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Abstract

We revisit the perceptual crossing simulation studies, which
are aimed at challenging methodological individualism in the
analysis of social cognition by studying multi-agent real-time
interactions. To date, all of these simulation studies have re-
ported that it is practically impossible to evolve artificially a
robust behavioral strategy without introducing temporal de-
lays into the simulation. Also, all of the studies report on
a single strategy: a perpetually crossing agent pair. Here,
we systematically report on the evolutionary success of neu-
ral circuits on the perceptual crossing task, with and without
sensory delay. We also report on two different strategies in
the ensemble of successful solutions, only one of which had
been discussed in the literature previously.

Introduction
Research on social cognition has largely assumed that study-
ing a single individual engaged in a social interaction is suf-
ficient to understand the dynamics and behavior that consti-
tute a social interaction. In the last couple of decades, there
have been calls to take the social interaction itself, instead of
the individuals in isolation, as the object of study (Schilbach
et al., 2013). From this interactionist perspective, social
interaction is more than simply the arena in which social
cognition plays out; it enables or constitutes social cogni-
tion (De Jaegher et al., 2010; Froese and Di Paolo, 2011).

Making social interaction the object of study, instead of
a social agent, need not entail more complex experiments.
One minimalist example of an interactionist experimental
paradigm is perceptual crossing (Auvray et al., 2009). In
these experiments, participants are asked to identify when
they think they are interacting with a partner participant in a
simple one-dimensional virtual environment while unaware
of what they are actually interacting with. The tasks are de-
signed to so that they cannot be solved by either participant
independently; successful identification of the partner neces-
sitates mutual interaction. The dynamics of behavior that re-
sult suggest that studies of social interaction should never be
limited to analyzing a single individual’s behavior. Recent
work has expanded the paradigm to two dimensions (Ro-
hde and Paolo, 2008; Rohde, 2010; Lenay et al., 2011), to

the domain of human computer interaction (Barone et al.,
2020) and to different populations, from adults and adoles-
cents (Hermans et al., 2020; Froese et al., 2020; Iizuka et al.,
2015; Froese et al., 2014; Lenay and Stewart, 2012) to indi-
viduals with autism (Zapata-Fonseca et al., 2018).

There has also been a growing interest in using simulation
studies in order to investigate the dynamics of social inter-
action (Di Paolo, 2000; Quinn, 2001; Iizuka and Ikegami,
2004; Ikegami and Iizuka, 2007; Iizuka and Di Paolo, 2007;
Williams et al., 2008; Di Paolo et al., 2008; Froese and
Di Paolo, 2008; Reséndiz-Benhumea and Froese, 2020;
Reséndiz-Benhumea et al., 2021). Some of these models
have been specifically designed to generate insights for mu-
tually informing collaborations between the field of artifi-
cial life and the traditional empirical sciences (e.g. Ikegami
and Iizuka, 2007; Di Paolo et al., 2008; Rohde and Paolo,
2008). This is particularly true for the perceptual crossing
paradigm, where there have been a set of rich contributions
from simulation studies that have managed to successfully
replicate the experiment and contribute to hypotheses to be
tested in further social experiments (Di Paolo et al., 2008;
Froese and Di Paolo, 2010). In particular, the simulation
studies have predicted challenges and patterns of interac-
tions that would be faced by human participants (Di Paolo
et al., 2008). In some cases, these predictions have then been
supported by experimental evidence from humans (Auvray
et al., 2009), facilitating model-experiment dialogue (for a
review see Auvray and Rohde, 2012).

Despite the advances, important questions remain open.
First, simulation studies have all relied on the introduction
of a sensory delay for the agents to perform the perceptual
crossing task successfully (Di Paolo et al., 2008; Froese and
Di Paolo, 2010, 2009). Crucially, the practical need for de-
lays in the models has been considered a potentially impor-
tant component for the explanation of the adaptive perfor-
mance of the task in human participants, and has motivated
psychological studies. However, the necessity of a sensory
delay in human participants is unlikely (Iizuka et al., 2015).
Second, the dominant (or potentially the only) strategy that
has been discussed in the simulation literature so far has

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal/34/27/2035387/isal_a_00509.pdf by guest on 04 August 2022



been a perpetually crossing strategy, where agents continue
to cross back and forth perpetually. It is unclear whether any
other strategies are feasible. However, most of the simula-
tion studies report on only one of the solutions, not on the
full ensemble of possible solutions.

In this paper, we revisit the original work on the evolu-
tion of perceptual crossing agents and we extend this work
to answer the open questions above. The rest of this pa-
per is organized as follows. In the next section, we describe
the perceptual crossing task and the set up of the agents for
all experiments. Then we present results from a series of
three experiments which explore the evolution of perceptual
crossers under various conditions. Finally, we conclude with
a general discussion of the experimental results, and outline
some directions for future work.

Methods
We set out to replicate the agent and task as described in
previous simulation studies (Froese and Di Paolo, 2010;
Di Paolo et al., 2008; Froese and Di Paolo, 2009). Two
agents coexist on a ring (i.e., a one-dimensional environ-
ment that wraps around; Fig. 1A). Agents are able to move
around the ring with a maximum velocity (2 units of space
per unit of time) in either direction. There are three dis-
tinct types of objects that can be encountered by an agent
(Fig. 1A): the other agent’s avatar, the shadow of the other
agent, and a static object. Each object occupies a total of 2
units of space. The shadows are 48 units of space away from
the agent. The ring is 600 units in circumference, and the
fixed objects are placed across from each other at 150 and
450. Agents can move past each other and their respective
static objects unimpeded. The neural controller that governs
movement (described below) is rotated from one agent to the
other, so that left and right movement aligns with the orien-
tation of the agent. The shadows of the agents are reflected
about the ring, so that one agent’s shadow is to its left and the
other agent’s shadow is to its right, as depicted in Fig. 1A.
The sensory input of an agent is activated (set to 1) when
its receptor field overlaps with another object; otherwise it
remains off (set to 0).

The behavior of each agent is controlled by a continuous-
time recurrent neural network (Beer, 1995) with the follow-
ing state equation:

τiẏi = −yi +
N∑
j=1

wjiσ(yj + θj) + gis+ Ii (1)

where yi is the state of each neuron, τ is the time constant,
wji is the strength of the connection from the jth to the ith

neuron, θ is a bias term, σ(x) = 1/(1 + e−x) is the stan-
dard logistic activation function, gi is the sensory weight
from the binary sensor s to neuron i, and Ii represents an
external input to each neuron. The output of a neuron is
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Figure 1: Task and agent setup. (A) The task takes place
in a 1-dimensional ring where two agents face each other.
Each agent can sense the other’s avatar (A), a shadow of the
other’s avatar (S), and a fixed object (F). (B) Each agent has
a sensor (cyan) that can send information to all N neurons
(black). The neurons in the circuit are fully inter-connected,
including self-connections (not depicted). The output from
one neuron drives the left motor and another neuron drives
the right motor (magenta). The neural circuits in the two
agents are identical (i.e., they have the same parameters).

oi = σ(yj + θi). Following the original simulation stud-
ies (Fig. 1B), the sensor, s, is fully connected to all neurons
in the circuit; the neurons are fully interconnected (includ-
ing self-connections); and two of the neurons are chosen to
drive the left and right motors, respectively. The velocity of
an agent is proportional to the difference between the out-
puts of the two motor neurons: v = γ(o1 − o2), where o1
and o2 represent the outputs of the neuron controlling the
left and right motors, respectively, and γ is a constant that
determines the agent’s maximum possible velocity. In all of
our simulations, the maximum velocity was set to γ = 2.

As with the original simulation studies, the two agents
have identical neural controllers. The neural parameters of
the controller are evolved using a real-valued genetic algo-
rithm. Given that both agents are clones of each other in
terms of their neural controller, each genome encodes the
parameters for only one neural controller. The following
neural parameters, with corresponding ranges, are evolved:
time-constants τ ∈ [1, 10], biases θ ∈ [8, 8], and all con-
nection weights (from sensors to neurons, g, and between
neurons, w) ∈ [8, 8]. We used a generational algorithm with
rank-based selection and a population size of 96 genotypes.
Successive generations are formed by first applying random
Gaussian mutations to each parent genome with a mutation
variance of 0.05 (see Beer, 1996 for details). In addition,
uniform crossover is applied with 50% probability. A child
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replaces its parent if its performance is greater than or equal
to that of the parent; otherwise the parent is retained.

The fitness evaluation is intended as a replication of the
original simulation studies, such that neural controllers are
evolved so that the two agents successfully find each other.
We evaluate the performance of a pair of agents by systemat-
ically varying the starting location of the two agents. Specif-
ically, the starting location for the first agent in a pair is cho-
sen between 0 and 600 in steps of 50; the starting location for
the second agent in the pair is between 0 and the first agent’s
starting location, for a total of 78 trials. Each trial lasts 800
time units and proceeds as follows: (1) the neural states of
both agents are initialized to 0. (2) During the first 400 units
of time, the agents interact without evaluation. We treat this
as a transient period because it allows for agents initialized
at the maximum starting distance moving at their maximum
velocity enough time to traverse the ring environment and
find each other. (3) For the remainder of the simulation after
the transient period, we record and normalize the distance
between the two agents. For a given trial, the score that a
given pair of agents with a given neural controller receive is:

f = 1− d̄− 2

298
(2)

where d̄ is the average separation between the two agents
during a trial (excluding the initial transient period), 298 is
the maximum spatial distance between the two agents. Since
the 1-D environment wraps around between 0 and 600 units,
300 is the maximum spatial distance between points on the
ring; and because the agents are 2-units wide and the sen-
sors are binary, the agents cannot detect proximity beyond 2
units of space away from each other. The final fitness of the
evaluation is the average fitness across all trials.

While we try to maintain as close a replication to the orig-
inal study as possible, we summarize the key differences
between the original fitness evaluation and ours. First, the
distance during the initial transient period is not taken into
consideration for the fitness here. Second, the fitness here
is normalized to run between 0 and 1 based on the mini-
mum distance at which an agent can sense the other agent.
Finally, this evaluation is deterministic: the starting posi-
tions of the agents are deterministic, the position of the fixed
objects does not change, and the relative position of both
shadows to the agent is fixed. Additionally, there are two
minor differences between our agent/task setup and the orig-
inal study: the objects (the agent’s avatars, the agents’ shad-
ows, and the static objects) occupy 2 units of space instead
of 4; and the maximum velocity is 2 instead of 1. Also, the
stochastic search algorithm used in our simulation is differ-
ent from those used previously. As far as we can tell, each
simulation study that has replicated the work has used dif-
ferent stochastic search algorithms, and we have no strong
reason to believe that the results depend on the particularities
of it. Crucially, as with the original studies, since the avatars,

shadows, and fixed objects are indistinguishable to either
agent, success in this task requires that the agents evolve
a system for accurately detecting mutual interactions. As it
has been demonstrated by previous implementations of the
model, including only distance in the fitness function makes
for a non-trivial task (Froese and Di Paolo, 2010, 2009).

Part I: Replicating original results
The goal of our first set of simulations was to replicate the
experiments in the original studies. The agents must solve
the perceptual crossing task with the original sensory delay
of 2.5 units of time (25 timesteps using a step size of integra-
tion of 0.1) and with a fitness function that selects for close
average proximity between the two agents. We report on the
evolutionary performance across different circuit sizes and
on two different strategies observed in the ensemble of suc-
cessful perceptual crossers.

What general trends are observed in the evolution of per-
ceptual crossers with sensory delay? One hundred evolu-
tionary runs were performed for two-, three-, and four-node
circuits (see Fig. 2). There are two main groups of solutions.
The first and most dominant ones can be seen in the peak
around 0.92 in the histograms, comprising 93% of all evolu-
tionary runs with two-neuron circuits, 70% of three-neuron
circuits, and 62% of four-neuron circuits. These solutions
entirely fail to find the other agent from a small subset of the
starting conditions. Because this group fails to solve the task
from all possible starting configurations, we do not study
them in any more detail in this paper. There is a second
group of solutions that solve the problem nearly perfectly
(>0.99). The size of this second group increased with the
number of neurons: 1% of all two-neuron circuits, 10% of
three-neuron circuits, and 16% of four-neuron circuits. We
analyze the behavior of this group of solutions in more detail
in the remainder of this section.

What are the overall tendencies observed in the behavior
of successful perceptual crossers? We analyzed all solutions
with a fitness greater than 0.99 across a wider range of con-
ditions than were examined during evolution. Specifically,
we analyzed the performance of this high-performing en-
semble over 100 × 100 starting conditions across the full
spatial range [0, 600] and over a range of shadow distances
[48, 52]. We kept track of the performance of these individu-
als in three different ways: (a) the performance as measured
in the original simulations studies (i.e., with the transients
and without normalization based on sensory-range; x-axis,
Fig. 3A); (b) the performance measured without the ini-
tial transient and with normalization (y-axis, Fig. 3A); and
(c) the number of times the two agents crossed each other
in a trial (Fig. 3B). The results of the behavioral robustness
analysis is shown for all 27 high-performing solutions in the
ensemble in Fig. 3.

We highlight three key observations from this analysis.
First, most of the circuits are behaviorally robust across a
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Figure 2: Evolutionary performance statistics. Performance
histograms for two-neuron (A), three-neuron (B), and four-
neuron (C) circuits. Relative frequency of binned proximity
as a percentage of total trials is plotted. The maximum prox-
imity is 1.0. The dashed line depicts the cutoff of 0.99 for
agents analyzed in more detail.

wider set of conditions: 81.48% of the solutions maintained
a performance greater than 0.95. This suggests that the con-
ditions presented during evolution, including particularly a
relatively small set of starting positions and a fixed shadow
distance, were sufficient for agents to generalize. Second,
our fitness function offers two improvements on the original
fitness function: (a) Equally fit solutions no longer obtain a
wide range of fitness; (b) The fitness of some great solutions
is no longer indistinguishable from much worse solutions.
The fitness function is one potential explanation for the dif-
ficulties evolving mentioned in the original simulation stud-
ies. Finally, not all successful solutions perpetually cross.
This last observation was unexpected. As far as we gath-
ered from the literature, there were no reports of minimally
crossing solutions; only of perpetual crossing solutions.
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Figure 3: Behavioral robustness statistics. (A) Relationship
between original and current measure of performance. Each
point represents one solution from the top ensemble of solu-
tions. The current measure of proximity excludes transients
and normalizes the distance based on the sensory range.
The color of the point represents the size of the circuit:
two-neuron (blue), three-neuron (orange), and four-neuron
(green). Filled disks represent solutions with minimal num-
ber of crossings. Open circles represent solutions that cross
perpetually. (B) Median number of crossings across the so-
lutions that achieved a robustness performance greater than
0.95 (above the dashed line in panel A). Solutions with fewer
than 15 crossings (dashed line) per trial were labeled as min-
imal crossers. Solutions with greater than 15 crossings were
labeled perpetual crossers.

Part II: Agents without sensory delay

Having replicated the original results, the second major goal
of ours was to attempt to evolve perceptual crossers with-
out a sensory delay. Given that previous reports always in-
cluded a sensory delay (Di Paolo et al., 2008; Froese and
Di Paolo, 2010, 2009), we did not expect these evolutionary
runs to succeed. Nevertheless, it would be important and in-
formative to understand how and why the no-sensory-delay
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Figure 4: Evolutionary performance statistics for agents
without sensory delay. Performance histograms for two-
neuron (A), three-neuron (B), and four-neuron (C) circuits.
Dashed line depicts 0.99 cutoff for selecting agents to ana-
lyze further.

condition failed.
We again performed one-hundred evolutionary runs for

two-, three-, and four-node circuits to solve the perceptual
crossing task, this time without a sensory delay. We main-
tained the same modified version of the fitness function that
selects for proximity between the two agents. As in the pre-
vious experiment, there was a peak of evolutionary runs that
became stuck around a fitness of 0.92 (Fig. 4). Crucially,
and contrary to what had been reported until now, we ob-
served that a substantial number of evolutionary runs suc-
ceeded (fitness>0.99). Moreover, the proportion of success-
ful runs was substantially larger without a sensory delay than
with it: 4% of all two-neuron circuits, 32% of three-neuron
circuits, and 40% of four-neuron circuits.

Do solutions without a sensory delay generalize well such
that agents find each other across a broad range of condi-

tions? As with the first set of experiments, we performed
a behavioral analysis of all 76 solutions with fitness > 0.99
(Fig. 5). We highlight the key insights from this analysis.
First, solutions without the delay were largely robust to the
wider range of starting conditions and to the different dis-
tances between an agent’s shadow and avatar. All but one of
the 76 solutions had performance above 0.95 using our up-
dated proximity function (Fig. 5A). Second, only one of the
75 robust solutions crossed perpetually; all others crossed
fewer than 15 times on average (Fig. 5B). Based on these re-
sults, we define minimal crossers as pairs of agents that cross
each other fewer than fifteen times on average and perpetual
crossers as pairs of agents that cross each other continuously,
or more than fifteen times. This last finding prompted the
next set of experiments.

Part III: Promoting perpetual crossing
When agents were evolved with sensory delay, we replicated
the successful findings of the original simulation studies.
Notably, in addition to the perpetual crossing strategy that
had been reported originally, we observed a second strategy:
minimal crossers (i.e., pairs of agents that crossed each other
fewer than 15 times on average within a given trial). When
agents were evolved without sensory delay, we were sur-
prised to find that they still succeeded at finding each other,
but primarily using the minimally crossing strategy. Given
that the previous simulation studies primarily focused on an-
alyzing solutions that cross perpetually, the natural follow up
question was: Can we reliably generate agents without sen-
sory delay that solve the problem with a perpetual crossing
strategy?

In this third and final set of experiments, we set out to
evolve agents without sensory delay to find each other and
cross perpetually. Our goal was to accomplish this by only
redesigning the fitness function to more closely match the
desired behavioral goal. Specifically, we introduced a term
that promoted perpetual crossing, in addition to proximity.
Including the additional term allows us to ask whether the
perpetual crossing strategy only arises in the presence of
sensory delay. Thus, here our motivation was more about
refining and further understanding the modeling approaches
to perceptual crossing than directly replicating perceptual
crossing work in humans.

The additional perceptual crossing term simply counted
the number of times two agents crossed and averaged this
across all the different starting conditions. We explored
three different ways to introduce this additional term and
we only succeeded with one. In one batch of experiments,
we multiplied or added the proximity term and the crossing-
count term together. In a second batch, we used an incre-
mental approach in two stages: in the first stage, only prox-
imity was evaluated; in the second stage, the proximity term
and the crossing-count term were again multiplied or added
together. Neither of these two strategies successful results.
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Figure 5: Behavioral robustness statistics of agents with no
sensory delay. (A) Relationship between original and cur-
rent measure of performance. Each point represents one so-
lution from the top-performing ensemble. Color represents
circuit size: two-neuron (blue), three-neuron (orange), and
four-neuron (green). Filled disks represent solutions with
minimal number of crossings. One open circle represents a
perpetual crossing solution. (B) Median number of cross-
ings across the solutions that achieved a robustness perfor-
mance greater than 0.95 (above the dashed line in panel A).

In the final batch of experiments, we employed a condi-
tional fitness evaluation: if the proximity term was lower
than 0.99, only it counted towards fitness; if the proximity
term was higher than 0.99, then the fitness involved the sum
of the proximity and the crossing-count term. Using this
formulation, agent pairs can achieve a fitness greater than 1.
Only with this approach did we obtain successful perpetual
crossers.

Is it possible to evolve perpetual crossers without a sen-
sory delay? We performed the final set of one-hundred
evolutionary runs for two-, three-, and four-node circuits.
As with all previous experiments, there was again a large
number of runs that became stuck around a fitness of 0.92
(Fig. 6). In this run, a smaller batch of runs got stuck also at
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Figure 6: Evolutionary performance statistics for agents
without sensory delay and with a fitness function that
encourages crossing. Performance histograms for two-
neuron (A), three-neuron (B), and four-neuron (C) circuits.
The dashed line depicts the cutoff of 1.15 for selecting
agents to analyze in more detail.

a fitness of around 1. This corresponds to solutions that can
find each other perfectly, but do not cross perpetually. Only
a small fraction of the evolutionary runs surpassed both chal-
lenges. Based on observations of the behaviors, we counted
the number of successful solutions as those that surpassed a
fitness of 1.15 on the combined task: none of the two-neuron
circuits, 6% of three-neuron circuits, and 6% of four-neuron
circuits. All 12 of the successful perpetual crossing solu-
tions had a performance above 0.95 on the robustness test
(Fig. 7A); and all of them had a median number of crossings
above 80 (Fig. 7B).

What can we learn from the behavior of a perceptual
crossing agent without sensory delay that crosses perpetu-
ally? Although a detailed analysis of the dynamics of one
of these circuits is outside the scope of this contribution, we
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Figure 7: Behavioral robustness statistics for agents without
sensory delay evolved to cross perpetually. (A) Performance
of the best solutions (each point) using the original and the
current measure of proximity. Color represents circuit size:
two-neuron (blue), three-neuron (orange), and four-neuron
(green). All solutions are perpetual crossers, as depicted by
the open circles. (B) Median number of crossings across
the solutions that achieved a robustness performance greater
than 0.95 (region above dashed line in panel A).

can learn something about the operation of these circuits by
looking at examples of their behavior. In this final section,
we visualize the behavior of one of the top three-neuron cir-
cuits without sensory delay in three stages of detail (Fig. 8).
First, we visualize the average proximity performance of
the two agents throughout the full duration of a trial as a
function of a wide range of starting conditions (100 × 100)
(Fig. 8A). It is important to keep in mind that in this solution,
like in most of the successfully evolved solutions, the agents
always find each other and remain close to each other there-
after. This map of performance, then, does not reflect their
ability to find each other, but rather how much exploration
the agents exhibit as a function of the starting positions. A
performance of 1.0 represents starting configurations where
the agents find each other early in the evaluation trial; while

Figure 8: Behavior of one of the top three-neuron circuits
without sensory delay. (A) Proximity performance of the
two agents as a function of their starting positions. Color
indicates proximity performance. (B) A sample of 78 trials
from the full range of different starting conditions as exam-
ined during the fitness evaluation. (C) Detailed look at the
interaction between two agents for one trial.

a performance of 0.8 represents agents that find each other
after the first 200 units of time. As a second step, we can
observe the agents’ movement in the one-dimensional ring
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over time given a smaller set of starting conditions (78 to-
tal) across all of time (Fig. 8B). One thing that is interesting
to note here is that these agents find each other somewhat
uniformly along the length of the environment; other solu-
tions in the ensemble exhibited different patterns, and not
always uniform. Finally, we can visualize a single trial over
the small window of time where the agents first interact and
then maintain a mutual crossing (Fig. 8C). One thing to note
is that the pattern of crossing was quite different across all
12 of the different top three- and four-node circuits. For
some of the solutions, the absolute position of the cycle of
crossing stayed constant; for other solutions the pair drifted
slowly in time while continuing to cross around each other.
Overall, the main take-home message from looking at exam-
ples of the behavioral trajectories of some of these agents is
that there is a wide variety of patterns of behavior according
to which they could be grouped.

Discussion
In this paper, we set out to replicate the perceptual cross-
ing simulation studies (Froese and Di Paolo, 2010; Di Paolo
et al., 2008; Froese and Di Paolo, 2009) and refine the ap-
proaches used. First, we observed that evolving agents with
a sensory delay resulted in two clearly distinct behavioral
strategies: perpetual crossers (agents that find each other
and continuously cross) and minimal crossers (agents that
stop moving after crossing each other a limited number of
times). As far as we are aware, only the former had been re-
ported in the literature (Froese and Di Paolo, 2010; Di Paolo
et al., 2008; Froese and Di Paolo, 2009). Presumably, per-
petual crossers are preferred because they continuously in-
teract. Second, we succeeded at artificially evolving agents
without the sensory delay, contrary to what has been previ-
ously reported (Di Paolo et al., 2008; Froese and Di Paolo,
2010). However, an analysis of the successful solutions re-
vealed that nearly all of them adopted a minimally crossing
strategy. Finally, by modifying the fitness function to select
for both proximity and crossings, we were able to generate
agents without sensory delay that adopted the perpetually
crossing strategy.

There are two factors that are likely to have played an im-
portant role in the success of the evolutionary runs in our
simulation studies. First, by including the initial transient
of the behavioral trajectories of the agents in each trial, the
fitness function in the original simulation studies blurred the
performance of otherwise successful circuits (c.f. Fig. 3A).
By eliminating the transients, we could measure with more
precision the percentage of trials where agents found each
other. Second, the original simulation studies involved a
stochastic fitness evaluation, varying the starting position of
the agents and the distance of the shadows in each trial. The
purpose of this was to make sure the agents learned the task
robustly. However, for this task, a deterministic fitness eval-
uation was sufficient to produce equally robust solutions.

Finally, the positioning of the shadow in these experi-
ments led to some initial exploratory and counter-intuitive
results. In every one of the formulations of the task that we
examined (Froese et al., 2014; Froese and Di Paolo, 2010),
there was no explicit statement on whether the shadow was
positioned to the left or the right of the agent/participant.
Most crucially, it was not stated whether the shadow of
one agent was reflected or rotated with respect to the other
agent. However, in all the schematics of the task (Froese
et al., 2014; Froese and Di Paolo, 2010), except for one of
them (Auvray and Rohde, 2012), the shadow appeared to
be reflected. Importantly, the original paper (Auvray et al.,
2009) has a schematic that represents the shadows as re-
flected. In preliminary experiments, we examined both con-
ditions (although we only report here on the reflected condi-
tion). The rotated-shadow condition provided counter intu-
itive results. Although we might predict that the task would
be impossible because agents would end up mutually os-
cillating around each other’s shadows, thinking they have
found the other agent, evolution reliably found a clever hack
that relied on the symmetry of the nervous systems. Because
the two agents start moving in the same direction (left or
right), they always encounter the other’s avatar and shadow
in the same sequence: one first and then other (depending on
the direction). This allows them to “hardcode” which stimu-
lus to center on without the requirement to mutually interact.
This is, of course, not a possibility for the condition where
the shadows are reflected.

Future Work

The next step for future work is to perform detailed analy-
ses of the evolved perceptual crossers without sensory delay.
Using the mathematical tools of dynamical systems theory,
one can identify how the underlying dynamical structure of
the agents supports their joint interaction. A psychophysi-
cal analysis might illuminate additional differences between
the perpetual and minimal crossers that we identify. Such an
analysis might also be useful for connecting our results to
empirical work on humans, further strengthening the model-
experiment loop that the perceptual crossing paradigm has
established. Of particular interest would be to run new em-
pirical experiments with humans to test whether participants
can be prompted to use perpetual versus minimal strategies
depending on either the sensory-delay condition and/or dif-
ferent variations of the task prompt.
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