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Fig. 1. Halloween party. We present a GPU-based deformable simulation algorithm, which plugs an interior-point-like constraint formulation into the
projective dynamics framework. We revise the computation for collision projection to accommodate continuous collision detection and barrier-based constraints.
This simulation backbone is empowered by a novel GPU algorithm named A-Jacobi for a faster linear solve. With a more efficient root finding (and thus, faster
CCD), our algorithm offers the non-intersection guarantee while still maintaining good efficiency. Here we show several snapshots of an interesting simulation
consisting of deformable objects of various shapes. Several ghost-like creatures hang on a spooky tree, swaying in the wind. A few monster pumpkins fall and
bounce. The total number of DOFs reaches 265K in this experiment. Our GPU algorithms runs between 7.7 to 26.8 FPS, and the time step size is ℎ = 1/100 sec.

We present a GPU algorithm for deformable simulation. Our method offers
good computational efficiency and penetration-free guarantee at the same
time, which are not common with existing techniques. The main idea is an
algorithmic integration of projective dynamics (PD) and incremental poten-
tial contact (IPC). PD is a position-based simulation framework, favored for
its robust convergence and convenient implementation. We show that PD
can be employed to handle the variational optimization with the interior
point method e.g., IPC. While conceptually straightforward, this requires a
dedicated rework over the collision resolution and the iteration modality to
avoid incorrect collision projection with improved numerical convergence.
IPC exploits a barrier-based formulation, which yields an infinitely large
penalty when the constraint is on the verge of being violated. This mecha-
nism guarantees intersection-free trajectories of deformable bodies during
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the simulation, as long as they are apart at the rest configuration. On the
downside, IPC brings a large amount of nonlinearity to the system, making
PD slower to converge. To mitigate this issue, we propose a novel GPU
algorithm named A-Jacobi for faster linear solve at the global step of PD.
A-Jacobi is based on Jacobi iteration, but it better harvests the computation
capacity on modern GPUs by lumping several Jacobi steps into a single
iteration. In addition, we also re-design the CCD root finding procedure
by using a new minimum-gradient Newton algorithm. Those saved time
budgets allow more iterations to accommodate stiff IPC barriers so that the
result is both realistic and collision-free. Putting together, our algorithm
simulates complicated models of both solids and shells on the GPU at an
interactive rate or even in real time.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional KeyWords and Phrases: Physics-based simulation, Iterative solver,
CCD, Barrier function, GPU
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1 INTRODUCTION
Simulating elastically deformable models is a highly desired feature
in many applications. This problem has been extensively studied in
the graphics community. The challenges are multifaceted. First, the
nonlinear elasticity of large-scale models leads to a high-dimension
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optimization problem (i.e., in the variational form [Kane et al. 2000;
Martin et al. 2011]) that needs to be solved repetitively at each time
step. This computation is time-consuming with existing discretiza-
tion tools like the finite element method (FEM) [Zienkiewicz et al.
1977]. The interactions among objects bring further complexities.
Normally, it is required that two models do not overlap with each
other at any simulation instance. Such spatial exclusivity needs
extra safeguards for processing object contacts and collisions. Math-
ematically, this condition can be formulated as complementarity
programming [Alizadeh et al. 1997]. For instance, linear complemen-
tarity programming (LCP) [Cottle et al. 2009] is a commonly chosen
strategy in graphics applications. However, solving with comple-
mentarity constraints for a globally optimal solution is difficult and
known NP-complete [Chung 1989]. Alternatively, one could resort
to soft constraints such as penalty methods [Teschner et al. 2005]
to avert the combinatorial search in LCP. The parameter tuning
e.g., the stiffness/damping of each penalty term is rather tedious,
and penalty methods can still produce intersections, especially if
objects have fine and thin geometries (e.g., a piece of cloth) and/or
when they undergo high-velocity movements. Such artifacts are not
only visually annoying, but they may also negatively impact the
downstream applications.

In this paper, we report a new solution aiming to address all the
aforementioned challenges simultaneously. This is achieved by re-
working the simulation pipeline with novel numerical procedures
and dedicated GPU implementations. The backbone of our frame-
work is based on projective dynamics (PD) [Bouaziz et al. 2014].
The non-penetration constraint on the other hand, is enforced with
barrier functions following the paradigm of incremental potential
contact (IPC) [Li et al. 2020]. To the best of our knowledge, it is
the first successful attempt to algorithmically integrate those two
simulation modalities. The core idea is treating PD as a generic non-
linear programming, which is further coupled with a displacement
reversion process based on the continuous collision detection (CCD)
to ensure per-step simulation snapshots are free of intersections.
While PD is friendly with GPUs [Fratarcangeli et al. 2016; Wang
2015], injecting highly stiff barrier energies into the PD system still
slows its convergence and thus the overall simulation performance.
In addition, expensive CCD processing also consumes significant
time budgets. This suggests we have to “gouge” more time from the
solver part in order to keep our simulation efficient, preferably at
an interactive or real-time frame rate.
Our answer to this dilemma is a novel GPU algorithm named

A-Jacobi. We note that previous research efforts on GPU simulation
focus primarily on how to convert a (sequential) numerical pro-
cedure (such as a direct linear solver [Higham 2009]) to a parallel
one [Fratarcangeli et al. 2018]. Compared with other computations
along the simulation pipeline like contact culling and CCD, existing
parallel solvers however may not be able to use up the throughput
of a modern GPU. A-Jacobi is designed based on this observation,
and it aggregates multiple stationary Jacobi iterations [Kelley 1995]
into one step. While per-iteration computation is more expensive,
such overhead is invisible to the GPU under a careful implemen-
tation. We show that A-Jacobi is still a stationary method, and the
Chebyshev acceleration remains effective. With a good precomputa-
tion and smart use of local caching in the shared memory, A-Jacobi

becomes much faster (160% – 280%× speedup) than state-of-the-art
GPU solvers for problems of tens or hundreds thousands of degrees
of freedom (DOFs).

In addition to the solver-side improvement, we give a faster root-
finding algorithm in CCD. We notice that computing an exact time
of impact (TOI) timestamp is not needed in our framework – any
time instances slightly before the actual TOI can serve the purpose
of keeping all geometries intersection-free. This observation hints
some leeways in CCD, which are exploited leading to a minimum-
gradient Newton search algorithm. Instead of searching for a root
along the current gradient, minimum-gradient Newton, as the name
suggests, proceeds with a locally minimal gradient so that this secant
line always hits the zero-crossing before the tangent line at each
search iteration. Therefore the gradient computation can be skipped.
This trick squeezes extra computational saves at each time step.

2 RELATED WORK
Finding good algorithms to simulate elastically deformable objects
has been an active graphics research topic since 1980s [Terzopoulos
and Fleischer 1988; Terzopoulos et al. 1987, 1988]. Basically, the
simulation seeks a dynamic equilibrium among the external force,
inertia force, and the nonlinear internal force. For large-scale mod-
els i.e., with hundred thousands of DOFs, the simulator needs to
solve a high-dimension nonlinear system at each time step. There-
fore, even the underlying numerical tools such as FEM [Zienkiewicz
et al. 1977], finite difference method [Zhu et al. 2010], meshless
method [Martin et al. 2010; Müller et al. 2005], mass-spring sys-
tem [Liu et al. 2013], and material point method (MPM) [Gao et al.
2017] are well established, efficiently simulating high-resolution
models is still a challenging problem.
Acceleration is often achieved using model reduction, which cre-

ates a subspace representation of fullspace DOFs. Modal analy-
sis [Choi and Ko 2005; Hauser et al. 2003; Pentland and Williams
1989] and its first-order derivatives [Barbič and James 2005] are
often considered as the most effective way for the subspace con-
struction. Displacement vectors from recent fullspace simulations
can also be utilized as subspace bases [Kim and James 2009]. Con-
densation [Teng et al. 2015] and Schur complement [Peiret et al.
2019] based formulation is also highly effective. Sometimes, it is
viable to coarsen the geometric shape representation to prescribe
the dynamics of a fine model like skin rigging widely used in mod-
ern animation systems. Analogously, Capell and colleagues [2002a]
deformed an elastic body using an embedded skeleton; Gilles and
colleagues [2011] used 6-DOF rigid frames to drive the deformable
simulation; Faure and colleagues [2011] used scattered handles to
model complex deformable models; Lan and colleagues [2020; 2021]
exploited medial axis transform to build the mesh skeleton; Martin
and colleagues [2010] used sparsely-distributed integrators named
elastons to model the nonlinear dynamics of rod, shell, and solid
uniformly. A noticeable benefit of model reduction is the size of the
simulation no longer depends on the resolution of the model. On
the downside, many reduction methods require expensive precom-
putations [Yang et al. 2015]. Because of the reduction, the accuracy
compromise and the loss of simulation details are inevitable with
model reduction.
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Another line of contributions approaches to simulation speedup
by designing customized numerical procedures. For instance, multi-
resolution methods [Capell et al. 2002b; Grinspun et al. 2002] lever-
age hierarchical basis functions for the discretization. Similarly, a
multigrid solver projects fine-grid residual errors onto a coarser grid,
where linear or nonlinear iterations become more effective [Tam-
storf et al. 2015; Wang et al. 2020; Xian et al. 2019; Zhu et al. 2010].
Hecht and colleagues [2012] proposed a delayed factorization scheme
that reuses existing sparse Cholesky factorization as much as pos-
sible to save the computation. Quasi-Newton solvers use Hessian
approximates, which can also be employed to accelerate the compu-
tation [Liu et al. 2017]. The domain decomposition method [Farhat
et al. 2000] is a powerful method that breaks the original model
into many small domains. It is often used with model reduction in
graphics to enable per-domain subspace customization [Barbič and
Zhao 2011; Kim and James 2012; Wu et al. 2015; Yang et al. 2013].

GPGPU platforms like nVidia CUDA [Sanders and Kandrot 2010]
offer a different perspective to simulation acceleration. As the tradi-
tional solvers are intrinsically sequential, the core difficulty is how
to map such computation to a parallelizable scheme [Wang and
Yang 2016]. Position based dynamics or PBD [Macklin et al. 2016;
Müller et al. 2007] reformulates the equation of motion based on
particle positions, and the system solve becomes a series of con-
straint projections. This idea is generalized to PD [Bouaziz et al.
2014], wherein all the constraint projections can be carried out
independently. Being a baseline simulator, several GPU methods
have been successfully developed based on PD/PBD. For instance,
Wang [2015] designed a Jacobi-based PD algorithm, and Chebyshev
iteration [Golub and Varga 1961] was used to improve the conver-
gence rate. Gauss-Seidel method has a better convergent behavior,
but its GPU implementation is less straightforward and requires a
DOF partition with coloring algorithms [Fratarcangeli et al. 2016].

In addition to performance-wise improvement, existing work has
also put a lot of efforts improving the quality of the simulation
such as more expressive material models [Martin et al. 2011; Smith
et al. 2018] or more robust nonlinear programming under extreme-
scale deformations [Irving et al. 2004]. Oftentimes, it is required
that models do not intersect with each other during the simulation.
Interpenetration among virtual objects is visually annoying and
could lead to severe errors to follow-up applications like fabrication
and robot manipulation. For deformable shapes, this requirement
is enforced at all the surface geometric primitives as a set of non-
linear inequality constraints [Bridson et al. 2002; Daviet et al. 2011;
Harmon et al. 2009, 2008; Otaduy et al. 2009]. In PBD/PD systems,
collisions are often treated as a unilateral constraint . Many methods
have been proposed to improve the performance and robustness
within PD-like frameworks [Komaritzan and Botsch 2018, 2019;
Overby et al. 2017; Wang et al. 2021]. However, the detection algo-
rithms used are discrete, and interpenetration can still be possible
for fast-moving geometries.
Recently, Li and colleagues [2020] presented a solution named

IPC to tackle inequality constraints induced from collisions and
contacts. They explored an interior point method with a logarith-
mic barrier penalty. Intuitively, this penalty yields an increasingly
stronger repulsion force when objects become closer enough to
each other. As a result, the overall variational optimization becomes

unconstrained. At each Newton solve, a CCD-based line search is
followed to ensure all the primitives are free from intersections
before any displacement update to be committed. This method has
then been successfully employed for reduced simulation [Lan et al.
2021], co-dimensional simulation [Li et al. 2021b], rigid body sim-
ulation [Ferguson et al. 2021], embedded FEM [Choo et al. 2021],
FEM-MPM coupling [Li et al. 2021a], and even for geometric mod-
eling [Fang et al. 2021]. We are strongly inspired by the versatile
applicability of IPC, and seek for its possible GPU implementation
so that high-quality non-intersecting simulation can also be exe-
cuted interactively or even in real time. At first sight, PD seems to
be a promising starting point for its convenient implementation
and GPU friendliness. However, few preliminary tests suggest oth-
erwise as PD immediately becomes unusable with CCD and IPC
barriers. We carefully examine those technical obstacles and re-
vise the vanilla PD framework by correcting its local projection for
CCD-based collisions and delaying overaggressive barrier updates.
Implementation-wise, we propose a novel aggregated Jacobi solver
and faster CCD root finding algorithm. Putting together, we en-
able efficient simulation of complicated models with rich collision
and contact events. Simulations of hundred thousands DOFs in the
fullspace now become real-time or nearly real-time, and they are
guaranteed to be free of interpenetration.

3 BACKGROUND
To make our presentation self-contained, we start with a brief re-
view of PD and IPC, while referring the reader to the related litera-
ture [Bouaziz et al. 2014; Li et al. 2020] for more details.

Given a time integration scheme such as implicit Euler, the start-
ing point of PD is a variational optimization in form of:

argmin
𝑥

𝐸 (𝑥, ¤𝑥) + Ψ(𝑥), 𝐸 =
1
2ℎ2




M 1
2 (𝑥 − 𝑧)




2
𝐹
. (1)

Here 𝑥 denotes the positions of all the vertices. ℎ is the time step
size. 𝐸 is the momentum potential, and M is the mass matrix. 𝑧 =

𝑥∗ + ℎ ¤𝑥∗ + ℎ2M−1 𝑓ext is a known vector based on the previous dis-
placement 𝑥∗, velocity ¤𝑥∗, and an external force 𝑓ext. Ψ, the elastic
potential, is typically a summation of various potential terms, ac-
counting for penalties against deformations of shearing, stretching,
bending, volume/length changes, etc. Its negated gradient describes
the internal elastic force, 𝑓𝑖𝑛𝑡 = −∇Ψ(𝑥) (under hyperelasticity
assumption [Ogden 1997]).

Unlike Newton-type nonlinear programming [Nocedal andWright
2006], PD decouples Eq. (1) with an auxiliary variable𝑦𝑖 . For the 𝑖-th
constraint set, 𝑦𝑖 denotes the target positions of pertaining vertices.
𝑦𝑖 can also be viewed as a high-dimensional point on the constraint
manifold, satisfying the constraint 𝐶𝑖 (𝑦𝑖 ) = 0, whose Euclidean
distance to its current position 𝑥𝑖 is minimized. The optimization of
Eq. (1) progresses in a local-global alternating manner, which will
be referred to as L-G iterations in the rest of the paper. In the local
step, we compute 𝑦𝑖 for each constraint a.k.a. local projection:

argmin
𝑦𝑖

1
2 ∥A𝑖S𝑖𝑥 − B𝑖𝑦𝑖 ∥

2
𝐹 , s.t. 𝐶𝑖 (𝑦𝑖 ) = 0, (2)

where S𝑖 is a selection matrix choosing DOFs for the constraint
𝐶𝑖 out of the position vector 𝑥 i.e., 𝑥𝑖 = S𝑖𝑥 ; A𝑖 and B𝑖 are both
constant, often Laplacian-like, to facilitate the distance measure.
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While intrinsically nonlinear, Eq. (2) only involves a small number
of DOFs and thus can be solved concurrently for all the constraints.
This feature makes the local step particularly suitable for GPUs.

After the local projection, the global step solves a linear system
for 𝑥 : (

M
ℎ2
+

∑︁
𝑖

𝜔𝑖S⊤𝑖 A
⊤
𝑖 A𝑖S𝑖

)
𝑥 =

M
ℎ2

𝑧 +
∑︁
𝑖

𝜔𝑖S⊤𝑖 A
⊤
𝑖 B𝑖𝑦𝑖 . (3)

Here each constraint is assigned with a weight coefficient 𝜔𝑖 to em-
body its “importance”. PD treats collision as a constraint as well and
sets the target position 𝑦𝑖 of the penetrating vertex as its closest pro-
jection on the collision plane. The collision constraint also changes
the linear system in the global step Eq. (3). Therefore, Eq. (3) has to
be re-factorized if a direct solver is in use. Nevertheless, collision
processing in PD remains penalty-based, just like using a mass-less
linear spring to drag each colliding vertex out of the penetrating
plane. It is known that such soft constraint model does not guar-
antee all the collisions can be successfully resolved at the end of a
time step.

IPC [Li et al. 2020] offers a more robust way to process collisions.
Without enforcing inequality or complementarity constraints ex-
plicitly, IPC exploits a more sophisticated penalty mechanism. Let
𝑑𝑘 denote the unsigned distance between the 𝑘-th pair of surface
primitives (i.e., vertex-triangle or edge-edge). IPC uses a barrier
potential to penalize the collision,

𝐵(𝑑𝑘 ) =

−(𝑑𝑘 − 𝑑)2 ln

(
𝑑

𝑑

)
, 0 < 𝑑𝑘 < 𝑑

0, 𝑑𝑘 ≥ 𝑑,

(4)

where 𝑑 is a user-provided tolerance of the collision resolution.
𝐵(𝑑𝑘 ) diverges if 𝑑𝑘 < 𝑑 and approaches ∞ when 𝑑𝑘 → 0. Conse-
quently, as long as we ensure 𝑑𝑘 being positive at the beginning of a
time step (i.e., all primitives are separate), the use of 𝐵(𝑑𝑘 ) prevents
any future interpenetration with an increasingly stronger repulsion.
Our idea is to use the barrier function (Eq. (4)) in PD for the

collision resolution, obtaining the optimization problem

argmin
𝑥

𝐸 (𝑥, ¤𝑥) + Ψ(𝑥) + 𝐵(𝑥), 𝐵(𝑥) =
∑︁
𝑘

𝜔𝑘𝐵𝑘 (𝑥𝑘 ) . (5)

However, solving this optimization problem is not easy. In order to
obtain the specific form of 𝐵, one needs to compute 𝑑𝑘 for all the
primitive pairs. If the distance is smaller than 𝑑 , 𝐵𝑘 activates yield-
ing a highly stiff barrier potential. To battle the strong nonlinearity
induced by the barrier function, all the existing IPC implementa-
tions [Ferguson et al. 2021; Li et al. 2020, 2021b] rely on precise
Hessian information and Newton’s method to compute the search
direction of displacement update. At each Newton iteration, a line
search is also needed to ensure that the energy decreases with the
proposed displacement update, and also the new vertex positions
remain interpenetration-free. Yet, this solving process does not di-
rectly fit the local-global strategy in PD, as we will explain next.

4 OUR METHOD
Provided that both PD and IPC are based on the variational opti-
mization, a natural idea is to construct a simulator by piecing the
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Fig. 2. Different synergic strategies for PD and CCD. Appending CCD
pruning after each PD global solve does keep the vertex collision-free. How-
ever, it also leads to sticking artifacts ignoring the colliding velocity of the
vertex. Adding the barrier is not helpful unless the computation of local
projection for barrier-based collision constraints is revised properly.

best from each party to enjoy the efficiency of PD with intersection-
free guarantee. Yet, a naïve combination of these two techniques
does not produce physically correct results, and two fundamental
challenges must be addressed.

4.1 Challenge I: Battle the Stickings
Our first attempt is to follow the filtered line search in IPC and trun-
cate the newly computed vertex positions 𝑥 with CCD. This process,
which we call CCD pruning, linearly downscales the vertex position
change Δ𝑥 after the global solve, according to TOI to roll back all
the vertices to a collision-free state. The result, however, is problem-
atic – the colliding vertices stick to each other even under a strong
collision penalty. This pilot study suggests some incompatibilities
between PD-like solvers and CCD.
We examine this problem in a simple case study illustrated in

Fig. 2: a vertex moves toward a plane and penetrate into it by the
end of an L-G iteration. Applying the CCD pruning after the global
solve reverts the vertex back to its pre-collision location. This step
is not included in the vanilla PD. As a result, a collision constraint
is generated at the next L-G iteration, and the corresponding target
position (the gray vertex in the figure) yields a penalty drag attract-
ing the vertex to this collision-free position. However, the use of
CCD pruning introduces a deadlock: the L-G iterations no longer
generate collision constraints (due to the pruning), and the vertex
becomes short of momentum to be pushed away from the plane.
Unlike IPC, adding a stiffer barrier energy of Eq. (4) does not

resolve this problem. This is explained in the “PD + IPC + CCD”
case in Fig. 2. After the CCD pruning, if the distance 𝑑 between
the vertex and the plane is smaller than 𝑑 , instead of a collision
constraint we generate a barrier constraint at the next L-G iteration.
If we use this constraint in the PD framework, the vertex target
position of this barrier constraint will be set 𝑑-away from the plane
(i.e., the nearest towards its current position while being barrier-
free). Thus, the distance between the target position and the current
position is always 𝑑 − 𝑑 in a barrier constraint. It is not an issue in
the IPC framework because the magnitude of the barrier gradient
increases sharply to infinity as 𝑑 approaches to 0. It eventually
yields a sufficiently strong repulsion force to push the vertex back.
In contrast, PD is a position-based model, in which a constraint force
is never explicitly formulated. Instead, the concept of the constraint
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force is manifested as the offset between the target and current positions
of the vertex. Consider again the “vanilla PD” case in Fig. 2. The
vertex springs back because of the difference between its current
and target positions. As the target position is always on the positive
side of the plane, for a given ℎ, the deeper penetration we have, the
stronger rebound the constraint projection will produce.

Fig. 3. Rebound and 𝝎. The
rebound of a falling box does
not change noticeably even af-
ter we increase the weight co-
efficient of the collision con-
straint (𝜔𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 ) by four or-
ders.

Then what role does 𝜔 play? The
weight of the constraint has long been
understood as its “stiffness”. However,
unlike methods that explicitly com-
pute internal forces, the stiffness in
PD does not directly influence the col-
lision rebound of the vertex: increas-
ing the weight coefficient for the colli-
sion constraint does not strengthen
the rebound of the vertex (e.g., see
Fig. 3). The constraint weight makes
difference only when the vertex par-
ticipates in multiple constraints; the
target position of the constraint with
a bigger weight is to be satisfied under
a higher priority than target positions
from other (softer) constraints. Therefore the barrier is only helpful
to ensure the follow-up L-G iteration is free of the barrier constraint
(and free of the collision), but it does not address the sticking issue.

Proposed barrier projection. Based on the above analysis, we propose
to revise the local projection of barrier-based collision constraints in
the followingway.When a barrier potential is activated (0 < 𝑑𝑘 < 𝑑),
we set the target position for that barrier constraint as the vertex
position at the end of the time step if the collision had occurred
(which in reality, is forestalled by CCD pruning). Let 𝑡0 and 𝑡1 be
the timestamps before and after the time step. CCD returns TOI
𝑡𝐼 ∈ (𝑡0, 𝑡1] of the vertex, which approximates the time instance
when the collision occurs1. Assuming ¤𝑥 stays constant within the
step, the target position of the vertex can then be computed as:

𝑦 = 𝑥 + (𝑡𝐼 − 𝑡0) ¤𝑥 + (𝑡1 − 𝑡𝐼 )
(
I − (1 + 𝜖)𝑛𝑛⊤

)
¤𝑥, (6)

where 𝑛 ∈ R3 is a unit vector of the collision normal, I is an identity
matrix, and 𝜖 ∈ [0, 1] represents the restitution of the collision. In
Eq. (6), 𝑥 + (𝑡𝐼 − 𝑡0) ¤𝑥 estimates the collision position of the vertex.
The velocity component in parallel to 𝑛 is then reflected under the
coefficient of restitution. After that, the vertex travels for another
𝑡1−𝑡𝐼 time to reach its target position. When the collision is between
a pair of primitives, we scale the rebound of each party based on
their inverse mass so that the momentum is preserved.

4.2 Challenge II: Avoid Excessive Pruning
The use Eq. (6) for local projection of barrier constraints resolves
sticking artifacts. But the number of iterations needed in each time
step becomes large, and per L-G vertex position changes are jittery
and bumpy.

1In our implementation, 𝑡𝐼 is slightly smaller than the actual TOI (more in § 6). In IPC
implementation [Li et al. 2020], 𝑡𝐼 = 0.8 · (𝑡𝑇𝑂𝐼 − 𝑡0) + 𝑡0 .

L-G iteration A

Energy L-G iteration B
C

C
D

Vertex position
CCD

Fig. 4. Oscillating L-G
search. Excessive CCD prun-
ing alters the target function
too frequently, resulting in
oscillating search directions
and slow convergence.

The root of this problem is excessive
CCD pruning. Every CCD changes the
landscape of the optimized energy by
adding new or removing barrier po-
tentials (i.e., Eq. (4)). If such modifi-
cations happen too frequently, L-G
iterations could yield oscillating and
conflicting search patterns, which sig-
nificantly slow the convergence or
even diverge the optimization. An il-
lustrative example is shown in Fig. 4.
The vertex moves following a descent
direction computed via the current
global solve (the red curve), and the next L-G iteration could take it
further right. Now, a CCD pruning jumps in and brings a different
optimization target (the blue curve). In the next L-G iteration, the
vertex moves along the descent direction on the blue curve, which
cancels its previous search. If another CCD changes the optimiza-
tion landscape back to one similar to the red curve, the vertex may
keep moving back and forth between those two configurations.

A quick discussion. The fundamental reason behind this issue is
we are unsure about the objective function (i.e., which barriers are
nonzero in Eq. (5)) when collisions occur. A CCD pruning provides
an estimation of the target function (i.e., with an active set), and
we should evaluate the feasibility with a well-approximated solu-
tion to this active set before switching to the next. In IPC [Li et al.
2020], each projected Newton iteration often contributes sufficient
improvement over the solution to the current active set (knowing
Newton’s method has a default step size of one). Therefore this issue
is hidden under Newton-based IPC implementation. Other iterative
schemes (including our method) with a smaller local convergence
rate shall all face this problem.

4.3 Projective IPC with Nested Loop
With this side effect of CCD pruning in mind, we now describe
our algorithm in detail. As outlined in Alg. 1, we organize the L-
G iterations in two levels, namely the outer loop and the inner
loop (starting at line 4 and line 7 in Alg.1 respectively). Note that
the system is always intersection-free at the beginning of each
outer loop. The simulator first evaluates the barrier potential 𝐵𝑘
(Eq. (4)) for all surface primitive pairs with 𝑑𝑘 < 𝑑 and computes
the corresponding target position (i.e., using Eq. (6)). After that, we
step into the inner loop using the standard L-G alternating strategy.
At each inner loop, the solver computes the momentum potential 𝐸
(line 8), the elastic potential Ψ (line 9), and updates vertex positions
to 𝑥 via the global solve. Here ElasticProjection(𝑥) performs local
projection for different deformable models such as tetrahedral strain,
edge length change, bending curvature, area/volume preservation
etc. However, an inner iteration does not update the barrier potential
assuming the collision landmark remains unchanged.
The purpose of the inner loop is to offer the solver sufficient

compliance for the pursuit of a better local minimum under the
latest barrier (collision) configuration. We quit the inner loop when
the change rate (𝛿𝐸) of total variational potential 𝐸 +Ψ +𝐵 w.r.t. the
previous inner iteration is lower than a given threshold 𝜀𝑖𝑛𝑛𝑒𝑟 , which
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ALGORITHM 1: Projective IPC solver.
1: 𝑧 ← 𝑥∗ + ℎ ¤𝑥∗ + ℎ2M−1 𝑓𝑒𝑥𝑡 ;
2: 𝑥 ← 𝑥∗ + ℎ ¤𝑥∗ + ℎ2

4 ¥𝑥
∗; // 𝑥̃ now is a predicted position

3: 𝑥 ← 𝑥∗, Δ𝑥 ← 𝑥 − 𝑥 ;
4: while ∥Δ𝑥 ∥2 > 𝜀outer do

// 𝜀outer = 10−4

5: 𝐵 ← BarrierProjection(𝑥); // barrier projection (§ 4.1)
6: 𝛿𝐸 ← +∞; // 𝛿𝐸 is per-iteration potential change rate
7: while 𝛿𝐸 > 𝜀inner do

// 𝜀outer = 10−2

8: 𝐸 ← 1
2ℎ2 ∥M−1 (𝑥 − 𝑧)∥2𝐹 ; // update momentum potential

9: Ψ← ElasticProjection(𝑥);
10: 𝑥 ← GlobalSolve;
11: update 𝛿𝐸;
12: end
13: CollisionCulling(𝑥); // patch-based GPU culling (§ 7.2)
14: 𝑡𝐼 ← CCD(𝑥, 𝑥); // minimum-gradient Newton method (§ 6)

15: 𝑥 ← 𝑥 + 𝑡𝐼
ℎ
· (𝑥 − 𝑥); // per outer loop CCD pruning (§ 4.2)

16: Δ𝑥 ← 𝑥 − 𝑥 , 𝑥 ← 𝑥 ; // update 𝑥 and Δ𝑥

17: end
18: ¤𝑥 ← 𝑥−𝑥∗

ℎ
, ¥𝑥 ← ¤𝑥− ¤𝑥∗

ℎ
; // velocity and acceleration update
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Fig. 5. Variation of total potential. This figure plots the variation of the
total system potential within a time step if one chooses to perform CCD
pruning after each L-G iteration (the green curve) or to use the proposed
two-level iteration scheme as in Alg. 1 (the gray curve).

suggests the deformation of the model well equilibrates barrier
(collision) constraints generated at the beginning of the inner loop.
In fact, we permit temporary intersections of vertices within the
inner loop, which are truncated before we move to the next outer
iteration. To this end, we invoke a CCD between the latest (possibly
intersecting) position vector 𝑥 and 𝑥 (the most recent intersection-
free state). 𝑥 is then pruned by the CCD, and we advance to the next
outer iteration with a renewed barrier potential. When an outer
iteration does not bring sufficient improvements over 𝑥 , we consider
the optimization convergent and start the same procedure for the
next time step.

A concrete example is shown in Fig. 5, which plots the variation
of the total system potential 𝐸 + Ψ + 𝐵 within a time step when
the falling bunny hits the floor. If we apply CCD after each L-G
iteration and truncate the vertex displacement accordingly, the to-
tal system potential does not converge (or converges very slowly)
and oscillates significantly. This observation endorses our previous
analysis: changing the active set too often negatively impacts the

convergence of barrier-based optimization. Alg. 1 on the other hand,
sufficiently lowers the potential at each outer loop (indicated by
red dash lines in the figure) to check the feasibility of the active set.
While a follow-up CCD pruning often drastically alters the target
potential, which can be clearly observed as sharp energy changes
after each outer loop, the overall optimization proceeds smoothly
and converges when 𝑥 becomes stabilized.

The L-G iterations in Alg. 1 can be viewed as a generic optimiza-
tion scheme. Therefore, any existing Hessian-free nonlinear pro-
gramming such as nonlinear CG, nonlinear Gauss-Seidel, ADMM,
quasi-Newton, or Newton-Krylov could fit in Alg. 1. The key ad-
justment is to avoid overaggressive barrier updates and CCD-based
displacement pruning. A major reason we choose PD as our base-
line nonlinear solver is its GPU-friendly implementation. The local
projection is independent at each constraint set, and many contri-
butions have shown that the linear solve at the global step can also
be conveniently mapped to GPU [Fratarcangeli et al. 2016; Wang
2015]. Next, we discuss a new GPU algorithm that further improves
the performance of the GPU linear solve.

5 AGGREGATED JACOBI SCHEME
While local projection step is trivially parallelizable, the global step
is not, as it needs to solve a standard linear system in the form of
A𝑥 = 𝑏, whereA = M

ℎ2 +
∑
𝜔𝑖S⊤𝑖 A

⊤
𝑖
A𝑖S𝑖 and𝑏 = M

ℎ2 𝑧+
∑
𝜔𝑖S⊤𝑖 A

⊤
𝑖
B𝑖𝑦𝑖

(i.e., Eq. (3)). Wang [2015] showed that each global step can be
quickly solved using the Jacobi method, whose convergence is fur-
ther improved by Chebyshev [Axelsson 1977]. This strategy is a
baseline of several follow-up GPU algorithms [Fratarcangeli et al.
2016, 2018; Wang and Yang 2016]. In this section, we describe an
aggregated Jacobi scheme (A-Jacobi). The goal is to better exploit
the computation capacity of the GPU. In addition, our method is
compatible with the Chebyshev-based method [2015] and thereby
also benefits from its performance improvement.

5.1 A Woodbury Perspective of Jacobi
Jacobi method is a well-known iterative linear solver based onmatrix
splitting. Given the global matrix A, we partition it into a diagonal
matrix D = diag(A) and an off-diagonal matrix B such that A =

D−B. The solving procedure starts with an initial guess of 𝑥 (0) and
advances following the recursive relation

𝑥 (𝑘) = D−1𝑏 + R𝑥 (𝑘−1) , R = D−1B. (7)

Note that D−1𝑏 is shared across all iterations. Therefore, the per-
iteration computation is dominated by R𝑥 (𝑘−1) . R is a sparse matrix
and works as a differential operator on each vertex locally. On the
GPU, each thread takes care of an inner product between 𝑥 (𝑘−1)

and the corresponding row vector from R. For instance, for the shell
model using quadratic bending [Wardetzky et al. 2007], this inner
product involves a weighted summation over one-ring neighbors of
this vertex on the mesh (e.g., see Fig. 17). While the parallel scheme
is straightforward and easy to implement, per-thread computation
is too light and does not even justify the overhead for the thread
initialization with CUDA.

A relevant technique is Woodbury formula [Hager 1989], which
forms the foundation of the quasi-Newton family. The Woodbury
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equation relates the inverse of a matrix before and after a rank-𝑘
update:

(D + UBV)−1 = D−1 − D−1U(B−1 + VD−1U)−1VD−1 . (8)
A special case of Eq. (8), by setting both U and V as identity matrices,
can be written as

A−1 = D−1 + D−1BD−1 + D−1BD−1BD−1 + · · · =
∞∑︁
𝑘=0

R𝑘D−1 . (9)

Right-multiplying 𝑏 at both sides of Eq. (9) reveals the structure of
𝑥★, the solution of A𝑥 = 𝑏:

𝑥★ = A−1𝑏 =

∞∑︁
𝑘=0

R𝑘D−1𝑏 = 𝑥 (0) + 𝑥 (1) + · · · + 𝑥 (𝑘) + · · · , (10)

from which we have 𝑥 (0) = D−1𝑏, 𝑥 (1) = RD−1𝑏, 𝑥 (2) = R2D−1𝑏,
and so forth. The above series converges as long as the spectral
radius 𝜌 (R) < 1. Suppose the initial guess 𝑥 (0) = D−1𝑏 + 𝛿𝑥 . It is
easy to see that 𝑥 (𝑘) and 𝑥 (𝑘) are related by

𝑥 (0) = D−1𝑏 + 𝛿𝑥,

𝑥 (1) = D−1𝑏 + R(D−1𝑏 + 𝛿𝑥) = D−1𝑏 + RD−1𝑏 + R𝛿𝑥,

𝑥 (2) = D−1𝑏 + RD−1𝑏 + R2D−1𝑏 + R2𝛿𝑥,
· · ·

𝑥 (𝑘) =
𝑘∑︁
𝑗=0

𝑥 ( 𝑗) + R𝑘𝛿𝑥 .

The initial deviation of 𝛿𝑥 will be eliminated by R𝑘 for a sufficiently
large 𝑘 , and 𝑥 (𝑘) converges to 𝑥★.
Eq. (10) suggests that a solution of A𝑥 = 𝑏 cannot be obtained

unless the series is sufficiently expanded. Unfortunately, one Jacobi
iteration only extends this series by one term. The corresponding
computation is lightweight, but it is also unable to fully exploit
the GPU resource. More importantly, the entire Jacobi procedure
remains sequential since the next iteration cannot occur without
completing the current one.

5.2 A-Jacobi and Its GPU Implementation
Our A-Jacobi is based the following intuition: we want each iteration
to use a higher order expansion of Eq. (10) of multiple 𝑥 (𝑘) terms.
In addition, we ensure that per-iteration computation is still paral-
lelizable and scaled to fully exploit the GPU capacity. Concretely,
we further expand Eq. (7):

𝑥 (𝑘) = D−1𝑏 + R𝑥 (𝑘−1) = D−1𝑏 + RD−1𝑏 + R2𝑥 (𝑘−2)

= (R0 + R)D−1𝑏 + R2𝑥 (𝑘−2) =
ℓ−1∑︁
𝑗=0

R𝑗D−1𝑏 + Rℓ𝑥𝑘−ℓ .

We refer to ℓ , the largest repeat count of R in the above derivation,
as the order of A-Jacobi and re-index the recursion:

𝑥 (𝑘) =
ℓ−1∑︁
𝑗=0

R𝑗D−1𝑏 + Rℓ𝑥 (𝑘−1) = D̃𝑏 + R̃𝑥 (𝑘−1) . (11)

One can easily see that the first-order A-Jacobi is just the regular
Jacobi methodwith 𝑥 (𝑘) ← RD−1𝑥 (𝑘−1) being computed one by one.

An ℓ-order A-Jacobi computes a batch of ℓ terms in one iteration,
which can be unfolded as:

𝑥 (𝑘)
𝑥 (𝑘+1)
𝑥 (𝑘+2)
.
.
.


←


R̃

R̃
R̃

. . .



𝑥 (𝑘−ℓ)
𝑥 (𝑘−ℓ+1)
𝑥 (𝑘−ℓ+2)
.
.
.


. (12)

The key question is how to assemble R̃ and evaluate the matrix-
vector product of R̃𝑥 (𝑘) efficiently on the GPU.

To answer this question, we first need to understand how the
global matrix A is constructed and updated during the simulation.
If all the constraint sets stay unchanged, A is constant; D and B are
constant; and R is constant too. In this case, we can just precompute
R̃. This is conceptually similar to pre-factorize A with a direct solver
(i.e., an alternative form of precomputing A−1) as did in the original
PD algorithm [Bouaziz et al. 2014].
On the other hand, our simulation framework processes colli-

sions implicitly using IPC barriers. Each CCD could possibly induce
a different A, and a precomputed R̃ is not available with contacts
and self-collisions. Fortunately, a bulk of R̃ assembly is still precom-
putable. This is because an IPC barrier only alters diagonal elements
in A, leaving its off-diagonal part i.e., B collision-invariant. Consider
the first-order A-Jacobi: R𝑥 (𝑘) = D−1B𝑥 (𝑘) for a nonzero vector
𝑥 (𝑘) . It is easy to see that:

[R𝑥 (𝑘) ]𝑖 = 𝐷−1𝑖𝑖 𝐵𝑖 𝑗𝑥
(𝑘)
𝑗

. (13)

Here 𝐵𝑖 𝑗 is the element at the 𝑖-th column and the 𝑗-th row of
matrix B, and we use the summation convention for brevity. The
above relation tells that each element in 𝑥 (𝑘+1) = R𝑥 (𝑘) is a linear
function of 𝐵𝑖 𝑗 , scaled by 𝐷−1

𝑖𝑖
. We also know that B is sparse, and

the summation 𝐵𝑖 𝑗𝑥
(𝑘)
𝑗

only needs to loop over incident vertices
and edges of vertex 𝑖 such that 𝐵𝑖 𝑗 corresponds to an edge, and 𝑥 (𝑘)

𝑗

is associated with a vertex.
When the order of A-Jacobi increases to two (i.e., ℓ = 2), we have

a similar equation of:

[R2𝑥 (𝑘) ]𝑖 =

A-coefficient︷                ︸︸                ︷
𝐷−1𝑖𝑖 𝐷−1𝑠𝑠 𝐵𝑖𝑠𝐵𝑠 𝑗︸ ︷︷ ︸

A-product

𝑥
(𝑘)
𝑗

. (14)

Eq. (14) simply says [R2𝑥 (𝑘) ]𝑖 becomes a quadratic function of 𝐵𝑖 𝑗
in second-order A-Jacobi. While 𝐷−1

𝑖𝑖
and 𝐷−1𝑠𝑠 are changing under

different collision/contact configurations, 𝐵𝑖𝑠𝐵𝑠 𝑗 can be precom-
puted. We hereby refer to such a product of multiplying different
𝐵𝑖 𝑗 elements as an aggregated product or A-product. After scaled by
𝐷−1
𝑖𝑖

and 𝐷−1𝑠𝑠 , an A-product becomes an aggregated coefficient i.e.,
A-coefficient.

The shared summation index 𝑠 in Eq. (14) also suggests we should
traverse not only the immediately adjacent vertices and edges but
also the ones incident to them i.e., two-ring neighbors. In general, as
the order of A-Jacobi grows, the order of the polynomial increases
accordingly, covering a wider neighborhood. The spectral radius
𝜌 (Rℓ ) is also better shaped than 𝜌 (R) as long as 𝜌 (R) < 1. Inter-
estingly, it is noteworthy that the actual computation load of one
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ℓ-order A-Jacobi iteration is heavier than ℓ regular Jacobi iterations.
This is because calculating R(R𝑥) always involves fewer floating
point operations than (RR)𝑥 . Therefore the advantage of A-Jacobi is
only tangible with a dedicated GPU implementation. This however
is quite common in the design of GPU algorithms –we exploit the ca-
pacity of GPU to consume redundant computations and trade them
for observable performance gains. Please find more implementation
details of A-Jacobi solver in the Appendix A.

5.3 Weighted A-Jacobi and Chebyshev
Weighted Jacobi is a common Jacobi variation by using a damped
iteration matrix R ← I − 𝑤D−1A (in this case D ← 𝑤D is also
scaled by 𝑤 ). It is easy to see that we can also aggregate multiple
weighted Jacobi iterations following the same procedure of A-Jacobi.
For stiffer problems, damped iteration matrix has a smaller spectral
radius, which will be further enhanced by A-Jacobi because 𝜌 (R̃) =
𝜌ℓ (R) < 𝜌 (R).
A-Jacobi is compatible with Chebyshev. From Eq. (10), it is easy

to see that the sequence of 𝑥 (0) , 𝑥 (1) , 𝑥 (2) etc. from regular Jacobi
iterations spans a Krylov subspace of R. Each new search direction
is generated by further multiplying the current one with R. The
Chebyshev method aims to improve the current search direction
based on the previous Krylov basis vectors. This mechanism also
applies to A-Jacobi: the Krylov basis vectors are now expanded by
R̃. Therefore, Chebyshev can also be used with A-Jacobi to further
accelerate its convergence.

6 FAST ROOT APPROXIMATE IN CUBIC CCD
CCD plays a pivotal role in our framework and is the enabler of
the non-intersection guarantee. CCD occurs between a pair of sur-
face primitives, edge-edge or vertex-triangle. The trajectories of
primitives are linearized within a time step, and a CCD query tells
whether and when their trajectories overlap. This query can be for-
mulated as a root-finding problem of a cubic equation [Provot 1997].
Our framework invokes CCD at the end of each outer loop (line 14,
Alg. 1), and we need to perform multiple CCDs in one time step.
Existing CCD algorithms aim to find TOI between the primitive pair,
either analytically [Brochu et al. 2012] or numerically [Harmon et al.
2009]. We notice that however, an exact TOI is not really needed
in our framework. At TOI, two primitives become just in contact
i.e., 𝑑𝑘 = 0. Under this situation, the barrier potential of Eq. (4)
is ill-defined. Therefore once a collision is confirmed, we always
backtrack to an earlier time instance before TOI. For instance, Li
and colleagues [2020] used 0.8𝑡𝑇𝑂𝐼 in their IPC implementation. In
this section, we describe a faster root finding algorithm, which does
not return an exact TOI but a moment slightly ahead of it.

We consider a triangle-level CCD a cubic root finding problem of:
𝑑 (𝑡) = 0, for 𝑑 = 𝐴𝑡3 + 𝐵𝑡2 +𝐶𝑡 + 𝐷. (15)

As long as 𝐴 ≠ 0, this function has at least one real root. In reality,
we only need to know if there exists a real root within the interval
of (𝑡0, 𝑡1], where 𝑡0 and 𝑡1 denote the starting and ending moments
of the current time step. Another piece of useful information is that
𝐴𝑡3 + 𝐵𝑡2 + 𝐶𝑡 + 𝐷 > 0 at 𝑡 = 𝑡0, because each time step always
starts from an intersection-free state. Being a cubic polynomial,
𝑑 (𝑡) has two local extrema: one local minimum (𝑡𝑚𝑖𝑛) and one local

Interval IInterval II

TOI

Interval III

TOI

Case 1 Case 2 Case 3

TOI

Fig. 6. Fast root approximate.We propose a fast root approximate algo-
rithm, based on the minimum-gradient Newton. Our rationale is twofold:
1) the exact TOI is not needed in our framework, and 2) the TOI can only
occur in a monotonically decreasing interval (colored in light green in the
figure) regardless if 𝐴 > 0 or 𝐴 < 0, since 𝑑 (𝑡0) is always positive.

maximum (𝑡𝑚𝑎𝑥 ). Those two extrema subdivide the function domain
into three monotonic intervals. The basic idea of our algorithm is
to first identify which interval TOI may reside in, and an altered
Newton-Raphason search i.e., the minimum-gradient Newton is
designed to find an approximate root smaller than the actual TOI.
To identify the right monotonic interval, we first compute 𝑡𝑚𝑖𝑛

and 𝑡𝑚𝑎𝑥 , which are simply two roots of the quadratic function
𝑑 ′(𝑡) = 0 or 3𝐴𝑡2 + 2𝐵𝑡 +𝐶 = 0. As shown in Fig. 6, we investigate
three possible cases:
• Case 1 𝑨 > 0 If 𝐴 > 0, we know 𝑡𝑚𝑎𝑥 ≤ 𝑡𝑚𝑖𝑛 . In this case, we
further compute 𝑑 (𝑡𝑚𝑖𝑛). If 𝑑 (𝑡𝑚𝑖𝑛) > 0, we can conclude that
there is no collision between 𝑡0 and 𝑡1. Otherwise, we also need
to compare 𝑡0 with 𝑡𝑚𝑖𝑛 . If 𝑡0 < 𝑡𝑚𝑖𝑛 , TOI is between [𝑡𝑚𝑎𝑥 , 𝑡𝑚𝑖𝑛]
(i.e., interval II in the figure). On the other hand, if 𝑡0 ≥ 𝑡𝑚𝑖𝑛 and
as we also know 𝑑 (𝑡0) > 0, primitives are moving away from
each other w.r.t. time, and no collision will be produced.
• Case 2 𝑨 < 0 and 𝒅(𝒕𝒎𝒊𝒏) ≥ 0 𝐴 < 0 implies 𝑡𝑚𝑖𝑛 ≤ 𝑡𝑚𝑎𝑥 .
Therefore TOI could land either before 𝑡𝑚𝑖𝑛 or after 𝑡𝑚𝑎𝑥 . If the
condition of 𝑑 (𝑡𝑚𝑖𝑛) ≥ 0 holds, TOI can only occur after 𝑡𝑚𝑎𝑥 . In
other words, a valid TOI can only exist in the interval of (𝑡𝑚𝑎𝑥 , 𝑡0],
which is interval III in the figure.
• Case 3 𝑨 < 0 and 𝒅(𝒕𝒎𝒊𝒏) < 0 The last case is when 𝐴 < 0
but 𝑑 (𝑡𝑚𝑖𝑛) < 0. In this situation, we also need to confirm 𝑡0 is
before 𝑡𝑚𝑖𝑛 . TOI is between the interval of (𝑡0, 𝑡𝑚𝑖𝑛) i.e., interval
I if and only if 𝑡0 < 𝑡𝑚𝑖𝑛 . Otherwise, TOI is still in the interval of
(𝑡𝑚𝑎𝑥 , 𝑡0] or interval III, if it exists.
Based on the above case studies, it is now clear that the TOI should

always sit in one of monotonically decreasing intervals regardless
the sign of 𝐴. This is because 𝑑 (𝑡0) > 0 is positive, and the curve
must travel downwards in order to generate a zero-crossing. This
property leaves us only three options i.e., three intervals highlighted
in the figure. Pinpointing the TOI interval facilitates our numerical
root finding. This procedure begins with the starting 𝑡 of the TOI
interval. Instead of evaluating 𝑑 ′(𝑡) at each iteration, we use a
fixed gradient during the search. Doing so certainly saves a lot
of computations for 𝑑 ′(𝑡), but how to make sure the resulting root
approximate is smaller than the actual root?
In the classic Newton-Raphson method, each search finds the

zero-crossing along the tangent line of the function. As long as the
magnitude of our search slope is bigger than the current curve slope,
our search will always hit 𝑑 = 0 before the Newton search. Since
the root search is only performed in three possible (decreasing)
intervals, we can just use the a locally minimal gradient within the
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Table 1. Time statistics. This table reports detailed statistics of our experiments. # Bdy is the total number of deformable bodies in the example. # DOF gives
the total number of simulation DOFs. # Ele. and # Tri./Edg. are the total numbers of elements (tetrahedron/triangle elements), surface triangles and edges.
The latter two factors contribute the the complexity of culling and collision processing. # Con. and # Bar. report the total number of elastic constraints and
average number of barrier constraints during the simulation. ℓ is the order of A-Jacobi. # L-G is the average number of L-G iterations needed for each time
step. # Out. is the average outer loop count, knowing that each outer loop could need several L-G iterations. # A-J reports, on average, the total number of
A-Jacobi iterations used for each time step. The next four columns are timing information. All are in milliseconds. A-J is the total time used for the A-Jacobi
solver. CCD is the average time needed for collision culling and CCD processing. Bar. shows the timing for generating all the barrier constraints, and Misc.
stands for other computation costs e.g., variables initialization, convergence check etc. FPS reports the FPS range during the simulation.

Test # Bdy # DOF # Ele. # Tri./Edg. # Con. # Bar. ℓ # L-G # Out. # A-J A-J CCD Bar. Misc. FPS
Falling dinosaur

(Fig. 10) 4 69K 103K 23K/35K 106K 6K 3 40 8 122 21.4 11.4 5.1 1.1 21.1 / 115.5

Dragon
(Fig. 13, top) 1 80K 100K 39K/58K 100K 8K 3 44 14 134 35.1 15.7 4.5 1.3 14.6 / 119.3

Armadillo
(Fig. 13, bottom) 3 78K 77K 45K/68K 99K 11K 3 32 10 96 29.9 8.9 2.8 1.5 19.4 / 112.0

Tiered skirt
(Fig. 14, bottom) 1 91K 59K 84K/127K 120K 42K 3 46 11 228 41.4 19.3 7.7 1.3 12.2 / 29.1

Rubber helicopters
(Fig. 11) 3 150K 224K 46K/69K 224K 14K 3 45 11 176 38.7 19.2 7.6 1.8 11.2 / 87.1

Bone dragon
(Fig. 15) 4 109K 89K 69K/103K 92K 8K 3 63 12 340 48.5 15.2 4.5 1.8 12.4/48.4

“Animal crossing”
(Fig. 16) 21 218K 293K 86K/128K 293K 16K 2 50 8 257 39.5 19.1 3.8 1.8 13.4/46.3

Halloween party
(Fig. 1) 13 249K 265K 159K/239K 287K 9K 2 93 17 263 85.3 32.4 9.8 2.2 7.7/26.8

interval in our root search (i.e., a smaller gradient has a bigger slope).
Because 𝑑 (𝑡) is a cubic polynomial, the variation of the gradient
is quadratic. If TOI is at interval I of (𝑡0, 𝑡𝑚𝑖𝑛], the locally minimal
gradient is min{𝑑 ′(𝑡)} = 𝑑 ′(𝑡0). This is because 𝑑 ′(𝑡𝑚𝑖𝑛) = 0, and
the gradient (which is a negative quantity) monotonically increases
in this interval. Similarly, if TOI is at interval III of (𝑡𝑚𝑎𝑥 , 𝑡1], the
locally minimal gradient ismin{𝑑 ′(𝑡)} = 𝑑 ′(𝑡1). In this interval, the
gradient monotonically decreases from zero (at 𝑡 = 𝑡𝑚𝑎𝑥 ) all the
way to 𝑡 = 𝑡1. Lastly, if the TOI interval is interval II of [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ]
the locally minimal gradient is the global minimum of the gradient,
which can be directly computed as −𝐵/3𝐴 by setting 𝑑 ′′(𝑡) = 3𝐴𝑡 +
𝐵 = 0.

By exploiting the fact that computing a precise TOI is unnecessary,
we further economize the CCD processing. We find that our algo-
rithm is up to 60% faster than additive CCD [Li et al. 2021b; Zhang
et al. 2006], at a cost of an inexact TOI. Meanwhile, we directly use
this approximated root to truncate Δ𝑥 (line 15, Alg. 1).

7 EXPERIMENTAL RESULTS
We implemented our algorithm on a desktop PC with an 8-core
intel i9 CPU and an nVidia 3090 GPU. Most of our experiments
include tens to hundreds thousands DOFs. We found that interest-
ing animations with rich local effects under frequent interactions
can be well captured at this scale. Most of those experiments run
in real-time over 24 FPS in most animation frames. When intense,
clustered contacts occur i.e., under sharp external forces or massive
bodies collisions, the FPS could drop as more outer loops are needed.
Because of the barrier constraint and CCD pruning at each outer
loop, the simulation does not generate any interpenetration even for
fine, thin and fast-moving shapes. Meanwhile, our simulation is typ-
ically three-order faster than regular CPU-based (multi-threaded)
IPC simulation. Unlike reduced simulation methods [Lan et al. 2020,

2021], our algorithm runs in fullspace capturing all the dynamical
details. We uniformly scale the model to fit into a 1 × 1 × 1 box
and set 𝑑 = 0.005 in all experiments. That is to say, if the size of
the model is about one meter, a barrier constraint will be generated
if another object becomes closer than five millimeters. The time
step size is 1/100 sec. Simulating one time step could take several
outer loops, which is composed of multiple L-G iterations. Each L-G
iteration needs to run a few A-Jacobi iterations for the global solve.
Detailed statistics of the simulation settings, models, and timings
are reported in Tab. 1. Most experiments can also be found in the
supplementary video.

7.1 Performance of A-Jacobi
First of all, we would like check the performance of the proposed
A-Jacobi method, and how it is compared with other commonly used
linear solvers. As shown in Fig. 7, we simulate a square table cloth
(with 30K DOFs) under the low-frequency gravity force and plot the
convergence curves of different solvers. We also compare conver-
gent behaviors among solvers when a sharp local external force is
applied. In this comparison, we pick a representative frame during
the simulation e.g., when the external force is applied. We also solve
the global system using a direct LU solver, which is regarded as 𝑥★
for the relative error measure. The solvers tested in this experiment
include regular Jacobi, Gauss-Seidel (GS), GS with SOR (successive
over-relaxation), and preconditioned conjugate gradient (PCG). We
use the Jacobi preconditioner similar to [Wang and Yang 2016] for
the PCG solver.

The difference between vanilla Jacobi and A-Jacobi is easy to fol-
low. Each A-Jacobi iteration is equivalent to running multiple Jacobi
iterations. Therefore, it is not a surprise to see A-Jacobi reduces the
error faster. GS is another popular linear solver, and it is also based
on matrix splitting. GS has been used with PD [Fratarcangeli et al.
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side view front view

Fig. 7. Convergence plots.We compare convergent behaviors of A-Jacobi and other commonly-used iterative linear solvers. We plot the relative error of
solving the global step system (Eq. (3)) using Jacobi, Gauss Seidel, Gauss Seidel and SOR, PCG, as well as second- and third-order A-Jacobi. With our GPU
implementation, one A-Jacobi iteration is nearly as efficient as one regular Jacobi iteration, making A-Jacobi the fastest converging solver in the benchmark.
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Fig. 8. A-Jacobi performance. This figure visualizes the performance of
A-Jacobi under different problem sizes on a 3090 GPU. The red bars represent
the first-order A-Jacobi, which is equivalent to the regular Jacobi method.
Therefore it always has the same performance (i.e., 100%). Second- and
third-order A-Jacobis are more efficient in general. For instance, for a 15K-
DOF simulation system, third-order A-Jacobi is nearly three times faster
(2.82×). When the problem size further increases, the advantage of A-Jacobi
diminishes because unfolding the computation at each vertex reaches the
capacity of the GPU.

2016] on the GPU. Conceptually, we can also build an aggregated
version of GS method. Unlike Jacobi, parallel GS requires on-the-fly
vertex coloring under different collision events. This step makes the
assembly of R̃ less practical in reality. PCG is arguably one of the
strongest iterative linear solvers. A PCG iteration always returns
the optimal search direction and step size within the current Krylov
subspace. Therefore Chebyshev is not compatible with PCG. There
exist GPU-based PCG implementations [Helfenstein and Koko 2012].
However, in order to obtain the optimal search direction and search
step size, inner product computations are frequently needed in PCG,
which stand as a major bottleneck. Hence the computation time
of each PCG iteration is much slower (by one or two orders) than
Jacobi and A-Jacobi on the GPU. With Chebyshev acceleration, the
convergent rate of A-Jacobi is similar to PCG, but the paralleliza-
tion of A-Jacobi can be conveniently tuned to achieve the optimal
balance between the thread concurrency and cost.
What is the best order of A-Jacobi we should use? The answer

depends on the DOF count of the simulation and the GPU specifica-
tions. To better explore this question, we visualize the “performance”
of A-Jacobi in Fig. 8, for simulation instances of different sizes. The
so-called performance here refers to how fast a solver can expand the
series of Eq. (10), compared with the vanilla Jacobi iteration. Clearly,
the first-order A-Jacobi always has the same performance (100%)
as the regular Jacobi method. Second- and third-order A-Jacobi can
better exploit the hardware resource and exhibit stronger efficiency

in general. For reasonable-scale problems, we often observe mul-
tifold performance gains using A-Jacobi. When the problem size
further goes up, the advantage of A-Jacobi becomes less obvious as
a regular Jacobi iteration already consumes significant hardware
resource. The complexity growth however, is largely linear, and
using multiple GPUs can easily boost the simulation performance
further. Nevertheless, this is not the focus of this paper, and we will
investigate more along this direction as our future work.

7.2 Patch-based GPU Collision Culling
Another important step along the pipeline is collision culling. When
aiming for interactive or real-time simulations, culling becomes a
“double-edged blade” as we would like to avoid unnecessary CCD
computations as much as possible while still maintaining a low cost
for the entire culling procedure. In other words, we seek for a good
trade-off between culling effectiveness and efficiency on the GPU.
Due to restrained time budgets, we do not use primitive-level BVHs
which allow one to identify all the colliding primitives at the leaf
level. Our method is inspired by I-Cloth [Tang et al. 2018] but is
more generic and can be used for any deformable shapes.

Specifically, we first subdivide the surface geometry of the model
into patches. This is a well-studied problem in computational geom-
etry, and many excellent algorithms are available (e.g., variational
surface approximation [Wu and Kobbelt 2005]). Here we only need
a speedy and robust patch generation and do not concern too much
about the subdivision quality. To this end, we simply obtain the
patch partition based on a regular voxelization and group all the
surface triangles within a voxel cell as a patch (as shown in Fig. 9).
Note that we do not require triangles of a patch being connected
topologically. After that, we build a BVH (of hierarchical AABBs)
based on the voxelized model such that each of its leaf node houses
a surface patch. From this perspective, our culling strategy can
be considered as the combination of BVH and voxel-based spatial
hashing.
In our implementation, the BVH is a binary tree so that it can

be compactly encoded as a linear array, and the pointer references
of parent/children are also straightforward. The structure of the
BVH does not change during the simulation, only the AABBs at
each BVH level will be updated. We also pre-build a list of all the
primitive pairs of each patch for detecting potential within-patch
contacts and self-collisions. At the simulation run time, patch-based
culling eventually leads to a list of overlapping patches. We then
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Fig. 9. Patch-based collision culling. Our implementation includes a simple and effective culling modality. The input model is subdivided into patches
based on a regular voxelization. Patch BVH facilitates a broad phase culling, which generates a list of overlapping patches. Because intra-patch primitive pairs
are pre-built, primitive-level CCD is then followed to compute 𝑡𝐼 for all the inter- and intra-patch primitive pairs.

Our methodPD

Our method

PD

Fig. 10. Falling dinosaur. Our method is PD-based. Therefore the simula-
tion results of the falling dinosaur using both algorithms are similar, if all
the collisions are well resolved. This can be verified from the snapshots in
the top two rows. The biggest advantage of our method is the guaranteed
collision resolution based on barrier constraints. After we reduce the diame-
ter of the rod by 90%, PD fails to detect the pass-through of the rod during
dinosaur’s falling, while our method yields realistic collision responses.

exhaustively compute CCD for all primitive parings from two over-
lapping patches. Together with the within-patch primitive pair list,
we generate the final list of barrier constraints.

7.3 Comparison with Fullspace PD and IPC
Since our method combines the most favorable features from both
PD and IPC, it is of great interest to examine how is our method
compared with each of those two competitors. We first show a side
by side comparison between our method and PD for simulating a
falling dinosaur with 103K elements. The snapshots of the resulting
animation are given in the top two rows of Fig. 10. Basically, the
visual difference between our method and PD is hardly perceivable
as long as PD successfully resolves the collisions between the di-
nosaur and wooden rods. After we shrink the cross-section of the

IPC
O

ur m
ethod

Fig. 11. Rubber helicopters.We simulate three rubber helicopters colliding
in a glass tank. This is a fullspace simulation and involves over 150K DOFs
and 224K elements. Both IPC and our method produce plausible animations
with the guarantee of interpenetration-free. Being a GPU algorithm, our
method is over 2, 000× faster than IPC.

rods by 90%, interpenetration between the thin rod and the dinosaur
is more visible because of the failure of discrete collision detection.
Our method uses CCD for barrier-based collision processing, and it
is therefore reliable and robust even for thin geometries. If we give
up CCD and barrier constraint, A-Jacobi solver is able to push the
simulation performance to exceed 200 FPS for this example.
We also compare our method with fullspace IPC [Li et al. 2020].

Such comparison is not strictly “apple-to-apple” since our method
is PD-based and less capable of capturing an accurate hyperelastic
behavior. To minimize this discrepancy, we implement an as-rigid-
as-possible (ARAP) material [Igarashi et al. 2005] with IPC instead of
using the invertible neo-Hookean model [Smith et al. 2018]. The IPC
solver runs on an 8-core i9 CPU. We used intel MKL library [Wang
et al. 2014] and enabled multi-threading whenever possible (e.g.,
in CCD, culling and system solve). For the same falling dinosaur
experiment of Fig. 10, IPC also produces a high-quality intersection-
free animation regardless of the size of the rod. The difference
between IPC and our method is indiscernible. On average, IPC takes
1.85 min to simulate one frame. Being a GPU simulator, our method
is over 2, 600× faster than IPC. Fig. 11 shows another comparison
using our method and fullspace IPC. In this experiment, three rubber
helicopters of 224K elements fall into a glass tank and collide with
each other tightly. The concave geometry of the helicopter also
yields a lot of self-collisions. Both IPC and our method robustly
resolve all the collisions using the barrier-based penalty, but our
method is 2, 000× faster (2.23 min per frame with IPC; 65.4 ms per
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Fig. 12. Flatten Armadillo. Our method remains stable under extreme-
scale deformation with massive close contacts. We note that the simulation
results of IPC (top) and our method (bottom) are similar, and both do not
have any interpenetration. In this example, our method is 67× faster on
average. The total number of outer loops goes up as the boards close: from
8 outer iterations (leftmost) to 54 outer iterations (rightmost). The FPS
therefore, drops from 67.9 to 1.3.

frame with our method). If we choose to run our solver on the
CPU with multithreading, the average computation time for one
time step is 3.2 sec, still much faster than IPC. Again, we would
like to mention that this speedup benchmark may be misleading
and imprecise, since two simulations run on different hardwares
and with different algorithms. Nevertheless, this experiment should
more or less showcase the performance gap between CPU and GPU
simulations, as long as the GPU can be reasonably leveraged.

7.4 Robustness under Close Contacts
Under close contacts, many vertices are engaged with each other
leading to a stiffer system. Here we evaluate the robustness of our
method by flatting the Armadillo with two glassy boards. We com-
pare our method and IPC with the ARAP energy. The results are
shown in Fig. 12. Both our method and IPC generate plausible re-
sults, which are visually similar to each other. With highly intense
self-collisions, the speedup of our method is smaller than other ex-
periments e.g., Fig. 11. This is because the convergence of PD-like
solver is faster, including our method, slows down when the opti-
mization approaches to smaller residual errors. In this example, the
full-space IPC will need about 21 sec on average to simulate one
step, while our method uses about 312 ms – still 67× faster though.

7.5 Interpenetration-free Simulation in Real-time
The superior performance of A-Jacobi allows us to simulate de-
formable objects of complicated geometries in real time under in-
teractive user manipulations. Here we show three of such examples
of a dragon (Fig. 13 top), an Armadillo (Fig. 13 bottom), and a multi-
layer skirt in Fig. 14. The dragon model consists of 100K elements.
We interactively use external forces to drag it back and forth, hit-
ting the rods from various angles. In the Armadillo example, two
pieces of cloth fall to the Armadillo. There are in total 77K elements
in the simulation. The user drags the cloth and the Armadillo to
trigger intense inter-body collisions and self-collisions. The exam-
ple of Fig. 14 is a tiered skirt of multiple layers. This simulation

Fig. 13. Interpenetration-free simulation in real time. Our framework
delivers a real-time frame rate while simulating complex models. Here
we show two deformable animations that are generated by interactive
user manipulations. Thanks to the barrier-based collision processing, the
simulation is always free of interpenetration under any user inputs.

involves over 91K DOFs and exhibits rich collision patterns at dif-
ferent layers under external forces and user inputs. Our method is
able to robustly process all of those examples in real time. It is note-
worthy that a recent cloth simulation algorithm proposed by Wu
and colleagues [2020] is also GPU-based. It has a higher run-time
FPS than our algorithm “on the surface” for Fig. 14. Such excellent
performance relies on a dedicated collision detection and culling
method specifically crafted for less-extensible cloth. Our algorithm
targets on general deformable simulation problems and thus cannot
enjoy such cloth-only optimizations and speedups. We believe, by
combing A-Jacobi and the repulsion method from [Wu et al. 2020],
the state-of-the-art cloth simulation could be further improved.

7.6 More examples
Lastly, we report three more comprehensive examples involving
both shell-like shapes and elastic solids. Fig. 15 demonstrates a
simulation example of highly concave models i.e., the bone dragon.
In this case, three bone dragons drop to a table cloth (89K elements
in total), whose four corners are fixed. The impacts of the dragons
generate multiple localized dents on the cloth. The skeletons of
dragon wings entangle with the cloth leading to wrinkles at edges.
Those effects are accurately captured by our simulation with a run-
time FPS between 12.4 to 48.4. In the second example (Fig. 16), we
throw a batch of 11 cartoon animal characters into a container with
many rubber straps in the space. There are in total 293K elements
in this example. The interactions among animals and rubber straps
yield interesting animation effects, and our simulation FPS ranges
from 13.4 to 46.3. The third example involves multiple objects as
shown in Fig. 1. Several ghost-like creatures are hanging on a spooky
tree. The “ghost” is modeled as a piece of cloth embedded with
additional volume preserving constraints at the head. The tree sways
under the wind. After wind stops, several monster pumpkins fall on
the tree and bounce on the grass. This simulation consists of over
265K elements, and the run-time FPS varies between 7.7 to 26.8.
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Fig. 14. Tiered skirt. Our method also produces high-quality interpenetration-free cloth animations. The tiered skirt has over 91K simulation DOFs and
multiple layers. Our solver robustly resolves all the collisions and self-collisions of the skirt. The simulation FPS is between 12.2 to 29.1.

Fig. 15. Bone dragons on cloth. The bone dragon has a sharply concave shape. We drop three of them into a piece of table cloth. The four corners of the
cloth is fixed. After hitting on the cloth, bone dragons slide down on the cloth and fall on the floor. This simulation is beyond the capability of conventional PD
or PBD based frameworks as CCD is a must to ensure the models are free of interpenetration. The total number of DOFs of the simulation is over 108K. Our
algorithm robustly simulates this scene and the runtime FPS ranges between 12.4 to 48.4.

Fig. 16. “Animal crossing”. A pack of soft animal characters fall and hit
several rubber straps. There are 21 deformable objects in this example con-
sisting of 293K elements. The falling animals induce interesting deformation
effects: a couple of straps get entangled with the animals and are pulled to
the floor. The runtime simulation FPS is between 13.4 to 46.3.

8 CONCLUSION
In this paper, we present a GPU algorithm for an efficient simulation
of elastic objects. Our method demonstrates the feasibility of using
GPU solvers to tackle barrier-augmented simulations, which are
currently coped with Newton’s method exclusively due to the high
nonlinearity of the barrier constraints. We have made several non-
trivial revisions over the vanilla PD framework to handle sticking
artifacts and slow convergence. Our simulation is empowered by
a new GPU solver named A-Jacobi, which further enhances the
performance of GPU linear solve. Together with a faster CCD pro-
cessing, we manage to simulate complicated scenes on the GPU at
an interactive rate. Compared with the CPU-based IPC system, our
method is three orders faster without any DOF reductions. The sim-
ulation is free of expensive precomputation/prepossessing and gives
all details of local deformations while retaining the non-penetration
guarantee. Such a combination of convenience, speed, robustness,
and quality is not common in existing methods.
Our method also has some limitations, for which we will care-

fully investigate in the near future. First of all, it is known that
PD-based models are not fully physically accurate. This issue how-
ever should be resolved by porting our algorithm to other nonlinear
programmings like ADMM [Narain et al. 2016], which could be
further paired with Anderson acceleration [Zhang et al. 2019]. Al-
ternatively, we can also follow a recent contribution from Macklin
and Müller [2021] that directly formulates hyperelastic material
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models with position-based frameworks. Being a position-based
simulator, our method is sensitive to the time step size. Increasing ℎ
slows the convergence as PD only converges faster than Newton’s
method at first few iterations. This limitation however, could be
addressed by using sub-step [Macklin et al. 2019]. While our method
has an encouraging performance in general, the run-time FPS is im-
pacted by the frequency of collision events. This is understandable
since collisions are treated as highly nonlinear barrier constraints
in our framework. However, it should be possible to further flatten
the FPS fluctuation by designing collision-aware preconditioners
or multi-level solvers. The mechanism of A-Jacobi naturally fits
multi-GPU systems to further push the simulation performance for
higher-resolution models. Exploiting deep learning based method
such as in [Luo et al. 2018; Shen et al. 2021] is also an interesting
and promising future direction for us.
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A GPU A-JACOBI IMPLEMENTATION
As mentioned, A-Jacobi exploits modern GPU hardware to hide
redundant computation from the end user. As a result, a careful
implementation of this solver is critical to obtain a performance
gain. Here, we discuss several noteworthy implementation details.

• Operator assembly Because B is constant, we always pre-
compute A-products before the simulation. Knowing R̃ is a local
operator, the possible combinations of 𝐵𝑖 𝑗 in A-products are
never exhaustive but only involve a subset of edges within the
neighborhood, up to the order of A-Jacobi (see Fig. 17). More
precisely, each valid combination of an ℓ-order A-product echoes
an ℓ-hop path from the vertex. As soon as the barrier constraints
are updated, D becomes known, and we precompute all the A-
coefficients, which are shared by A-Jacobi iterations. The second
precomputation happens at the simulation run time and is carried
out on the GPU in parallel.
• Sparsity suppression B includes several deformation mea-
sures, and the magnitudes/scales of them could differ signifi-
cantly from each other. Given a piece of less extensible cloth,
its stretching stiffness (i.e., 𝜔𝑖 coefficient in Eq. (3)) is several
orders stronger than the bending stiffness. Different measures
also have different sparsity patterns. For instance, calculating the
stretching at a vertex only needs to visit its incident vertices and
edges, while bending needs the information of all the vertices
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Fig. 17. GPU implementation of A-Jacobi. Computing the matrix product of R̃ is similar to applying a Laplacian-like operator over the neighborhood
of a vertex: the first-order A-Jacobi is equivalent to the regular Jacobi iterating vertex’s one-ring neighbors, and the second-order A-Jacobi covers two-ring
neighbors of the vertex etc. Edges on the mesh house the corresponding weights, which are non-zero elements in B. In our GPU implementation, we first
precompute all the non-zero A-products offline and load them into the GPU global memory. If an A-product is much smaller than others (by two or three
orders) due to the disparity of different constraint stiffness, the corresponding computation will be skipped. During the simulation run time, we update
A-coefficients in parallel after barrier constraints are built, knowing A-coefficients are unchanged for the entire inner solve. Before an A-Jacobi iteration starts,
we need to group adjacent vertices in one CUDA block to leverage their overlapped neighborhoods. A-coefficients of all the vertices within the block are then
fetched into local shared memory in parallel to reduce memory latency. The computation at each vertex is further split into several segments so that the
parallelism of the computation can be fully scaled to match the performance of the GPU.

in its adjacent triangles. To this end, we split each A-product of
𝐵𝑖𝑠𝐵𝑠 𝑗 as:

𝐵𝑖𝑠𝐵𝑠 𝑗 =

(
𝐵𝑏𝑒𝑛𝑑𝑖𝑠 + 𝐵𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑠

) (
𝐵𝑏𝑒𝑛𝑑𝑠 𝑗 + 𝐵𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑠 𝑗

)
≈ 𝐵𝑏𝑒𝑛𝑑𝑖𝑠 𝐵𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑠 𝑗 + 𝐵𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑠 𝐵𝑏𝑒𝑛𝑑𝑠 𝑗 + 𝐵𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑠 𝐵𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑠 𝑗 .

(16)

It may appear that there are more addends after discarding higher-
order bending terms. The sparsity of R̃ is actually improved, and
fewer additions/multiplications are needed in A-Jacobi.
• Improve memory performance From Eq. (14), one can see
that the major computation of an A-Jacobi iteration is the accu-
mulation of scaled A-coefficients. In this procedure, the latency
of (GPU) memory access is one to two orders slower than the
floating point multiplication and addition, if one directly retrieves
A-coefficients from the global memory. In addition to the pre-
computation, it is more important to reduce the frequency of
the global memory access. We again leverage the locality of the
R̃: if two vertices are adjacent to each other, their R̃ operations
also share many A-coefficients. Hence, we group multiple nearby
vertices (16 in our implementation) into one CUDA block and
pre-fetch their A-coefficients into the shared memory in parallel.
The shared memory is a register-like fast local storage. Thanks to
overlapping neighborhoods of those vertices, A-Jacobi iterations
only need to visit the shared memory and become much faster.
• Scale up Compared with regular Jacobi, an A-Jacobi iteration
needs to traverse a wider neighborhood of each vertex. This
increases per-thread computational overhead but does not im-
prove the parallelism of the iteration – the computation is still
unfolded at vertices. To this end, we subdivide the accumulation
of A-coefficients into multiple smaller segments to further scale
the parallelization. In our implementation, we decompose the
weighted summation of A-coefficients in Eq. (14) into four sub-
summations. In practice, the total number of launching threads
can be manipulated to match the hardware capacity, and the com-
putation at each thread can also be tuned to justify the thread
initialization cost.

The best order of A-Jacobi depends on the hardware and the size of
the simulation problem. Most experiments reported in this paper
are of tens or hundreds thousand of DOFs. In this context, we find
that second- or third-order Jacobi are most effective on our hard-
ware. With A-Jacobi, one could use multiple GPUs to further push
the performance of large-scale simulations as A-Jacobi can always
“deplete” hardware resource and convert it to faster FPS. This feature
is not available with existing GPU solvers as most of them unfold
computations at vertices.
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