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Deep Stereo Matching With Hysteresis Attention
and Supervised Cost Volume Construction
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Abstract— Stereo matching disparity prediction for rectified
image pairs is of great importance to many vision tasks such
as depth sensing and autonomous driving. Previous work on
the end-to-end unary trained networks follows the pipeline
of feature extraction, cost volume construction, matching cost
aggregation, and disparity regression. In this paper, we propose
a deep neural network architecture for stereo matching aiming at
improving the first and second stages of the matching pipeline.
Specifically, we show a network design inspired by hysteresis
comparator in the circuit as our attention mechanism. Our
attention module is multiple-block and generates an attentive
feature directly from the input. The cost volume is constructed
in a supervised way. We try to use data-driven to find a good
balance between informativeness and compactness of extracted
feature maps. The proposed approach is evaluated on several
benchmark datasets. Experimental results demonstrate that our
method outperforms previous methods on SceneFlow, KITTI
2012, and KITTI 2015 datasets.

Index Terms— Stereo matching, unary feature maps, hysteresis
attention, group convolution cost.

I. INTRODUCTION

DEPTH estimation of stereo images is a key pre-
processing in many computer vision applications such

as autonomous driving, robot navigation, 3D object or scene
reconstruction, etc. Given a pair of rectified stereo images, the
goal of stereo matching is to predict the disparity for pixels
in the reference image. While significant efforts have been
devoted, an accurate stereo depth estimation remains an open
problem.

Conventional methods for stereo matching rely on the
extraction of local image features, which are later used for
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disparity minimization. Yet, they are known to be unable to
deliver satisfactory results consistently under unfriendly imag-
ing circumstances, such as repeated or lost texture patterns,
object occlusion, and color/lighting noises, etc. On the other
hand, deep learning-based approaches have demonstrated a
strong potential for this problem. For instance, Zbontar and
LeCun [1] pioneered the attempt of using a convolutional
neural network (CNN) to learn the similarity measure on small
image patches. Some later research, e.g., [2], [3], improve the
accuracy of local patch correspondence and cost calculation.
It is without a doubt that with the assistance of CNN, mining
intrinsic information hidden in massive training data, e.g., the
KITTI stereo set, we can further enhance the robustness of
feature mapping and the overall performance of the stereo
matching.

Along the stereo matching pipeline, computing the match-
ing cost is of utter importance as it directly influences the
construction of matching correspondences and the similarity
measure. Commonly, there are two steps: feature map extrac-
tion and matching cost volume construction. Kendall et al. [4]
proposed an end-to-end learning architecture, named geometry
and context network or GC-Net, to extract the unary feature
maps. They are then aggregating with the 3D CNN for the deep
stereo regression. Chang et al. [5] proposed a pyramid stereo
matching network (PSMNet) for unary feature maps extraction
and built the cost volume with concatenated features.

Following those successful endeavors, we propose a new
deep neural network architecture for stereo image matching
(i.e., see Fig. 1). Compared with existing methods, our net-
work equips with two novel features: a delayed attention
mechanism, which is referred to as the hysteresis attention,
and a group convolution-based cost volume construction.
An attention model [6] allows the network to focus on the most
relevant features reducing interferences from other peripheral
information. A hysteresis comparator is a typical circuit design
yet highly effective in output stabilization. Inspired by its
simplicity and efficacy, we build our attention module fol-
lowing the same idea in the network – the input signal of
a convolutional layer is also passed to the attention module.
We know that a hysteresis comparator adversely “damps” the
sensitivity of the circuit because the output does not change
with the input as much before. This limitation is tackled by
adding an auxiliary weight to suppress the sensitivity loss.
Our network also features a supervised cost volume construc-
tion module. It first assembles a group concatenated volume
based on disparity levels, which is then group convoluted to
form the final cost volume. As this procedure is supervised,
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the similarity measure in the resulting cost volume is more
accurate compared with non-supervised volumes. Experiment
results show that our method outperforms previous methods
on Scene Flow, KITTI 2012, and KITTI 2015 datasets.

II. RELATED WORKS

Inferring 3D information out of 2D images is a crucial task
in many computer vision applications, and has been an active
topic in the past two decades. We roughly group existing
work on this topic into two categories: traditional methods
and learning-based methods.

A. Traditional Methods

The traditional stereo matching methods can be further cate-
gorized as: (a) local stereo methods [7]–[11], (b) global stereo
methods [12]–[19], (c) hybrid local-global methods [20], [21],
and (d) confidence refined measures [22]–[24].

The local stereo matching usually uses a sliding window to
find correspondence between a pair of stereoscopic images.
Many methods are designed to smartly tweak this sliding
window, such as adaptive support weights [10], [11], bilat-
eral filter support weights [7], geodesic support weights [8],
and guided filter support weights [9]. Those methods are
efficient even for real-time processing, but the results are
less accurate of the image contains a large amount of low-
frequency signal e.g., repeated color/texture patterns. On the
other hand, global methods take into account the global
information of the image, which could effectively suppress
the matching ambiguities. Typically, those methods formulate
the matching problem into an energy optimization problem
and enforce additional regularization for consistency con-
straints of the resulting depth map. Some paradigms include
belief propagation [25], [26], Markov random fields (MRF)
[14]–[16], graph cut [27], variational methods [17]–[19],
second-order smoothness priors [13], [28], [29]. On the down-
side, global energy optimization is computationally expensive
and prohibitive for many time-critical applications.

Local and global hybrid methods [20], [21] aims to integrate
the advantages from both local and global methods during
stereo matching. For example, Li et al. [20] presented a
hierarchical framework that combines local cost aggregation
with global cost optimization in a complementary manner.
The final stereo confidence maps are computed by fusing
multi-view matching cues. Yan et al. [21] proposed a dispar-
ity refinement method that combined the global and local
optimization to refine the winner-take-all (WTA) disparity
map. In the global optimization, mean disparities of super-
pixels are estimated using MRF inference. Afterward, a 3D
neighborhood system is derived from the mean disparities for
occlusion handling. In the local optimization, a probability
model exploiting Bayesian inference and Bayesian prediction
is adopted to achieve second-order smoothness implicitly
among 3D neighbors.

A confidence measure such as Matching Score Measure
(MSM), Curvature (CUR), Naive Peak Ratio (PKRN), and
Left-Right Consistency (LRC), is a function of the matching
cost, disparity values, or image intensities [22], [23]. It esti-
mates the likelihood or the quality of a match. The confidence

measure is often used to resolve matching ambiguities in
occluded and/or textureless regions.

B. Learning Based Stereo Method

Deep learning has become a major driver in computer vision
and image processing recently. It is also widely used for stereo
matching. Zbontar and LeCun [1] firstly introduced CNNs for
stereo matching to replace the computation of the matching
cost. It shows that CNN makes the matching more robust,
and the state-of-the-art results were reported over KITTI
Stereo benchmarks. Batsos et al. [30] proposed a coalesced
bidirectional matching volume (CBMV) for disparity measure,
which combines evidence from multiple basic matching costs.
Schonberger et al. [31] used a random forest-based classifier
to classify scanline matching cost candidates. Seki et al. [32]
constructed a semi-global matching network to provide learned
penalties. Knobelreiter et al. [33] combined CNN-predicted
correlation matching costs and CRF to integrate long-range
interactions.

An important prerequisite for a stereo matching framework
is feature extraction, and CNNs with various architectures like
GC-Net [4], PSMNet [5], or GwcNet [34] have been success-
fully employed for stereo matching. A straightforward thought
to better leverage the extracted feature for the stereo matching
is to combine the feature extraction with an attention mecha-
nism [35]–[37], which has reported a superior performance in
many vision tasks such as image captioning [38]–[40], visual
question answering [41], [42], pose estimation [43], and image
classification [44]. For instance, Xu et al. [38] introduced
visual attention to image captioning, where both soft and
hard attention mechanisms are exploited. Chu et al. [43] used
multi-context attention mechanisms for human pose estima-
tion. Wang et al. [44] proposed an attention residual learning
mechanism to train deep residual networks for image clas-
sification. Recently, Chen et al. [40] proposed an SCA-CNN
network that incorporates spatial and channel-wise attention
in CNN for image captioning.

Another important task for stereo matching is the construc-
tion of cost volume, and there are a lot of work regressing
disparity maps from correlation cost volumes [45]–[49]. Given
the left and right feature maps, the correlation cost volume
is often computing with the inner product of the paired fea-
ture maps. Several works also employed concatenation-based
volume construction [4], [5], [50], [51]. Instead of directly
giving a cost volume, the feature maps are concatenating at
all disparity levels. Based on the correlation cost volume,
GwcNet [34] used a group-wise correlation cost volume,
which provided good features for similarity measures. The
group-wise correlation method splits the feature maps into
multiple groups and computes the inner product for corre-
lation maps group-wisely. These cost volume constructions
are typically unsupervised. Instead, we propose a supervised
method for matching cost construction in our framework.
We apply a group convolutional layer over a concatenated
volume to supervise the aggregation of each group disparity
channel.
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Fig. 1. The flowchart of our stereo matching framework. The network consists of four parts: a multi-stage hysteresis attention module for unary feature
extraction, cost volume construction, 3D convolution aggregation, and disparity prediction. The combined cost volume is divided into two parts, group
convolution cost volume, and group-wise correlation cost volume. We group concatenate extracted features and use the group convolution operation to lump
a disparity channel into the feature map.

Fig. 2. The network architecture of our hysteresis attention module. Each CNN block extracts image features that are augmented with an attentive signal
directly from its input. The merge convolutional layer M will merge and deliver the unary attentive feature maps to the next stage and produce new attentions
and attentive features. All the attentions are also accumulated and passed to the final output.

Fig. 3. The architecture of soft hysteresis attention module (left) and self
attention module (right).

III. OUR METHOD

As illustrated in Fig. 1, we propose a deep stereo matching
framework. After receiving the left and right images, there is a
multiple-block hysteresis attention module for feature extrac-
tion for both images. We build the cost volume by applying
with supervised group convolution over the resulting feature
volume. Finally, the network predicts the disparity map.

A. Feature Extraction With Hysteresis Attention

We first discuss the structure of our hysteresis attention
module, which is in charge of feature extraction for the stereo
matching. The backbone network of this module is similar to
GwcNet [34], which adopts a ResNet-like structure. As shown
in Fig. 2, we add a self hysteresis attention module to CNN
layers. Our design of the attention module is inspired by com-
parator, a device that compares two voltages or currents and
outputs a digital signal indicating which is larger in an electric
circuit. Compared with traditional single-limit comparators,
the hysteresis comparator has a strong anti-interference ability.
However, it also less sensitive to the input voltage. Similar to

the hysteresis comparator, a straightforward transplant in our
attention module also reduces the sensitivity of the network.
That is to say, the hysteresis attention the output features do
not change as much as before even when the input image
is significantly different. To this end, we add an attention
weight factor (α) to tune down the hysteresis attention module.
We found that this simple treatment significantly improves the
test benchmark and, our method has a better performance than
the self-attention.

Let Sn , n = 0, 1, . . . , N − 1 denote the output of the n-
th convolutional block. According to our network structure
(i.e. see Fig. 2), it can be formulated as:

Sn =
{
Convn(Input)), n = 0

(1 + αAn−1) � Convn(Sn−1), 0 < n ≤ N − 1,
(1)

where the function Convn(·) denotes the n-th convolutional
operation; Input is the input of stereo image pair; � is
element-wise multiplication; and α is the attention weight
factor (i.e., to reduce the “damping” effect of the attention).
Our attention module An can then be computed as:

An =
{

a0(S0), n = 0

an(Mn([An−1|Sn])), 0 < n ≤ N − 1,
(2)

where an(·) stands for the n-th soft attention module. Mn(·)
is a merge convolution layer taking the concatenation of An−1
and Sn input. The attention mask An ∈ [0, 1] is learned in a
self-supervised fashion with back-propagation.

As shown in Fig. 2, from the starting block, each block
enhances the context feature by adding a weighted hysteresis
attention yielding attentive features for unary feature maps.
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Fig. 4. After feature maps are extracting, there are several options to create a cost volume: concatenation (left), normalized correlation (middle), or group-wise
correlation (right). However, they are all non-supervised, and getting a good trade-off between compactness and informativeness is non-intuitive.

The motivation of using this architecture is that multi-level
unary features are extracted and concatenated to form high-
dimensional feature representations, which include much con-
text information and represent the similarity of left and right
feature maps better. The hysteresis attention module will
generate attentive features for unary feature maps. The merge
convolutional layer Mn(·) will merge and deliver the unary
attentive feature maps to the next stage and produce new
attentions and attentive features.

B. Supervised Cost Volume via Group Convolution

Once the unary feature maps are extracted, they are used
to build the cost volume. Let Fl and Fr be the left and right
feature maps with C channels. Both Fl and Fr have the same
dimension of W × H × C . Their width (W ) and height (H )
are normally one quarter of the original input image size.
To build the cost volume, one can directly concatenate Fl and
Fr at each disparity level d yielding a W × H × 2C volume
(e.g., as in [46]–[49]):

Ccon(Fl , Fr , d) = Concat (Fl(x, y, c), Fr (x − d, y, c)) .

where x ∈ [0, W −1], y ∈ [0, H −1] are x and y coordinates,
and c ∈ [0, C − 1] is the channel index. Alternatively, We can
also use normalized correlation, Ccor [5], [50], [51] to lump
averaged left and right features:

Ccor (Fl , Fr , d) = 1

C
(Fl(x, y, c) � Fr (x − d, y, c)) .

Another option is to use group-wise correlation (Cgwc) as
in [34], which clusters C channels into G groups and applies
the correlation at each group:

Cgwc(Fl , Fr , d) = G

C
(Fl(x, y, c) � Fr (x − d, y, c)) .

Fig. 4 visualizes those different approaches for cost volume
construction, where Ng is the number of channels for each

Fig. 5. Our cost volume construction is supervised, exploiting group
convolution to condense grouped feature.

group such that Ng = C/G. It is easy to understand that a sim-
ple concatenation while preserving all the feature information,
could contain unnecessary redundancy and linear dependency.
On the other hand, a full correlation is more compact, but
it could also be over-aggressive as it condenses a C-channel
signal into a reduced representation. It is of our curiosity about
how we can achieve a good trade-off the compactness and
informativeness, which serves as our primary motivation to
design a supervised cost volume construction procedure.

Our Method: Our strategy is straightforward: since getting
a good trade-off of reduction and redundancy is difficult,
we tackle this challenge in a data-driven manner and leave
the network to determine what is the optimal configuration
given the training data set. As shown in Fig. 5, the so-called
Cgc operator first concatenates the feature maps of Fl and Fr

forming a new W × H ×2C volume. Note that this procedure
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TABLE I

EPE COMPARISON OF DIFFERENT STEREO MATCHING METHODS FOR SCENEFLOW DATASETS

TABLE II

THE PERFORMANCE COMPARISON OF HYSTERESIS ATTENTION AND

DIFFERENT SELF-ATTENTION. WE USE DIFFERENT ATTENTION

MECHANISMS FOR FEATURE EXTRACTION. THE COST VOLUME IS

BUILT WITH A 40−CHANNEL GROUP CORRELATED FEATURE
(Cgwc ) PLUS A 24−CHANNEL GROUP CONVOLUTED

FEATURE (Cgc ). CLEARLY, OUR HYSTERESIS

ATTENTION OUTPERFORMS THE SELF ATTENTION

is different from Ccon as we put back-to-back features from
Fl and Fr from the same channel. Such an arrangement
facilitates the follow-up group convolution as the convolution
operation to applying on the features of the same category. The
group convolution is applied to feature maps at all disparity
levels. The kernel weights in the group convolution layer are
to be supervised and learned for the matching cost volume
construction. Finally, we concatenate Cgc and Cgwc to yield
our final cost volume (i.e., [Cgc|Cgwc]).

One can tell from the above description that the proposed
cost volume construction can be regarded as a hybrid method
aiming to combine the advantages of Ccon and Cgwc. Ccon

is lossless, yet it is redundant. The group convolution can
effectively distill intrinsic information in a supervised way out
of Ccon . This convoluted volume complements Cgwc, and an
observable improvement is reported in our experiments.

C. Multi-Side Output 3D Aggregation Network

We employ a stacked hourglass architecture [34] to output
the final depth prediction. We use disparity regression as
proposed in [4] to estimate a continuous disparity map. The
probability of each disparity d is calculated from the predicted
cost value c via the softmax operation (σ(·)). The predicted
disparity d̂ is then calculated as the sum of all d weighted by
its probability:

d̂ =
D∑

d=1

σ(−c) · d. (3)

For disparity regression, we use a smoothed L1 loss function
to train our net, which is defined as:

L =
Dout∑
i=1

λi · smoothL1

(
d∗ − d̂i

)
. (4)

where Dout is the number of output disparities, d∗ is the
groundtruth disparity. λi is the weight coefficient for the i -
th disparity prediction as in [34]. smoothL1(x) operator is
defined as:

smoothL1(x) =

⎧⎪⎨
⎪⎩

1

2
· x2, |x | < 1

|x | − 1

2
, |x | ≥ 1.

IV. EXPERIMENTS

We have implemented the proposed deep stereo matching
network and tested its performance with the Scene Flow
dataset [45] and the KITTI dataset [52], [53]. We also carried
out an ablation study to compare different models under differ-
ent parameter settings. Particularly in this section, datasets and
implementation details are described in § IV-A and § IV-B.
The ablation study is discussed in § IV-C, and comparative
benchmark is reported § IV-D. The detailed comparison of
the computational complexity of our method is analyzed
in § IV-C.

A. Datasets and Evaluation Metric

We tested our method on three stereo datasets: Scene Flow,
KITTI 2012, and KITTI 2015. The Scene Flow dataset is
a large-scale synthetic dataset containing 35, 454 training
and 4, 370 testing images. The resolution of each image
in the dataset is 960 × 540. This dataset provides dense
and elaborate disparity maps as ground truth. We also used
the Finalpass of the Scene Flow dataset. It contains more
motion blurs and defocuses and better resembles real-world
images than the Clean pass. The KITTI 2015 dataset is
a real-world dataset with street views from a driving car.
It contains 200 training stereo image pairs with sparse ground-
truth disparities obtained using LiDAR and another 200 testing
image pairs without ground-truth disparities. The disparity
maps evaluation of testing stereo images is submitted and
evaluated online. Image size is 1240 × 376 in KITTI 2015.
We further divided the whole training data into a training
set (80%) and a validation set (20%). The KITTI 2012 is
also a real-world dataset with street views from a driving
car. It contains 194 training stereo image pairs with sparse
ground-truth disparities obtained using LiDAR and 195 testing
image pairs without ground-truth disparities. The disparity
maps evaluation of testing stereo images is also online. Image
size is 1240 × 376. We divided the whole training data into
a training set of 160 image pairs and a validation set of
34 image pairs. Color images of KITTI 2012 were used in
this work. Undoubtedly, the sparse ground-truth disparities of
KITTI 2012 and 2015 are more challenging for the neural
network training.
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TABLE III

THE ABLATION STUDY ON THE SCENEFLOW. WE RECORD THE OUR NETWORK BENCHMARK UNDER DIFFERENT PARAMETER SETTINGS

Evaluation Metric: For Scene Flow datasets, the evaluation
metric is usually the end-point error (EPE), which is the mean
average disparity error in pixels. For KITTI 2012, percentages
of erroneous pixels and average end-point errors for both non-
occluded (Noc) and all (All) pixels are reported. For KITTI
2015, the percentage of disparity outliers D1 is evaluated
for background, foreground, and all pixels. The outliers are
defined as the pixels whose disparity errors are larger than
max(3, 0.05 d∗). Here d∗ is the ground-truth disparity and
the unit is in pixel.

B. Implementation Details

Our method is implemented using with the popular deep
learning platform PyTorch. The network architecture was
end-to-end trained with Adam [54] optimizer, where we set
β1 = 0.9, β2 = 0.999. The batch size was fixed to 2, and we
trained all the networks with 2 Nvidia RTX 2080 GPUs.
The total training time were around four days. The coefficients
of four outputs were set as λ0 = 0.5, λ1 = 0.5, λ2 = 0.7,
λ3 = 1.0.

For the Scene Flow dataset, we trained the stereo network
for 16 epochs in total. The initial learning rate is set to 0.001.
It was down-scaled by 2 after epoch 10, 12, 14 and finally set
as 0.000125. To test on Scene Flow datasets, the full images
of size 960 × 540 are input to the network for disparity
prediction. The maximum disparity value is D = 192 for
Scene Flow datasets. For KITTI 2012 and 2015, we fine-tuned
the network pre-trained on Scene Flow datasets for another
300 epochs. The initial learning rate is 0.001 and is down-
scaled by 10 after epoch 200. For testing KITTI datasets,
we padded zeros on the top and right of the image to resize
the input size to 1248 × 384.

C. Ablation Study

The SceneFlow dataset is synthetic, and it also contains
enough training data to train our net without worrying about

overfitting. We used this dataset to investigate different para-
meter choices of our model. There are two major sets of para-
meters in our network: the weight (i.e., α in Figs. 2 and 3) of
the hysteresis attention module and the sizes of convolutional
groups for cost volume construction. The resulting depth map
on the test set of Scene Flow is given in Fig. 6.

We consider PSMNet [5] and GwcNet [34] as our most
relevant competitor. To objectively compare our method with
them, we used publically released codes, trained with 2
Nvidia RTX 2080 GPU machines, and obtained EPEs of
1.10 for PSMNet and 0.816 for GwcNet respectively. Note
that in GwcNet, authors evaluate their network by discarding
images that have fewer than 10% valid pixels (0 < d < D) in
the test set. For each valid image, the evaluation metrics are
computed with only valid pixels. These are why EPE reported
in the original GwcNet paper is slightly better (0.765) than our
implementation. Furthermore, the EPE comparison of different
stereo matching methods for SceneFlow datasets also shown
in Table I.

1) Ablation Study for Hysteresis Attention Mechanism: In
the ablation study, we first compare the EPE benchmark for
our hysteresis attention and widely-used self attention method.
And also compare with the existed self attention works of
stereo matching. Zhang et al. [56] used the channel atten-
tion module [60] for stereo matching. Yang et al. [58] used
the multi-scale channel-wise attention for stereo matching.
Zhang et al. [57] proposed the 3D attention re-coding module
for stereo matching based on dual attention network [37].
Huang et al. [55] used the CBAM [36] attention module for
stereo matching. Those results are reported in Tab. II. In our
comparison, we keep the network structure consistent but
using different attention modules. The attention module is
plugged for the feature extraction, which yields a 40-channel
volume with group correlation (Cgwc) and a 24-channel vol-
ume with group convolution (Cgc). The advantage of our
hysteresis attention is clear yielding an EPE of 0.76 ahead
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TABLE IV

THE ABLATION STUDY OF OTHERS METHOD BY APPLYING OUR PROPOSED MODULE ON THE SCENEFLOW

TABLE V

COMPARATIVE RESULTS WITH OTHER TOP-PERFORMING METHODS ON

THE KITTI 2015 BENCHMARK. A LOWER VALUE OF D1-BG, D1-FG,
AND D1-ALL REPRESENTS BETTER PERFORMANCE

of 0.76 EPE using self attention. Hysteresis attention also
has better benchmarks for 1px, 2px and 3px error percentage.
In this experiment, we set α = 0.1 for hysteresis attention.

Next, we look into how the attention weight (α) inferences
the final network benchmark. This study is reported in the
first section of Tab. III. As discussed, the hysteresis attention
module could lower the sensitivity of the network because it
preserves the original input signals in the attention. Therefore,
α is added to the attention to mitigate this issue. Clearly, α
should be a positive scalar between 0 and 1, and we record
the network benchmark with α linearly varying as 0.1, 0.3,
0.5, 0.7, and 0.9. We find that setting α = 0.1 gives the best
benchmark with an EPE of 0.761. Increasing α imposes an
adverse effect to the network performance. On the other hand,
further decrease α value does not help – if we set α as low
as 0.05, the EPE goes up to 0.775. It seems that there exists
an optimal setting for α value, which leaves us an interesting
future work.

TABLE VI

COMPARATIVE RESULTS FROM OTHER TOP-PERFORMING METHODS ON

THE KITTI 2012 BENCHMARK. NOTE THAT, A LOWER VALUE OF

THOSE METRICS REPRESENTS BETTER PERFORMANCE

Fig. 6. Some results from our deep stereo matching network with the
SceneFlow dataset. The results are obtained from our best performance model
with the attention weight factor 0.1, group size 2, and 40 + 24 cost volume.

In addition, we have also tried to pair our hysteresis
attention module with GwcNet. Our experiment shows that
by using our attention module in GwcNet, the end-point error
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Fig. 7. Results of disparity estimation for KITTI 2015 test images. The left input image of stereo image pair will be showing in the left panel. For each
input image, the disparity result maps predicted by (a) PSMNet, (b) GwcNet, and (c) our method are illustrated together above their error maps.

Fig. 8. Results of disparity estimation for KITTI 2012 test images. The left input image of stereo image pair will be showing in the left panel. For each
input image, the disparity result maps predicted by (a) PSMNet, (b) GwcNet, and (c) our method are illustrated together above their error maps.

TABLE VII

THE DETAILED COMPARISON OF COMPUTATIONAL COMPLEXITY BETWEEN CONCATENATION BASED COST VOLUMES AND GROUP CONVOLUTION
BASED COST VOLUMES, WHICH WITH GIVING THE SAME LEFT AND RIGHT FEATURE MAPS (WHERE B, C, H, W DENOTED THE NUMBER

OF FEATURE MAPS BATCH SIZE, CHANNELS, HEIGHT, AND WIDTH), CONSTRUCTING COST VOLUME WITH THE SEPARATE METHODS,
AND FOLLOWING THE ONE 3D CONVOLUTION LAYER TO OBTAIN THE SAME OUTPUT COST VOLUME SIZE (WHERE D DENOTED

THE NUMBER OF COST VOLUME DISPARITY)

of GwcNet-g and GwcNet-gc is reduced by 0.35px and 0.14px
respectively.

2) Ablation Study for Supervised Cost Volume: Next,
we show that supervised cost volume construction alone is able
to improve the network performance. To this end, we do not
apply any attention mechanisms in the feature extraction stage
and replace the proposed cost volume construction module
in PSMNet and GwcNet. Experiment reports that the end-
point error of PSMNet is reduced by 0.05px and 0.09px,
with 64 and 32 channels respectively. Similarly, the end-
point error of GwcNet is reduced by 0.007px and 0.01px.
A detailed benchmark is reported in the second section of
Tab. IV.

We also investigate how different sizes of a channel and
groups used in group convolution influence the final bench-
mark. We fix the channel number of the group correlation 40.
The experiment is detailed in the second and third sections of

Tab. III. When the number of channels at each group increases,
the unnecessary redundancy or noisy information is also
increasing introducing uncertainties of the network training.
The optimal configuration is to use 24 group convolution
channels for 2 convolution groups. This combination leads to
a 40 + 24 cost volume.

3) Computational Complexity Analysis: To prove the effi-
ciency of supervised cost volume, we detail introduced the
comparison of computational complexity between concatena-
tion based cost volumes and group convolution based cost
volumes. We compared the computational complexity with the
same left and right feature maps, constructed cost volume
using each method, and used one 3D convolution layer to
obtain the same output cost volume size. The corresponding
quantitative evaluation is presented in Table VII. Our group
convolution-based cost volume is more efficient and with less
memory consumption.
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TABLE VIII

STRUCTURE DETAIL OF THE FEATURE EXTRACTION LAYER. H, W
DENOTED THE HEIGHT AND THE WIDTH OF THE INPUT IMAGE. IF NOT

SPECIFIED, EACH CONVOLUTION LAYER IS WITH BATCH NOR-
MALIZATION AND RELU. THE CONV. FEATURES ARE USED

TO CONSTRUCT SUPERVISED COST VOLUME. THE CORR.
FEATURES ARE USED TO CONSTRUCT CORRELATION

COST VOLUME

D. Benchmark Results

1) Results on KITTI 2015: The state of the art methods
on the KITTI 2015 benchmark are listed in Tab. V. Our
method achieves a D1-all value of 1.69 in non-occluded
regions, and 1.85 in all regions, which is state-of-the-art among
those published methods. The KITTI 2015 is a small dataset
and with sparse disparities ground-truth. Our model surpasses
the PSMNet by 0.47% and GwcNet by 0.26% on D1-all.
Qualitative results on KITTI 2015 achieved by our method
and other state-of-the-art methods are shown in Fig. 7.

2) Results on KITTI 2012: The state of the art methods on
the KITTI 2012 benchmark is listed in Tab. VI. Compared

to the KITTI 2015, the dataset KITTI 2012 is more difficult
for the neural network training. The evaluation results on
the test set are shown in Table V. Qualitative results on
KITTI 2012 achieved by our method and other state-of-the-art
methods are shown in Fig. 8.

V. CONCLUSION

In this paper, we present a group convolution-based cost
and hysteresis attention stereo matching network. Following
the design philosophy of hysteresis comparator, we devise
a multiple-block soft hysteresis attentions module to gener-
ate attentive features for unary feature maps, where atten-
tive features act as the guidance and accumulate at each
block to produce new attentive features. We also propose
a simple yet effective learning-based method for matching
cost construction. Our cost volume is based on the group
concatenation volume and group convoluted to supervise each
channel group into a single channel feature at each dispar-
ity level. The proposed approach was evaluated on several
benchmark datasets. Experiment results show that our method
outperforms previous methods on SceneFlow, KITTI 2012,
and KITTI 2015 datasets. The released code will be found in:
https://github.com/zkwalt/HysteresisAttentionStereoNetwork.
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