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Abstract. Using offline training schemes, researchers have tackled the event
segmentation problem by providing full or weak-supervision through manually
annotated labels or self-supervised epoch-based training. Most works consider
videos that are at most 10’s of minutes long. We present a self-supervised percep-
tual prediction framework capable of temporal event segmentation by building
stable representations of objects over time and demonstrate it on long videos,
spanning several days at 25 FPS. The approach is deceptively simple but quite
effective. We rely on predictions of high-level features computed by a standard
deep learning backbone. For prediction, we use an LSTM, augmented with an
attention mechanism, trained in a self-supervised manner using the prediction
error. The self-learned attention maps effectively localize and track the event-
related objects in each frame. The proposed approach does not require labels.
It requires only a single pass through the video, with no separate training set.
Given the lack of datasets of very long videos, we demonstrate our method on
video from 10 d (254 h) of continuous wildlife monitoring data that we had col-
lected with required permissions. We find that the approach is robust to various
environmental conditions such as day/night conditions, rain, sharp shadows, and
windy conditions. For the task of temporally locating events at the activity level,
we had an 80% activity recall rate for one false activity detection every 50min.
We will make the dataset, which is the first of its kind, and the code available
to the research community. Project page is available at https://ramymounir.com/
publications/EventSegmentation/.

Keywords: Self-supervised event segmentation · Spatial object localization ·
Streaming input

1 Introduction

One of the tasks involved in wild-life monitoring, or even in the video monitoring of
other contexts, is detecting significant events in long videos, spanning several days. The
goal is to flag temporal segments and highlight possible events in the video snippets
flagged, i.e., spatial and temporal localization of possible events, such as bird {leaving,
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 Prediction Loss over Time

Motion Weighted Loss over Time

No Activity

Correct Detections

Fig. 1. Plots of the two kinds of errors before, during, and after an activity: (top) feature prediction
loss over the frames (bottom) motion weighted feature prediction loss over the frames. Errors for
some selected frames are shown for both plots, overlaid with the corresponding attention map.

entering, building} a nest. One cannot rely on low-level features for this task as they
may change due to environmental conditions. We need high-level features that are suf-
ficient to capture object-level representations and a model to capture these features’
temporal evolution over time. There are very few works in the literature that show per-
formance on video spanning several days.

Event segmentation research has largely focused on offline epoch-based training
methods which requires training the model on the entire training dataset prior to testing
its performance. This poses a challenge for many real world applications, where the
entire dataset is simply non-existent and has to be collected sequentially in a stream over
time [24]. Our training scheme completely disregards datapoints after being processed
by the network. Training and inference are done simultaneously, alleviating the need
for epoch-based training in order to appeal to more practical applications and reduce
training time.

Our framework follows key ideas from the perceptual prediction line of work in
cognitive psychology [15,34–36]. Research has shown that “event segmentation is an
ongoing process in human perception, which helps form the basis of memory and learn-
ing”. Humans can identify event boundaries, in a purely bottom up fashion, using a
biological perceptual predictive model which predicts future perceptual states based
on the current perceived sensory information. Experiments have shown that human
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perceptual system identifies event boundaries based on the appearance and motion cues
in the video [22,26,33]. Our model implements this perceptual predictive framework
and introduces a motion weighted loss function to allow for the localization and pro-
cessing of motion cues.

Our approach uses a feature encoding network to transform low-level perceptual
information to higher level feature representation. The model is trained to predict the
future perceptual encoded input and signal an event if the prediction is significantly
different from the future perceived features. The prediction signal also incorporates a
higher level representation of the movement cues within frames. The intuition of our
approach is presented in Fig. 1 for a “walk in and out” event. The error signal is used
for temporal event segmentation, while an attention map segments a frame spatially.

Novel contributions: To the best of our knowledge, we are among the first to (1) intro-
duce the attention-based mechanism to temporal event segmentation models, allowing
the model to localize the event in each processed frame, in a purely self-supervised
manner, without the need for labels or training data; (2) introduce the idea of motion
weighted loss function to stabilize the attention maps that works even when the object
of interest does not move; and (3) evaluate and report the performance of temporal
segmentation on a remarkably long dataset (over ten days of continuous wildlife moni-
toring).

2 Relevant Work

Supervised Temporal Event Segmentation uses direct labelling (of frames) to seg-
ment videos into smaller constituent events. Fully supervised models are heavily depen-
dent on vast amount of training data to achieve good segmentation results. Different
model variations and approaches have been tested, such as using an encoder-decoder
temporal convolutional network (ED-TCN) [13], or a spatiotemporal CNN model [14].
To alleviate the need for expensive direct labelling, weakly supervised approaches
[7,9,12,23] have emerged with an attempt to use metadata (such as captions or narra-
tions) to guide the training process without the need for explicit training labels [4,18].
However, such metadata are not always available as part of the dataset, which makes
weakly supervised approaches inapplicable to most practical applications.

Self-supervised Temporal Event Segmentation attempts to completely eliminate the
need for annotations [20,25]. Many approaches rely heavily on higher level features
clustering of frames to sub-activities [6,28]. The performance of the clustering algo-
rithms in unsupervised event segmentation is proportional to the performance of the
embedding/encoding model that transforms frames to higher level feature representa-
tions. Clustering algorithms can be highly computationally expensive depending on the
number of frames to be clustered. Recent work [2] uses a self-supervised perceptual pre-
dictive model to detect event boundaries; we improve upon this model to include atten-
tion unit, which helps the model focus on event-causing objects. Other work [19] uses
a self-supervised perceptual prediction model that is refined over significant amount of
reinforcement learning iterations.
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Frame Predictive Models have attempted to provide accurate predictions of the next
frame in a sequence [10,16,21,29,30]; however, these models are focusing on predict-
ing future frames in raw pixel format. Such models may generate a prediction loss that
only captures frame motion difference with limited understanding of higher level fea-
tures that constitutes event boundaries.

Attention Units have been applied to image captioning [31], and natural language pro-
cessing [5,8,17,27,32] fully supervised applications. Attention is used to expose dif-
ferent temporal - or spatial - segments of the input to the decoding LSTM at every time
step using fully supervised model architectures. We use attention in a slightly different
form, where the LSTM is decoded only once (per input frame) to predict future features
and uses attention weighted input to do so. Unlike [5,8,17,27,31,32], our attention
weights and biases are trained using an unsupervised loss functions.

Recent work [3] has used the prediction loss, with the assistance of region pro-
posal networks (RPNs) and multi-layer LSTM units, to localize actions. We eliminate
the need for RPNs and multi-layer LSTM units by extracting Bahdanau [5] attention
weights prior to the LSTM prediction layer, which allows our model to localize objects
of interest, even when stationary. From our experiments, we found out that prediction
loss attention tends to fade away as moving objects become stationary, which makes its
attention map more similar to results extracted from background subtraction or optical
flow. In contrast, our model proves to be successful in attending to moving and station-
ary objects despite variations in environmental conditions, such as moving shadows and
lighting changes, as presented in the supplementary videos.

3 Methodology

The proposed framework is inspired by the works of Zacks et al. on perceptual predic-
tion for events segmentation [34]. The proposed architecture, summarised in Fig. 2, can
be divided into several individual components. In this section, we explain the role of
each component starting by the encoder network and attention unit in Sect. 3.1 and 3.2,
followed by a discussion on the recurrent predictive layer in Sect. 3.3. We conclude by
introducing the loss functions (Sect. 3.4) used for self-supervised learning as well as the
adaptive thresholding function (Sect. 3.5). Full pseudocode is provided in the appendix.

3.1 Input Encoding

The raw input images are transformed from pixel space into a higher level feature space
by utilizing an encoder (CNN) model. This encoded feature representation allows the
network to extract features of higher importance to the task being learned. We denote
the output of the CNN layers by I ′

t = f(It, θe) where θe is the learnable weights and
biases parameters and It is the input image.

3.2 Attention Unit

In this framework, we utilize Bahdanau attention [5] to spatially localize the event in
each processed frame. The attention unit receives as an input the encoded features and
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Fig. 2. The architecture of the self-learning, perceptual prediction algorithm. Input frames from
each time instant are encoded into high-level features using a deep-learning stack, followed by an
attention overlay that is based on inputs from previous time instant, which is input to an LSTM.
The training loss is composed based on the predicted and computed features from current and
next frames.

outputs a set of attention weights (At) with dimensions N ×N × 1. The hidden feature
vectors (ht−1) from the prediction layer of the previous time step is used to calculate
the output set of weights using Eq. 1, expressed visually in Fig. 2.

At = γ(FC(ϕ(FC(ht−1) + FC(I ′
t)) ) ) (1)

where ϕ represents hyperbolic tangent (tanh) function, and γ represents a softmax
function. The weights (At) are then multiplied by the encoded input feature vectors (I ′

t)
to generate the masked feature vectors (I ′′

t ).

3.3 Future Prediction Layer

The process of future prediction requires a layer capable of storing a flexible inter-
nal state (event model) of the previous frames. For this purpose, we use a recurrent
layer, specifically long-short term memory cell (LSTM) [11], which is designed to
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Fig. 3. Qualitative Results. (Top): Samples of images from the Kagu bird wildlife monitoring
dataset. (Bottom): Corresponding attention maps overlayed on the input image

output a future prediction based on the current input and a feature representation of
the internal state. More formally, the LSTM cell can be described using the function
ht = g(I ′′

t ,Wlstm, ht−1), where ht and ht−1 are the output hidden state and previ-
ous hidden state respectively, I ′′

t the attention-masked input features at time step t and
Wlstm is a set of weights and biases vectors controlling the internal state of the LSTM.
The input to the LSTM can be formulated as:

FC(yt−1 ⊕ I ′′
t ) (2)

where I ′′
t is the masked encoded input feature vector and ht−1 is the hidden state from

the previous time step. The symbol ⊕ represents vectors concatenation.

3.4 Loss Function

The perceptual prediction model aims to train a model capable of predicting the feature
vectors of the next time step. We define two different loss functions, prediction loss and
motion weighted loss.

Prediction Loss. This function is defined as the L2 Euclidean distance loss between the
output prediction yt and the next frame encoded feature vectors I ′

t+1.

et = ||(I ′
t+1 − yt)||2 (3)

Motion Weighted Loss. This function aims to extract the motion related feature vectors
from two consecutive frames to generate a motion dependent mask, which is applied
to the prediction loss. The motion weighted loss function allows the network to benefit
from motion information in higher level feature space rather than pixel space. This
function is formally defined as:
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et = ||(I ′
t+1 − yt)�2 � (I ′

t+1 − I ′
t)

�2||2 (4)

where � denotes Hadamard (element-wise) operation.

3.5 Error Gate

The error gating function receives, as an input, the error signal defined in Sect. 3.4, and
applies a thresholding function to classify each frame. In this framework, we define
two types of error gating functions. A simple threshold function f(et, ψ) and an adap-
tive threshold function f({et−m . . . et}, ψ). Equation 5 formally defines the smoothing
function for the adaptive error gating implementation. Both error gating functions use
Eq. 6 to threshold the error signal. Equations 5 and 6 apply the smoothing function to
the full loss signal for analyses purposes; however, the convolution operation can be
reduced to element-wise multiplication to calculate a single smoothed value at time
step t.

e = {et−m . . . et} ∈ R
m

es = e − [e � [{ 1
n . . . 1

n} ∈ R
n] ]

}
n < m (5)

f(es(t)) =

{
1, if es(t) ≥ ψ

0, otherwise
(6)

where � represents a 1D convolution operation.

4 Experimental Evaluation

In this section, we present the results of our experiments for our approach defined in
Sect. 3. We begin by defining the wildlife extended video dataset used for testing, fol-
lowed by explaining the evaluation metrics used to quantify performance. We discuss
the model variations evaluated and conclude by presenting quantitative and qualitative
results in Sects. 4.4 and 4.5.

4.1 Dataset

We analyze the performance of our model on a wildlife monitoring dataset. The dataset
consists of 10 d (254 h) continuous monitoring of a nest of the Kagu, a flightless bird of
New Caledonia. The labels include four unique bird activities, {feeding the chick, incu-
bation/brooding, nest building while sitting on the nest, nest building around the nest}.
Start and end times for each instance of these activities are provided with the annota-
tions. We modified the annotations to include walk in and walk out events representing
the transitioning events from an empty nest to incubation and vice versa. Our approach
can flag the nest building (on and around the nest), feeding the chick, walk in and out
events. Other events based on climate, time of day, lighting conditions are ignored by
our segmentation network. Figure 3 (Top) shows a sample of images from the dataset.
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Fig. 4. Frame-level event segmentation ROCs when activities are detected based on simple thresh-
olding of the prediction and motion weighted loss signals. Plots are shown for different ablation
studies.

Fig. 5. Activity-level event segmentation ROCs when activities are detected based on simple
thresholding of the prediction and motion weighted loss signals. Plots are shown for different
ablation studies.

4.2 Evaluation Metrics

We provide quantitative ROC results for both frame level (Fig. 4) and activity level
(Figs. 5 and 6) event segmentation. Frame window size (ψ) is defined as the maximum
joining window size between events; a high ψ value can causes separate detected events
to merge, which decreases the overall performance.

Frame Level. The recall value in frame level ROC is calculated as the ratio of true pos-
itive frames (event present) to the number of positive frames in the annotations dataset,
while the false positive rate is expressed as ratio of the false positive frames to the
total number of negative frames (event not present) in the annotation dataset. Threshold
value (φ) is varied to obtain a single ROC line, while varying the frame window size
(ψ) results in a different ROC line.

Activity Level. The Hungarian matching (Munkres assignment) algorithm is utilized to
achieve one to one mapping between the ground truth labeled events and the detected
events. Recall is defined as ratio of the number of correctly detected events (overlapping
frames) to the total number of groundtruth events. For the activity level ROC chart, the
recall values are plotted against the false positive rate per minute, defined as the ratio of
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Fig. 6. Activity-level event segmentation ROCs when activities are detected based on adaptive
thresholding of the prediction and motion weighted loss signals. Plots are shown for different
ablation studies.

the total number of false positive detected events to the total duration of the dataset in
minutes. The false positive rate per minute evaluation metric is also used in the ActEV
TRECVID challenge [1]. Frame window size value (ψ) is varied to obtain a single ROC
line, while varying the threshold value (φ) results in a different ROC line.

4.3 Ablative Studies

Different variations of our framework (Sect. 3) have been evaluated to quantify the
effect of individual components on the overall performance. In our experiments, we
tested the base model, which trains the perceptual prediction framework - including
attention unit - using the prediction loss function for backpropagation of the error sig-
nal. We refer to the base model as LSTM+ATTN. We also experimented with the effect
of removing the attention unit, from the model architecture, on the overall segmentation
performance; results of this variation are reported under the model name LSTM. Further
testing includes using the motion weighted loss for backpropagation of the error signal.
We refer to the motion weighted model as LSTM+ATTN+MW. Each of the models has
been tested extensively; results are reported in Sects. 4.4 and 4.5, as well as visually
expressed in Figs. 3, 4, 5 and 6.

Comparing the results shown in Figs. 5 and 6 indicate a significant increase of over-
all performance when using an adaptive threshold for loss signal gating. The efficacy
of adaptive thresholding is evident when applied to activity level event segmentation.
Comparing the results (LSTM & LSTM+ATTN) show that the model can effectively
generate attention maps (Sect. 4.5) without impacting the segmentation performance.

4.4 Quantitative Evaluation

We tested three different models, LSTM, LSTM+ATTN, and LSTM+ATTN+MW, for
frame level and activity level event segmentation. Simple and adaptive gating functions
(Sect. 3.5), were applied to prediction and motion weighted loss signals (Sect. 3.4) for
frame level and activity level experiments. For each model we vary parameters such as
the threshold value ψ and the frame window size φ to achieve the ROC charts presented
in Figs. 4, 5 and 6.
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It is to be noted that thresholding a loss signal does not necessarily imply that the
model was trained to minimize this particular signal. In other words, loss functions used
for backpropagating the error to the models’ learnable parameters are identified only in
the model name (Sect. 4.3); however, thresholding experiments have been conducted on
different types of loss signals, regardless of the backpropagating loss function used for
training.

The best performing model, for frame level segmentation (LSTM+ATTN,ψ = 1000)
is capable of achieving {40%, 60%, 70%} frame recall value at {5%, 10%, 20%} frame
false positive rate respectively. Activity level segmentation can recall {80%, 90%, 95%}
of the activities at {0.02, 0.1, 0.2} activity false positive rate per minute, respectively,
for the model (LSTM+ATTN+MW,φ = 0.0001) as presented in Fig. 6. A 0.02 false
positive activity rate per minute can also be interpreted as one false activity detection
every 50min of training (for detecting 80% of the groundtruth activities).

4.5 Qualitative Evaluation

A sample of the qualitative attention results is presented in Fig. 3. The attention mask,
extracted from the model, has been trained to track the event in all processed frames.
Our results show that the events are tracked and localized in various lighting (shadows,
day/night) and occlusion conditions. Attention has also learned to indefinitely focus
on the bird regardless of its motion state (stationary/Non-stationary), which indicates
that the model has acquired a high-level temporal understanding of the events in the
scene and learned the underlying structure of the bird. Supplementary results1 display a
timelapse of attention weighted frames during illumination changes and moving shad-
ows. We also provide a supplementary video showing the prediction loss signal, motion
weighted loss signal and attention mask during a walk in and out event (summarized in
Fig. 1). Additional qualitative results are provided in the appendix.

5 Conclusion

We demonstrate a self-supervised approach to temporal event segmentation. Our frame-
work can effectively segment a long sequence of activities (video) into a set of individ-
ual events. We introduce a novel approach to extract attention results from unsupervised
temporal event segmentation network. Gating the loss signal with different threshold
values can result in segmentation at different granularities. Quantitative and qualitative
results are presented in the form of ROC charts and attention weighted frames. Our
results demonstrate the effectiveness of our approach in understanding the higher level
spatio-temporal features required for practical temporal event segmentation.
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