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Fig. 1. “Lying Flat”. Our primal Newton Barrier Method provides a unified simulation framework for this complex multibody system, consisting of a hammock
made with rigid (stiff) rings, neo-Hookean deformable tori and circular rods, as well as an eleven-part articulated ragdoll and a piece of cloth. Accurate
resolutions of the frictional contact and articulation constraints are guaranteed robustly, stably, and efficiently.

We present a simulation framework for multibody dynamics via a univer-
sal variational integration. Our method naturally supports mixed rigid-
deformables and mixed codimensional geometries, while providing guar-
anteed numerical convergence and accurate resolution of contact, friction,
and a wide range of articulation constraints. We unify (1) the treatment of
simulation degrees of freedom for rigid and soft bodies by formulating them
both in terms of Lagrangian nodal displacements, (2) the handling of gen-
eral linear equality joint constraints through an efficient change-of-variable
strategy, (3) the enforcement of nonlinear articulation constraints based
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on novel distance potential energies, (4) the resolution of frictional contact
between mixed dimensions and bodies with a variational Incremental Po-
tential Contact formulation, and (5) the modeling of generalized restitution
through semi-implicit Rayleigh damping. We conduct extensive unit tests
and benchmark studies to demonstrate the efficacy of our method.
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1 INTRODUCTION
Multibody dynamics plays an important role in both computer
graphics and robotics. It is thus a long term research goal for re-
searchers to develop more robust, controllable, accurate, and effi-
cient multibody simulators. In a practical scene, we would have
both rigid and deformable objects interacting with each other. Ad-
ditionally, some of them contain articulated joints, and some others
are codimensional thin manifolds. Complex scenes with all of them
coupled together are essential ingredients of modern films, games,
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and robotic training environments. Accordingly we identify critical
merits of a modern multibody solver: (1) guaranteed algorithmic
convergence, (2) high-quality results without artifacts, (3) strong
numerical stability, and (4) intuitive, user-friendly, and reliable pa-
rameter tuning. Despite a lot of research efforts devoted, it remains
an open challenge to achieve all of them in a unified solver.

Many existing multibody simulation methods focus on efficiency
[Wang et al. 2019] and differentiability [Geilinger et al. 2020; Macklin
et al. 2019]. A major difficulty arises when new materials or con-
straints are incorporated, and special treatments are often applied.
This is primarily due to that rigid and deformable bodies have their
degrees-of-freedom (DOFs) in very different spaces, and coupling
them together requires carefully designed algorithms. In addition,
none of the existing multibody simulators can provide guaranteed
interpenetration-free results for complex colliding objects.

Recently, Li et al. [2020a] proposed a variational integrator based
on the Incremental Potential Contact (IPC) for modeling nonlinear
elastic solids with guaranteed non-interpenetration. Later, IPC is
proven effective in modeling contact when simulating objects with
arbitrary codimensions [Li et al. 2021] and rigid bodies in SE(3)
space [Ferguson et al. 2021]. More recently, Lan et al. [2022] sim-
ulated rigid bodies as stiff affine bodies, so that the trajectory of
the simulated objects are also piecewise-linear. Despite an increase
of DOFs, simulating rigid bodies with affine coordinates simplifies
and accelerates the computation of collision-heavy scenes due to
the direct applicability of highly performance optimized linear con-
tinuous collision detection (CCD) algorithms. Furthermore, with
Lagrangian displacement as the primary variables, hybridizing rigid
and deformable objects becomes straightforward.

We extend Lan et al. [2022] to mixed-dimensional soft-rigid cou-
pled multibody dynamics with formulations for a wide range of
linear and nonlinear, equality and inequality constraints for articula-
tion. To the best of our knowledge our method is the first multibody
simulator with guaranteed resolution of collision, contact, friction,
and articulation constraints under extremely large time step sizes.

In addition to collisions and joints, another important aspect for
simulating multibodies (and particularly for rigid bodies) is the mod-
eling of restitution. Contacts between rigid bodies are inherently
inelastic and highly dissipative. Additional modeling of restitution is
often necessary to achieve impacts with better or more controllable
energy behaviors. This is typically achieved by directly modifying
the velocity-based contact constraints with a coefficient of resti-
tution 𝑟 = 𝑣out/𝑣in in traditional LCP-based methods [Baraff 1989;
Moreau 1985; Stewart 2000]. However, challenges still remain on
making these methods free of drift or interpenetration, and with
guaranteed convergence all at the same time [Smith et al. 2012].

Our method models contact, friction, and joints all with potential
energies. Correspondingly we design studies to investigate restitu-
tion from the perspective of energy dissipation in time integration.
The resulting system allows restitution to be directly controlled by
the magnitude of energy dissipation for each individual constraint.
In summary, we propose a unified optimization time integra-

tion framework for rigid-deformable coupled multibody simulation,
supporting geometries in arbitrary codimensions and all common
articulation constraints. Our framework guarantees algorithmic
convergence and constraint satisfaction while providing robust and

efficient simulations with controllable restitution for contact and
joint constraints. To achieve this, we design

• an efficient change-of-variable strategy for general linear
equality constraints,

• a unified formulation based on unsigned distances for non-
linear articulation constraints, and

• a general restitution model based on high-order time inte-
gration and Rayleigh damping for arbitrary inequality con-
straints.

We validate the efficacy of our restitution model through experi-
mental studies. Unit tests and complex simulations are conducted
to demonstrate the robustness, efficiency, and wide applicability of
our multibody simulation framework.

Fig. 2. Hanging Bridge.We drop a ball onto a hanging bridge constructed
by 10 discrete elastic rods and 40 rigid boards connected via point con-
nection constraints. The coupling between rigid bodies and codimensional
deformable solids are robustly resolved.

2 RELATED WORK

2.1 Multibody Simulation
Multibody dynamics has long been a popular research topic in both
computer graphics and robotics. From simulating a large number
of rigid bodies, to coupling rigid and deformable solids, the key
challenge is always on how to appropriately handle the contact
among the simulated objects. Assuming the contacting points are
known, rigid body simulation with non-interpenetration constraints
can be formulated as a Linear Complementarity Problem (LCP),
which dates back to Moreau [1985] and Baraff [1989]. Since then,
existing works mostly focus on proposing new algorithms based on
the LCP method to improve the efficiency and/or robustness.
Considering only rigid bodies, Guendelman et al. [2003] and Er-

leben [2007] applied shock propogation method to process contact
in order following the contact graph. Kaufman et al. [2005] intro-
duced a contact model that uses contact information at the moment
of maximum compression to constrain rigid body velocities. Mazhar
et al. [2015] applied Nesterov’s method to accelerate solving the
time integration system. Coevoet et al. [2020] adaptively merged
rigid bodies with similar dynamics to reduce the number of DOFs.
Coupling rigid and deformable bodies, Shinar et al. [2008] pro-

posed a multi-stage update that performs collisions, contacts, and
stabilization in separate passes. Kaufman et al. [2008] formulated a
discrete velocity-level frictional contact dynamics that reduces to a
pair of coupled projections with a simple fixed-point property. Jain
and Liu [2011] introduced a compact representation for an articu-
lated character with deformable soft tissue, which can be simulated
with two-way coupling in a robust and efficient manner. Bai and
Liu [2014] provided a simple solution to cloth-rigid coupling using
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existing cloth and rigid body simulators as-is. Li et al. [2020b] pro-
posed a novel projective dynamics solver that takes full advantage
of the pre-factorized system matrices to accelerate solving the cou-
pling system. Some recent research also started to investigate the
differentiability of the simulator, which can provide more efficient
control solutions to robots [Geilinger et al. 2020; Macklin et al. 2019].
With a pure constraint view on physical modeling and a customized
Gauss-Seidel solver, Position-based Dynamics methods [Deul et al.
2016; Frâncu and Moldoveanu 2017a,b; Müller et al. 2020] enable
coupling rigid and deformable objects in a unified manner. How-
ever, similar to all the above works, none of them can guarantee
algorithm convergence with interpenetration-free results.
By formulating noninterpenetration constraints using precise

unsigned distances, and applying a customized barrier method, Li et
al. [2020a] proposed the Incremental Potential Contact (IPC) model
that can robustly simulate nonlinear elastodynamics with guaran-
teed noninterpenetration. IPC is then quickly proven effective on
robustly handling contact for codimensional objects [Li et al. 2021],
rigid bodies [Ferguson et al. 2021], reduced deformable bodies [Lan
et al. 2021], and embedded interfaces [Zhao et al. 2022], etc. With
Euclidean DOFs applied in rigid body simulation [Lan et al. 2022],
rigid-deformable coupling with guarantees also becomes convenient
based on IPC. We therefore construct our multibody simulator based
on the optimization time integration framework with IPC.

2.2 Articulated Dynamics
In multibody systems, constraints are often applied to define vari-
ous types of connections between a number of bodies, simplifying
both geometric modeling and physical simulation for well-studied
functional parts. Simulating such articulated systems is also of great
interest to computational design and fabrication [Koyama et al. 2015;
Thomaszewski et al. 2014]. With maximal or generalized coordi-
nates, existing works on articulated dynamics also mainly focus on
improving the efficiency of solving the constrained systems, which
results in many different specialized treatments.
Redon et al. [2005] presented an adaptive algorithm that can

simplify articulated body simulation to requested levels of detail.
Mirtich et al. [1994] introduced an impulse-based method to han-
dle contact between objects. Weinstein et al. [2006] applied the
impulse-based approach to treat articulation and contact, where
the complexity is linear both in the number of bodies and the num-
ber of contacts. Sueda et al. [2011] introduced a framework that
combines Lagrangian and Eulerian approaches for robust, efficient,
and accurate simulations of massively constrained systems. Xu et
al. [2014] enables stable simulation of penalty-based frictional con-
tact involving many articulated rigid objects. Tournier et al. [2015]
and Andrews et al. [2017] proposed to use a geometric stiffness
term to accelerate multibody simulation based on constraint pro-
jections. Enzenhöfer et al. [2019] presented a method based on
the block Bard-type algorithm for efficiently factorizing the stiff
systems of articulated dynamics. Peiret et al. [2019] presented a
non-overlapping domain decomposition approach with Schur com-
plement for solving stiff constrained multibody systems. Wang et al.
[2019] proposed a near linear time approach to solve the linearly im-
plicit equations of motion in multibody dynamics using a combined
reduced/maximal coordinate formulation. Werling et al. [2021] built

Fig. 3. Pulley System.We construct this pulley system with sliding con-
straints on the first 3 rigid pulleys, a hinge constraint on the rightmost
pulley, and point connections on the discrete elastic rods and the other
objects. From left to middle we show that our simulator accurately captures
the mechanism of this pulley system when the right end of the rod is pulled
all the way down with smaller forces to lift the heavy gold box.

a fast and feature-complete differentiable physics engine supporting
hard contact constraints for articulated rigid body simulation.
Recently, Chang et al. [Chang et al. 2019] proposed a unified

framework for simulating articulated mixed-dimensional objects.
However, their framework specifically targets on conforming non-
manifold mesh representations. Since we are performing fully im-
plicit time integration via numerical optimization, we propose an
efficient change-of-variable approach to handle all general linear
equality constraints based on maximal coordinates. Then we handle
all inequality and nonlinear equality articulation constraints with
potential energies of unsigned distances.

2.3 Restitution Modeling
Inequality constraints in articulated systems are essentially simplifi-
cations of real-world structures, and most of these constraints are in
fact due to contact locking between adjacent body parts, e.g., door
hinges. Therefore, similar to contact, these inequality constraints
can also exhibit restitution behaviors, which intuitively can be seen
as the bounciness of the joint after a constraint is enforced. Existing
works mainly focus on modeling restitution for contact constraints.

As a quantification of the restitution behavior, the coefficient of
restitution has been defined in multiple ways. In Poisson’s model
[Routh 1905; Wang and Mason 1992], the restitution coefficient is
defined as the ratio between the normal impulses in the decompres-
sion and compression phases, while in Newton’s model [Whittaker
1937], it is defined as the ratio between the normal velocities in the
two phases. There is also the Stronge’s model [Mirtich 1996; Stronge
1991] which defines the coefficient of restitution based on the sys-
tem energies before and after the impact. We refer to Ahmad et al.
[2016] and Seifried et al. [2010] for detailed surveys on restitution
research from a broad view.

In computer graphics, most methods model restitution following
the Poisson’s model [Guendelman et al. 2003; Kaufman et al. 2005;
Popović et al. 2000] or the Newton’s model [Choe et al. 2005; Twigg
and James 2008], since they can be conveniently implemented with
velocity variables. In position-based dynamics [Müller et al. 2007]
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Fig. 4. Umbrella. We simulate an umbrella modeled by coupling a rigid
skeleton with cloth. The skeleton is composed of 13 rigid thin rods, connect-
ing to each other via point connection, hinge, and sliding constraints.

and projective dynamics [Bouaziz et al. 2014], velocities of colliding
primitives are directly modified to resolve restitution behaviors. For
more accurate and reliable restitution modeling, Smith et al. [2012]
proposed a generalized restitution model that ensures breakaway in
multi-impact problems and avoids convergence issues in inelastic
collisions. In addition, Wang et al. [2017] proposed a method to
enrich standard rigid-body impact models with a spatially varying
coefficient of restitution map.
On the other hand, some methods also investigated restitution

modeling in the energy view. Within the explicit time integration
framework which preserves energy well, Harmon et al. [2009] pro-
posed to reduce the contact force in the decompression phase to
model inelastic collisons. Geilinger et al. [2020] and Bell et al. [2005]
handles contact with a penalty energy on penetration depth. They
applied high order time integration and damping models to achieve
different coefficient of restitution. Our restitution is also modeled
in the energy view, applying BDF-2 time integration to ensure low
energy dissipation. Then we propose to use a semi-implicit Rayleigh
damping model [Gast et al. 2015] for arbitrary inequality constraints
handled by a barrier potential, achieving different coefficients of
restitution with guaranteed constraint satisfaction.

3 COMPUTATIONAL FOUNDATIONS
We construct our multibody simulator within the optimization time
integration framework for guaranteed robustness.

3.1 Incremental Potential Contact (IPC)
Following IPC [Li et al. 2020a], time integrating elastodynamics sys-
tems with frictional contact can be achieved via solving a nonlinear
optimization problem

𝒙𝑛+1 = argmin
𝒙

(
1
2
∥𝒙 − 𝒙̃𝑛 ∥2𝑴 + 𝛽ℎ2

∑︁
𝑖

𝑃𝑖 (𝒙)
)

(1)

in each time step 𝑛 for a new nodal position 𝒙𝑛+1, followed by
updating velocity 𝒗 according to the time integration rule applied.
Here 𝑴 is the mass matrix; ℎ is the time step size; 𝒙̃𝑛 and 𝛽 both
depend on the time integration rule; and 𝑃𝑖 (𝑥) are the potential
energies for gravity, elasticity, contact, and friction, etc. The total
energy being minimized is called the Incremental Potential [Li et al.

2019]. When implicit Euler is applied,

𝒗𝑛+1 =
1
ℎ
(𝒙𝑛+1 − 𝒙𝑛), 𝒙̃𝑛 = 𝒙𝑛 + ℎ𝒗𝑛, 𝛽 = 1, (2)

while for BDF-2,

𝒗𝑛+1 =
1
2ℎ

(3𝒙𝑛+1 − 4𝒙𝑛 + 𝒙𝑛−1),

𝒙̃𝑛 =
1
3
(4𝒙𝑛 − 𝒙𝑛−1 + 2ℎ

3
(4𝒗𝑛 − 𝒗𝑛−1)), 𝛽 =

4
9
.

(3)

This framework naturally couples elastic solids of arbitrary codi-
mensions with guaranteed algorithm convergence and noninterpen-
etration, which is simply achieved by introducing the constitutive
models for shells and rods as other 𝑃𝑖 (𝒙)’s and ensuring contact
among all boundary elements are processed with IPC [Li et al. 2021].
Highly stiff bodies like rigid or near-rigid objects can also be dealt
with in this framework by directly hardening the Young’s modu-
lus. We could further leverage the fact that stiff bodies are hardly
deformable to build a more compact representation and avoid ex-
pensive fullspace computations.

3.2 Affine Body Dynamics
Following Lan et al. [2022], we project the deformation freedoms
into an affine space for a more realistic rigidity approximation of a
perfectly-undeformable object. This is equivalent to using a single
linear tetrahedral element to drive the dynamics of the body.

Specifically, we embed a stiff body in a virtual tetrahedron, whose
four nodes are given as 𝒙0, 𝒙1, 𝒙2, 𝒙3. They are simply set as 𝑿0 =
(0, 0, 0), 𝑿1 = (1, 0, 0), 𝑿2 = (0, 1, 0), and 𝑿3 = (0, 0, 1) in the
material space. The position of any material point 𝒀𝒊 = (𝑢𝑖 , 𝑣𝑖 ,𝑤𝑖 )
on the body can then be represented as:

𝒀𝑖 = (1 − 𝑢𝑖 − 𝑣𝑖 −𝑤𝑖 )𝑿0 + 𝑢𝑖𝑿1 + 𝑣𝑖𝑿2 +𝑤𝑖𝑿3, (4)

or equivalently in matrix form, 𝒀 = 𝑷𝑿 with 𝑷𝑖 ≡ 𝒀𝒊 . In the same
way, the transformation matrix 𝑷 also relates the affine coordinate
𝒙 ∈ R12 with the full coordinate 𝒚 of all the vertices on the body.
Once 𝑷 is computed, we can advance the simulation with affine
DOFs 𝒙 and update the full DOFs at each time step using 𝒚 = 𝑷𝒙 .

Doing so not only reduces the total number of DOFs, but also sim-
plifies the computation of the elasticity energy

∑
𝑒 𝑉𝑒Ψ(𝑭𝑒 ) summed

over all the elements 𝑒 with volume 𝑉𝑒 and deformation gradient
𝑭𝑒 on the body. This is because the linear tetrahedron has a uni-
form deformation gradient: 𝑭𝑒 = 𝑭 . Thus we have

∑
𝑒 𝑉𝑒Ψ(𝑭𝑒 ) =

Ψ(𝑭 )∑𝑒 𝑉𝑒 , where 𝑭 can be computed via 𝑭 = [𝒙1−𝒙0, 𝒙2−𝒙0, 𝒙3−
𝒙0]𝑫−1. Here 𝑫 = [𝑿1 − 𝑿0,𝑿2 − 𝑿0,𝑿3 − 𝑿0] = 𝑰 is an identity
matrix with our special choice of 𝑿 ’s, and Ψ(𝑭 ) = 𝑌

8 ∥𝑭
𝑇 𝑭 − 𝑰 ∥2F

with Young’s modulus 𝑌 .
For other potentials 𝐸 (𝒚), like the inertia, gravitational, contact,

and frictional often formulated with full coordinates, we use the
chain rule to evaluate the gradients and Hessians w.r.t. the affine
coordinate during the optimization

𝜕𝐸 (𝑷𝒙)
𝜕𝒙

= 𝑷𝑇∇𝐸 (𝑷𝒙), 𝜕2𝐸 (𝑷𝒙)
𝜕𝒙2

= 𝑷𝑇∇2𝐸 (𝑷𝒙)𝑷 . (5)

At first glance, this reduction still contains 6 redundant DOFs com-
pared to rigid bodies in SE(3) [Ferguson et al. 2021]. However, keep-
ing the trajectories piecewise linear rather than curved is a key
insight for efficient and robust IPC-based rigid body simulation
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[Lan et al. 2022]. In addition, the linear tetrahedron attached to each
body also facilitates rigid-deformable simulations, allowing both to
be formulated seamlessly in a unified framework.

4 CONSTRAINT FORMULATION
A straightforward way to handle articulation constraints is to form a
nonlinear KKT system and solve it via sequential quadratic program-
ming or similar iterative approaches as in prior works. However, it is
challenging, if not impossible, to guarantee numerical convergence
and stability for KKT solves. Instead, we convert the constrained
optimization to an unconstrained one, in which linear equality con-
straints are directly handled via change of variables, while nonlinear
and inequality ones are collectively modeled via (stiff) potential en-
ergies. This strategy also allows us to propose a general restitution
model for arbitrary inequality constraints (see Section 5).

4.1 Linear Equality Constraints
Linear equality constraints are in the form of 𝒄𝑇

𝑖
𝒙 = 𝑠𝑖 , for 𝑖 =

1, · · · ,𝑚. We require𝑚 < 𝑛 and all 𝒄𝑖 being linearly independent. A
full rank transformation matrix 𝑽 ∈ R𝑛×𝑛 can then be constructed,
where 𝒄𝑇

𝑖
are the first𝑚 rows. The matrix 𝑽 embodies another coor-

dinate transformation of 𝒙 = 𝑼𝒛, for 𝑼 = 𝑽−1 since 𝑽 is invertible.
Similar to Eq. (5), we use chain rule to evaluate the potential gradient
and Hessian w.r.t. 𝒛:

𝜕𝐸 (𝑼𝒛)
𝜕𝒛

= 𝑼𝑇∇𝐸 (𝑼𝒛), 𝜕2𝐸 (𝑼𝒛)
𝜕𝒛2

= 𝑼𝑇∇2𝐸 (𝑼𝒛)𝑼 .

Under this new coordinate our𝑚 equality constraints now become
𝑧𝑖 = 𝑠𝑖 as a set of Dirichlet boundary conditions. They can be en-
forced conveniently by setting the corresponding rows and columns
in the gradient and Hessian to zero when computing search direc-
tions during the optimization.
Reduced Singular Value Decomposition and Gram-Schmidt pro-

cess are two popular choices for building 𝑽 . However, these methods
result in dense transformation basis, which induce unnecessary over-
heads of the Hessian computation and the linear solve during the
optimization. Instead, we adopt an efficient basis extension method.
Starting from the𝑚-by-𝑛 constraint matrix 𝑪 = [𝒄1, · · · , 𝒄𝑚]𝑇 , we
construct an upper-triangular matrix 𝑪 via Gaussian Elimination
with row pivoting, so that the element with the largest absolute
value in each row 𝒄𝑖 is swapped to the diagonal. As long as con-
straints are linearly independent to each other, this process can be
performed for all the𝑚 rows without failures. We then form the
transformation matrix as 𝑽 =

[
𝑪𝑇 , 𝑰̃𝑇

]𝑇 , where the bottom (𝑛 −𝑚)
rows are 𝑰̃ =

[
0(𝑛−𝑚)×𝑚, 𝑰 (𝑛−𝑚)×(𝑛−𝑚)

]
. In other words, we insert

an (𝑛 −𝑚)-by-(𝑛 −𝑚) identity matrix at the bottom-right corner
of 𝑽 to obtain a full-rank upper-triangular matrix.
The structure of 𝑽 allows an efficient back substitution for ma-

trix multiplications involving 𝑼 = 𝑽−1. Next, starting from point
connections, we show that a wide range of articulation joints can
be formulated with linear equality constraints.

4.1.1 Point Connection. One common constraint in articulated dy-
namics is point-wise connections, i.e., gluing two points from dif-
ferent objects. Let {𝒙𝑖1, · · · , 𝒙

𝑖
𝑁 𝑖 } be the DOFs of body 𝑖 . Here we

use the superscript to denote the object index and the subscript for

the local DOF index at each object (i.e., 𝑁 𝑖 gives the total number
of DOFs at the 𝑖-th object). Any point on object 𝑖 can be expressed
as: 𝒑𝑖 ≡ ∑𝑁 𝑖

𝑗=1 𝛼 𝑗𝒙
𝑖
𝑗
with certain barycentric weights 𝛼 . The point

connection constraint between two bodies can be simply defined as:

𝒑1 = 𝒑2 . (6)

Fixing a point throughout the simulation can also be conveniently
enforced by fixing its world space position at its material space
position:

𝑁∑︁
𝑗=1

𝛼 𝑗𝒙 𝑗 =
𝑁∑︁
𝑗=1

𝛼 𝑗𝑿 𝑗 . (7)

Fig. 5. Hinge.

4.1.2 Hinge. A hinge constraint pre-
scribes an axis around which objects
could freely rotate. This is a nonlinear
equality constraint in SE(3), and its spe-
cific form depends on the choice of the
rotation parameterization. However as
we do not explicitly enforce an SE(3) mo-
tion kinematically, but with a stiff penalty
potential, this constraint becomes a lin-
ear one by connecting two pairs of points
from the two objects (Figure 5).

𝒑1
1 = 𝒑2

1, 𝒑1
2 = 𝒑2

2 . (8)

This allows objects 1 and 2 to rotate around axis 𝒑1
1 − 𝒑1

2 freely.
Oftentimes, the possible rotation range is also bounded (e.g., to
prevent the penetration between the upper and lower arm). A bound
constraint for the dihedral angle ∠𝒑4𝒑1𝒑3 can also be applied as
later discussed in Section 4.3.3.

I
II

III

Fig. 6. Cone Twist.

4.1.3 Cone Twist. Cone twist is a gimbal-
like structure where one can specify the ro-
tation range in each axis. For each joint, let
{𝒏𝑥 , 𝒏𝑦, 𝒏𝑧 } be an orthogonal frame speci-
fied by the user in the material space, any ro-
tation can be decomposed into 3 elementary
rotations: bending around 𝒏𝑦 axis, bending
around 𝒏𝑧 axis, and twisting around 𝒏𝑥 axis.

The mapping from Euclidean DOFs to Eu-
ler angles involves costly trigonometric calculations. Alternatively,
we design a special structure that enables intuitive control over each
of the Euler angles. Specifically, we add three virtual links one by
one for each cone twist joint – all using the hinge constraint for
the corresponding rotation axis. As shown in Figure 6, the rotation
axes for link I, II, and III are 𝒏𝑧 , 𝒏𝑦 and 𝒏𝑥 respectively. With our
novel structure, the cone twist rotation is succinctly decomposed
into three dihedral angles which supports independent control of
the rotation ranges (again, see Section 4.3.3).

4.1.4 Sliding. When a sliding constraint limits the possible motion
of a point 𝒑 to be within a plane 𝜋 , it requires that the displacement
of the point is orthogonal to the plane’s normal 𝒏. If this constraint
has been satisfied in previous steps, it becomes a position-level
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linear constraint of

𝒏𝑇
𝑁∑︁
𝑗

𝛼 𝑗 (𝒙 𝑗 − 𝑿 𝑗 ) = 0. (9)

If the sliding is more restrictive to be on a line, we simply use
two planes 𝜋1 and 𝜋2 intersecting at the prescribed point trajectory,
whose normals are 𝒏1 and 𝒏2. This constraint can then be enforced
by restricting the point to move within these two planes simulta-
neously. We next discuss the handling of nonlinear and inequality
constraints, so that one can prescribe more complicated motion of
𝒑 such as being on a line segment, a planar rectangular region, or
along certain nonlinear trajectories.

4.2 Nonlinear Equality Constraints
Nonlinear equality constraints are essential in our maximal coordi-
nate system when certain relations between objects are enforced in
a hierarchical manner. It is also needed for constraints defined with
distances. Let 𝑐 (𝒙) = 0 be a general nonlinear equality constraint,
we handle it with an additional potential energy

𝑃NEq (𝒙) =
1
2
𝑘 (𝑐 (𝒙))2, (10)

where 𝑘 is a large stiffness that ensures the constraint is satisfied
sufficiently.

4.2.1 Distance. We can maintain the distance between two points
𝒑1 and 𝒑2 by

𝑐 (𝒙) = ∥𝒑1 − 𝒑2∥ − 𝑙 = 0, (11)
where 𝑙 is the desired point-point distance. This distance constraint
can be applied to any two points as long as they do not belong to the
same stiff body, which will otherwise induce constraint redundancy.

4.2.2 Relative Sliding. In addition to the linear sliding constraint
(Section 4.1.4), here we support point sliding relative to another sim-
ulated object. Specifically, such relative sliding constraint requires
the point 𝒑1

1 from one object to move only along the direction of
𝒑2
2 − 𝒑2

3, two different points from another object. For simplicity,
we require 𝒑1

1,𝒑
2
2,𝒑

3
2 to be collinear. This constraint can be viewed

as maintaining a 0 area for triangle 𝒑1
1𝒑

2
2𝒑

3
2:

𝑐 (𝒑1
1,𝒑

2
2,𝒑

2
3) = ∥(𝒑1

1 − 𝒑2
2) × (𝒑2

3 − 𝒑2
2)∥ = 0. (12)

4.3 Inequality Constraints
Inspired by Li et al. [2020a], we use barrier method to handle general
inequality constraints 𝑐 (𝒙) ≥ 0 by incorporating an additional
barrier term

𝑃Ineq (𝒙) = 𝜅𝑏 (𝑐 (𝒙)) (13)
into our Incremental Potential. Here 𝑏 is the barrier function [Li
et al. 2020a]

𝑏 (𝑐) =

−

(𝑐
𝑐
− 1

)2
ln

(𝑐
𝑐

)
0 < 𝑐 < 𝑐

0 𝑐 ≥ 𝑐,
(14)

which provides arbitrarily large repulsion to prevent 𝑐 (𝒙) from being
nonpositive, 𝜅 is the barrier stiffness, and 𝑐 is a clamping threshold
so that constraints faraway from being active are untouched.

Equipped with the barrier method, we formulate all the inequality
constraints for articulated bodies in the form of bounded distances.
This brings an intuitive and consistent formulation that processes
all the constraints collectively in a unified manner.

4.3.1 Bounded Distance. To enforce an upper bound 𝑑𝑢 on the
distance between two points 𝒑1, 𝒑2, we set

𝑐 (𝒙) = 𝑑𝑢 − ∥𝒑1 − 𝒑2∥ ≥ 0. (15)

Similarly, lower bounds 𝑑𝑙 can be enforced by simply setting

𝑐 (𝒙) = ∥𝒑1 − 𝒑2∥ − 𝑑𝑙 ≥ 0. (16)

Similar to the equality case (Section 4.2.1), the bounded distance can
be applied to any two points that are not on the same rigid object.

Fig. 7. Sliding Range.

4.3.2 Sliding Range. The range of sliding
constraints (Section 4.1.4 and 4.2.2) can be
enforced by additional bounded distance
constraints. For example, to restrict point 𝒑
to bewithin line segment𝒑1𝒑2, we can first
introduce an additional point𝒑3 = 2𝒑2−𝒑1
so that 𝒑2 is the midpoint between 𝒑1 and
𝒑3, and then augment the system with two
inequality constraints

𝑐1 (𝒙) = ∥𝒑−𝒑3∥−∥𝒑2−𝒑3∥ ≥ 0, 𝑐2 (𝒙) = ∥𝒑1−𝒑3∥−∥𝒑−𝒑3∥ ≥ 0.
(17)

Fig. 8. Rotation Range.

4.3.3 Rotation Range. Rotation range can
be applied to all rotations. Here we demon-
strate how to bound the dihedral angle in a
hinge constraint (Section 4.1.2). To restrict
the rotation angle of point 𝒑 within range
[𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥 ], we first rotate 𝒑0 (the point
with zero degree) by 𝜃𝑚𝑎𝑥 and 𝜃𝑚𝑖𝑛 respec-
tively to obtain 𝒑𝑚𝑎𝑥 and 𝒑𝑚𝑖𝑛 . Then 𝒑
must be restricted on arc 𝒑𝑚𝑎𝑥𝒑𝑚𝑖𝑛 . Let
𝒑𝑎𝑣𝑔 denote the point with angle 𝜃𝑎𝑣𝑔 =
1
2 (𝜃𝑚𝑎𝑥 + 𝜃𝑚𝑖𝑛), then 𝒑𝑎𝑣𝑔 is the midpoint of the arc. Therefore,
we can avoid computing angles by expressing the rotation range
constraint as a distance constraint:

𝑐 (𝒙) = ∥𝒑𝑚𝑎𝑥 − 𝒑𝑎𝑣𝑔 ∥ − ∥𝒑 − 𝒑𝑎𝑣𝑔 ∥ ≥ 0. (18)

Since cone twist (Section 4.1.3) can be decomposed into three hinge
constraints, we can precisely bound each of the three angles.

5 RESTITUTION
Resolving inequality constraints with barrier potentials naturally
includes the modeling of restitution. Taking contact modeled with
IPC as an example, we can think of the barrier potential as the
elastic potential of a virtual thin layer of material right outside the
surface of every object. Then as two objects approach each other,
the virtual elastic layer is compressed, accumulating and storing
strain energies as kinetic energy decreases. Once the maximum
compression is reached, the stored energy releases, pushing the
colliding objects apart, regardless of whether the object is rigid or
elastic (Figure 9).
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Fig. 9. Energy Transitions. Energy curve of a cube falling onto the ground
under gravity with ℎ = 0.001𝑠 . The cube hit the ground at 𝑡 = 0.5𝑠 . We see
that the yellow curve stays zero (even after zooming in), indicating accurately
approximated rigid behaviors. The total energy is also well-preserved as
shown by the gray curve, which is realized (as shown by the spike) by
consistently transferring kinetic energies (green curve) into IPC potential
(red curve) during the contact, and then the velocities are fully restored.

However, just like elasticity, this restitution behavior is signifi-
cantly influenced by the numerical dissipation of the time integra-
tion scheme. For example, if implicit Euler is applied, using frame-
rate time step sizes often tend to introduce a significant amount of
numerical dissipation. Even with orders-of-magnitude smaller time
step size at ℎ = 10−4, where time stepping becomes inefficient as
much more time steps are needed, implicit Euler still damps out a
non-negligible amount of energy (Figure 14). Therefore, we propose
to use another unconditionally stable but 2nd-order accurate BDF-2
time integrator for drastically improved energy preservation.

Since BDF-2 is also a dissipative time integration scheme similar
to implicit Euler, larger time step sizes can result in more numerical
dissipation, providing less elastic bounces (Figure 14). However,
purely relying on changing time step sizes for restitution control
is neither intuitive nor convenient. Thus, we apply a semi-implicit
Rayleigh damping model [Gast et al. 2015] to achieve robust and
controllable inelastic restitution behaviors. When applied to barrier
potentials for different constraints, our strategy supports separate
control of each bounded articulation range.

5.1 Semi-Implicit Rayleigh Damping
For any potential energy 𝑃 (𝒙), the corresponding Rayleigh damping
force is

𝒇𝑑 (𝒙) = −𝑘𝑑
𝜕2𝑃

𝜕𝒙2
(𝒙)𝒗 (𝒙), (19)

where 𝑘 > 0 is the stiffness of the damping. Following Gast et al.
[2015], to avoid calculating the 3rd-order derivative of 𝑃 (𝒙), we
discretize the stiffness matrix 𝜕2𝑃

𝜕𝒙2 in the above definition to the last
time step or Newton loop, just like the semi-implicit friction in IPC
[Li et al. 2020a]. This let us define a damping potential

𝐷 (𝒙) = 𝑘𝑑

2
𝒗 (𝒙)𝑇

(
𝜕𝒗

𝜕𝒙

)−𝑇
𝜕2𝑃

𝜕𝒙2
(𝒙𝑛)𝒗 (𝒙), (20)

where its negative gradient generates a semi-implicit damping force

𝒇𝑑 (𝒙) ≈ − 𝜕𝐷

𝜕𝒙
(𝒙) = −𝑘𝑑

𝜕2𝑃

𝜕𝒙2
(𝒙𝑛)𝒗 (𝒙) . (21)

Note that we project 𝜕2𝑃
𝜕𝒙2 (𝑥𝑛) to positive semi-definite in the damp-

ing energy definition for valid damping behaviors [Gast et al. 2015]
by zeroing out the negative Eigen values of every local stencil hes-
sian [Liu et al. 2017]. The hessian of the damping energy is then

𝜕2𝐷

𝜕𝒙2
(𝒙) = 𝑘𝑑

𝜕2𝑃

𝜕𝒙2
(𝒙𝑛) 𝜕𝒗

𝜕𝒙
. (22)

Here we assumed linear velocity-displacement relation, so that 𝜕𝒗
𝜕𝒙

is a constant multiple of the identity matrix, which is true for the
linear (multi-)step time integration schemes applied in our system.

Since the semi-implicit Rayleigh damping applies to any potential
energies, in our framework, it could be applied to model restitution
for elasticity, contact, and all our inequality articulation constraints.

6 EVALUATION
Following Li [2020], we apply the projected Newton method to
minimize the Incremental Potential (Eq.1) for solving the new con-
figuration. We adopt the per-stencil Hessian projection [Teran et al.
2005] to ensure positive-definiteness, and so the solved search di-
rection is always descent, which further enables backtracking line
search for global convergence. Here the initial step size of line search
is filtered by the additive continuous collision detection (ACCD)
method [Li et al. 2021] to provide guaranteed resolution of inequality
constraints, ensuring feasibility throughout.
We evaluate our method extensively by performing a unit test

on each of our articulation constraints (Section 6.1), followed by a
thorough analysis on our restitution model (Section 6.2). Then in
Section 6.3 we demonstrate our method successfully simulate real-
world complex scenes that require high accuracy and robustness to
achieve the expected behavior, which are challenging for alternative
simulators. The statistics of our hybrid CPU-GPU implementation
is listed in Table 2, followed by a detailed performance analysis
with timing breakdowns in Section 6.4. In our examples containing
codimensional objects, discrete elastic shells and rods constitutive
models are applied following C-IPC [Li et al. 2021].

6.1 Constraints Unit Test
Point Connections. Here we link three rods sequentially with two

point connection joints (Figure 12 a). With the top-left point fixed
at the initial location, this triple-rod pendulum is swinging with a
chaotic behavior.
Another point connection constraint is shown in Figure 12 (a)

with a piece of cloth connected to the middle point of a flexible coat
rack formed by connecting five rods, demonstrating codimensional
rigid-deformable coupling.

Hinge with Rotation Range. We demonstrate hinge constraints
with three boards rotating around a shared shaft (Figure 12 b). The
boards are hit by balls to start rotating, where from top to bottom
the different boards has a decreasing range of bounded rotations
visualized by copper sectors.

Bounded Sliding. We make a three-section monocular to demon-
strate our bounded sliding constraints, where sliding ranges are set
to prevent inner sections from detaching the outer ones (Figure 12
c). As observed in our experiments, using sliding constraint, this

ACM Trans. Graph., Vol. 41, No. 4, Article 66. Publication date: July 2022.



66:8 • Chen et al.

Fig. 10. Terrain Navigation with Cylinder-Driven Vehicle.We simulate a vehicle modeled with multiple rigid bodies driving on a terrain (left). The vehicle
is triggered by a cylinder engine connected to the back-right wheel with all other wheels passive (middle and right). As our system accurately resolve the
frictional contact, the vehicle can navigate the terrain smoothly as we pull the pistol with a constant force.

Fig. 11. Ragdolls. 60 ragdolls at random initial height are dropped on the ground without any interpenetrations (left and middle). Cone twist constraints are
applied at each joint with specific rotation ranges imitating the mechanism of human bodies (right). For example, at the elbow, the rotation ranges for the two
bending components are [−135◦, 0◦ ] and [−5◦, 5◦ ], and for twisting, [−10◦, 10◦ ].

three-section monocular can be simulated 10× faster than directly
resolving the internal contact of a real-world sliding structure.

Cone Twist. We demonstrate our cone twist constraints with a
Nunchaku, connecting two thin cuboids at the end point with the
ranges of the three rotations separately controlled (Figure 13). Here
we move one section of the Nunchaku horizontally, vertically, and
twist it around its central axis. The motion propagates to the other
section with some delay as the rotation limits are reached.

Friction. We follow Li et al. [2021] to handle friction for codimen-
sional objects, and verified our implementation through the same
unit test. We place a 0.5𝑚-wide piece of square cloth on an inclined
slope. The inclination angle is set at 26.565◦ so the critical friction
coefficient of the slope is 0.5. For each time step we iteratively up-
date the normal force magnitude and the tangent operators until
convergence to a fully implicit solution. Our system obtains stiction
with friction coefficient 𝜇 = 0.5, and obtains sliding even at 𝜇 = 0.49,
which well-matches the real-world behaviors.

6.2 Restitution Study
To extensively study the behavior of our restitution model, we first
list all related simulation parameters in Table 1, and then design
experiments to analyze each of them in detail.

Table 1. Parameters relevant to constraint restitution.

time integration rule
time step size ℎ
damping coefficient 𝑘𝑑
barrier stiffness 𝜅 and 𝑐
Young’s modulus 𝑌

As elaborated in Section 5, our restitution model is realized by
rapid energy transitions between the kinetic form and the barrier
potential form during the activation of constraints. Therefore, the
restitution behavior definitely relies on the energy behaviors of the
simulation. This includes the numerical dissipation from a specific
time integration rule. Here we focus on exploring implicit Euler and
BDF-2. For these dissipative time integrators, different time step
sizes ℎ also result in different levels of dissipation. Then there is also
our semi-implicit Rayleigh damping energy, where larger damping
coefficient 𝑘𝑑 introduces more energy loss.

Furthermore, barrier stiffness 𝜅 and the threshold distance 𝑑 both
influence the smoothness of our barrier potential, and so they both
also affect the energy behavior since the truncation errors of the nu-
merical time integration rules are highly dependent on the smooth-
ness of the potential energies.

Last but not least, since our rigid bodies are essentially stiff elastic
bodies reduced in the affine space, we need to make sure that the
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(a) Point Connection (b) Hinge with Rotation Range (c) Bounded Sliding

Fig. 12. (a) (left) Point Connection. A triple-rod pendulum. (a) (right) Point Connection with Cloth. A piece of cloth hanging on a flexible coat rack. The
left and right images show the initial and final static frame. (b) Hinge with Rotation Range. We use balls to hit the boards which can rotate around a
shared shaft. From top to bottom, the rotation ranges of the boards are: 360◦ , 180◦ and 90◦ . (c) Bounded Sliding. Simulating this three-section monocular
with our bounded sliding constraints results in a more than 10× speedup compared to directly simulating the real-world sliding structure.

Fig. 13. Cone Twist with Rotation Ranges. ANunchaku is used to demon-
strate our cone twist constraint. The left section is moved horizontally (top),
vertically (middle), and twisted (bottom), with the right section following
its motion due to the separately controlled rotation ranges.

Young’s modulus 𝑌 is large enough so that during the kinetic and
barrier energy transfer, no energies are absorbed in the elasticity
potential as vibration.
We design two unit tests to analyze the above parameters:

Falling Box. A 1𝑚-wide cube free-falling onto the ground from
1𝑚 height with downward pointing gravity 𝑔 = −8𝑚/𝑠2.

Rotating Board. A board rotates around a shaft with initial angular
velocity 1.25 𝑟𝑎𝑑/𝑠 . It is designed to reach the maximum rotation
angle limit and then bounce back.
Next, we proceed our study by first showing the keys of obtain-

ing energy conserved results, and then demonstrate controllable
restitution via our semi-implicit Rayleigh damping model.

6.2.1 Energy Conservation. To start with, we compare implicit Euler
and BDF-2 time integration on the falling box example with 𝑌 =

109𝑃𝑎, 𝜅 = 105𝑃𝑎, 𝑑 = 0.064𝑚, and 𝑘𝑑 = 0 at different timestep
sizes. Here we plot the scaled energy value where the initial value
is 1, and the value at the final resting configuration is 0 (Figure 14).
We see that at frame-rate timestep size ℎ = 0.01𝑠 , results given by
implicit Euler damps out nearly 90% of the energy at first bounce,
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Fig. 14. Implicit Euler v.s. BDF-2 at different ℎ. Energy curves of a cube
falling onto the ground under gravity simulated with Implicit Euler and
BDF-2 at ℎ = 0.1𝑠 , 0.01𝑠 , 0.001𝑠 and 10−4𝑠 . Here we plot the energy ratio
calculated by treating the initial energy value as 1, and the energy value
when cube stays static on the ground as 0. Here the first bounce happens at
0.5𝑠 , where the energy decrease less when we use BDF-2 instead of implicit
Euler, and when smaller time step sizes are applied.

andℎ = 0.1𝑠 is even more dissipative. But for BDF-2, the energy only
decreases around 30% for each bounce at ℎ = 0.01𝑠 , although the
result is also extremely damped at ℎ = 0.1𝑠 . This is because BDF-2
is also a dissipative time integrator. As we decrease the timestep
size, even at ℎ = 10−4𝑠 , there are still obvious energy losses with
implicit Euler, but for BDF-2, at ℎ = 0.001𝑠 , the energy is already
conserved up to 99%. These results clearly suggest using BDF-2 for
significantly better energy preservation compared to implicit Euler.
Continuing our exploration with BDF-2 at ℎ = 0.001𝑠 , we test

different Young’s modulus in the falling box example. We observed
that, with smaller Young’s modulus like 105𝑃𝑎, the energy is well-
conserved but the bouncing height is not even half of the original
(Figure 15). This is because a significant amount of energy has been
transferred into the elastic potential as the object starts to vibrate.
When Young’s modulus gets 107𝑃𝑎, the bouncing height is almost
equal to the original, and further increasing Young’s modulus does
not significantly improve or reduce the bouncing height. Notice that
unless an elastic object is with infinitely large Young’s modulus, it
can always vibrate at a certain frequency. As the object gets stiffer, its
frequency of vibration increases, which can exceed the limit that our
discrete time integration could capture at certain time step sizes. This
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Fig. 15. Different Young’s Modulus. The total energy plot (left) and the
gravitational energy plot (right) of the falling box example with 𝑌 = 105,
106, 107, and 108. With smaller Young’s modulus, although the total energy
is well-conserved, the bouncing height is not fully restored as object starts
vibrating and some energy is transferred into the elastic potential.
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Fig. 16. Different 𝜅 and 𝑑 . Total energy plots of the falling box experiment
with different 𝜅 (left) or 𝑑 (right). We see that either a too large or too
small 𝜅 can result in energy losses due to sharpened barrier functions. For
𝑑 , energy behavior is monotonically improved as 𝑑 gets larger, a too large 𝑑
can result in large gaps between colliding objects.

is exactly what is happening here –we are avoiding the vibrations by
not capturing it. According to our extensive experiments,𝑌 = 109𝑃𝑎
is generally enough.

The most interesting part comes with the 𝜅 and 𝑑 which together
control the smoothness of the barrier potential. Since our barrier
is a piecewise function with local support, larger 𝑑 corresponds to
larger support regions, which clearly leads to a smoother function
with fixed 𝜅 . But note that a too large 𝑑 could result in unnecessary
repulsion forces even when the constraint is well-satisfied, which
potentially results in artifacts in the dynamics. For 𝜅, a too small
value can make the function sharp near 0, while a too large value
can make it sharp near 𝑑 . Therefore, both 𝜅 and 𝑑 need to be set
appropriately for accurate restitution modeling. Our experiments on
the falling box example with different𝜅 and𝑑 suggest that𝜅 = 105𝑃𝑎
and 𝑑 = 0.064𝑚 are the optimal values for ℎ = 0.001𝑠 (Figure 16).
However, different time step sizes and/or velocities can likely have
different optimal values.

Without loss of generality, let us focus on contact constraints and
implicit Euler time integration (so 𝑣𝑛+1 = (𝑥𝑛+1 − 𝑥𝑛)/ℎ), and look
at the restitution process in the three consecutive time steps in a
1D ideal setting:

(1) Approach. objects approach each other with relative velocity
𝑣0 < 0 and distance 𝑑0 > 𝑑 ;

(2) Contact. objects get closer to each other with distance𝑑1 < 𝑑 ,
and they are still approaching with relative velocity 𝑣1 ∈
(𝑣0, 0) as contact force just activates;
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Fig. 17. Barrier Force Plot with different 𝜅. With either a too large
(yellow curve) or a too small (blue curve) 𝜅 , the slope of the barrier force
will be extremely large between the two horizontal lines 𝑦 = 𝑓1 and 𝑦 = 𝑓2,
resulting in small distance differences, and thus small bouncing velocities.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

En
er

gy
Time

G=1.0 G=2.0
G=4.0 G=8.0

-1000
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

En
er

gy

Time

Fig. 18. Different Gravity. The total energy plot (left) and the gravitational
potential energy plot (right) of the falling box example with Gravity 𝑔 =

1𝑚/𝑠2, 2𝑚/𝑠2, 4𝑚/𝑠2, and 8𝑚/𝑠2. With different gravity, the box hit the
ground with different velocity, where elastic bounces for all the cases can
be simulated with our method using the same set of parameters.

(3) Rebound. objects start to separate with relative velocity
𝑣2 > 0, but their distance 𝑑2 is still slightly smaller than 𝑑 .

Then theNewton restitution coefficient is approximately 𝑟 = 𝑣2/(−𝑣0),
and with implicit Euler we have 𝑣2 = (𝑑2 − 𝑑1)/ℎ < 𝑑/ℎ. This rela-
tion indicates that, for perfect elastic impact (𝑟 = 1) to be resolved,
we should at least have

𝑑

ℎ
> 𝑣0, (23)

which resembles a lot to the CFL conditions [Courant et al. 1967]
in Eulerian-based simulations. Here 𝜅 decides the tightness of the
above bound, where a reasonable 𝜅 should sufficiently separate
𝑑1 and 𝑑2 by providing a smoothly varying barrier potential. This
is because the exact value of 𝑑1 and 𝑑2 are essentially calculated
according to the contact force magnitude needed at the contact
and rebound steps. Let us denote the force needed as 𝑓1 and 𝑓2

respectively, then we know that 𝑓2 − 𝑓1 =
∫ 𝑑2
𝑑1

𝜕𝑓

𝜕𝑑
𝒅𝑑 . Applying the

Mean Value Theorem, we obtain 𝑓2 − 𝑓1 =
𝜕𝑓

𝜕𝑑
(𝑑𝜉 ) (𝑑2 − 𝑑1) with

𝑑1 < 𝑑𝜉 < 𝑑2. This clearly indicates that an either too large or too
small 𝜅 will result in a large 𝜕𝑓

𝜕𝑑
(𝑑𝜉 ) and so a small 𝑑2 − 𝑑1 given

fixed 𝑓2 and 𝑓1 (Figure 17).
In our falling box experiments with BDF-2, we observed that at

ℎ = 0.001𝑠 , using 𝑑 = 0.064𝑚 and 𝜅 = 105𝑃𝑎 is able to simulate
perfectly elastic contact for 𝑣0 ≤ 4𝑚/𝑠 (Figure 18), which already
covers a wide range of complex real-world scenarios. We leave
developing a numerical time integration scheme with unconditional
energy conservation to future work.
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Fig. 19. Contact andConstraint Damping. Energy plots of the Falling Box
(left) and the Rotating Board (right) examples with semi-implicit Rayleigh
damping at different stiffnesses for controllable restitution behaviors.

6.2.2 Controllable Restitution. Being able to simulate energy con-
serving restitution behaviors, next we demonstrate controllable
restitution behavior with different expected loss of energy realized
by our semi-implicit Rayleigh damping model. For both the falling
box and rotating boards experiments, we apply different damp-
ing stiffness 𝑘𝑑 and obtained different energy dissipation at each
bounce, resulting in different restitution behaviors (Figure 19). This
demonstrates the generality of our restitution model on inequality
articulation constraints besides contact.

6.2.3 Discussion. Our restitution model has several advantages
over the traditional Newton’s model within the LCP framework.
With the Newton’s model, achieving perfectly elastic behaviors
without numerical instabilities requires trials and errors on setting
the restitution coefficient close to 1 but not exactly 1. It is unclear
how the coefficient relates to the stability of the system. With our
model, perfectly elastic restitution can be achieved by directly ap-
plying the extensively studied energy-conserving time integrations,
which also enables analyzing restitution in consistent with the nu-
merical solution of PDEs. In addition, our Rayleigh damping model
achieves controllable inelastic restitution for arbitrary inequality
constraints, which could be conveniently applied to versatile cus-
tomized constraints from researchers and practitioners in different
communities.

6.3 Complex Real-World Scenes
Windmill (Comparison with Bullet). We start by constructing a

windmill with a hinge constraint linking the blades to a fixed stand.
A heavy green box drops, trigger the rotational motion of the wheel
(Figure 20). The wheel blades then collide with two piles of boxes,
scattering them all over the ground. We simulate this scene us-
ing our method and the Bullet library [Coumans 2015]. We find
that Bullet often produces body-body intersections especially for
fast-moving objects (e.g., the green box gets “buried” under the
ground). Our method not only produces the accurate, realistic and
interpenetration-free result but also runs much faster. In this exam-
ple, our method delivers a 1.4× speedup over Bullet.

Hanging Bridge. We design a hanging bridge with 10 discrete
elastic rods and 40 rigid boards, all linked together with point con-
nection constraints (Figure 2). Then we place a ball at one end of the
bridge. The ball begins to rotate forward under accurately resolved
friction, until it deviates from the center line of the bridge and falls
down as the boards lean towards one side.

Initial

Bullet:

Ours:

Frame 83 Frame 300

Fig. 20. Windmill (Comparison with Bullet). The windmill is composed
of a fixed stand and four wheel blades (via a hinge constraint). We drop a
heavy box (in green) onto one of its blades. The falling impact then rotates
thewindmill to collide its wheel with two stacks of cubes.Many intersections
are present in the Bullet simulation result e.g., the green box deeply embeds
into the floor. Our method is more efficient than Bullet (1.4× faster) and
free of any body-body interpenetration.

Pulley System. We design a pulley system with 4 rigid pulleys and
4 elastic rods (Figure 3). The rightmost pulley is fixed by a hinge
constraint, and all other pulleys are restricted to freely move or
rotate in the vertical plane with sliding constraints. All the rods
are tightly fitting in the notch of each pulley, with the first two
rods connecting the ceiling and the rotation axis of the middle two
pulleys. Our system accurately simulates the pulleys lifting heavy
objects with longer pulling distance but smaller forces. This accuracy
is only achieved as we accurately resolve the frictional contact.
We also conduct a real-world experiment on the pulley system

and compare it side-by-side with our simulation results. Constructed
by four identical pulleys (18.14𝑔 each), the system is tested by lifting
a sequence of heavy objects (from 50𝑔 to 250𝑔). In each experiment,
we record the magnitude of the dragging force needed to keep the
pulley system stationary. Our simulation well-matches both the
analytical solution and the real-world experiment, despite some
measuring errors in the real-world data (Figure 21).
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Fig. 21. Pulley System Experiment. We construct a pulley system in real-
world and use it to lift objects with different mass. Plots of the dragging
forces at stationarity shows that our simulation well-matches both the
analytical solution and the real-world data, despite some measuring errors.
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Umbrella. We simulate an umbrella by coupling a rigid skeleton
with cloth. We design the internal supporting structure with 13
rigid thin rods connected with point connections, hinge, and sliding
constraints. Then we model a pyramid-shaped cloth and connect it
to the 6 outer rods on the skeleton. As we move the center pistol
down, we can see intricate wrinkles formed on the cloth as it shrinks
following the skeleton.

Fig. 22. Candy.We pack a red candy (affine body) by twisting a surrounding
cylinder shell. The rigid-deformable coupling and cloth self-contact are
automatically and robustly handled.

Candy. We place a rigid candy inside a cylinder shell, and then
twist the shell on its both ends to wrap the candy. The shell quickly
attaches the candy, and tight knots are formed on both sides. This
example demonstrates the robustness of our system on simulating
the friction and self-contact coupling mixed-dimensional solids even
under large stresses.

Terrain Navigation with Cylinder-Driven Vehicle. We construct a
self-powered cylinder engine and install it into a vehicle, connecting
to the back-right wheel and make all three other wheels passive. The
vehicle body, wheels, and all inner structures are all modeled with
rigid bodies, connecting to each other through point connection
and hinge constraints. As we pull the pistol of the cylinder engine
with a constant external force, the car starts navigating the terrain
smoothly due to accurately resolved frictional contact between the
wheels and the ground.

Ragdolls. We drop 60 ragdolls on the ground. Each Ragdoll is
composed of 11 rigid bodies, linked together by 10 cone twist joints.
All joints are applied with specific rotation ranges independently
set around different axes to mimic the mechanism of human body
joints. For example, at the elbow, the rotation ranges for the two
bending components are [−135◦, 0◦] and [−5◦, 5◦], and [−10◦, 10◦]
for twisting. All rotation ranges are strictly satisfied with our barrier
formulation.

Precession. We simulate a unicycle with automotive pedals. We
demonstrate the precession phenomenon by setting different initial
velocities for the unicycle. With larger initial velocity, the unicycle
is able to go farther in its direction.

"Lying Flat". Finally, we demonstrate the versatility of our unified
solver by combining rigid/deformable objects of multiple codimen-
sions. We model a hanging bed on the tree with multiple elastic tori,
rigid rings, and circular discrete rods chaining together. Then we
drop an articulated ragdoll and a piece of cloth onto the bed. The
bed is firm and the ragdoll can safely "lying flat" as our simulator

Table 2. Simulation Setups and Statistics. The collision detections are
performed on NVIDIA 3090 GPU, while other operations are performed
on Intel i9-10920X CPU.𝐶max : max contact pair # per step.𝐶𝐴 : average
contact pair # per step.

Example Δ𝑡𝑠𝑡𝑒𝑝 𝑁𝑏𝑜𝑑𝑦 𝑁𝑛𝑜𝑑𝑒 𝜇 𝐶max 𝐶𝐴 iter/step ms/iter

(Fig. 2) Bridge 1/24 51 2.3k 0.2 18 1.9 10.3 18.6
(Fig. 3) Pulley 1/24 9 16k 0.2 306 245.1 9.5 36.2
(Fig. 10) Terrain 1/24 10 34k 0.8 13 4.8 26.3 39.4
(Fig. 4) Umbrella 1/24 19 30k 0.0 491 176.7 10.2 1269.1
(Fig. 11) Ragdolls 1/100 1861 18k 0.2 17820 16590.2 43.1 1072.9
(Fig. 23) Precession 1/240 5 4k 0.8 4 0.3 3.5 16.0
(Fig. 1) "Lying Flat" 1/24 77 18k 0.2 1575 89.6 26.2 22.350
(Fig. 20) Windmill 1/240 468 1.9k 0.2 28641 9248.0 14.3 89.6
(Fig. 22) Candy 1/24 2 17k 0.4 1309 339.3 8.1 722.9

guarantees non-interpenetration even with thin geometries and
complex contact configurations.

6.4 Performance analysis
For all the complex real-world scenes, we show the detailed timing
breakdowns composed of Hessian/Gradient computations, collision
detection (contact stencils and CCD), and linear solve (Figure 24).
We observe that a scene with only rigid bodies tend to consume a
far less proportion of time on linear solves than a scene that also
contains deformable bodies. This is as expected because deformable
bodies often introduce a much larger number of simulation DOFs.
In addition, Hessian computation cost scales with both the system
size and the number of linear equality constraints.

To investigate the scalability of our system, we design an experi-
ment with 𝑁 × 𝑁 nunchakus (each consists of two box segments
linked by a hinge constraint) distributed uniformly in a square do-
main and then dropped onto the ground simultaneously. We run
the simulation with 𝑁 = 20, 40, 60, 80, 100 and plot their timing per
step in Figure 25. The plot shows that the timing cost of our system
grows linearly as the number of objects increases. Note that our cur-
rent implementation only uses GPU to perform collision detections,
which as expected only takes a small proportion of the total timing
(Figure 24 yellow and red) especially for large scenes.

7 CONCLUSION
In this paper we present a new multibody solver based on a unified
primal Newton Barrier Method. In contrast to most existing work,
our framework converts the formulation of contact, friction, and
articulation constraints into unconstrained nonlinear optimization
assisted with filtered line search techniques. We provide guarantees
in global convergence and constraint satisfaction while maintaining
practical near-interactive performance for a wide range of challeng-
ing and versatile scenes.

7.1 Limitations and Future Work
Our system can be slower than traditional rigid body solvers when
there are only a few objects in simple scenarios (e.g. 2 bodies with 1
hinge constraint) due to our slightly more DOFs per body (12 vs 6). In
addition, for our handling of the nonlinear equality constraints via
quadratic penalty, in more extreme situations where larger penalty
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(a)

(c)

(b)

Fig. 23. Precession. From (a) to (c), we drop a unicycle on the ground with increasing initial angular velocities. As our method accurately simulates the
dynamics and frictional contacts, different precession effects are nicely captured as faster angular velocity leads to a longer time of rolling. We show one
image per 50 frames in each sub-figure until the unicycle loses balance.
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Fig. 24. Timing Breakdown. We plot the proportions of the main compu-
tation routines (Gradient, Hessian, contact stencils, CCD, and linear solves)
for all real-world complex scenes. Examples are sorted in ascending order
on the percentage of time spent on linear solve.
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Fig. 25. Scalability Test.We perform a scalability test on our system by
simulating a number of 2-segment nunchakus dropped onto the ground.
Here we visualize the configurations at 2.4 𝑠 . The timing cost per step grows
linearly as the number of nunchakus increases.

stiffness is required for higher accuracy, the Newton convergence
will be slower due to the worse system condition. Although in
our experiment we do not observe any significant performance
deficiencies, it is certainly meaningful to further accelerate our
method by e.g. migrating more computations to the GPU.

With our choice of the maximal coordinate system, we defined
our relative sliding joint as a nonlinear equality constraint, which
with generalized coordinates can be expressed as a linear function
of the DOFs. However, a generalized coordinate system will result in
a nonlinear polynomial relation between the reduced and full DOFs,
which on the other end inject more nonlinearity to the potential
energies in implicit time integration. Our system can be trivially
extended to support generalized coordinate systems, and it would
be interesting to compare between these two design choices.
Our restitution behavior is mainly analyzed on the BDF-2 time

integration scheme. We selected BDF-2 for its unconditional sta-
bility and simplicity as it is a linear multi-step method. But note
that our controllable restitution can be realized based on any time
integrators with nice energy preserving behaviors. It is certainly
interesting and meaningful to test our system with other stable and
accurate time integration schemes such as the implicit Runge-Kutta,
etc. Furthermore, designing a time integration invariant energy con-
serving restitution model for barrier-based inequality constraints
would be extremely meaningful.
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