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Abstract. Environmental sustainability, as well as social and economic well-being, must be   

considered in every stage of a product lifecycle, from conceptual design to its retirement. Even 

though this sustainability-centric approach represents a critical driver for innovation, it also   

increases the design complexity. Nowadays, the maritime transport accounts for a large share of 

transport demand, and the importance of sustainable ship design is increasingly growing, not 

only for ethical and legislative but also for competitive reasons. The design of a sustainable ship 

considering all those aspects is a complex process in this regard. One way to manage the 

complexity is to identify and avoid the functional couplings at the early stage of the design 

process. This paper presents the conceptual design of a merchant ship's conventional propulsion 

system with a view to the Axiomatic Design framework and known sustainable engineering 

principles. We also explore the Bayesian machine learning interface to propose a data-driven 

method for calculating the probability of achieving specific sustainability-related functional 

requirements. Data-driven Bayesian reasoning can also be used to select the best design 

parameter among the proposed alternatives as well as to identify hidden design couplings that 

have not identified by the designers in the conceptual design stage. 

1.  Introduction 

The design of ships has been a process that dates back thousands of years. In the past, it was more of an 

art than science, based on heuristic experience and trial-and-error design methods. Given the importance 

of solving the ship design problem, trial-and-error methods have been replaced by a system-based 

approach, which considers a ship as a system integrating various subsystems and their components (e.g., 
ship propulsion, navigation systems, and arrangements). Τhe objective of this work is to present the 

conceptual design of a merchant ship's conventional propulsion system with a view to known sustainable 

engineering principles in the Axiomatic Design (AD) framework.  

Ships are large systems not only because they are physically large in size, but also, they have various 

FRs to be met throughout their life cycle. Ships are also time-variant systems as they have many FRs at 

the highest level, but only a subset of these FRs must be satisfied at a given time, while different subsets 

need to be satisfied at different points in time. As a result, a ship as a system must reconfigure itself to 

satisfy different subsets of FRs throughout its life cycle.  

The design of ship has been an iterative decision-making process that often reflects the conflicting 

interests of the various stakeholders. Additionally, the surging trend of digitalization in the maritime 
sector and the urgent requirement for a more sustainable world push for designs that can reduce the 

complexity of ship design in the context of ethical responsibility, legislative compliance, and fair market 
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competition. One way to manage the complexity and control the design of a system is to identify and 

manage the potential functional couplings at the early stage of the design process [1]. The evolution of 

Systems Engineering has encouraged the development of various design methods applicable to ship 

design, such as the “set-based design” and the “analytic hierarchy process (AHP)”. In practice, these 

methods drive to an ad hoc approach to the conceptual design or give priority only to some FRs without 

checking their dependency, resulting in a complex design that can negatively affect system’s quality 

attributes such as reliability, maintainability, and flexibility. Nevertheless, sustainable design requires 

for managing or even restricting design's complexity. The sustainability imperative requires insight into 

a Human–Environment system [2], which would increase the design's complexity as it demands in-depth 

knowledge of new interrelationships between science, society, and environment. The holistic approach 

of AD is ideal to accommodate the challenges related to sustainable ship design.  

The paper shows a scalable example for the total ship design following sustainable engineering 

principles in two aspects: 1) Axiomatic Design as a methodology to control the complexity of 

sustainable ship design and 2) Bayesian machine learning technique as a supportive tool for improving 

system’s architecture and assessing system’s sustainable impact. 

2.  Intersection of sustainability initiative and ship design 

Ships are built to cover society's needs through the provision of specific (commercial or noncommercial) 

services. Simultaneously, demand for maritime transport grows in parallel with the world population, 

industrial activity, and trade growth. Maritime transport will continue to account for the largest share of 

demand, with a contribution of 75% in 2050 [3]. Changes in the structure of energy markets and fuel 

industry, the volatility of energy prices, piracy and security concerns, automation, big data technology, 

and shipping profitability along with the 2030 Agenda for Sustainable Development (ASD), and the 

Paris Agreement on climate change require a balanced approach between contradicting economic, social 

and environmental objectives. 

According to the book, "Our Common Future" from the UN committee, sustainable development is 

defined as the development that meets the needs of the present without compromising future generations' 

ability to meet their own needs [4]. Within this scope, a sustainable design outcome should consider all 

environmental impacts throughout its life cycle (from concept design to recycling), including social and 

economic well-being, without compromising cost, appearance, and quality attributes. This approach also 

applies to ship design. This paper focuses on designing at concept level a ship's conventional propulsion 

system that is compatible with the fuels currently prevalent in the maritime sector, providing at the same 

time an environment-friendly and energy-efficient solution without sacrificing the profitability of the 

shipping industry.  

3.  Application of Axiomatic Design on sustainable ship design  

3.1.   Conceptual design of a merchant ship’s conventional propulsion system: Design hierarchies 

Once the ship’s total resistance has been estimated, the next steps of designing a vessel’s propulsion 

system are the choice of the propulsor and its matching with the hull and the prime mover (propulsion 

engine). Assuming a fixed-pitch propeller, the decomposition of the design problem results in the FR 

and DP hierarchies as shown in Table 1. The system architecture is described by the design equations 

(1) to (8). 

The design of a ship's propulsion system in the context of the Axiomatic Design begins with 

analyzing the operational requirements that are common to each type of propulsion plant. At the highest 

level of design, we need a system that can move the ship in the water, overcoming its total resistance. 

In addition to producing thrust, the propulsion system consists of individual parts whose function is to 

seal the system with the marine environment and hold the system in place under extreme weather 

conditions. The shaft system must transmit the power generated by a sustainable main engine to the 

propeller, whose rotational motion is converted into thrust. The propulsion system's components must 
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als o b e s u p p ort e d a n d i nt er c o n n e ct e d a n d m ust c o m pl y wit h t h e e xisti n g r e g ul ati o ns of t h e I nt er n ati o n al 
M ariti m e Or g a ni z ati o n (I M O).  

 
T a bl e 1 . F Rs a n d D Ps of t h e s ust ai n a bl e pr o p ulsi o n s yst e m. 

I D F R  D P  
1  M o v e t hr o u g h w at er  Pr o p ulsi o n s yst e m  
1. 1  Pr o d u c e t hr ust  Dri v etr ai n wit h e n gi n e  
1. 1. 1  C o n v ert p o w er i nt o t hr ust  Pr o p ell er  
1. 1. 2  G e n er at e s ust ai n a bl e r ot ar y p o w er  S ust ai n a bl e m ai n e n gi n e  
1. 1. 2. 1  M a c hi n er y s y st e m t h at m e ets N O x r e g ul ati o n  D u al f u el e n gi n e  
1. 1. 2. 2  M a c hi n er y s y st e m t h at m e ets S O x r e g ul ati o n  L o w s ulf ur c o m b usti o n s y st e m  
1. 1. 2. 3  M a c hi n er y s y st e m t h at m e ets E E DI r e g ul ati o n F u el i nj e cti o n s yst e m  
1. 1. 3  Tr a ns mit p o w er  S h aft s yst e m  
1. 1. 3. 1  Tr a ns mit p o w er fr o m m ai n e n gi n e t o t hr ust s h aft  E n gi n e -t hr ust s h aft c o u pli n g 
1. 1. 3. 2  Tr a ns mit p o w er fr o m m ai n e n gi n e -t hr ust s h aft c o u pli n g t o pr o p ell er S h aft arr a n g e m e nt  
1. 1. 3. 2. 1  R e c ei v e t h e r ot ati o n al m oti o n fr o m t h e cr a n ks h aft  T hr ust s h aft  
1. 1. 3. 2. 2  R e c ei v e t h e r ot ati o n al m oti o n fr o m t h e t hr ust s h aft  I nt er m e di at e s h aft 
1. 1. 3. 2. 3  R e c ei v e t h e r ot ati o n al m oti o n fr o m t h e i nt er m e di at e s h aft  T ail s h aft  
1. 2  S e al c o m p o n e nts  St er n t u b e s e ali n g arr a n g e m e nt  
1. 3  Fi x c o m p o n e nts  M o u nti n g s yst e m  
1. 3. 1  Fi x m ai n e n gi n e  M ai n e n gi n e m o u nts  
1. 3. 2  S u p p ort s h aft’ s l o a d  B e ari n gs s y st e m  
1. 3. 2. 1  S u p p ort t hr ust s h aft’ s l o a d  T hr ust bl o c ks  
1. 3. 2. 2  S u p p ort i nt er m e di at e s h aft’ s l o a d I nt er m e di at e s h aft m o u nt e d b e ari n gs 
1. 3. 2. 3  S u p p ort t ail s h aft’ s l o a d  St er n t u b e  
1. 3. 3  C o n n e ct a dj a c e nt s h afts  S h aft c o u pli n gs  
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3. 2.  T h e m o d ul e j u n cti o n str u ct ur e di a gr a m a n d t h e d at a fl o w c h art 
A n ot h er m e a ns of r e pr e s e nti n g t h e ar c hit e ct ur e of t h e s yst e m ar e t h e m o d ul e j u n cti o n str u ct ur e di a gr a m 
a n d t h e d at a fl o w c h art [ 5]. T h e m o d ul e j u n cti o n di a gr a m ( Fi g ur e 1 a) is c o m p os e d of m o d ul e s a n d 
j u n cti o ns, w hi c h r e pr e s e nt F R l e a v e s a n d t h eir v erti c al i nt e gr ati o n r e s p e cti v el y. T h e m o d ul e j u n cti o n 
di a gr a m c a n b e c o n v ert e d t o t h e d at a fl o w c h art ( Fi g ur e 1 b), w hi c h c a n als o e x pr e ss t h e s yst e m 
ar c hit e ct ur e s h o wi n g t h e d at a str e a m fl o w a m o n g m o d ul e s. T h e m o d ul e j u n cti o n di a gr a m a n d  d at a  fl o w 
c h art, c a n b e us e d f or u n d er st a n di n g of t h e o v er all s hi p d e si g n pr o c e ss i n t er ms of t h e d at a a n d 
i nf or m ati o n fl o w a n d , t h er ef or e, c a n pr o m ot e s ust ai n a bl e s hi p d e si g n a n d o p er ati o n i n m ulti pl e w a ys 
c o nsi d eri n g its w h ol e lif e c y cl e.  Fir st, t h e di a gr a ms c a n b e us e d i n c o nj u n cti o n wit h f ail ur e di a g n osis 
al g orit h ms a n d c a n h el p e n gi n e er s tr a c e c a us e s of f ail ur e s, s a vi n g s o ur c e s a n d ti m e. S e c o n d, i n pr oj e ct 
m a n a g e m e nt, t h e d i a gr a ms c a n pr o vi d e t h e r o a d m a p f or t a s k c o or di n ati o n a n d pr oj e ct e x e c uti o n, 
hi g hli g hti n g h o w a c h a n g e i n d e si g n d e cisi o ns pr o p a g at e s a n d aff e cts t h e s yst e m. T hir d, if t h e m o d ul e s 
ar e c orr e ctl y arr a n g e d a n d s atisf y t h e I n d e p e n d e n c e A xi o m, a m o d ul ar s hi p d e si g n c a n f ost er 
pr of e ssi o n al di v er sit y, a s t h e di a gr a ms c a n pr o vi d e t h e r o a d m a p f or st a k e h ol d er s of diff er e nt 
b a c k gr o u n ds l o c at e d all o v er t h e w orl d. Fi n all y, i n c a s e t h e m o d ul e s, a s " pr o vi d er s " of d e si g n 
i nf or m ati o n, c a n b e li n k e d t o s ust ai n a bilit y m etri cs, t h e di a gr a ms c a n b e t h e m ai n c o m p o n e nt of a 
d y n a mi c s ust ai n a bilit y a ss e ss m e nt t o ol f or t h e v e ss el's w h ol e lif e c y cl e.  
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(b) 

Figure 1. The module junction diagram (a) and the data flow chart (b) for the design described by the 

equations (1) to (8). 

4.  The interface of Bayesian Networks and Axiomatic Design  

4.1.  Bayesian Networks overview 
Bayesian network (BN) is a probabilistic graphical model that reflects the states of some part of a world 

being modelled, and describes how probabilities relate to those states. It uses Bayesian inference in order 

to model conditional dependence, and therefore causation. A Bayesian network is a directed acyclic 

graph that consists of directed nodes (parent and child nodes) structured hierarchically. The directed 

arrows connecting the nodes have the probability dependencies between them represented in condition 

probabilities tables [6]. 

First, Bayesian networks are useful as they help us model systems of reasonable complexity with a 

significant computational effort saving, because there is no need to store all possible configurations of 

states, but only all possible combinations of states between sets of family (parent and child) nodes. After 

training, the network can help the user identify new or wrong relationships, which can be used for 

process improvement [7]. Second, a BN is a tool for hybrid intelligence as they combine human learning, 

in terms of heuristic knowledge provided by domain experts, and machine learning in terms of 
knowledge learned from data [8]. Third, BNs can support both causal and evidential reasoning, as 

Bayesian inference allows users to make a prediction of the effects given some causes (causal reasoning) 

and determine the causes given an observation of the effects (evidential reasoning) [6]. 

Since AD method and BNs share a similar hierarchical parent-child structure and use the concept of 

identifying couplings between modules and nodes respectively, we believe that BNs can support AD 

methodology concerning the design of complex systems that promote sustainability. 

4.2.  Develop a Bayesian Network for improving system’s architecture and assessing its sustainable 
impact                

The information garnered from the decomposition and mapping process between the functional and 

physical domain can help designers understand design couplings and tradeoffs. However, this 

information can be evaluated and verified using a data-driven approach to become more useful. Figure 

2 shows a compiled BN created using Netica software 6.07 (copyright 1992-2019 by Norsys Software 
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Corp.) [9]. The network was built using domain knowledge and insight obtained through the 

decomposition of FRs and DPs (Table 1). Then, it was trained with 750 real cases and its performance 

was tested with a different dataset of 250 real cases. Each of those 1000 cases corresponds to a ship 

with a separate propulsion system and operational profile and includes data, which were recorded 

using sensors [10], [11] or retrieved from ship's technical documentation [11], [12]. The probabilistic 

relationships among data are represented in the belief bars of the nodes (Figure 2).  

Τhe BN does not reflect precisely the hierarchical relationships between FRs and DPs, but being built 

with knowledge from the decomposition and mapping process, aims to capture the couplings between 

variables related to FRs, DPs, and system’s function, so that it can be used as a supportive tool for 

designers to ensure or explore the system’s sustainable compliance and impact. The network's goal is to 

help designers quantify some of the elements of the conceptual design matrices and calculate the 

probability of success for the requirements FR 1.1.2.1, FR 1.1.2.2, and FR 1.1.2.3. These FRs are 

described by the nodes "NOx Compliance Tier III", "SOx Compliance", and "EEDI Compliance Phase 

1" respectively, in the BN of Figure 2.  

4.2.1. Bayesian Inference and Independence Axiom. The probability relationships of the nodes of a BN 

can be validated through the technique of sensitivity analysis. Sensitivity analysis in BNs is a tool to 

quantify how much a particular node is affected by other nodes. Several advantages have been 

identified using the sensitivity analysis of a BN, which is built with knowledge obtained from the AD 

approach. First, the sensitivity analysis can identify design couplings wrongly judged in design 

matrices or detect hidden design couplings that the designers have not recognized. Second, some 

sensitivity analysis results, representing the degree of connectivity between nodes related to FRs or 

DPs, can work as a quantitative measure of the design matrix elements. Table 2 shows the sensitivity 

analysis results for the "NOx Compliance Tier III" node (relationship with FR 1.1.2.1). Third, the 

sensitivity results provide a metric of coupling of specific FRs. Table 2 illustrates, for example, the 

degree of connectivity (equal to 3.9 %) between “NOx Compliance Tier III” (relationship with FR 

1.1.2.1) and “SOx Compliance” (relationship with FR 1.1.2.2).  

4.2.2. Bayesian inference and Information Axiom. BNs are used by definition to predict the effects 

given some causes (causal reasoning) and determine the causes given an observation of the effects 

(evidential reasoning). In the first case, if a node corresponds to a specific FR, BNs can be used to 

calculate its probability of success and information content, Ii. In the case of evidential reasoning, the 

Bayesian inference can help designers determine the most possible causes that lead to satisfaction or 

not of an FR. Figure 3 shows a causal reasoning example, where the network calculates the probability 

of achieving FR 1.1.2.1 (NOx Compliance Tier III), which equals 0.783, given that the main engine 

operates with Liquid Natural Gas (LNG) and its rated speed is LOW (80rpm-700rpm for the available 

data set). The choice of using LNG as fuel presumes the installation of a dual fuel engine (DP 1.1.2.1), 

while the option of using DIESEL as fuel excludes the dual fuel applications and presumes a diesel 

single fuel engine. Therefore, the network, using as input the choice of a design parameter (DP 
1.1.2.1), returns the probability of achieving its respective functional requirement (FR 1.1.2.1). In the 

case of evidential reasoning, Figure 4 shows that if we know that the propulsion system is not 

compliant with the IMO NOx limits (FR 1.1.2.1), then the most probable causes should be the 

“HIGH” main engine’s specific fuel consumption (relationship with DP 1.1.2.3) or /and the “DIESEL” 

as used fuel (relationship with DP 1.1.2.1). In addition, the module junction diagram and data flow 

chart, as illustrated in Figure 1, can be used synergistically with the BN casual and evidential 

reasoning process. Considering the module diagram, we could pinpoint a specific module of interest to 

apply a BN in quantifying the probability of success in achieving sustainability-related requirements, 

and at the same time, the data flow chart can be used to guide designers and engineers to where 

sustainable ship design effort must be focused. 
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Figure 2. Screenshot of compiled BN for sustainability-related requirements. 

 

Table 2. Sensitivity analysis outcome for the node “NOx Compliance Tier III”. 

Sensitivity of “NOx Compliance Tier III”   

due to finding at node: 

Percentage 

Main Engine’s Fuel Type 17 

Main Engine’s SFC 14 

Fuel Sulfur Content 4.33 

SOx Compliance 3.9 

Main Engine’s Rated Speed 0.288 
EEDI Compliance Phase 1 0.0257 

Auxiliary Engine’s SFC 0 

Auxiliary Engine’s Brake Power 0 

Vessel’s Speed 0 

DWT 0 
Main Engine’s Brake Power 0 

Emission Control Area (ECA) 0 

 

 

Figure 3. Screenshot of BN when the “Main Engine’s Fuel Type” is LNG and “Main Engine’s Rated 

speed” is LOW (causal reasoning).  
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Figure 4. Screenshot of BN when the system does not meet the NOx regulation (evidential reasoning). 

5.  Conclusion 

Sustainable design can increase a system’s complexity, which is an inherent challenge in system 

architecture and is driven by the interconnections and the functional relationships of the system's entities. 

This paper shows that AD and BNs can be synergistically combined to promote sustainable ship design 

in two ways. Firstly, the FR-DP diagrams can be used to demonstrate how a change in one of the 

system’s entities affects the others concerning the vessel's sustainable footprint along the life cycle of 

them. Secondly, the process of forming and mapping the hierarchical structures can be used as the 

roadmap of building a BN, which after training, can provide data-based feedback for the system 

architecture and calculate the probability of achieving sustainability-related functional requirements.  
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