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Abstract

Image generation has been heavily investigated in com-
puter vision, where one core research challenge is to gen-
erate images from arbitrarily complex distributions with lit-
tle supervision. Generative Adversarial Networks (GANs)
as an implicit approach have achieved great successes in
this direction and therefore been employed widely. How-
ever, GANs are known to suffer from issues such as mode
collapse, non-structured latent space, being unable to com-
pute likelihoods, etc. In this paper, we propose a new unsu-
pervised non-parametric method named mixture of infinite
conditional GANs or MIC-GANs, to tackle several GAN is-
sues together, aiming for image generation with parsimo-
nious prior knowledge. Through comprehensive evalua-
tions across different datasets, we show that MIC-GANs are
effective in structuring the latent space and avoiding mode
collapse, and outperform state-of-the-art methods. MIC-
GANs are adaptive, versatile, and robust. They offer a
promising solution to several well-known GAN issues. Code
available: github.com/yinghdb/MICGANs.

1. Introduction
GANs have achieved great successes in a fast-growing

number of applications [19]. The success lies in their abil-
ity to capture complex data distributions in an unsupervised,
non-parametric and implicit manner [13]. Yet, such ability
comes with limitations, such as mode collapse. Despite a
range of methods attempting to address these issues, they
are still open. This motivates our research aiming to mit-
igate several limitations collectively including mode col-
lapse, unstructured latent space, and being unable to com-
pute likelihoods, which we hope will facilitate follow-up
GAN research and broaden their downstream applications.

GANs normally consist of two functions: a generator
and a discriminator. In image generation, the discrimina-
tor distinguishes between real and generated images, while
the generator aims to fool the discriminator by generating

*Corresponding author. The authors from Zhejiang University are af-
filiated with the State Key Lab of CAD&CG.

images that are similar to real data. The widely known
mode collapse issue refers to the generator’s tendency to
only generate similar data which aggregate around one or
few modes in a multi-modal data distribution, e.g., only
generating cat images in a cat/dog dataset. There has been
active research in distribution matching to solve/mitigate
mode collapse [31, 45, 50, 55], which essentially explic-
itly/implicitly minimizes the distributional mismatch be-
tween the generated and real data. In parallel, it is found
that latent space structuring can also help, e.g. by intro-
ducing conditions [39], noises [23], latent variables [5] or
latent structures [15]. In comparison, latent space structur-
ing does enable more downstream applications such as con-
trolled image generation, but they normally require strong
prior knowledge of the data/latent space structure, such as
class labels or the cluster number in the data or the mode
number in the latent space. In other words, they are either
supervised, or unsupervised but parametric and prescribed.

We simultaneously tackle the latent space structure and
mode collapse by proposing a new, unsupervised and non-
parametric method, mixture of infinite conditional GANs
or MIC-GANs. Without loss of generality, we assume an
image dataset contains multiple (unlabelled) clusters of im-
ages, with each cluster naturally forming one mode. Instead
of making a GAN avoid mode collapse, we make use of it,
i.e. exploiting GAN’s mode collapse property, to let one
GAN cover one mode so that we can use multiple GANs
to capture all modes. Next, doing so naturally brings the
question of how many GANs are needed. Instead of re-
lying on the prior knowledge [3, 15], we aim to learn the
number of GANs needed from the data. In other words,
MIC-GANs model the distribution of an infinite number of
GANs. Meanwhile, we also construct a latent space accord-
ing to the data space by letting each GAN learn to map one
latent mode to one data mode. Since there can be an infinite
number of modes in the data space, there are also the same
number of modes in the latent space, each associated with
one GAN. The latent space is then represented by a convex
combination of GANs and is therefore structured.

To model a distribution of GANs, our first technical nov-
elty is a new Bayesian treatment on GANs, with a family
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of non-parametric priors on GAN parameters. Specifically,
we assume an infinite number of GANs in our reservoir,
so that for each image, there is an optimal GAN to gener-
ate it. This is realized by imposing a Dirichlet Process [11]
over the GAN parameters, which partitions the probabilistic
space of GAN parameters into a countably infinite set where
each element corresponds to one GAN. The image genera-
tion process is then divided into two steps: first choose the
most appropriate GAN for an image and then generate the
image using the chosen GAN.

Our second technical novelty is a new hybrid inference
scheme. Training MIC-GANs is challenging due to the in-
finity nature of DP. Not only do we need to estimate how
many GANs are needed, we also need to compute their
parameters.Some specific challenges include: 1) unable to
compute likelihoods from GANs (a fundamental flaw of
GANs) [9]; 2) lack of an explicit form of GAN distribu-
tions; 3) prohibitive computation for estimating a poten-
tially infinite number of GANs. These challenges are be-
yond the capacity of existing methods. We therefore pro-
pose a new hybrid inference scheme called Adversarial Chi-
nese Restaurant Process.

MIC-GANs are unsupervised and non-parametric. They
automatically learn the latent modes and map each of them
to one data mode through one GAN. MIC-GANs not only
avoid mode collapse, but also enable controlled image gen-
eration, interpolation among latent modes, and a systematic
exploration of the entire latent space. Through extensive
evaluation and comparisons, we show the superior perfor-
mance of MIC-GANs in data clustering and generation.

2. Related Work
Mode Collapse in GANs GANs often suffer from mode
collapse, where the generator learns to generate samples
from only a few modes of the true distribution while missing
many other modes. To alleviate this problem, researchers
have proposed a variety of methods such as incorporating
the minibatch statistics into the discriminator [53], adding
regularization [4, 59], unrolling the optimization of the
discriminator [38], combining a Variational Autoencoder
(VAE) with GANs using variational inference [50], using
multiple discriminators [7], employing the Gaussian mix-
ture as a likelihood function over discriminator embed-
dings [10], and applying improved divergence metrics in
the loss of discriminator [2, 14, 37, 40, 45]. Other methods
focus on minimizing the distributional mismatch between
the generated and real data. For example, VEEGAN [55]
introduces an additional reconstructor network to enforce
the bijection mapping between the true data distribution
and Gaussian random noise. MMD GAN [31] is proposed
to align the moments of two distributions with generative
neural networks. Most of existing methods essentially map
one distribution (often Gaussian or uniform) to a data dis-

tribution with an arbitrary number of modes. This is an
extremely challenging mapping to learn, leading to many
issues such as convergence and inablility to learn complex
distributions [46]. Rather than avoiding mode collapse, we
exploit it by letting one GAN learn one mode in the data dis-
tribution (assuming one GAN can learn one mode), so that
we can use multiple GANs to capture all modes in the data
distribution. This not only naturally avoids mode collapse
but leads to more structured latent space representations.

Latent Space Structure in GANs Early GANs focus
on mapping a whole distribution (e.g. uniform or Gaus-
sian) to a data distribution. Since then, many efforts have
been made to structure the latent space in GANs, so that
the generation is controllable and the semantics can be
learned. Common strategies involve introducing condi-
tions [36, 39, 41, 47, 58], latent variables [5], multiple gen-
erators [12, 32], noises [23, 24] and clustering [42]. Re-
cent approaches also employ mixture of models (e.g. Gaus-
sian mixture models) to explicitly parameterize the latent
space [3, 15]. However, these methods usually require
strong prior knowledge, e.g. class labels, the cluster num-
ber in the data distribution and the mode number in the la-
tent space, with prescribed models to achieve the best per-
formance. In this paper, we relax the requirement of any
prior knowledge of the latent/data space. Specifically, MIC-
GANs are designed to learn the latent modes and the data
modes simultaneously and automatically. This is realized
by actively constructing latent modes while establishing a
one-to-one mapping between latent modes and data modes,
where each GAN learns one mapping. Consequently, the la-
tent space is structured by a convex combination of GANs.
DMGAN [25] is the most similar work to ours, which em-
ploys multiple generators to learn distributions with discon-
nected support without prior knowledge. In contrast, MIC-
GANs neither impose any assumption on the connectivity
of the support, nor require multiple generators. Besides,
MIC-GANs have a strong clustering capability for learning
the latent modes. An alternative approach is to use Vari-
ational Autoencoder (VAE) which can structure the latent
space (i.e., a single Gaussian or mixed Gaussians) during
learning [8, 20, 21, 26, 43, 56], but they often fail to gener-
ate images with sharp details. We therefore focus on GANs.

3. Methodology
3.1. Preliminary

Given image data X , a GAN can be seen as two distri-
butions G(X|θg, Z) and D([0, 1]|θd, X), with θ = [θg, θd]
being the network weights and Z being drawn from a dis-
tribution, e.g. Gaussian. θ uniquely defines a GAN. Unlike
traditional GANs, we use a Bayesian approach and treat θ
as random variables which conform to some prior distribu-
tion parameterized by Φ = [Φg,Φd]. The inference of θ can

14265

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on August 04,2022 at 15:12:49 UTC from IEEE Xplore.  Restrictions apply. 



be conducted by iteratively sampling [51]:

p(θg|Z, θd) ∝ (
Ng∏
i=1

D(G(z(i); θ
g); θd))p(θg|Φg) (1)

p(θd|Z,X, θg) ∝
Nd∏
i=1

D(x(i); θ
d)×

Ng∏
i=1

(1−D(G(z(i); θ
g); θd))× p(θd|Φd) (2)

where Ng and Nd are the total numbers of generated and
real images, p(θg|Φg) and p(θd|Φd) are prior distributions
of the network weights and sometimes combined as p(θ|Φ)
for simplicity. For our goals, the choice of the prior is based
on the following consideration. First, if X has K modes
corresponding to K clusters, we aim to learn K mappings
throughK distinctive GANs, and each GAN is only respon-
sible for generating one cluster of images. This dictates that
the draws from the prior needs to be discrete. Second, since
the K value is unknown a priori, we need to assume that
K → ∞. Therefore, we employ a Dirichlet Process (DP)
as the prior p(θ|Φ) for θs.

A DP (α,Φ) is a distribution of probabilistic distribu-
tions, where α is called concentration and Φ is the base
distribution. It describes a ‘rich get richer’ sampling [44]:

θi|θ−i, α,Φ ∼
i−1∑
l=1

1

i− 1 + α
δθl +

α

i− 1 + α
Φ (3)

where an infinite sequence of random variables θs are i.i.d.
according to Φ. θ−i = {θ1, . . . , θi−1}. δθl is a delta func-
tion at a previously drawn sample θl. When a new θi is
drawn, either a previously drawn sample is drawn again
(with a probability proportional to 1

i−1+α ), or a new sample
is drawn (with a probability proportional to α

i−1+α ). As-
suming each θ has a value φ, there can be multiple θs having
the same value φk. So there are only K distinctive values
in a total of i samples drawn so far in Equation 3 where
K < i. An intuitive (but not rigorous) analogy is rolling a
dice multiple times. Each time one side (a sample) is chosen
but overall there are only K = 6 possible values.

To see the ’rich get richer’ property, the more φ has been
drawn before, the more likely it will be drawn again. This
property is highlighted by another equivalent representation
called Chinese Restaurant Processes (CRP) [1], where the
number of times the kth (k ∈ K) value φk has been drawn
is associated with its probability of being drawn again:

θi|θ−i, α,Φ ∼
K∑
k=1

Nk
i− 1 + α

δφk
+

α

i− 1 + α
Φ (4)

where δφk
is a delta function at φk, and Nk is how many

times that φk has been sampled so far. Equation 3 and 4

are equivalent with the former represented by draws and the
latter by actual values.

3.2. Mixture of Infinite GANs

We propose a new Bayesian GAN which is a mixture of
infinite GANs model. Following Eq. 4, φ represents the net-
work weights of a GAN. Imagine we have K → ∞ GANs
and examine X one by one. For each image xi, we sample
the best GAN φci (based on some criteria) to generate it. So
Nk =

∑
1ci=k is the total number of images already select-

ing the kth GAN. The more frequently a GAN is selected,
the more likely it will be selected in future. If all Nks are
small, then a new GAN is likely to be sampled based on Φ.
We describe the generative process of our model as:

sample zi ∼ Z, {φ1, . . . , φk, . . . , φK} ∼ Φ

sample ci ∼ CRP (α,Φ; c1, . . . , ci−1),where ci = k

xi = G(zi;φ
g
k) so that D(xi;φ

d
k) = 1 (5)

where ci now is an indicator variable, φ{ci=k}=[φgk, φdk] are
the parameters of the kth GAN. Combining Equation 4-5
with 1-2, the inference of our new model becomes:

p(φ|Φ) = p(ci|c−i) ∼ CRP (α,Φ, c−i) c ∈ [1,K] (6)

p(φgk|Z, φ
d
k) ∝ (

Ng
k∏

i=1

D(G(z(i);φ
g
k);φdk))p(φgk|Φ

g) (7)

p(φdk|Z,X, φ
g
k) ∝

Nd
k∏

i=1

D(x(i);φ
d
k)×

Ng
k∏

i=1

(1−

D(G(z(i);φ
g
k);φdk))× p(φdk|Φd), 1 ≤ k ≤ K (8)

where c−i = {c1, . . . , ci−1}. Sampling c in Equation 6 will
naturally compute the right value for K, essentially con-
ducting unsupervised clustering [44].

Classical GANs as maximum likelihood. Equation 6-
8 is a Bayesian generalization of classic GANs. If a uni-
form prior is used for Φ and iterative maximum a pos-
teriori (MAP) optimization is employed instead of sam-
pling the posterior, then the local minima give the stan-
dard GANs [13]. However, even with a flat prior, there is
a big difference between Bayesian marginalization over the
whole posterior and approximating it with a point mass in
MAP [51]. Equation 6-8 is a specification of Equation 1-
2 with a CRP prior. Although Bayesian generalization over
GANs have been explored before, we believe that this is first
time a family of non-parametric Bayesian priors have been
employed in modeling the distribution of GANs. Further,
MIC-GANs aim to capture one cluster of images with one
GAN in an unsupervised manner. The CRP prior can auto-
matically infer the right value for K instead of pre-defining
one as in existing approaches [33, 42, 15], where overesti-
mating K will divide a cluster arbitrarily into several ones
while underestimating K will mix multiple clusters.
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3.3. Mixture of Infinite Conditional GANs

Iterative sampling over Equation 6-8 would theoretically
infer the right values for φs and K. While φd and φg can be
sampled [51] or approximated [13], K needs to be sampled
indirectly by sampling c, which turns out to be extremely
challenging. To see the challenges, we need to analyze the
full conditional distribution of c. To derive the full distribu-
tion, we first give the conditional probability of c based on
Eq. 4 as in [44]:

p(ci = k|c−i) ∝
Nk

i− 1 + α

p(ci 6= cj for all j < i|c−i) ∝
α

i− 1 + α
(9)

Given the likelihood p(xi|zi, φk), or p(xi|φk) if we omit
zi as it is independently sampled, we now combine it with
Equation 9 to obtain the full conditional distribution of ci
given all other indicators and the current xi:

p(ci = k|c−i, xi, φ) ∝ Nk
i− 1 + α

p(xi|φk) if φk exists,

p(ci = cnew|c−i, xi, φ) ∝ α

i− 1 + α

∫
p(xi|φ)dΦ

if a new φnew is needed (10)

where if a φnew is needed then it will be sampled from the
posterior p(φ|xi,Φ). Eq. 10 is used to sample Eq. 6.

3.3.1 Challenges of Inference

One method to sample ci is Gibbs sampling [44], which
requires the prior p(φ|Φ) to be a conjugate prior for the
likelihood; otherwise additional sampling (e.g. Metropolis-
Hasting) is needed to approximate the integral in Equation
10. However, for MIC-GANs, not only is the prior not
a conjugate prior for the likelihood, neither the likelihood
nor the posterior can be even explicitly represented, which
bring the following challenges: (1) Unable to directly com-
pute the likelihood p(xi|φc), which is a well-known issue
for GANs [9]. (2) The sampling from p(φ|xi,Φ) is ill-
conditioned. Since the prior Φ cannot be explicitly repre-
sented, direct sampling from p(φ|xi,Φ) becomes impossi-
ble. Alternatively, methods such as Markov Chain Monte
Carlo are theoretically possible. But the dimension is of-
ten high, which will make the sampling prohibitively slow.
(3) Sampling will dynamically change K. Each time K
grows/shrinks, a GAN needs to be created/destroyed, which
is far from ideal in terms of the training speed. This is also
an issue of existing methods with multiple GANs [30, 17].

3.3.2 Enhanced Model for Inference

To tackle challenge (2), we introduce a conditional variable
C while forcing all GANs to share the same φ so that they

become Gφg (X|Z,Ck) and Dφd([0, 1]|X,Ck) instead of
G(X|Z;φgk) and D([0, 1]|X,φdk) respectively, where C ∼
p(C) is well-behaved, e.g. a multivariate Gaussian. This
formulation is similar to Conditional GANs (CGANs) but
with a Bayesian treatment on C. Indeed, by introducing a
conditional variable into multiple layers in the network, we
exploit its ability of changing the mapping. Also, we now
only need one GAN parameterized by φ = [φg, φd] and
eliminate the need for multiple GANs without compromis-
ing the ability of learning K distinctive mappings. Now the
role of C is the same as Φ in Equation 5, leading to:

sample zi ∼ Z, {C0, . . . , Ck, . . . , CK} ∼ p(C)

sample ci ∼ CRP (α,C; c1, . . . , ci−1), where ci = k

xi = Gφg (zi, Ck) so that Dφd(xi, Ck) = 1, (11)

where sampling from the posterior p(φ|xi, C) (previously
p(φ|xi,Φ)) in Equation 10 becomes feasible. Note our for-
mulation is different from traditional CGANs and GANs
with multiple generators [17, 52, 28, 33] in: (1) our ap-
proach is still Bayesian. (2) we still model an infinite num-
ber of GANs and do not rely or impose assumptions on the
prior knowledge of cluster numbers. (3) we do not need to
actually instantiate multiple GANs.

Next, we still need to be able to compute the likeli-
hood p(xi|φk) in Equation 10, which is challenge (1). Now
p(xi|φk) becomes p(xi|Ck). Since GANs cannot directly
compute likelihoods, we employ a surrogate model that can
compute likelihoods while mimicking GAN’s mapping be-
havior. Each C corresponds to one cluster, so the GANs
can be seen as a mapping between Cs and images. This
correspondence is exactly the same as classifiers. So we de-
sign a classifier Q to learn the mapping so that p(xi|Ck) ∝
Q(c = k|xi), where c is the same c as in Equation 10 but
here is also a cluster label out ofK clusters. Existing image
classifiers can approximate likelihoods, e.g. through soft-
max. However, our experiments show that softmax-based
likelihood approximation tends to behave like discrimina-
tive classifiers which focus on learning the classification
boundaries. In Equation 10, we need a classifier with den-
sity estimation. We thus define Q as:

Q(ci = k|xi, φq) ∝ p(xi|Ck, φq)p(Ck|C)p(φq|Φ)

= N (xi|µk,Σk, φq)p(Ck|C)p(φq|Φ)

= N (yi|µk,Σk)p(yi|xi, φq)p(Ck|C)p(φq|Φ) (12)

where N is a Normal distribution. µk and Σk are the mean
and covariance matrix of the kth Normal. Q is realized by a
deep neural net, parameterized by φq with a prior p(φq|Φ),
and classifies the latent code yi of xi by a Infinite Gaus-
sian Mixture Model (IGMM) [49]. To see this is an IGMM,
p(Ck|C) is the same CRP as in Equation 11, so that now the
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conditional variable C and the Gaussian component [µ,Σ]
are coupled (through indices c under the same CRP prior).
The inference on the Bayesian classifier Q can be done
through iteratively sampling:

p(φq|X,µ,Σ) ∝
N∏
i=1

(
K∑
k=1

N (yi|µk,Σk)p(yi|xi, φq))

×p(φq|Φq) (13)

p(µci ,Σci |xi, ci = k,x−i, c−i, φ
q) =

∫ ∫
p(yi|µk,Σk)

p(yi|xi,φq)p(µk,Σk|x−i, c−i)∂µk∂Σk (14)

where N is total number of images, K is total number of
clusters, x−i is all images except xi with c−i as their cor-
responding indicators. A Normal-Inverse-Warshart prior
can be imposed on [µ,Σ] and we refer the readers to [49]
for details. Alternatively, we could use IGMM directly on
the images, but better classification results are achieved by
classifying their latent features, as in the standard setting
of many deep neural network based classifiers. We realize
p(yi|xi, φq) as an encoder in Q.

Lastly for challenge (3), to avoid dynamically growing
and shrinking K, we employ a truncated formulation in-
spired by [18], where an appropriate truncation level can be
estimated. Essentially, the formulation requires us to start
with a sufficiently large K then learn how many modes are
actually needed, which is automatically computed due to
the aggregation property of DPs. Note that the truncation
is only for the inference purpose and does not affect the ca-
pacity of MIC-GAN to model an infinite number of GANs.
We refer the readers to [18] for the mathematical proofs.

3.4. Adversarial Chinese Restaurant Process

Finally, we have our full MIC-GANs model (Eq. 11-
12) and are ready to derive our new sampling strategy
called Adversarial Chinese Restaurant Process (ACRP). A
Bayesian inference can be done through Gibbs sampling:
iteratively sampling on φg , φd, c (Equation 6-8,10), µ, Σ
and φq (Equation 12-14). However, this tends to be slow
given the high dimensionality. We thus propose to combine
two schemes: optimization based on stochastic gradient de-
scent and Gibbs sampling. While the former is suitable for
finding the local minima that are equivalent to using flat pri-
ors and MAP optimization on [φg, φd, φq] [51], the latter is
suitable for finding the posterior distributions of c, µ and Σ.
We give the general sampling process of ACRP in Alg.1 and
refer the readers to the supplementary materials for details.

In non-parametric Bayesian, p(C) is governed by hyper-
parameters which can be incorporated into the sampling.
However, unlike traditional non-parametric Bayesian where
a C would specify a generation process, our generation pro-
cess is mainly learned through the GAN training. In other

words, the shape of p(C) is not essential, as long as Cs are
distinctive, i.e. conditioning different mappings. So we fix
p(C) to be a multivariate Gaussian without compromising
the modeling power of MIC-GANs.

Finally, since the learned GANs are governed by a
DP, another equivalent representation is G(X|Z,C) =∑∞
k=1 βkGk(X|Z,Ck), where the subscript k indicates the

kth GAN. βk is a weight and
∑∞
k=1 βk = 1. This is

another interpretation of DP called stick-breaking where
βk = vk

∏k−1
j=1 vj and v ∼ Beta [54]. After learning, the

weights βs can be computed by the percentage of images
assigned to each GAN. The stick-breaking interpretation in-
dicates that the learned Gs form a convex combination of
clusters, which is an active construction of the latent space.
This enables controlled generation e.g. using single Cs to
generate images in different clusters, and easy exploration
of the data space e.g. via interpolating Cs.

Algorithm 1 Adversarial Chinese Restaurant Process
Require:
epochs - the number of total training epochs;
N is the total number of images;
Initialize all variables (supplementary material);

1: for epoch = 1 to epochs do
2: For xi in X , classify xi via Eq. 12;
3: Compute {Nk}Kk=1 in Eq. 10;
4: For k = 1 to K Sample µk and Σk via Eq. 14;
5: Sample {ci}Ni=1 via Eq. 10;
6: Optimize φg and φd via conditional GAN loss;
7: Optimize φq via Maximum Likelihood (Eq. 13);
8: end for

Implementation details. Due to the space limit, please
refer to the supplementary materials for the details of mod-
els, data processing, training settings and performances.

4. Experiments

We adopt StyleGAN2 [24], StyleGAN2-Ada [22] and
DCGAN [48] to validate that MIC-GANs can incorporate
different GANs. We employ several datasets for extensive
evaluation, including MNIST [29], FashionMNIST [57],
CatDog from [6] and CIFAR-10 [27]. Moreover, we build a
challenging dataset, named Hybrid, consisting of data with
distinctive distributions. It is a mixture of the ‘0’, ‘2’, ‘4’,
‘6’, ‘8’ from MNIST, the ‘T-shirt’, ‘pullover’, ‘trouser’,
‘bag’, ‘sneaker’ from FashionMNIST, the cat images from
Catdog and human face images from CelebA [34].

For comparison, we employ as baselines several state-of-
the-art GANs including DMGAN [25], InfoGAN [5], Clus-
terGAN [42], DeliGAN [15], Self-Conditioned GAN [33]
and StyleGAN2-Ada [22], whose code is shared by the au-
thors. Notably, DeliGAN, InfoGAN, ClusterGAN and Self-
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MNIST FashionMNIST CatDog Hybrid
Purity 0.9489 0.6362 0.9736 0.9567
FID 12.79 17.97 26.24 11.2

Table 1. Purity and FID scores from MIC-GANs.

MNIST Hybrid
K Purity FID K Purity FID

1 20 0.9489 12.79 25 0.9567 11.2
2 20 0.7612 10.82 25 0.8959 32.31
3 10 0.8589 11.9 12 0.881 71.84
4 10 0.8784 9.27 12 0.9457 19.15
5 10 n/a 127.58 10 n/a 241.69

Table 2. Purity and FID of MIC-GANs(1), DMGAN(2), Info-
GAN(3), ClusterGAN(4) and DeliGAN(5).

Conditioned GAN need a pre-defined cluster number, while
MIC-GANs and DMGAN compute it automatically. To be
harsh on MIC-GANs, we provide a large cluster number as
an initial guess to MIC-GANs and DMGAN, while giving
the ground-truth class number to the other methods.

4.1. Unsupervised Clustering

Although MIC-GANs focus on unsupervised image gen-
eration, it clusters data during learning. We evaluate its
clustering ability by Cluster Purity [35] which is a common
metric to measure the extent to which clusters contain a sin-
gle class: Purity = 1

N

∑K
i=1maxj |ci ∩ tj |, where N is

the number of images, K is the number of clusters, ci is a
cluster and tj is the class which has the highest number of
images clustered into ci. The purity reaches the maximum
value 1 when every image is clustered into its own class.
Since MIC-GANs compute K clusters, we rank them by
their βks in the descending order and choose the top n clus-
ters for purity calculation, where n is the ground-truth class
number. Note the ground-truth is only used in the testing
phase, not in the training phase.

We use K=20, 20, 4 and 25 for MINST, FashionMNIST,
CatDog and Hybrid. The results are shown in Table 1. MIC-
GANs achieve high purity on MNIST, CatDog and Hybrid.
On FashionMNIST, the purity is relatively low. We find
that it is mainly due to the ambiguity in the class labels.
One example is that the bags with/without handles are given
the same class label in FashionMNIST but divided by MIC-
GANs into two clusters, as shown later. This finer-level
clustering is automatically conducted, which we argue is
still reasonable albeit leading to a lower purity score.

As a comparison, we also evaluate the baseline meth-
ods on MNIST and Hybrid, with the ground-truth class
number K=10 for InfoGAN and ClusterGAN, and K=20
for DMGAN. Note that DeliGAN does not have a clus-
tering module, so we exclude it from this evaluation. For
both MIC-GANs and DMGAN, we use the top n clusters
where n is the ground-truth class number. As we can see

in Table 2, surprisingly, MIC-GANs achieve the highest pu-
rity score (0.9489) among these methods, even without us-
ing the ground-truth class number in training. It demon-
strates that the MIC-GANs can effectively learn the modes
in the MNIST without any supervision. In addition, we also
conduct the comparison on Hybrid, with the ground-truth
K=12 for InfoGAN and ClusterGAN , and K=25 for DM-
GAN. As shown in Table 2, MIC-GANs achieve the best
purity score (0.9567). ClusterGAN (0.9457) comes a close
second. However, we provide the ground-truth class num-
ber to ClusterGAN which is strong prior knowledge, while
MIC-GANs have no such information.

4.2. Image Generation Quality

We conduct both qualitative and quantitative evaluations
on the generation quality. For quantitative evaluations, we
use Frechet Inception Distance (FID) [16] as the metric.
Qualitatively, generated samples can be found in Figure 1-
2. Due to the space limit, we rank the modes based on their
βs in the descending order and only show the top modes.
More results can be found in the supplementary materials.
Intuitively, all the modes are captured cleanly, shown by
that the top modes contain all the classes in the datasets.
This is where MIC-GANs capture most of the ‘mass’ in the
datasets. In addition, each mode fully captures the variation
within the mode, no matter it is the writing style in MNIST,
the shape in FashionMNIST or the facial features in CatDog
and CelebA. The balance between clustering and within-
cluster variation is automatically achieved by MIC-GANs
in an unsupervised setting. This is very challenging because
the within-cluster variations are distinctive in Hybrid since
the data comes from four datasets. Beyond the top modes,
the low-rank modes also capture information. But the in-
formation is less meaningful (the later modes in MNIST)
or mixed (later modes in Hybrid) or contain subcategories
such as the separation of bags with/without handles in Fash-
ionMNIST. However, this does not undermine MIC-GANs
because the absolute majority of the data is captured in the
top modes. Quantitatively, we found that good FID scores
can be achieved, shown in Table 1.

We further conduct comparisons on MNIST and Hy-
brid using the same settings as above for all methods. As
demonstrated in Table 2, MIC-GANs obtain a compara-
ble FID score to other methods without any supervision
in MNIST. Besides DeliGAN, DMGAN and MIC-GANs
achieve slightly worse FID scores. We speculate that this is
because MIC-GANs and DMGANs do not use prior knowl-
edge and therefore have a disadvantage. One exception is
DeliGAN. In their paper, the authors chose a small dataset
(500 images) for training and achieved good results. How-
ever, when we run their code on the full MNIST dataset,
we were not able to reproduce comparable results even after
trying our best to tune various parameters. Next, in the chal-
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Figure 1. Our results on MNIST (left) and Hybrid (right) dataset, both with K = 25. Each column is generated from a mode, and the
columns are sorted by αs (the last 4 modes are not shown). The red boxes mark the top n modes in the results.

Figure 2. Our results on CatDog (left) and FashionMNIST (right)
dataset. Each column is generated from one mode, and the
columns are sorted by αs.

Ours SC-GAN StyleGAN2-Ada
C K FID C K FID C K FID
4 10 5.31 4 10 237.96 4 - 5.64
7 15 5.09 7 15 41.30 7 - 5.16

10 20 4.72 10 20 22.00 10 - 5.03
Table 3. Comparisons of our method, SC-GAN (Self-Conditioned
GAN), and Styelgan2-Ada on CIFAR. ‘C’ means the ground-truth
class number in the dataset.

lenging Hybrid dataset whose distribution is more complex
than MNIST, MIC-GANs achieve the best FID score. With-
out any supervision, MIC-GANs not only capture the multi-
ple data modes well, but generate high-quality images. We
also conduct comparisons on CIFAR with Self-Conditioned
GAN [33] and StyleGAN2-Ada [22]. To investigate how
MIC-GANs compare with other methods on a dataset with
different numbers of modes, we sample C={4,7,10} classes
from CIFAR where C=10 is the full dataset. We also
adopt StyleGAN2-Ada in MIC-GANs for CIFAR. The re-
sults show that MIC-GANs can achieve better FID scores
(Table 3). The change of baselines is mainly due to that we
only compare MIC-GANs with methods on the datasets on
which they are tested, for fairness.

As a visual comparison, we show the generated images
from different GANs in Figure 3. In the top row, MIC-
GANs generate perceptually comparable results on MNIST
to InfoGAN and ClusterGAN which were fed with the
ground-truth class number, while achieving better cluster-
ing than DMGAN (e.g., mixed ‘9’ and ‘4’, ‘9’ and ‘7’)
which is also unsupervised. In the challenging Hybrid
dataset (bottom), MIC-GANs are able to generate high-
quality images while correctly capturing all the modes. CI-
FAR images are shown in the supplementary materials.

DCGAN StyleGAN2

MNIST

K Purity FID K Purity FID
1 - 9.89 1 - 12.96

15 0.9384 5.22 15 0.9397 9.92
20 0.9578 8.62 20 0.9489 12.79
25 0.93 9.13 25 0.9487 11.9

Hybrid

K Purity FID K Purity FID
1 - 60.83 1 - 15.47

15 0.9218 50.74 15 0.942 15.7
20 0.9611 48.17 20 0.923 13.31
25 0.966 45.07 25 0.9567 11.2

Table 4. Purity and FID of ablation studies on MNIST and Hybrid.

4.3. Ablation Study

We conduct ablation studies to test MIC-GANs’ sensi-
tivity to the free parameters. As an unsupervised and non-
parametric method, there are not many tunable parameters
which is another advantage of MIC-GANs. The main pa-
rameters are the K value and the GAN architecture. We
therefore test another popular GAN, DCGAN [48] and vary
the K value. As shown in Table 4, the purity scores are
very similar, which means the clustering is not significantly
affected by the choices of GANs or the K value. FID
scores vary across datasets, which is mainly related to the
specific choice of the GAN architecture. However, stable
performance is obtained across different Ks in every set-
ting. In addition, the FID scores when K = 1 are in
general worse than those when K > 1, confirming that
our method can mitigate mode collapses. The same mode
collapse mitigation can also be observed when comparing
our method with StyleGAN2-Ada on CIFAR-10 (Table 3),
where StyleGAN2-Ada is just our method with K = 1.

4.4. Benefits of Non-parametric Learning

In real-world scenarios, we do not often know the clus-
ter number a priori, under which we investigate the per-
formance of InfoGAN, ClusterGAN and DeliGAN. We use
Hybrid and run experiments with K=8, 12, 16 and 22 to
cover K values that are smaller, equal to and bigger than
the ground-truth K=12. We only show the results of K=8
in Figure 4 and refer the readers to the supplementary ma-
terials for fuller results and analysis. Intuitively, when K is
smaller than the ground-truth, the baseline methods either
cannot capture all the modes or capture mixed modes; when
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InfoGAN ClusterGAN DeliGANDMGANOurs

Figure 3. Generation comparisons on MNIST (top) and Hybrid (bottom) dataset. We use the ground-truthK = 10 on MNIST andK = 12
on Hybrid for InfoGAN, ClusterGAN and DeliGAN, andK = 20 for MNIST andK = 25 for Hybrid for MIC-GANs and DMGAN. Each
column is generated from a mode for MNIST (top), and each row is generated from a mode for Hybrid (bottom).

InfoGAN ClusterGAN DeliGAN

Figure 4. K = 8 results of InfoGAN, ClusterGAN and DeliGAN.

K is larger than the ground-truth, they capture either mixed
modes or repetitive modes. In contrast, although MIC-
GANs (Figure 1-2) also learn extra modes, it concentrates
the mass into the top modes resulting in clean and complete
capture of modes. MIC-GANs are capable of high-quality
image generation and accurate data mode capturing, while
being robust to the initial guess of K.

4.5. Latent Structure

Since MIC-GANs are a convex combination of GANs,
we can do controlled generation, including using a spe-
cific mode, and interpolating between two or more differ-
ent modes for image generation. Figure 1-2 already show
image generation based on single modes. We show interpo-
lations between two Cs and among four Cs respectively in
Figure 5. Through both bi-mode and multi-mode interpo-
lation, we show that MIC-GANs structure the latent space
well so that smooth interpolations can be conducted within
the subspace bounded by the base modes.

Figure 5. Left: each row is the interpolation results between two
latent codes, where the first column and the last column are the
original images. Right: the interpolation results among four latent
codes, where each corner represents one mode.

5. Conclusion
We proposed a new unsupervised and non-parametric

generative framework MIC-GANs, to jointly tackle two
fundamental GAN issues, mode collapse and unstructured
latent space, based on parsimonious assumptions. Exten-
sive evaluations and comparisons show that MIC-GANs
outperform state-of-the-art methods on multiple datasets.
MIC-GANs do not require strong prior knowledge, nor do
they need much human intervention, providing a robust and
adaptive solution for multi-modal image generation.
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