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Abstract

Visual indoor localization for smart indoor services is a growing field of inter-
est as cameras are now ubiquitously equipped on smartphones. In this study,
a hierarchical indoor localization algorithm is designed and validated based on
3D facility scan data, which are originally collected for facility modeling pur-
poses. The study has shown promising results in indoor localization. The study
also demonstrated a scalable approach to generate high-quality images with ref-
erence poses from laser scan data, opening doors to generate labeled images to
train end-to-end pose regression model (i.e., PoseNet). In this regard, this study
is the first attempt to leverage facility scan data, which are commonly collected
for Building Information Modeling (BIM) purpose, for indoor localization. As
more facilities are documented with laser scanners, our algorithm can unlock

1 | INTRODUCTION

According to the National Human Activity Pattern Survey,
people normally spend over 87% of their daily lives indoors
(Klepeis et al., 2001). This estimate is likely much higher
during this pandemic crisis. Indoor localization, which
refers to the process of obtaining the poses of a device or
a user under a given coordinate system (Zafari et al., 2019),
is the foundation of many smart indoor services. Accu-
rately localizing a user or device in an indoor setting has a
prominent place in the health, industry, disaster and build-
ing management, and surveillance sector (Asimakopoulou
& Bessis, 2011; Borrion et al., 2012; Zelenkauskaite et al.,
2012). To date, indoor localization has contributed signifi-
cantly to a wide array of applications including virtual real-
ity and augmented reality, robotics, autonomous driving
(Wu et al., 2018), Internet of Things (Atzori et al., 2010),
smart buildings (Snoonian, 2003), and machine type com-
munication (Taleb & Kunz, 2012).

Compared with outdoor localization, indoor localiza-
tion has its unique challenges since most indoor scenes are
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additional values of collected data for intelligent applications.

GPS-denied environments and have to rely on techniques
such as WiFi (Chen et al., 2015), ultra-wideband (Alarifi
et al., 2016), radio frequency identification (Stella et al.,
2012), Bluetooth (Kriz et al., 2016), ZigBee (Niu et al., 2015),
ultrasonic (Hazas & Hopper, 2006), or magnetic fields
(Subbu et al., 2013). Most of these techniques are built
upon physics centered mechanisms in angle of arrival,
time of flight (ToF), return TOF, or received strength of spe-
cific signals (Davidson & Piché, 2016; Zafari et al., 2019).
A common drawback of these systems is the necessity of
deploying dedicated infrastructure, making them costly or
disruptive to ongoing building operations. As an alterna-
tive, visual localization does not require any infrastructure
change and the only required sensors are cameras that are
ubiquitously equipped on nearly all smartphones or 3D
ranging sensors, which are increasingly available on many
mobile devices, such as the recent Apple devices.

Given images or videos taken by a camera, visual local-
ization can estimate 6 degree-of-freedom poses of the cam-
era, that is, its positions and orientations. Visual localiza-
tion can be categorized as image-based or structure-based
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methods (Sarlin et al., 2019). The key technique adopted
in the image-based localization method is image retrieval
(Arandjelovi¢ et al., 2016; Torii et al., 2015; Weyand et al.,
2016). Recent studies on this field have shown promis-
ing robustness and efficiency, but they can only estimate
approximate positions and orientations of a camera given
the fact that the images in the database are often discretely
distributed in space. The image retrieval-based methods
try to measure the similarity between images through
some similarity metrics (e.g., cosine similarity index (CSI),
L1 norm distances) based on features extracted by deep
neural networks (DNNs; Galvez-Lépez & Tardos, 2012; Lu
et al., 2017). The estimated pose accuracy can be improved
if the images in the database are sampled at denser space
points, but this would inevitably increase the data collec-
tion cost. Recently, the development of machine learning
techniques, especially DNN, provides improved solutions
for many classic tasks (i.e., object detection and tracking,
variables estimation) in various fields (Arabi et al., 2020;
Luo et al., 2020; Ni et al., 2020; Oh et al., 2017; Rafiei &
Adeli, 2016, 2018; Rodriguez Lera et al., 2019; Vera-Olmos
et al., 2019; Yang et al., 2019). Nowadays, high-quality syn-
thesized 2D images can be obtained from 3D point cloud
data (Dai et al., 2020; Pittaluga et al., 2019), and they
can be used to establish the image database for image-
retrieval based localization. Structure-based methods are
another widely accepted indoor localization solution. 3D
structure model, which usually is sparse 3D point cloud
reconstructed through structure from motion (SfM; Schon-
berger & Frahm, 2016; Snavely et al., 2008) or simulta-
neous localization and mapping (SLAM; Davison et al.,
2007), is an important component in these algorithms.
In most cases, this reconstructed point cloud is associ-
ated with feature attributions extracted from the images
that are used to construct 3D model through triangu-
lation. The features used in this process can be classi-
fied into two categories: handcrafted features and learned
features. Designing handcrafted features is an important
research field in the last decade, and the classical hand-
crafted features include scale-invariant feature transform
(SIFT; Lowe, 2004), speeded up robust features (SURF;
Bay et al., 2008), binary robust independent elementary
features (BRIEF; Calonder et al., 2010), oriented fast and
rotated BRIEF (ORB; Rublee et al., 2011), and so forth.
Recently, many studies have made significant progress
on learned features, especially these based on DNN, and
they have been successfully applied to image matching
and shown satisfying performance in terms of efficiency
and effectiveness, compared to handcrafted counterparts
(DeTone et al., 2018; Dusmanu et al., 2019; Sarlin et al.,
2019; Zhang et al., 2020). Finally, correspondences are built
among queries of 2D images and 3D point cloud based on
these extracted features, and the pose of each image can be
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estimated through solving the perspective-n-point (PnP)
problem (Fischler & Bolles, 1981; Haralick et al., 1994).

Terrestrial laser scanners can acquire 3D coordinates
through emitting laser pulses and recording their reflec-
tions from the surrounding environment to obtain dense
3D measurements. The modern user-friendly laser scan-
ners can collect dense and accurate 3D point cloud in a
short period and have been widely used in structures mon-
itor and displacement measurement (H. S. Park et al., 2007;
S. Park et al., 2015; Smith et al., 2011). Light detection
and ranging scanners have been used to generate 3D prior
maps, and previous studies have developed visual localiza-
tion methods based on comparison between queries and
synthetic images from point cloud (Stewart & Newman,
2012; Wolcott & Eustice, 2014). However, the lower qual-
ities of the synthetic images limit the accuracy of their
algorithms. Most current scanners have been designed to
simultaneously take photos of the surrounding environ-
ment while scanning. Combining the 2D images and 3D
point cloud, they can characterize the environment with
rich details. It is undeniable that the 3D model collected by
terrestrial laser scanners is superior to that constructed by
SfM or SLAM in terms of density and accuracy (Nouwakpo
et al., 2016; Wallace et al., 2016). Considering more and
more facility owners started using laser scanning technolo-
gies to create digital twins (i.e., as-built building informa-
tion models) of their facilities, our hypothesis is that the
facility scan data can be used to enable precise indoor local-
ization. Consequently, we propose a computational algo-
rithm for accurate indoor localization based on the data
collected with laser scanners. The algorithm mainly con-
sists of two hierarchical modules: coarse and fine localiza-
tions. A neural point cloud rendering model is trained to
generate images database for image-retrieval based local-
ization in the course module, and approximate poses of
the query images can be obtained at this stage. The use
of point cloud rendering model is to address the data gap
issues with terrestrial laser scanning. More specifically,
the point cloud data and panoramic images are only col-
lected at several scanning positions, and they inevitably
leave gaps in synthesized images to cover the whole study
area. In this regard, this study is the first to explore the use
of the deep learning-based rendering on terrestrial laser
scan data to generate synthetic images with known poses.
After the initial coarse localization, the improved local-
ization result can be estimated by solving the PnP prob-
lem based on the automatically extracted correspondences
between images and point cloud data. The performance of
the proposed method is compared with other state-of-the-
art visual localization methods to test our hypothesis.

By designing the above hierarchical structure, the
proposed algorithm can improve the localization accu-
racy and reduce failure rate. The sophisticated 2D-3D
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FIGURE 1

Framework of the proposed method. The method can be mainly divided into coarse and fine localizations. In the coarse

localization stage, training images with known reference poses are generated from panoramic images, and point cloud is voxelized and
aggregated based on the corresponding poses. Then, the neural point cloud rendering model is trained to build the image database, and
approximate poses are estimated through the image retrieval method. Given the approximate pose obtained in the coarse stage, point cloud is
projected into a 3D coordinate map, and synthesized images are generated from panoramic images. The new poses are estimated by solving

the PnP problem based on matched 2D-3D correspondences. Finally, the refined poses are verified by comparing the query images with views

synthesized from the rendering model

matching problem is cleverly transformed into 2D-2D
matching and can be solved more efficiently. In addition
to the computational novelties, this paper also makes the
following contributions: (1) it established a method to auto-
matically generate images with highly accurate poses from
laser scan data. The generated images can be used to train
indoor localization models; (2) it developed a facility scan
data based indoor localization method, which can achieve
state-of-the-art performances.

2 | METHOD

The overall workflow of the proposed method consists of
two hierarchical modules: coarse and fine localizations
(Figure 1). The point cloud data and panoramic images
of the study area are collected simultaneously by a FARO
Focus 3D scanner. In the coarse localization stage, approx-
imate poses are obtained through the image retrieval
method. The image database is established by a neural
point cloud rendering model that can imitate a camera
to synthesize image from arbitrary location and orienta-
tion. The model is trained based on the point cloud repre-
sentation and images generated from panoramic images.
The poses will be refined in the following module. With
an approximate position and orientation, a new view and
its 3D coordination map are generated from corresponding

panoramic image and point cloud, respectively. The query
image is matched with the synthesized image followed by
building 2D-3D correspondences between the query image
and the point cloud space. Refined poses are calculated by
solving the PnP problem with these corresponding points,
and they are verified through comparing the view synthe-
sized from the estimated pose with the query image.

2.1 | Coarse localization

211 | Point cloud rendering

Rendering techniques can be applied to many graphics
and vision-related fields. Image-based rendering has been
widely studied in previous research, but their generaliza-
tion is limited (Gortler et al., 1996; Levoy & Hanrahan,
1996). In this research, we use a rendering method based
on point cloud data (Dai et al., 2020) without the need to
construct the geometry of the environment.

Given an arbitrary viewpoint, the neural rendering
model can generate photo-realistic images from point
cloud data without data gaps. The training images with ref-
erence poses are synthesized from the panoramic images
produced by the FARO Focus 3D scanner. As illustrated
in Figure 2, the panoramic image is first converted into
a panoramic sphere. Then training samples are generated
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pre-defined poses. This figure presents how to generate images from

Coordinate systems in generating images from

a panoramic image based on given camera viewpoints. 0-XYZ is the
coordinate system of point cloud. S-XYZ is a panoramic sphere
coordinate system, and it is converted from 0-XYZ. r is the radius of
the panoramic sphere. (X; Y, Z) is the panoramic sphere coordinate.
o-uv is coordinate system of the panoramic image, and (u, v) is the
coordinate of the panoramic image pixel. H and W is the height and
width of the panoramic image. o’-u"v’ is the coordinate system of the
synthesized image. (1’, V") is the coordinate of the synthesized image
pixel. The axis So’ is perpendicular to the synthesized image plane

based on the pinhole camera model in3D sphere space. The
details are described as follows:

(1) The conversion from a panoramic image to the
panoramic sphere. The panoramic sphere is located at
the camera center of the FARO Focus scanner. The
coordinate of a panoramic image (u, v) can be first
expressed in the form of polar coordinates (6, ¢). As
Figure 2 shows, the [0, W] and [0, H] of the panoramic
image will be projected into the horizontal 360° and
vertical 180° view, respectively (Cui et al., 2017). Thus,
the relationship between (u, v) and (6, ¢) can be repre-
sented by Equation (1):
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The polar coordinates can be further transformed into
Cartesian coordinates. Assuming that r is the radius of the
panoramic sphere, the Cartesian coordinate can be calcu-
lated by Equation (2):

X = r-cosp-sinf
Y =r-cosgp-cosb 2
Z =vr-sing

where (X, Y, Z) is the Cartesian coordinate on the
panoramic sphere.

(2) The generation of images from given poses. The
parameters of a virtual camera are set as those
found in the back camera equipped on the IPhone
6s: focal length —4.5 mm and pixel size —1.22 um,
and the virtual camera is located at the center of
the panoramic spheres S. As illustrated in Figure 2,
the relationship between the sphere Cartesian coordi-
nate (X, Y, Z) and the synthesized image coordinate (u’,
v’) can be expressed by the pinhole camera model:

X

wl |fx 0 c v
s|v|=[0 fye|-[RT]- 7 )

1 0 01 1

where s is the scale factor. f, and f, are the focal length
along 1’ and v’ axis expressed in pixel units. (C,, C,) is the
coordinate of the principal point o’ related to the upper left
corner of the synthesized image. In our framework, [RT]
is the joint rotation-translation matrix (i.e., the matrix of
extrinsic parameters). R and T can be calculated from the
pre-defined viewpoint of the virtual camera. Due to the
alignment between the virtual camera and the panoramic
sphere, T is a zero vector. R can be calculated using
Equation (4), where R, R, R, are the rotation angle of the
coordinate system along X, Y, Z axis. Due to T = [000]7,
we can know the specific value of panoramic sphere radius
r has no effect on the final projection result based on
Equations (2) and (3):

r11 712 13 COSR, CoSR, cosR, sinRy, sinR, —sinR, sinR, cosR, sinR;, cos R, + sin R, sin R,
R =|ry ryp ry3| =|sinR;sinR, sinR,sinR, sin R, + cosR, sin R, sin R, sin Ry, cOSR, — cOs R, sin R, 4)
¥31 I3p I'33 —sinR,, CosRy sinR, COS Ry, cOS R,

6= Qu—-w)-
{ ey
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Same as what was used in Dai et al. (2020), a 32-layer
voxel schema is established in this study along the virtual
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camera frustum between the nearest and farthest points.
The features of every frustum voxel are aggregated from the
3D points that are projected on the voxel on the same layer.
The extracted features from the point cloud are served as
the input of the U-net-like 3D convolutional neural net-
work (CNN) network (Ronneberger et al., 2015), and the
model is trained by minimizing the differences between
synthesized images with reference poses and network out-
puts.

21.2 | Creating the image database

The accuracy of image retrieval-based coarse localization
is highly related to the size of the image database. In
general, a lack of a sufficient number of rendered images
in 3D space can result in bad image retrieval performance.
Therefore, the poses of the rendered images need to
be defined to capture the whole study area with dense
coverage. Accordingly, rendered images in this study are
generated within every 2-feet 3D block using the trained
neural point cloud rendering model. The virtual camera is
located at the center of each block, and 72 images are gen-
erated with a sampling stride of 5° in horizontal direction.
In summary, around 7000 and 16,000 synthesized images
are generated for lab and museum scenes.

213 | Image retrieval

The content-based image retrieval (CBIR) has been exten-
sively studied by researchers in various fields for decades,
and its performance depends critically on the feature
representations and metrics for similarity measurements
(Wan et al., 2014). In this research, we adopt a simple yet
effective CBIR method consisting of three phases: (1) Fea-
ture extractions of the images in the pre-built database:
Due to the development of DNN, many outstanding net-
works have emerged, and they can be used in different
computer vision tasks, such as image classification, object
detection, semantic segmentation, and place recognition.
In this research, we use the NetVLAD as the feature extrac-
tor. NetVLAD was proposed by Arandjelovi¢ et al. (2016)
and has been widely adopted as the backbone in many
visual localization tasks based on image retrieval. The
whole NetVLAD architecture consists of two steps: (1) a
multi-layers CNN is cropped at the last convolutional layer
and function as a dense descriptor extractor; (2) NetVLAD
layer with learnable parameters is used to pool previous
extracted dense descriptors into a fixed image represen-
tation. The NetVLAD layer is developed by mimicking
the vector of locally aggregated descriptors (VLAD) in a
CNN framework and making the VLAD pooling differ-

59 WILEY-—2*

entiable (Jégou et al., 2010). In our case, an image can
be described as a 1 X 4096 feature vector through the
NetVLAD (Cieslewski et al., 2018). Of particular note is
that this phase is an off-line stage, and the feature vec-
tors of these images are calculated before the localization
process; (2) feature extraction of the query image: The fea-
ture of the query image is calculated using the same pro-
cedure as phase (1), and it is an on-line stage where the
feature extraction is followed with image searching; (3)
image searching: We take advantage of the CSI to select the
image from the database, which is the most similar to the
query image, and the index is calculated as the following
Equation (5):

_ > AB;
A oo

where A and B are the feature vector, n is the length of the
feature vector, in this research, n is 4096. The larger CSI
indicates that the two images are more similar. The posi-
tion and orientation of the selected image are used to rep-
resent the approximate pose of the query image.

Dy
oo}

CSI = Q)

g

2.2 | Fine localization

2.21 | Data preparation

Based on the position estimated in the coarse localization
stage, the nearest panoramic image taken by the FARO
Focus scanner is selected to generate five images around
the approximate viewpoint using the method described in
the previous module. Meanwhile, the 3D coordinates of
the point cloud collected by the same scanning can also be
projected onto the synthesized image. As the FARO scan-
ner collects both point cloud and panoramic images, these
two types of data can provide supplementary information.
Point cloud data can provide accurate 3D information, and
optical images can capture high-resolution textures (Pu &
Vosselman, 2009). An important step to fuse these datasets
is to bring them under the same coordinate system. For
coordination transformation, the first step is to move the
origin of the point cloud coordinate system to where the
scanner stands and then project 3D points onto the unit
sphere using Equation (6):

X = X9 — Xg
\/(XO - XS)2+ (yo - YS)2+ (z0 - zs)2
Y0 — vy
Y = 2 2 2 (6)
\/(XO = Xs) + (YO —Yg) + (29 - Zs)
7 = 20 — Zg
\/(XO — Xs)'+ (Y0 = Yg) (20 — Z5)?
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where X?, Y, Z0 are the Cartesian coordinates of the point
cloud, X, Y,, Z, are the coordinates of the scanner under
the point cloud coordinate system, and X, Y, Z is the pro-
jected coordinates on the unit sphere. Then the point (X,
Y, Z) can be projected onto the panoramic image based
on the inverse transformation of Equations (1) and (2).
The panoramic image coordinates can be further projected
to the synthesized image coordinates. In this way, the 3D
point cloud can be connected with the 2D synthesized
image.

2.2.2 | Image matching

The 2D-3D correspondences matching between the query
image and the point cloud is achieved in an indirect way.
Given the fact that the pose of the synthesized image is
defined (i.e., the joint rotation-translation matrix can be
calculated), 3D point cloud can be projected onto the 2D
synthesized view based on the pinhole camera model (i.e.,
formula 3). The query image is then matched with the syn-
thesized image, and the 3D coordinate of the matched key
points can be estimated using the projection of the point
cloud. A reliable set of 2D-3Dcorrespondences plays a vital
role in recovering the position and orientation of the query
image. In this research, we have selected two types of fea-
tures for image matching: (1) traditional handcrafted fea-
tures and (2) learning-based features. The former includes
SIFT (Lowe, 2004), RootSIFT (Arandjelovi¢ & Zisserman,
2012), SURF (Bay et al., 2008), BRIEF (Calonder et al.,
2010), and ORB (Rublee et al., 2011). For the handcrafted
features, the ratio test proposed by Lowe (2004) is used
to obtain consistent matching results among extracted fea-
ture vectors. We select SuperPoint (DeTone et al., 2018) as
the learned feature and use SuperGlue network, which is
a neural network designed to find correspondences and
reject non-matchable points among two sets of features
through optimizing a transport problem with a graph neu-
ral network, to perform matching on the extracted learned
features of two images (Sarlin et al., 2020). This self-
supervised architecture is appealing in terms of efficiency,
and its time consumption is independent of the number of
detected key points. We also evaluate the influence of the
fusion of different features on the final localization results.

2.2.3 | Pose estimation

Assuming n pairs of 2D-3D correspondences are obtained
from the previous step, we can have the following terms
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from the formula (3):
X
W=t ()
(7
Y
v = fv (E)

where f, and f, are the function of the image pose, that is,
six position and orientation values y = [X, Yy, Zp, Ry, Ry,
R,]". The above equation can be linearized as Equation (8)
with the Taylor series:

upy 4 oty

r_
M=, + aXOAXO + aYOAYO + -+ aRZARZ
®
o = v +Leax, + Loayy 4o+ LoaR,
8X, aY, ORz

With sufficient 2D-3D correspondences, A = [AX,, AY,,
AZ, ARy AR, ARz]" can be estimated with the least-
squares regression. The pose parameters can be updated
through y = ¥y + A, and they will be calculated itera-
tively until the A value reaches the pre-defined thresh-
old. Considering that outliers might exist in the matched
2D-3D coordinates, random sample consensus (RANSAC)
is used in the process of estimating pose (Fischler &
Bolles, 1981). RANSAC is a widely used paradigm that can
interpret the data containing a large percentage of gross
erTorS.

2.3 | Pose verification

The estimated position and orientation in the fine local-
ization stage can deviate from the true pose in cases that
sufficient or accurate 2D-3D correspondences cannot be
found. Under this circumstance, the accuracy of the cal-
culated pose can fail to outperform the coarse pose. Pose
verification is used to integrate the localization result of
the coarse and fine stages. New virtual views are rendered
from the dense and accurate point clouds based on the
estimated poses in two stages. The synthesized images are
compared with the corresponding query images through
calculating local descriptors in a patch-wise manner, that
is, DenseSIFT (C. Liu et al., 2008). The final similarities
between the rendered views and the query images are com-
puted as the median of the descriptor distances across the
entire images. The final pose is selected from the coarse
or fine result whose rendered view is more similar to the
query image.
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2.4 | Pose evaluation measures

The accuracy is evaluated by comparing the differences
between the estimated and corresponding reference poses,
and two indicators, including position error and orienta-
tion error, are calculated in this paper. The position error
(Epos) is measured with Equation (9):

Epos = \/(X_Xref)2 + (Y_ Yref)2 + (Z_Zref)2 (9)

X, Y, Z are the estimated position coordinates, and Xrefs Yrefs
Z,r are the reference position coordinates. The orientation
error (E,,;) is measured as an angle in degrees, and it can be
calculated with estimated and reference camera rotation
matrix as illustrated in the work of Hartley et al. (2013) like
the following Equation (10):

2c0s (Eoyi ) = trace (R} -R) — 1 10)
R,,r and R are the reference camera rotation matrix and
estimated camera rotation matrix, respectively. Besides,
we follow the standard practice to calculate the percent of
query images within three pose accuracy intervals, and the
defined thresholds are similar with Sattler et al. (2018) and
Taira et al. (2018): high-precision (0.25 m, 2°), medium-
precision (0.50 m, 5°) and coarse-precision (1.00 m,
10°).

3 | EXPERIMENT MATERIALS

3.1 | Lab and Museum datasets

Two indoor datasets (as illustrated in Figure 3), that is,
Lab and Museum datasets—both were captured with a
FARO Focus scanner, are utilized in this research. The first
dataset covers an indoor laboratory environment with a
rough size of 40 m? area. The Lab dataset is built upon six
registered scans, and the final point cloud contains around
3.6 million points (1.28 GB). The lab scene mainly con-
sists of computers, office desks, chairs, and lab equipment.
The other dataset represents a more complicated scene
at the Rutgers University Geology Museum (RUGM). The
RUGM dataset covers two floors, where 11 and 17 scans
were captured and registered for each floor. The final reg-
istered point cloud has a size of 6.39 GB with around 14
million points. There are many display windows and fossil
specimens in the museum. Due to its larger area (around
300 m?) and clutterness, the localization problem is more
challenging in the museum case.
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3.2 | Images with ground truth poses
Obtaining images with accurate poses as the ground truth
is always challenging and often requires a lot of man-
ual effort. In many previous studies, SfM has been widely
applied to estimate reference poses. However, the accu-
racy of image poses estimated by SfM is limited because
the method depends on the local feature, and it is prone to
fail if large differences between images such as view angles
exist. Two kinds of ground truth images, that is, synthe-
sized images and real-taken photos, are used in this study
to evaluate the performance of the proposed algorithm. In
order to generate virtual images with known poses as the
ground truth dataset, another 10 and 12 scans are collected
in the laboratory and museum, and 100 and 120 reference
images are synthesized with a sampling stride of 36° along
the vertical axis. The other kind of reference images are
taken by an iPhone 6s, and the poses of these photos are
estimated through solving the PnP problem with manually
annotated 2D-3D correspondences. For every query photo,
we select six to 10 corresponding points between the image
and 3D point cloud to calculate pose as the reference. Then
the point cloud is projected into a 2D image based on
the estimated pose, and visual comparison between the
iPhone photos and the projected images ensures the cor-
rectness of the reference poses. We would reselect corre-
spondences and calculate the reference poses if inconsis-
tency exists among the photos and the projected images.
The process of manual annotation is labor-intensive and
time-consuming, so the method is difficult to be scaled
up. Twenty-one photos are taken randomly but evenly dis-
tributed at the laboratory room and the RUGM. Of particu-
lar note is that the ground truth images are generated from
scans collected from different time at the facility; therefore,
it serves the purpose to validate if the proposed method is
effective for different illumination conditions and chang-
ing environments.

4 | RESULTS AND DISCUSSIONS
4.1 | Qualitative evaluation of the point
cloud rendering results

According to Dai et al. (2020), the density of a point cloud
has a great influence on the final rendering result. But
the choice of point cloud resolution has to be balanced
with the training time as denser point cloud inevitably
requires significantly more processing time. In our case,
using one NVIDIA Quadro RTX 5000 Graphic Process-
ing Unit (GPU), it takes about 2 and 4 weeks to train
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FIGURE 3

Tllustration of the Lab and Museum datasets. Both the two datasets consist panoramic images and point cloud, which is

registered from different scans. The first row is the example of panoramic images, and the second row is the registered point cloud

(b)

FIGURE 4

Illustration of the synthesized images from point cloud based on the deep neural rendering model. The first row (a) is the

synthesized images, and the second row (b) is the corresponding projection of point cloud. Columns 1 and 2 are from Lab dataset, and

Columns 3 and 4 are from Museum dataset

the deep neural point cloud rendering model for the Lab
(432 training images) and Museum (2016 training images)
scene, respectively. Figure 4 shows the visual comparison
between the synthesized images and the corresponding
direct projection of the point cloud. Two main problems
exist in using direct projection of point cloud (Row b): (1)
gaps in scan data result in noisy and incomplete projected
images; (2) obscured point cloud would also be projected
onto the images, and this will make the projection looks
unrealistic. These drawbacks are unavoidable as the point
cloud is not continuously distributed in 3D space. When a
3D point cloud is projected onto 2D images, certain part of

the projection ray can go across the front points to reach
the invisible background or nothing, and many important
details are likely to be lost in the process. In contrast to the
direct projection of point cloud, the deep neural render-
ing model can fill the gaps (i.e., blank holes) and impor-
tant details can be recovered. The multi-plane design of the
model can reduce the depth noise of the point cloud and
prevent the occluded background point cloud from affect-
ing the synthesized images. Although some places of the
rendered images can be blurry (e.g., the poster in first row,
the floors), the photo-realistic views are sufficient for the
purpose of coarse localization.



XIA AND GONG

59 WILEY-—*

TABLE 1 Accuracy of the estimated pose in the coarse localization phase
Position Orientation High precision Medium precision Coarse precision
Dataset error (m) error (°) (0.25 m, 2°) (0.50 m, 5°) (1.00 m, 10°)
Lab 0.51 6.27 1.65% 25.62% 67.77%
Museum 0.83 5.03 0.00% 16.53% 48.76%

Note: Position and orientation errors are the median values. The three intervals for pose accuracy represent the percentage (%) of correctly estimated poses evaluated

on real photos and synthesized images.

4.2 | Evaluation of the coarse localization

results

As shown in Table 1, the performance of the coarse
localization based on image retrieval (the evaluation of
image retrieval using NetVLAD can be found in Appendix
B) is evaluated on the synthesized query images and real
iPhone photos. For the Lab dataset, the median position
and orientation error are 0.51 m and 6.27° on the used
query images. A relatively large position error, 0.83 m,
occurred on the Museum dataset in comparison with what
was achieved in the Lab dataset, partially due to the large
spatial coverage of the Museum data. But its orientation
error is smaller, compared to that of the Lab dataset. In
both cases, the image retrieval method alone can hardly
position a camera with high precision. The percentage of
position and orientation errors within 0.25 m and 2° is
nearly zero for both the Lab and Museum cases. Statisti-
cally, the position and orientation based on the retrieved
images have the following characteristics: The probability
of position error being smaller than 1.00 m and orientation
error being smaller than 10° is 67.77% and 48.76% on
Lab and Museum datasets, respectively. We attribute
these accuracy differences to two possible reasons: (1) the
spatial size of the studied area and (2) the different spatial
distribution of the query images on the two datasets.
Similar photos can result from more different perspectives
in a larger environment, and it poses a huge challenge for
the image retrieval-based localization (L. Liu et al., 2017;
Sarlin et al., 2019). The synthesized query images of the
Museum are mainly distributed along the corridor close
to the wall. Some images along this path face the wall and
have very little semantic information that can adversely
affect the CBIR (Arandjelovi¢ et al., 2016). The overall
performance of the coarse localization depends mainly on
the quality of the pre-built image database and the image
retrieval algorithms. In this research, the database consist-
ing of images with known poses is generated with the deep
neural point cloud rendering network. The quality of the
rendered images can affect the following image retrieval
process. In general, we conduct a visual evaluation to
confirm the quality of these generated images. A larger
database can improve the accuracy of the retrieved poses
but at the cost of processing time. In our case, it takes

nearly 2 weeks to generate around 23k rendered images.
The image retrieval algorithm used in this study also plays
a critical role in the coarse localization stage. Figure 5
gives a few examples of the three most similar retrieved
images through calculating the CSI based on the feature
vectors extracted by the pre-trained NetVLAD. The simple
yet effective image retrieval approach can search for
similar images from the pre-built database even if the
query images are taken under different viewpoints and
illumination. In the coarse localization stage, the pose of
the most similar image was used to represent the position
and orientation of the query image. Although the accuracy
of the coarse localization is not very high, it can provide
good initial poses for the followed fine localization. In
this way, it can reduce the overall localization time, and
in some cases serve as the backstop if the fine localization
fails.

4.3 | Evaluation of the fine localization

results

The final localization accuracy achieved by coarse localiza-
tion followed by fine localization is evaluated in Table 2.
The performance of the selected hand-crafted and learned
features show significant differences. For the Lab dataset,
the learned feature (i.e., SuperPoint and SuperGlue)
achieves the highest accuracy, and its position and ori-
entation error is 7 cm and 1.21°, respectively. The perfor-
mance of BRIEF and ORB is disappointing, and they do
not greatly improve the localization accuracy, compared to
the coarse localization. SIFT, RootSIFT, and SURF achieve
similar accuracy, that is, around 0.1 m position error and 2°
orientation error. The percent of correctly estimated poses
with high precision has been significantly increased for all
the features. The learned feature improves the rate from
1.65% in the coarse localization stage to 67.77%, and BRIEF
and ORB also increase the rate by more than 20%. The per-
centage of query images with coarse localization precision
is also increased by these features, especially with the com-
bination of SuperPoint and SuperGlue, and it increases the
percentage by 23.97%.

For the Museum dataset, the learned feature also per-
forms well. It gets the suboptimal localization accuracy,
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Query Image 1st Retrieval 2nd Retrieval 3rd Retrieval

\ B

FIGURE 5 Example image retrieval results: The query images in Rows 1 and 3 are taken by an iPhone; the query images in Rows 2 and 4
are synthesized images

TABLE 2 Accuracy evaluation of the estimated poses after both coarse and fine localizations

Position Orientation High precision Medium precision Coarse precision

Dataset Feature error (m) error (°) (0.25 m, 2°) (0.50 m, 5°) (1.00 m, 10°)
Lab SIFT 0.09 1.72 50.41% 66.94% 78.51%

RoOOtSIFT 0.09 1.55 52.07% 67.77% 80.17%

BRIEF 0.45 5.48 26.47% 40.50% 62.81%

ORB 0.38 4.51 28.10% 47.93% 74.38%

SURF 0.12 2.07 48.76% 61.16% 74.38%

SP+SG 0.07 1.21 67.77% 85.12% 90.08%
Museum SIFT 0.07 1.18 66.11% 76.86% 87.60%

RootSIFT 0.05 1.16 69.42% 80.17% 87.60%

BRIEF 0.09 1.31 58.68% 68.60% 75.21%

ORB 0.55 3.12 35.54% 46.28% 57.85%

SURF 0.06 1.12 68.60% 76.03% 82.64%

SP+SG 0.07 1.22 72.73% 83.47% 91.74%

Note: Position and orientation errors represent the median value. The three pose accuracy intervals indicate the percentage (%) of correctly estimated poses. The
poses are evaluated on the real photos and synthesized images.

Abbreviations: BRIEF, binary robust independent elementary feature; ORB, oriented fast and rotated BRIEF; SIFT, scale-invariant feature transform; SP+SG, the
SuperPoint and SuperGlue feature matching; SURF, speeded up robust features.
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Qualitative comparison of different features on extracting correspondences between images. Examples 1 and 2 are from Lab

and Museum scenes, respectively. For every selected example, query image, synthesized image from the panoramic image, direct projection of

point cloud, and localization error (NA represents cannot estimate pose because of lack of sufficient correspondences.) are shown from left to

right

and its localization result is robust considering that the
percentage of correctly estimated poses within the three
intervals are all higher than that of the handcrafted
features. SIFT, Root-SIFT, and SURF achieved similar
localization accuracy and fractions of correctly localized
queries with high, medium, and coarse accuracy. As
opposed to the Lab dataset, BRIEF achieves higher local-
ization accuracy on the Museum dataset. In general, most
features perform better on the Museum dataset, compared
to the Lab dataset. This is likely due to the geometric
complexity of the study area (Karami et al., 2017; Ma et al.,
2020). The laboratory has a simple layout with a homo-
geneous spatial configuration of floor, wall, and ceiling,
and does not contain rich texture information. Therefore,
it is challenging for these features to extract reliable
keypoints. Taking the simple query from the laboratory
as an example (Figure 6), it is difficult for the utilized
features to extract sufficient and reliable correspondences,
and many features (except RootSIFT and learned feature)
fail to estimate the pose correctly under this circumstance.
Regarding the scene containing rich texture information,
more correspondences can be extracted by these features

and more accurate poses can be estimated based on these
matched key points. Overall, the coarse localization stage
can obtain approximate position and orientation for the
query images, and the fine localization stage can improve
the pose accuracy. However, the unreliable matched
correspondences resulting from the different viewpoints
and illumination conditions can lead to incorrect pose
estimations (Figure 6). The accuracy evaluation of the
directly estimated poses is recorded in Table Bl. Due to
the failures that exist in the poses estimated from solving
PnP problems based on 2D-3D correspondences, the
localization accuracy or the percentage of the correctly
estimated poses is limited, especially the performance
of the BRIEF and ORB on Lab dataset. For the sake
of improving the directly estimated poses, we compare
them with the coarse poses through pose verification
and replace the incorrect estimated poses with the coarse
localization result. Fusing coarse and fine localization
results can avoid the localization failure of our pro-
posed algorithm when lacking enough reliable extracted
correspondences. Both the localization accuracy and
percentage of correctly estimated poses have been
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TABLE B1 Accuracy evaluation of the poses directly estimated from solving PnP problems based on 2D-3D correspondences
Position Orientation High precision Medium precision Coarse precision
Dataset Feature error (m) error (°) (0.25m, 2°) (0.50 m, 5°) (1.00 m, 10°)
Lab SIFT 0.09 1.95 50.41% 60.33% 63.64%
RoOOtSIFT 0.10 1.80 51.24% 60.33% 61.98%
BRIEF 3.12 108.80 25.62% 30.58% 31.40%
ORB 4.23 153.74 27.27% 32.23% 34.71%
SURF 0.12 2.07 49.59% 57.02% 57.85%
SP+SG 0.07 1.21 67.77% 83.47% 84.30%
Museum SIFT 0.07 1.18 66.12% 76.03% 80.17%
RoOtSIFT 0.05 1.19 69.42% 77.69% 80.99%
BRIEF 0.09 1.31 58.68% 66.94% 69.42%
ORB 3.83 21.86 35.54% 40.50% 42.15%
SURF 0.06 1.17 68.60% 74.38% 76.03%
SP+SG 0.07 1.26 72.73% 81.82% 86.78%

Note: Position and orientation errors represent the median value. The three pose accuracy intervals indicate the percentage (%) of correctly estimated poses. The

poses are evaluated on the real photos and synthesized images. SP+SG represents the SuperPoint and SuperGlue feature matching.
Abbreviations: BRIEF, binary robust independent elementary feature; ORB, oriented fast and rotated BRIEF; SIFT, scale-invariant feature transform; SP+SG, the

SuperPoint and SuperGlue feature matching; SURF, speeded up robust features.

improved through the fusion, for example, the rate of
estimated poses with coarse precision of learned feature is
increased from 86.78% to 91.74% on the Museum dataset.

As illustrated in Figure 6, the performance of the
selected features varies on the same query image. We
explore if the feature fusion can reduce the probability
of localization failure. Considering the bad performance
of BRIEF and ORB on the Lab dataset, only SIFT, Root-
SIFT, SURF, and the learned feature are selected for the
fusion study. The results indicate that fusion of appropriate
features can improve the localization accuracy (Figure 7).
The combination of SURF and the learned feature makes
the most progress on the Lab dataset, and its position and
orientation errors are reduced to 4 cm and 0.96°. Most of
the feature combinations improve the localization perfor-
mance to a certain degree, and it has resulted from more
reliable extracted correspondences. Nevertheless, we also
find that the percentage of query images that cannot be cor-
rectly localized cannot be significantly reduced with fea-
ture fusion. The curve peak value of the feature combina-
tion is similar to that of a separate feature, and the rate
of correctly estimated poses is reduced in some cases, for
example, the combination of SIFT and RootSIFT reduces
the number by around 8% on the Museum dataset. The
performance of feature fusion can be attributed to the cor-
rectly extracted correspondences can enhance the localiza-
tion result, while the outliers can cause wrong pose esti-
mates.

To our best knowledge, this study is the first effort on
building image-based indoor localization solutions based
on terrestrial laser scanner data. In the following, we
can compare our method with previous work. Taira et al.

(2018) proposed their indoor localization method based on
Red, Green, Blue, and Depth (RGBD) images (i.e., InLoc
dataset), but their rate of correctly localized queries within
1m and 10° only reaches about 70%, which is far lower than
our result. Sarlin et al. (2020) improved the percentage on
the same InLoc dataset to 82.4% and won the indoor local-
ization challenge at CVPR 2020. Although the structure-
based method (i.e., activate search) achieve more accurate
localization result on the 7-scenes dataset, for example, the
position error reaches 2 cm on the heads scene, it is highly
related to that the seven scenes have small spatial cover-
age and simple geometric features (Sattler et al., 2016). To
summarize, the proposed method can estimate the pose of
query images with comparable, if not better, accuracy.

4.4 | Application of synthesized images
with reference poses

Images with high-quality reference poses are fundamental
for evaluating and improving existing visual localization
approaches (Zhang et al., 2020). How to obtain sufficient
images with accurate poses is always a challenging task
considering it is nearly impossible for humans to directly
acquire poses from images. Reference pose of images in
visual localization usually depends on other algorithms,
for example, SfM (Schonberger & Frahm, 2016; Snavely
et al., 2008) and PnP (Fischler & Bolles, 1981; Haralick
et al., 1994), which may produce inaccurate pose results or
require labor-intensive annotation. These drawbacks limit
the availability of large and reliable benchmark datasets for
visual localization.
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FIGURE 7 Comparison between different feature combinations. The graphs show the impacts of different feature fusion combinations

on the final localization result, and plots indicated the percentage of correctly localized query images within a distance threshold whose

orientation error is at most 10°. The number above the figure is the median position error and orientation error of the corresponding feature

fusion

TABLE 3 Comparison of PoseNet localization accuracy on
different datasets

Position
Spatial error Orientation
Scene Extent (m) (m) error (°)
Chess 3x2x1 0.32 4.06
Fire 25x1x1 0.47 7.33
Heads 2X05%1 0.29 6.00
Office 25X2X%15 0.48 3.84
Pumpkin 25%x2x%1 0.47 4.21
Red kitchen 4%x3x%x15 0.59 4.32
Stairs 25%X2X15 0.47 6.93
Lab 6XxX6Xx2.7 1.18 3.99

Note: Numbers indicate the median position and orientation errors.

As described in Section 2, we propose to generate images
with accurate poses from terrestrial laser scan data. In
order to prove the synthesized images can be applied to
complicated visual localization tasks, an end-to-end deep
pose regression model, that is, PoseNet (Kendall et al.,
2015), is built for the scene of the laboratory room. As
a pioneer in pose regression based on DNN, PoseNet
inspired many other learning-based pose estimation meth-
ods (Shavit & Ferens, 2019). Adequate images with accu-
rate poses are the foundation of training PoseNet. There-
fore, approximately 30k images are synthesized from 67
scans, and 10% of the images are randomly chosen as the
test set. Asillustrated in Table 3, the PoseNet on the labora-

tory room achieves a position error of 1.18 m and an orien-
tation error of 3.99°. Although the position error is larger
than the result of the original PoseNet paper (Kendall et al.,
2015), it is related to the spatial extent of the study area.
The position errors of the PoseNet trained by Kendall et al.
(2015) on larger outdoor scenes also increase, and the lab-
oratory room is significantly larger than the seven indoor
scenes. In general, the PoseNet trained on the synthesized
images obtains similar accuracy as the original PoseNet.

5 | CONCLUSION

This study proposes a hierarchical computational algo-
rithm that is capable of estimating the pose of an image
with high accuracy, and it is built on the foundation of
laser scan data, which are commonly collected for facil-
ity modeling purposes. The algorithm consists of two
stages: coarse localization and fine localization. In the
first stage, the approximate pose of an image is obtained
through searching from a pre-built database in which
the photo-realistic images with known poses are rendered
from facility scan data through a deep neural point cloud
rendering model. Our results indicate the image retrieval-
based coarse localization can achieve sub-meter accu-
racy as shown on the Lab and Museum scenarios (the
position error is 0.51 and 0.83 m respectively). The coarse
poses can be further improved to the centimeter accu-
racy in the followed fine localization stage. Our studied
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features including SIFT, RootSIFT, SURF, and learned fea-
tures (SuperPoint and Super-Glue) in the fine localiza-
tion stage achieved good performance on the two datasets.
Especially for the learned feature, its performance is robust
(around 7-cm position error and 1° orientation error), and
the percentage of estimated queries with coarse accuracy
(i.e., 1.00 m and 10°) reaches nearly 90%. The effect of fea-
ture fusion on the final localization result indicates that
localization error can be reduced by integrating appro-
priate features, but the percentage of correctly localized
images can be hardly increased. In addition to the contri-
bution of developing the localization method, this study
has found a new way of generating training samples with
high-quality pose information. High-quality images with
accurate poses are the foundation of many visual local-
ization studies. It is time-consuming and labor-intensive
to calculate the poses of images from manual annotation.
In the proposed method, we directly generate images with
accurate reference poses from the panoramic images taken
by commercial static laser scanners. The synthesized ref-
erence images have been successfully used to train the
PoseNet, and its accuracy, which is similar to the result of
the original paper, proves that the generated images can
be further used to benchmark and improve image-based
localization methods. Some of the future research activities
planned for this study include: (1) optimizing the image
search in terms of speed by using GPUs; (2) using multi-
ple GPUs to accelerate the neural point cloud rendering
process; (3) looking into more powerful machine learning
algorithms for fast learning.
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APPENDIX
A. EVALUATION OF IMAGE RETRIEVAL USING
NetVLAD

To evaluate how well the NetVLAD extracts image fea-
tures, a test dataset with 42 image pairs was generated
through manual labeling from Museum and Lab scenes.
Features extracted by the pre-trained VGG-16, which is
also the backbone network used in the NetVLAD method,
were applied to the image retrieval. The evaluation of
the image retrieval result based on features extracted by
NetVLAD and VGG-16 is illustrated in Figure Al. Gener-
ally, feature representations extracted by NetVLAD outper-
form VGG-16 by a large margin on the test dataset. For
example, features extracted by NetVLAD achieve 54.6% for
recall@1 in comparison to 42.9% obtained by VGG-16 fea-
tures. When considering recall@5, NetVLAD features can
nearly retrieve all the correct images (97.6%). However, it
is undeniable that improper NetVLAD features can also
result in inaccurate image retrieval results (Figure A2),

100
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90{ == VGG-16
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70
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FIGURE A1l Evaluation of image retrieval based on features
extracted by NetVLAD
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Query Candidate

FIGURE A2 Examples of inaccurate image retrieval resulted
from improperly extracted NetVLAD features. The candidate
column is the manually selected most similar image from the
database

and this will further affect the following correspondences
matching process.

B. EVALUATION OF DIRECTLY ESTIMATED POSES
The accuracy evaluation of the directly estimated poses in
the fine localization stage is recorded in Table B1. For Lab
dataset, without fusion with the coarse poses, the position
and orientation error of BRIEF and ORB cannot even meet
the requirement of coarse precision localization (1.00 m,
10°). This indicates these two features cannot retrieve suf-
ficient reliable correspondences on Lab dataset for most
query images and result in wrong estimated poses. The
performance of ORB is also disappointing on the Museum
dataset, and its position and orientation error reach 3.83 m
and 21.86°. However, the poses accuracy of the BRIEF
has been improved a lot, and the position and orienta-
tion errors are decreased to 0.09 m and 1.31°. The per-
formance of the other four features is robust, and they
obtain approximately the same localization accuracy on
the Lab and Museum dataset. The learned feature (i.e., the
combination of SuperPoint and SuperGlue) achieved the

2.18m 3.53m 1.09m 1.61m
8.75° 0.73° 25.74° 18.69°
FIGURE C3 Examples of localization error based on

SuperPoint feature and SuperGlue feature matching. The first row is
query images, and the images of the second row is projected from
point cloud using the estimated pose. The numbers represent the
position and orientation error

best performance in terms of correctly estimated poses
within the three defined intervals. For example, the per-
centage of the correctly estimated pose with high precision
(i.e., 0.25m, 2°) of learned feature is 67.77%, which is much
higher than the other feature on the Lab dataset. The local-
ization accuracy of the learned feature is also very high,
and the position and orientation errors are 0.07 m and 1.21°
on the Lab dataset and 0.07 m and 1.26° on the Museum
dataset.

C. EXAMPLES OF LOCALIZATION ERROR
Examples of localization error based on SuperPoint and
SuperGlue feature matching are illustrated in Figure C3.
The errors mainly arise from the incorrect or insufficient
2D-3D correspondences. To be more specific, abnormal
illumination conditions, as example 1 shows, can result
in inaccurate correspondences matching. If the field of
view of the query image (shown in Example 2) is limited
to a small environment, it is also not easy to match cor-
responding points. The change of environment (the yel-
low box on the desk in Example 3) could generate inaccu-
rate image retrieval results, and further leads to imprecise
2D-3D correspondences. In another condition, the esti-
mated sufficient correspondences mainly located on the
same plane, the pose calculated through solving the PnP
problem based on the 2D-3D points could not reach high
accuracy.
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