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such as chlorophyll, temperature, and pH, were posi-
tively correlated with MC, while transparency was 
negatively correlated. Interestingly, 12 of the 15 
studied nitrogen parameters, including total nitrogen, 
were not significantly correlated with MC. In con-
trast, three of the four studied phosphorus parameters, 
including total phosphorus, were positively related to 
MC. Results from this synthesis quantitatively rein-
forces the usefulness of commonly measured environ-
mental parameters to monitor for conditions related 
to MC occurrence; however, correlational analyses 
by themselves are often ineffective and considering 
what role a parameter plays in the ecology of cyano-
bacterial blooms in addition to MC production is  
vital.

Keywords  Cyanotoxin · Cyanobacteria · Harmful 
algal bloom · Synthesis

Introduction

Cyanobacterial blooms can have harmful impacts 
on global freshwater ecosystems by causing drastic 
changes in physicochemical conditions (e.g., hypoxia, 
decreased light penetration, elevated pH; Paerl et al., 
2001; Paerl & Otten, 2013) and by producing second-
ary metabolites that can be toxic to aquatic organ-
isms, livestock, and humans (Graham et  al., 2004; 
Malbrouck & Kestemont, 2006; Paerl et  al., 2001; 
Rinta-Kanto et  al., 2009). Of these cyanobacterial 
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toxins, microcystin (MC; produced by several cyano-
bacterial genera, including Microcystis, Nostoc, 
Oscillatoria/Planktothrix, Dolichospermum, and 
Anabaenopsis; Martins & Vasconcelos, 2009) is com-
monly observed in freshwater systems with 246 struc-
tural variants documented (Meriluoto et  al., 2016). 
The ubiquity of MC has prompted many researchers 
to study the environmental conditions that contribute 
to its occurrence (Graham et  al., 2017; Rinta-Kanto 
et  al., 2009). Field observations have begun to pro-
vide a framework of the typical conditions in which 
a toxigenic cyanobacterial bloom may occur; how-
ever, observations across systems indicate variability 
in the documented conditions most related to MC 
occurrence (Kotak et  al., 2000; Billam et  al., 2006; 
Wu et al., 2006; Duong et al., 2013; González-Piana 
et al., 2017). For instance, total nitrogen is thought to 
be positively correlated with cyanobacterial bloom 
formations (Paerl et al., 2001; Paerl & Otten, 2013) as 
well as MC production (Paerl & Otten, 2013), and has 
even been identified as the single-most driver of MC 
production in some systems (Giani et al., 2005). Yet, 
peer-reviewed field studies report wide disparities in 
the relationship between nitrogen and MC, with both 
positive and negative correlations observed (Appen-
dix A1 Fig. l; methods to secure such data and iden-
tify/generate correlations are described in the “Mate-
rials and methods” section). These contradicting 
reports do not necessarily discount the importance 
of nitrogen to MC, but do highlight the difficulties of 
generalizing the specific conditions most influential 
to the occurrence of MC despite the wealth of litera-
ture published on this topic.

Contributing to the discrepancies in documented 
findings of the environmental parameters likely to 
influence MC occurrence is the natural variability 
of toxin production and the highly dynamic nature 
of phytoplankton blooms. This includes variation in 
the relative dominance of toxigenic cyanobacteria in 
a bloom and the abundance and diversity of cyano-
bacteria over space and time (Li et al., 2017; Rinta-
Kanto et al., 2009; Wu et al., 2008). In addition, each 
freshwater system and respective bloom will be sub-
jected to different physical, chemical, and anthropo-
genic influences (Rinta-Kanto et  al., 2009). These 
factors increase the difficulty of determining the pri-
mary conditions likely to produce a cyanobacterial 
bloom and/or MC, especially across large geographi-
cal regions.

Although difficult, determining the relation-
ship between environmental parameters and MC are 
needed as cyanobacterial blooms are a global issue, 
the occurrence of which persist through anthropo-
genic-promoted eutrophication and climate change 
(Paerl & Paul, 2012). The impending health effects of 
microcystin and other cyanobacterial toxins threaten 
drinking water (WHO, 2020) and recreational areas 
(Francy et  al., 2016). Testing for MC does exist, 
whereby a governing authority may determine when 
their system has the toxin present. However, this form 
of monitoring only indicates when MC is present and 
does not assist in determining why it occurred. Solidi-
fying the overarching trends between environmental 
conditions and MC occurrence may assist resource 
managers when choosing the environmental parame-
ters to monitor and/or mitigate as they strive to reduce 
the risks associated with the toxin.

Bearing in mind the need for a greater understand-
ing of how water quality parameters are related to 
MC occurrence, the objective of this research was 
to quantitatively assess the strength of the relation-
ship between various environmental parameters 
and MC occurrence in freshwater ecosystems using 
meta-analysis techniques. We have observed that 
numerous studies in this field document correlation-
based relationships between common environmental 
parameters and MC concentration as authors seek to 
distill a complex topic into practical information for 
the reader (Graham et al., 2004; Billam et al., 2006; 
Duong et  al., 2013; González-Piana et  al., 2017; 
Kotak et al., 2000; Li et al., 2017; Li et al., 2007; Liu 
et al., 2008; Rinta-Kanto et al., 2009; Wu et al., 2006; 
Xu et  al., 2011; Xue et  al., 2018; Yen et  al., 2012; 
Zhang et  al., 2018; Zheng et  al., 2004; additional 
studies provided in Appendix A1). This reporting 
provides a relationship with MC independent of con-
founding factors that are also at play in the ecology of 
cyanobacterial blooms (e.g., species composition and 
biomass, cellular physiology traits, presence/absence 
of toxin related genotypes, nutrient preferences, and 
thresholds; Paerl et  al., 2001; Paerl & Otten, 2013), 
though such factors are typically addressed within 
the published report as well. Although direct correla-
tions with MC do not allow for the nuanced aspects 
of toxigenic cyanobacterial ecology to be delineated 
(and we stress that such factors need to be understood 
for a holistic approach to MC mitigation), nor does 
it provide a method to decipher if an environmental 
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parameter directly or indirectly contributes to MC 
occurrence (i.e., correlation does not equal causa-
tion), their popularity within the global literature pro-
vides a wealth of information on the potential drivers 
of MC in a format that is standardized. By leverag-
ing this commonly reported measurement, we hope 
that the results of this study will provide (1) resource 
managers with a quantitative assessment of the cur-
sory parameters to monitor to determine MC occur-
rence in freshwater systems, and (2) a summary to the 
often contradictory reports observed within literature 
regarding MC occurrence when using correlational 
analyses (e.g., A1 Fig. 1).

Materials and methods

Data collection

Three primary sources were used to acquire data, 
including published journal articles, the National 
Water Information System database of the U.S. Geo-
logical Survey (USGS, 2018), and the 2007 and 

2012 National Lake Assessments conducted by the 
U.S. Environmental Protection Agency (EPA-NLA, 
2007,  2012). Data acquisition from each source is 
described separately in the following paragraphs.

Published articles were retrieved using the Web of 
Science database. A literature search was performed 
in February 2018 by combining the keywords “lake,” 
“reservoir,” “environment,” “parameters,” “nutrients,” 
“variables,” “environmental parameters,” and “envi-
ronmental variables” each with “microcystin”; the 
search returned 3,332 articles. Studies were included 
in the meta-analysis if they (1) were observational 
field studies (i.e., not experimental in nature); (2) 
were from a freshwater reservoir or lake, defined as 
a system with little-to-no-flow (i.e., no unimpeded 
rivers or streams); (3) provided data for ≥ 5 samples 
collected at any given site; and (4) provided numeri-
cal sampling data in figures, tables, or supplemen-
tary files. Seventy-nine studies met these criteria (see 
Appendix A1).

The National Water Information System of the U.S. 
Geological Survey was accessed in February 2018 
to obtain real-time field sampling data containing 

Fig. 1   Locations of waterbodies from which data were used in this study
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MC values and associated environmental parameters 
from sites within the USA (USGS, 2018). Data were 
used if ≥ 5 samples were collected at any given loca-
tion; fifty sites were chosen. Many sites contained a 
wide array of measured parameters (e.g., heavy met-
als, organic and inorganic chemicals, physical meas-
urements). Parameters that were not reported in the 
obtained published studies were largely removed. 
Lastly, common symbols were reported with pub-
lished values throughout the USGS dataset and reme-
diated in various ways (A1 Table 1).

Data were also available from an estimated 1,161 
and 1,137 lakes or reservoirs as part of the EPA- 
NLA in 2007 or 2012, respectively, which included 
MC data (EPA, 2007, 2012). Of these waterbodies, 
460 of the 2007 dataset were estimated to be resam-
pled in 2012, resulting in 701 newly sampled lakes 
or reservoirs in the 2012 dataset. If it was observed 
that a study used data that were also provided in the 
EPA-NLA or USGS datasets (e.g., Beaulieu et  al., 
2013; Beaver et  al., 2014; Harris & Graham, 2017), 
the primary in-text values were not used and only 
the original raw data were used. The 2007 and 2012  
NLAs were the largest datasets to be used in this study  
but generated only one correlation per environmental 
parameter examined per assessment.

From the three data sources, a total of 131 articles 
and datasets (hereby termed “studies”) that contained 
physicochemical (i.e., temperature, dissolved oxy-
gen, pH, Secchi depth (transparency), conductivity), 
chemical (i.e., nitrogen, nitrate, nitrite, ammonia, 
phosphorus, phosphate), algal abundance (total chlo-
rophyll and chlorophyll-a), and cyanobacterial toxic-
ity (microcystin) data, independent of time or season, 
were included. Phosphate included both phosphate 
and orthophosphate. If two or more environmental 
parameters were found to report the same estimates, 
they were condensed whenever possible; however, 
parameters that were not considered uniquely similar 
or had variable analytical methods (e.g., phosphate, 
soluble reactive phosphorus, total dissolved phos-
phorus) were left separated. Total microcystin meas-
urements were used if offered, but intracellular (fil-
tered) microcystin, microcystin + nodularin (USGS, 
2018), and the microcystin variant, microcystin-LR, 
were all also used as an alternative if presented no 
other option. Broader information regarding MC 
variants, sampling methods, and correlation types of 
each study/site can be found in A1 Table 5.

Data collected during the literature review that 
fit the pre-determined inclusion criteria origi-
nated largely from the north temperate region of 
the globe. All data that fit the literature review 
selection criterion were utilized in the analysis 
reported on in the primary text of this article, but 
assessments of data by region (e.g., north temper-
ate, south temperate, and tropical) are reported in 
Appendix 2.

Correlation coefficient development

Commonly reported correlations of the relation-
ship between a specific environmental parameter 
and microcystin concentration served as the foun-
dation for this synthesis. From the published arti-
cles, three correlation coefficients provided by the 
authors were primarily used, including Pearson’s r, 
Spearman’s rho, or Kendall’s tau. Reported corre-
lation coefficients that were not otherwise specified 
were treated as Pearson’s r. It was observed that 
68% of the peer-reviewed publications used in this 
analysis reported the relationship between environ-
mental parameters and MC occurrence specifically 
using some form of correlation coefficient (A1 
Table 5). In some cases, Pearson’s correlation coef-
ficients were also generated for studies that did not 
directly provide this value. In these instances, data 
were extracted from a figure using the metaDigitise 
package in R (Pick et al., 2020). The cor.test func-
tion in R was then used to generate Pearson’s cor-
relation coefficients from the obtained data. Lastly, 
Spearman’s rho or Kendall’s tau correlation coef-
ficients were transformed to Pearson’s r using the 
following two equations:

Kendall’s tau to Pearson r, reported by Rupinski 
and Dunlap (1996):

where r = Pearson’s coefficient and t = Kendall’s tau.
Spearman’s rho to Pearson’s r, reported by 

Rupinski and Dunlap (1996):

where r = Pearson’s coefficient and rs = Spearman’s 
rho.

r = sin(t ∗
�

2
)

r = 2 × sin(rs
�

6
)
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Data analysis

Fisher’s z-scores were used as a measure of effect 
size due to its improved statistical properties (Jiang &  
Pu, 2009; Weaver et  al., 2018; Ortega et  al., 2020). 
Prior to statistical analyses, the Pearson’s correlations 
(r) for each environmental variable were converted to 
Fisher’s z-scores using the following equation (Fisher, 
1958) in the metafor package in R to normalize the 
distribution of the data (Viechtbauer, 2010):

Effect sizes (hereby termed “correlations”) were 
then generated from the Fisher’s z-scores using the 
Robust Multi-Array Average function including 
the restricted maximum likelihood method found 
within the metafor package. The metafor package 
also produced a weighted variance and standard 

z = 0.5 × ln

(

1 + r

1 − r

)

error for each Fisher’s z-score. In addition, a test 
of heterogeneity (I2) and 95% confidence intervals 
were generated for each environmental parameter 
correlated with MC, separately. Lastly, a visual test 
for publication bias was generated via a funnel plot 
depicting effect size, as Fisher’s z, against standard 
error using the metafor package (A1 Fig. 2). Funnel 
plots depict heterogeneity of estimates, and values 
that fall within the 95% confidence region (triangu-
lar region) are considered to be free of publication 
bias (Higgins & Green, 2011). It was determined 
that the majority of values used in this analysis fell 
within this region.

To ease the interpretation of the study results, a 
Fisher’s z-score was converted back to a Pearson’s 
correlation coefficient using the equation:

r = tanh(Zr)

Fig. 2   Estimates of effect between microcystin occurrence 
and physical parameters. Estimates converted from Fisher’s z 
to Pearson’s r. Studies = number of articles or datasets incorpo-
rated into the effect size estimate. I2 = Heterogeneity (%). Error 

bars represent 95% confidence intervals. * denotes parameters 
with statistical significance (p ≤ 0.05). A larger effect size box 
denotes a smaller variance (greater weight) within the estimate
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where Zr = Fisher’s z-score (Gilpin, 1993).
Pearson’s correlation coefficients can range from −1 

(perfect negative correlation) to + 1 (perfect positive 
correlation). Ninety-five percent confidence intervals 
were used to gauge significance (p > 0.05). The amount 
of studies (n) used to generate effect size estimates 
were also reported.

Results

The final dataset contained correlations of 35 envi-
ronmental parameters with MC totaling 1,029 
unique effect sizes (i.e., correlations). These cor-
relations included data from an estimated 2,643 
unique waterbodies (note that a study could con-
tain more than one lake in its survey; Fig. 1). Most 
data were collected in the USA, Europe, and China 

(Fig. 1). Additional studies were identified on other 
parts of the globe during the literature review but 
contained data that were not in a usable form and/
or did not meet the inclusion requirements of this 
study.

Each of the 35 environmental parameters con-
tained a range of studies that were used in their 
assessment (ranging from 3 to 106 studies per envi-
ronmental parameter assessment; Figs. 2, 3, and 4; 
A1 Tables 2, 3, and 4), and averaged 36 studies per 
parameter assessment. Heterogeneity also varied 
widely across environmental parameters (0–98%; 
Figs.  2, 3, and 4). Although most correlations had 
high heterogeneity (I2 >50%), I2 for eight correla-
tions were low (≤ 25%), indicating that either the 
value between estimates were extremely homog-
enous or  a small sample size precluded accurately 
estimating variation.

Fig. 3   Estimates of effect between microcystin occurrence 
and biological, biochemical, or chemical parameters. Estimates 
converted from Fisher’s z to Pearson’s r. Studies = number of 
articles or datasets incorporated into the effect size estimate. 

I2 = Heterogeneity (%). Error bars represent 95% confidence 
intervals. * denotes parameters with statistical significance 
(p ≤ 0.05). A larger effect size box denotes a smaller variance 
(greater weight) within the estimate
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Physical parameters

A statistically significant (p ≤ 0.05) positive cor-
relation was found between MC and temperature 
(r = 0.20, n = 106; Fig. 2; A1 Table 2). Secchi depth 
(measurement of transparency) was the only physi-
cal parameter that had a significant negative corre-
lation with MC (r =  −0.20, n = 44). The three other 
physical parameters, turbidity (r = 0.18, n = 34), total 
suspended solids (r = 0.08, n = 21), and conductivity 
(r = 0.07, n = 69), assessed in this meta-analysis were 
not significantly correlated with MC.

Biological and chemical parameters

Chlorophyll (r = 0.45, n = 76), total dissolved phos-
phorus (r = 0.30, n = 13), total phosphorus (r = 0.22, 
n = 92), phosphate (r = 0.14, n = 59; p = 0.055), 

dissolved organic carbon (DOC; r = 0.07, n = 17), 
nitrate (r =  −0.12, n = 74), dissolved nitrogen 
(r =  −0.19, n = 5), and pH (r = 0.12, n = 92) were 
found to be significantly (p ≤ 0.05) correlated with 
MC (Figs. 3 and 4; A1 Tables 3 and 4). Chlorophyll 
had the largest positive correlation with MC of any 
parameter assessed in this synthesis (n = 76). Of the 
fifteen nitrogen water quality parameters, correla-
tions for only two parameters were statistically sig-
nificant and both were negatively correlated with  
MC (dissolved nitrogen, nitrate; Fig.  4). The num-
ber of studies included for specific nitrogen param-
eters varied widely (n range = 5–82; A1 Table  4) as  
did heterogeneity (I2 = 0–98%). Total nitrogen 
displayed a nearly-zero, non-significant correla-
tion despite having data from a large number of 
studies included in its estimate (n = 82). Ammo-
nia, and its derivatives, showed mostly positive,  

Fig. 4   Estimates of effect between microcystin occurrence 
and nitrogen or phosphorus parameters. Estimates converted 
from Fisher’s z to Pearson’s r. Studies = number of articles or 
datasets incorporated into the effect size estimate. I2 = Hetero-

geneity (%). Error bars represent 95% confidence intervals. * 
denotes parameters with statistical significance (p ≤ 0.05). 
A larger effect size box denotes a smaller variance (greater 
weight) within the estimate

Environ Monit Assess (2022) 194: 493 Page 7 of 16    493



1 3
Vol:. (1234567890)

albeit statistically insignificant, correlations with MC 
(Fig. 4).

Interestingly, and in contrast to the nitrogenous 
parameters, all four reported phosphorus parameters 
displayed positive correlations across a range of stud-
ies (n = 13–92; A1 Table  4). Total phosphorus had 
one of the largest number of studies incorporated into 
its estimate and displayed a statistically significant 
positive correlation (r = 0.22; n = 92; p ≤ 0.05; Fig. 4). 
Total dissolved phosphorus (r = 0.3; n = 13; p ≤ 0.05) 
and phosphate (r = 0.14; n = 59; p = 0.55) were also 
positively correlated with MC (Fig. 4). Soluble reac-
tive phosphorus was the only phosphorus  type not 
statistically related to MC.

Discussion

This meta-analysis synthesized water quality data 
from both single- and multi-lake surveys by utilizing 
study correlational matrix tables to identify environ-
mental parameters significantly correlated with MC. 
A number of large, multi-lake surveys have occurred 
in recent decades, including those conducted in Can-
ada (Kotak et al., 2000; Giani et al., 2005), the USA 
(Graham et al., 2004; EPA-NLA, 2007, 2012), China 
(Wu et  al., 2006), Europe (Mantzouki et  al., 2018), 
and the Czech Republic (Jančula et al., 2014). How-
ever, no surveys have assessed the strength of such 
relationships with MC across as many environmen-
tal parameters  as this study. Although data from an 
estimated 2,643 waterbodies were used for this meta-
analysis, data largely originated from sources in the 
northern hemisphere, despite attempts made to secure 
data elsewhere within the literature review (analysis 
on break down of data from the northern and southern 
temperate, and tropical regions found in Appendix 2). 
The unbalanced sources of global limnological data 
are documented issues (Lewis, 2000; Ramírez et al., 
2020), and the continued availability of open-sourced 
data and further assessments of lakes in the southern  
temperate and tropical regions will assist in address-
ing global questions.

Despite the wealth of monitoring data collected 
(Kotak et  al., 2000; EPA-NLA, 2007, 2012; Wu 
et  al., 2006), relatively few environmental param-
eters (29%; 10 of 35; including temperature, pH, 
Secchi depth, chlorophyll, DOC, total phosphorus, 

total dissolved phosphorus, phosphate, nitrate, and 
dissolved nitrogen) were significantly correlated 
with MC in this study. The limited significance 
within these 35 variables is not surprising given 
that the function of most cyanobacterial second-
ary metabolites, including MC, as well as the fac-
tors responsible for their production are poorly 
understood (Gągała et  al., 2014; Henao et  al., 
2020; Holland & Kinnear, 2013; Kaebernick &  
Neilan., 2001; Paerl & Otten, 2013; Sivonen, 2009). 
We do know that toxigenic cyanobacterial taxa 
must be present for toxins to be produced, but the 
presence of these taxa alone is no guarantee for 
toxin production (Horst et  al., 2014; Lyck, 2004;  
Wiedner et al., 2003). Additionally, toxin production 
can vary strongly across genotypes (Lyck, 2004; 
Watanabe et  al., 1989; Wilson et  al., 2006; Yinxia  
et al., 2017).

This meta-analysis determined the environmental 
factors most significantly correlated with MC that 
water resource managers may consider using when 
monitoring for the toxin. The across-study varia-
tion we observed in the correlations drawn directly 
between environmental parameters and MC could 
suggest that these correlational analyses alone do 
not accurately address the complex factors taking 
place in the ecology of a cyanobacterial bloom that 
lead to the eventual production of MC. As such, we 
suggest that future research consider the usefulness 
of reporting direct correlations with MC.

Despite the possible limitations correlational anal-
yses have when drawing conclusions between envi-
ronmental parameters and MC directly, we maintain 
that the wealth of information found within such 
correlation assessments should not be disregarded as 
they may be used to help provide input to what group 
of parameters are the best to be incorporated in a 
monitoring program (Neilan et al., 2013). Significant 
parameters will be described in the following para-
graphs, in which examples will be given as to how 
parameters relate to toxigenic cyanobacteria as well 
as to MC itself. Such examples are meant to high-
light the possible pathways in which a parameter may 
generate a significant correlation with MC. Further, 
the relationships drawn in this study were of areas 
affected by MC, and, as such, findings should not be 
extrapolated as critical parameters to areas experi-
encing blooms of non-toxic phytoplankton taxa.

Environ Monit Assess (2022) 194: 493 493   Page 8 of 16



1 3
Vol.: (0123456789)

Physical parameters

Temperature

In general, warmer temperatures lead to an increase 
in toxic cyanobacterial growth and toxin production 
(Paerl & Huisman, 2008). Numerous optimal tem-
perature ranges for toxigenic cyanobacteria have been 
reported, stating that temperatures greater than 20 °C 
are generally beneficial to the formation of toxic 
blooms (15–20  °C, Billam et  al., 2006; ~ 23  °C, Li 
et al., 2007; 18–35 °C, Gągała et al., 2014; > 23 °C, 
Rigosi et  al., 2015; > 25  °C, Boutte et  al., 2008). 
Interestingly, studies have also shown that increased 
temperatures cause an upregulation of the mcyB 
gene (which, in part, helps regulate MC production) 
in Microcystis aeruginosa, with peak upregulation 
occurring at 25 °C (Kim et al., 2005; Scherer et al., 
2016). This finding may support the hypothesis that 
microcystin and cyanobacterial toxins serve as radi-
cal scavengers in cells seeking to limit oxidative 
stress during higher temperatures and solar irradi-
ances (Dziallas & Grossart, 2011). Due to the signifi-
cance of temperature in relation to MC, it is recom-
mended that this easily measured parameter be used 
by resource managers.

Secchi depth

Transparency (measured as Secchi depth) displayed 
a significant negative correlation with MC occur-
rence. As Secchi depth can be measured with relative 
ease, it is recommended that it be incorporated into 
water resource monitoring programs. However, this 
measurement alone may not accurately be related to 
toxic cyanobacterial blooms, and therefore training  
to delineate the meaning of Secchi depth measure-
ments is needed. For instance, high levels of turbidity, 
algal cells (both non-toxic cyanobacterial strains and 
other phytoplankton species), dissolved organic matter 
(which can be comprised of various compounds; to be  
discussed), or suspended solids may each reduce Sec-
chi depth measurements, but can equate to very dif-
ferent ecological stressors or processes in freshwater 
systems (Swift et al., 2006). Despite this, it has been 
suggested that certain toxigenic cyanobacterial spe-
cies are capable of excelling in turbid environments, 
as select species can, for example, remain at the water 
surface using gas vesicles to maintain buoyancy, 

circumventing these conditions (e.g., Microcystis; 
Paerl & Huisman, 2008). Bonilla et  al. (2012) also 
found in an assessment of 940 lake samples from the 
Northern and Southern Hemisphere that Planktothrix 
agardhii biovolume was positively correlated with 
the turbidity of a system, and Cylindrospermopsis 
raciborskii had a high phenotypic plasticity, which 
allowed the species to thrive in similar turbid and 
low-light conditions.

Biological and chemical parameters

Chlorophyll

Chlorophyll was observed to have the greatest cor-
relation slope (r = 0.45) to MC in this entire synthe-
sis and is as such recommended to be measured in 
systems experiencing the threat of MC occurrence. 
Other algal pigments, such as phycocyanin, could 
also be measured to a similar effect and may pro-
vide a more specific relationship with cyanobacteria 
(Kasinak et  al., 2015; McQuaid et  al., 2011); how-
ever, these measurements are collected at a lesser 
extent by water resource managers globally. Chloro-
phyll and subsequent algal pigments are a beneficial 
measurement of phytoplankton abundance; however, 
these values alone do not infer that MC will be pro-
duced as not all blooms will possess cyanobacterial 
species capable of producing cyanobacterial tox-
ins, not all cyanobacterial species will possess the 
genes required for toxin production even if toxigenic 
cyanobacterial species were to dominate, and not all 
blooms consist of cyanobacteria (Rinta-Kanto et al., 
2009). For instance, Wilhelm et  al. (2011), who 
studied Lake Taihu, China, found the presence of 
the mcyA genes needed for MC production in only 
three of the ten sites sampled despite all sites having 
DNA from Microcystis present. Despite these fac-
tors, measurements of cyanobacterial pigments, such 
as chlorophyll and/or phycocyanin, are some of the 
most effective methods to quickly monitor the direct 
density of an algal or cyanobacterial bloom.

Dissolved organic carbon

Dissolved organic carbon displayed the weakest 
slope, yet a  statistically significant correlation with 
MC. As observed with other environmental param-
eters, the mechanism in which DOC is important to 
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MC production and cyanobacterial cell growth is 
questioned within the literature. Some suggest that 
the correlation between cell density and DOC occur-
rence (as dissolved organic matter) is produced as a 
by-product of cyanobacterial cells (Tessarolli et  al., 
2018) or are released during cyanobacterial cell 
lysis (Paerl et  al., 2001). Therefore, the relationship 
between DOC and MC occurrence may exist because 
DOC is a product of the cyanobacterial bloom itself. 
Others suggest that DOC is important to cyanobacte-
ria as DOC is assimilated directly either by cyanobac-
teria or by the bacterial matrix surrounding or resid-
ing within the mucilage of cyanobacterial colonies 
(Paerl et al., 2001; Znachor & Nedoma, 2010; Cook 
et al., 2020). Further delineation on whether the cor-
relation observed between dissolved organic carbon 
and MC occurrence is attributed to DOC fueling toxi-
genic cyanobacterial abundances or if DOC is a by-
product of established blooms is needed.

Total phosphorus, total dissolved phosphorus, 
phosphate, nitrate, and dissolved nitrogen

Total phosphorus and the other phosphorus param-
eters in this meta-analysis had positive correlations 
with MC and were typically greater than those of 
nitrogenous parameters, which reported largely low-
to-negative correlations. The findings of this meta-
analysis reflect the conclusions of previous studies 
that reported phosphorus had a larger importance 
to eutrophication and algal/cyanobacterial biomass 
rather than nitrogen or nutrient ratios (i.e., C:N:P; 
Schindler et al., 1974; Schindler et al., 2008), and that 
cyanobacteria often experience phosphorus limitation 
in freshwater systems (Dignum et al., 1970). Also, it 
has been suggested that non-toxic Microcystis strains 
outcompete toxic strains in low nutrient conditions, 
but toxic strains dominate at higher nitrogen and 
phosphorus concentrations (Vezie et al., 2002). More-
over, M. aeruginosa grown in phosphorus-limited 
conditions produced MC with the addition of phos-
phorus (Oh et al., 2000). It is postulated that MC may 
serve as a deterrent against grazing zooplankton and 
will increase in toxicity when more nutrients (particu-
larly phosphorus) become available (Oh et al., 2000).

Of the phosphorus parameters reported, total dis-
solved phosphorus (TDP) had the greatest positive 
correlation to microcystin. It is possible that TDP 
components are released during the breakdown phase 

of a bloom, and this release coincides to the time 
where microcystins are also present and at greater 
concentrations. Cyanobacteria can uptake and store 
phosphorus within their cells for later use, a process 
known as luxury phosphorous uptake (Crimp et  al., 
2018). This phosphorus is stored as polyphosphate 
(Sanz-Luque et  al., 2020). The breakdown of the 
bloom during its decay phase would release phos-
phate and this would register as TDP in a water qual-
ity analysis. It has been observed that up to 67% of 
the phosphorus released during the decay phase of a 
bloom is orthophosphate (Zheng et  al. 2018). Also 
occurring during the late stages of a bloom’s expo-
nentiation phase and stationary phase are higher lev-
els of microcystin (Watanabe, 1989), which may also 
be released during the decay phase. This increase of 
microcystin and subsequent release of phosphate may 
equate to a greater, positive correlation value between 
the two parameters.

To minimize the importance of nitrogen to MC 
occurrence is not the objective of this study. Numer-
ous surveys have shown that nitrogen is correlated 
to MC occurrence, and nitrogen is needed for the 
peptide formation of the MC structure (Giani et  al., 
2005; Graham et  al., 2004; Wilhelm et  al., 2011). 
It is possible that the low-to-negative effect sizes of 
nitrogen parameters may be attributed to the abil-
ity of nitrogen to vary between dissolved, gaseous, 
and particulate forms, and leave or enter a system 
though processes, such as denitrification and nitro-
gen fixation; processes that may make nitrogen con-
centrations less static than phosphorus (Scott et  al., 
2019). In addition, the low-to-negative effect sizes 
of nitrogen parameters observed may be attributed to 
the ability of select cyanobacterial species to utilize 
N2-fixation (e.g., Anabaena/Dolichospermum, Cylin-
drospermopsis/Raphidiopsis; Chorus & Bartram, 
1999). Interestingly, it was found that the correlation 
coefficients between total nitrogen and MC occur-
rence used in this study ranged from r = 0.92 (sample 
size = 48), reported by Oberholster and Botha (2010), 
to r =  −0.69 (sample size = 12) reported by Xue et al. 
(2016). If the cyanobacterial species composition is 
compared between these reports, M. aeruginosa, 
a species incapable of N2-fixation, dominated the 
system reported by Oberholster and Botha (2010), 
whereas the cyanobacterial bloom reported by Xue 
et al. (2016) shifted from Microcystis to a diazotroph, 
Dolichospermum. This is an example between two 
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extremes, but it does reflect the importance of under-
standing the cyanobacterial species composition of a 
freshwater body in question as the nutrient require-
ments of species will vary over space and time.

Dissolved nitrogen was observed to have a signifi-
cant negative relationship with MC. This could be due 
to the use of nitrogen in the production of MC. In addi-
tion to nitrogen being a key nutrient for cyanobacte-
rial growth and function, it is also a building block in 
the MC compound (Hotto et al., 2008; Wagner et al., 
2019). During a bloom, the cyanobacterial popula-
tion requires large amounts of nitrogen for the pro-
duction of additional cells as well as for MC (if the 
bloom should be MC-producing). Dissolved forms of 
nitrogen have been reported to be removed from sys-
tems quickly as they are the most energetically favora-
ble form of nitrogen to use (Flores & Herrero, 2005). 
Gladfelter et al. (2022) observed that after the addition 
of various forms of nitrogen into an outdoor limno-
corral experiment, extracellular nitrogen concentra-
tions quickly decreased from the system and coincided 
with the increase of phycocyanin (a pigment) in the 
cells of the cyanobacteria. If nitrogen is being used for 
cyanobacterial function or toxin production, this could 
equate to low amounts of nitrogen in the water and 
higher MC concentrations, leading to a negative cor-
relation between the parameters.

It is possible that the relationship between MC 
concentration and nitrogenous parameters is non-
normal. Such trends between MC occurrence and 
nitrogen have been observed prior (Graham et  al., 
2004), and are not reflected in the correlation type 
analyses that are routinely reported in this field. We 
recommend that researchers assess their data to look 
for non-linear trends and thresholds between environ-
mental parameters and MC or consider making their 
raw data available at time of publication.

pH

Little consensus exists regarding the role of pH in 
MC production and optimal cyanobacterial growth. 
For instance, laboratory studies have observed that 
toxic strains of Microcystis will have a greater cell 
density at both higher temperatures and pH (Song 
et al., 1998; Watanabe & Oishi, 1985). Yet, Cuichao 
et al. (2013) observed the effects of pH on the peak 
growth rates of M. aeruginosa to be more nuanced, 
finding that M. aeruginosa growth in the exponential 

phase benefited by a higher pH of 9.5, while a pH of 
7.5 supported the greatest growth when the culture 
was in its stationary phase.

The field studies assessed in this meta-analysis 
reveal a positive correlation between MC and pH. It 
is possible that higher pH conditions may allow for 
bicarbonate to become more bioavailable, which has 
shown to be favorable to cyanobacteria (Boyd, 2015; 
Mokashi et  al., 2016). Alkaline environments may 
also contribute to the increased occurrence of MC, as 
has been suggested in past laboratory studies (Song 
et al., 1998; Watanabe & Oishi, 1985).

Although pH may be a measurement related to 
MC, resource managers should note that cyanobacte-
rial bloom density and the time of day during which 
a sample is taken will affect the reported value of 
pH. As phytoplankton uptake carbon dioxide during 
daylight hours (increasing pH) and respire at night 
(decreasing pH; Boyd, 2015), the presence of a sub-
stantial algal bloom will greatly influence ambient 
pH. The majority of studies utilized in this analysis 
were taken during daylight hours. In general, a fur-
ther delineation of the role of pH in MC occurrence 
is needed.

Microcystin variants used in this study

This meta-analysis considered total MC, intracellular 
MC, MC-LR, intracellular MC-LR, and MC + nodu-
larin, as these were the most reported MC variants 
documented in the studies that met our inclusion cri-
teria. Extracellular MC as well as over 246 variations 
in the chemical structure of MC have also been doc-
umented in past studies, but are reported to a much 
lesser extent in monitoring publications (Park et  al., 
1998; Meriluoto et  al., 2016). Repeating this meta-
analysis to include other MC fractions or variants 
may alter our findings; however, the limited presence 
of these MC variants and our large sample size likely 
preclude significant interpretational shifts. Extracel-
lular toxins typically occur at a lesser amount than  
that of intracellular fractions due to rapid microbial  
degradation, and often an excess of extracellular 
toxins is observed only during the decay phase of  
a bloom (Park et al., 1998; Zheng et al., 2004; Li et al., 
2017). For instance, Park et al. (1998) monitored the 
intracellular and extracellular MC fractions in Lake 
Suwa, Japan, over four growing seasons, and observed 
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that intracellular MC was on average ~ 25 × higher to 
that of extracellular MC.

Conclusions

Findings from this quantitative synthesis reveal envi-
ronmental parameters that are significantly corre-
lated with the hepatotoxin, MC, in freshwater lakes 
and reservoirs. For example, if findings are taken 
together, eutrophic systems that are warmer, and alka-
line, and contain elevated phosphorus concentrations 
tend to have greater MC occurrence. Such findings 
from a dataset with samples that ranged widely over 
both space and time may reflect the usefulness of the 
parameters found to be significant to be incorporated 
into MC monitoring programs, and managing such 
conditions may assist in mitigation attempts to reduce 
MC.

Studies incorporated a wide range of sampling and 
reporting methodologies (A1 Table 5), and were sub-
sequently utilized in this analysis with limited bias. 
Additionally, this assessment was performed inde-
pendent of season and rather focused on the quantita-
tive assessment of all pertinent data. Seasonality may 
have an effect on correlations, as, for example, major 
stages of a cyanobacterial bloom formation coincide 
with different times of the year and may place a vary-
ing reliance on select parameters (e.g., nitrogen may 
have a greater importance during bloom formations 
(see Gobler et  al., 2016; Otten et  al., 2012)). The 
authors of this article strive to assess the question of 
seasonality in future studies.

Direct correlations between environmental param-
eters and MC occurrence provide an efficient method 
to refine a complex topic into a functional unit of 
information; however, such statistical analyses may 
fail to address the specific mechanism(s) in which 
an environmental parameter relates to the ecology of 
cyanobacterial blooms and MC production. Consid-
ering that the environmental parameters associated 
with significant correlations can be both directly or 
indirectly related to MC production (e.g., increased 
temperature may lead to greater toxigenic cyano-
bacterial biomass, pH may influence MC production 
or be influenced by bloom density), further labora-
tory and field studies that research the mechanisms 
that mediate interactions related to the promotion 
of cyanobacteria will help water resource managers 

better understand the conditions that contribute to the 
production of MC.
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