected
edges in the cluster of size n, and n sets the strength of the
motility. The presence of the work term in Eq. (16) drives the
system far from equilibrium due to the motility forces. Note
that n = 0 corresponds to the undriven ensemble as before.

We evolve the system via Monte Carlo simulation as in the
CPM [Methods, Eq. (12)]. Specifically, we randomly choose a
pair of nonidentical neighboring sites, i.e., a cell and an ECM
site, and swap them, calculate the energy change following
Eq. (16), and accept the new configuration with Boltzmann
probability e #2F . The center-of-mass velocity averaged over
many instances is shown in Fig. 1(c) for different values of
Bn. We observe in all cases that there is a clear optimum in
the adhesion strength for which the cluster has the maximum
migration velocity. We conclude that the effect of motility is
to bias the ensemble of configurations away from its equilib-
rium distribution, which is necessary to observe an optimal
adhesion strength.

The optimal adhesion strength arises due to the following
tradeoff. On the one hand, weak adhesion results in isolated
cells that diffuse without bias, except when they happen to col-
lide and briefly attain a bias due to the CIL. On the other hand,
strong adhesion causes the first term in Eq. (16) to dominate
over the second, as any configurational change that results
in loss of adhesion is energetically costly. Strong adhesion
therefore suppresses movement of cells at the leading edges
of clusters, in turn suppressing movement as a whole. The
optimal adhesion strength negotiates the balance between the
two, resulting in clusters that are tight enough to cohere but
fluid enough to allow forward progress.

The one-dimensional model considered thus far captures
the core physics of an optimal adhesion strength but neces-
sarily neglects changes in cell and cluster shape, as well as
intracluster cell rearrangements, that are typical of multicel-
lular migration in larger dimensions. Therefore, we use the
two-dimensional CPM to investigate these aspects next.

B. Cellular Potts model exhibits optimal
cell-cell and cell-ECM adhesion

To capture more realistic motion of cells in two dimen-
sions, we use the CPM (Methods). We plot the migration
velocity for a cluster of nine cells in the phase space of «,
which represents the energy penalty for cell-ECM contact, and
y, which represents the energy penalty for cell-cell contact
[see Fig. 3(a)]. We see a clear optimum in regime ii (red),
corresponding to intermediate « and y. We have checked that
the existence and location of the optimum is not strongly

(a) Normalized velocity

I - T ——

Cell-cell energy penalty, v

0 111
0 1 2 3 4 5

Cell-ECM energy penalty, a

FIG. 3. Velocity vs intercellular and cell-ECM adhesion
strengths  for two-dimensional collective cell migration.
(a) Normalized center-of-mass velocity vs cell-ECM energy
penalty o and cell-cell energy penalty y. Velocity is maximal in
region ii. Velocity is computed after 20 000 Monte Carlo steps and
averaged over 200 trials for each value of o and y. System size is
large enough that no cell reaches a boundary during the simulation.
(b) Snapshots from simulation of a cluster of nine cells, illustrating
the cluster configuration while migrating, corresponding to different
regimes in the parameter space: (i) cells scatter and diffuse away, (ii)
cells remain connected with intermediate adhesion, and (iii) cells
tightly adhere to one another forming a compact structure.

dependent on the number of cells in the system. Thus, not only
is there an optimal cell-cell adhesion strength (y) as found in
the one-dimensional model, there is also an optimal cell-ECM
adhesion strength (o).

The reason for the optimum is illustrated in Fig. 3(b). At
low « and high y (region i), cells adhere to the ECM but not
each other. Therefore, they scatter and do not benefit from the
collective determination of the gradient direction, resulting in
a low velocity. At high « and low y (region iii), cells adhere
to each other but prefer to avoid contact with the ECM. The
latter prevents protrusions from forming, also resulting in a
low velocity. Region ii optimally negotiates this tradeoff.

Although Fig. 3 demonstrates the existence of optimal
adhesion strengths, it does not directly address the question
of what properties of the clusters correspond to this optimum.
As these properties could lead to experimental predictions
and further reveal the physical mechanisms behind optimal
collective migration, we explore this question next.

C. Optimum arises from intact clusters with
maximal shape variability

We first hypothesized that the optimal migration veloc-
ity corresponds to the transition between a fully connected
cluster and multiple disconnected clusters [Fig. 4(a)]. Such a
transition occurs when y ~ 2«. The reason is that two cell
edges that are in contact with each other will have an energy
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FIG. 4. Connectedness transition does not account for maximal
cluster velocity. (a) Schematic illustrating low, intermediate, and high
connectedness. (b) Mean cluster size vs « and y for nine cells.
Cells transition from disconnected to connected when o > 2y, as
predicted, which is far from where velocity is maximal (dashed
circle). Inset: Cluster size distribution for different values of o and
y [as shown by i—vi in (a)] clearly exhibits a transition from multiple
clusters to a single cluster of size nine. Cluster sizes are computed
over 10 000 Monte Carlo steps for each value of @ and y. System size
is large enough that no cell reaches a boundary during the simulation.

cost of y, whereas if these two edges are exposed to the
ECM they will have an energy cost of 2«. Thus y < 2« will
promote cell scattering, while y > 2« will promote cluster
cohesion.

Figure 4(b) confirms the transition: we see in Fig. 4(b)
that to the left of the line y = 2« (dashed) the mean cluster
size is less than the total cell number of nine cells, whereas
to the right of the line it converges to nine cells. Indeed,
in the inset of Fig. 4(b) we see that far to the left of the
transition (region 1), the cluster size distribution is broad, with
significant probability to observe clusters of size less than
nine, including isolated cells of size one. In contrast, far to
the right of the transition (region vi), we see that the cluster
size distribution has support only at nine, meaning all cells
remain intact throughout the migration.

The optimal velocity occurs in region ii of Fig. 3(a) which
corresponds to region vi of Fig. 4(b) (dashed circle), which is
far from the connectedness transition. Evidently, being rela-
tively deep within the fully connected regime is optimal for
maximal cluster velocity. Therefore, being at the transition
between connected and disconnected cannot explain the op-
timum observed in our model.

Extension
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FIG. 5. Extension in gradient direction correlates with cluster
velocity. (a) Schematic illustrating low and high cluster extension
in the gradient direction, which we quantify by the aspect ratio (AR).
(b) Mean aspect ratio (AR) vs « and y exhibits maximum in same
location as maximal cluster velocity (dashed circle). Aspect ratio is
computed over 20 000 Monte Carlo steps and averaged over 200
trials for each value of @ and y. System size is large enough that
no cell reaches a boundary during the simulation.

We next hypothesized that the optimal migration velocity
corresponds to the ability of the cluster to extend maximally
in the gradient direction while remaining intact [Fig. 5(a)].
Maximal extension would allow the cluster to span the largest
distance in the gradient direction, meaning that the concentra-
tion difference between the front (or back) cell and the cluster
center of mass would be largest. This would result in the
largest force exerted by these cells via Eq. (10). We quantify
extension using the cluster aspect ratio (AR): the ratio of the
length of the cluster parallel versus perpendicular to the gradi-
ent direction. We see in Fig. 5(b) that the average aspect ratio
indeed varies as a function of the adhesion parameters « and
y, and that a maximum is observed (dark blue) corresponding
to extension parallel to the gradient direction ((AR) > 1). The
location of this maximum corresponds to that of the maximal
velocity [dashed circle in Fig. 5(b)]. We conclude that maxi-
mal cluster extension leads to maximal migration velocity.

The maximal average extension observed in Fig. 5(b) could
occur in multiple different ways. One possibility is that the
cluster relaxes to a maximally extended shape and stays in this
shape throughout the course of the migration. An alternative
possibility is that the cluster shape is highly variable, with
cells free to extend, contract, or rearrange while the cluster
remains intact [Fig. 6(a)]. Previous studies have shown that
fluidity determines the properties of a jamming transition
in confluent sheets [33], and that more fluid multicellular
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FIG. 6. Shape variability correlates with cluster velocity.
(a) Schematic illustrating low and high shape variability. High shape
variability corresponds to changes in overall cluster shape, which
we quantify using the variance of the aspect ratio. (b) Variance of
the aspect ratio vs o and y exhibits maximum in same location as
maximal cluster velocity (dashed circle). Aspect ratio is computed
over 20 000 Monte Carlo steps, and variance is computed over 200
trials for each value of « and y. System size is large enough that no
cell reaches a boundary during the simulation.

clusters can be more effective gradient sensors [34]. If the
cluster is fluid, motility forces would then drive the cluster
into a maximally extended shape on average, but many shapes
could be visited throughout the migration process. We there-
fore expect the two possibilities of a rigid or a fluid cluster to
have low or high variability in the aspect ratio, respectively.

To distinguish between these two possibilities, we compute
the variance in the aspect ratio, o;,. Figure 6(b) plots o3,
as a function of o and y. We see that it has a maximum at
the same location of the optima in the migration velocity and
the cluster extension (dashed circle). We have checked that
a maximum is also present in the same location in plots of
the Fano factor oz/(AR) and squared coefficient of varia-
tion ojR /{AR)?. Thus, maximal velocity corresponds not to
a cluster that is rigidly extended in the gradient direction,
but to a cluster with maximal shape variability: extended on
average, but freely exploring the space of cluster shapes as
migration proceeds. This maximal shape variability is enabled
at intermediate adhesion strengths: sufficiently strong to keep
cells intact as a fully connected cluster, but sufficiently weak
to allow maximal freedom in cluster shape.

IV. DISCUSSION

We have developed a model to investigate the role of
cell-cell and cell-ECM adhesion in determining the migration

velocity of multicellular clusters. In our model, migration
is (i) collective, based on contact inhibition of locomotion,
and (ii) directed, due to the presence of an external gradient.
In its simplest form—pointlike cells in one dimension—we
have mapped the model to the lattice gas model of statisti-
cal physics, which affords analytic results for the migration
velocity. We have seen that an optimal cell-cell adhesion
strength emerges that maximizes migration velocity, and that
this optimum depends on the interplay between the motility
forces and the configurational statistics of the cells. In its more
realistic form—spatially extended cells embedded in ECM in
two dimensions—we have seen that the optimum exists for
both cell-cell and cell-ECM adhesion strengths. Clusters with
intermediate adhesion are fastest because they have the largest
shape variability: they are intact, extended in the gradient
direction, and maximally variable in cluster shape.

Our prediction that there exist optimal cell-cell and cell-
ECM adhesion strengths could be tested experimentally.
Experiments suggest that both cell-cell and cell-ECM adhe-
sion are crucial for tumor invasion, as well as for homeostasis
in healthy tissues [35]. Experimental perturbations could be
used to modulate cadherin or integrin levels to tune cell-cell or
cell-ECM adhesion, respectively, and the effects on migration
velocity could be investigated. For example, downregulation
of E-cadherin within a tumor spheroid was recently achieved
by introduction of interstitial flow, which was subsequently
seen to promote tumor invasion [36].

Our observation that variability in aspect ratio correlates
with migration velocity could also serve as a phenomenologi-
cal signature to look for in experiments. Variability in cluster
shape is straightforward to extract from microscopy videos
and quantify, and it abstracts away the underlying molecular
details of the adhesion or migration. It would be interesting
to see whether the fastest clusters generically have the most
variable shapes across biological systems, regardless of the
nature of the molecular perturbation applied.

We have considered only one- and two-dimensional
migration, whereas three-dimensional migration is clearly
prevalent, rich in its modalities (e.g., mesenchymal, amoe-
boid, lobopodial), and dependent on tunable factors (e.g.,
adhesion, cell confinement, contractility, deformability, pro-
teolytic capacity) [37-39]. It would be possible in the future
to extend our model to three dimensions to investigate some
of these factors and migration modes. Nonetheless, important
examples of one- and two-dimensional migration exist, to
which our findings may more directly apply. Examples of
one-dimensional or quasi-one-dimensional migration include
preferential migration of tumor cells, cancer stem cells, and
leukocytes along a bundle of linear collagen fibrils [40,41], as
well as migration of fibroblasts on one-dimensional fibril-like
lines [37,42]. Examples of two-dimensional or quasi-two-
dimensional migration include wound healing (or gap closure)
in an epithelial tissue, cells migrating on a bone, migration
of single epithelial cells along two-dimensional sheets of
basement membranes, and patrolling of leukocytes along the
luminal surface of blood vessels [43-46].

Our observation that cluster shape variability maximizes
migration velocity is a purely mechanical effect: intermediate
adhesion promotes cluster configurations that maximize net
motility forces in the gradient direction. Previous work has
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also shown that cluster fluidity improves gradient sensing
due to a different mechanism: fluidity averages out detection
noise due to cell-to-cell variability [34]. We do not consider
detection noise [5,23,34] or cell-to-cell variability [34] here.
It would be interesting to investigate how these distinct advan-
tages of shape variability and cluster fluidity act in concert or
whether they combine synergistically.

The model developed here is generic, minimal, and not
specific to any particular cell type. In general, there can be
more than one cell type within a single cluster. In that case, it
is straightforward to extend our model to include a set of cell-
cell interaction parameters y;; between every pair of cell types
i and j, or a set of cell-ECM interaction parameters o for

each cell type. We have considered only the simplest version
of this scenario here, but it may be interesting in the future
to generalize our work to systems that exhibit heterogeneous
collective migration.
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