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crowds is useful for safety, management, and measuring signi¯cance of an event. In this work,

we show that the regularly accepted labeling scheme of crowd density maps for training deep

neural networks may not be the most e®ective one. We propose an alternative inverse k-nearest

neighbor (ikNN) map mechanism that, even when used directly in existing state-of-the-art
network structures, shows superior performance. We also provide new network architecture

mechanisms that we demonstrate in our own MUD-ikNN network architecture, which uses

multi-scale drop-in replacement upsampling via transposed convolutions to take full advantage

of the provided ikNN labeling. This upsampling combined with the ikNNmaps further improves
crowd counting accuracy. We further analyze several variations of the ikNN labeling mecha-

nism, which apply transformations on the kNN measure before generating the map, in order to

consider the impact of camera perspective views, image resolutions, and the changing rates of the

mapping functions. To alleviate the e®ects of crowd density changes in each image, we also
introduce an attenuationmechanism in the ikNNmapping. Experimentally, we show that inverse

square root kNNmap variation (iRkNN) provides the best performance. Discussions are provided

on computational complexity, label resolutions, the gains in mapping and upsampling, and details
of critical cases such as various crowd counts, uneven crowd densities, and crowd occlusions.

Keywords : Crowd counting; convolutional neural network; k-nearest neighbor; upsampling.

1. Introduction

Every year, gatherings of thousands to millions occur for protests, festivals,

pilgrimages, marathons, concerts, and sports events. For any of these events, there

are countless reasons to desire to know how many people are present. For those

hosting the event, both real-time management and future event planning are de-

pendent on how many people are present, where they are located, and when they are

present. For security purposes, knowing how quickly evacuations can be executed and

where crowding might pose a threat to individuals is dependent on the size of the

crowd. For public health reasons, especially during and after the COVID-19 pandemic,

measuring real-time crowd densities with surveillance cameras is valuable in enforcing

social distancing while maintaining privacy. In journalism, crowd size information is

frequently used to measure the signi¯cance of an event, and systems which can accu-

rately report on the event size are important for a rigorous evaluation.

Many systems have been proposed for crowd counting purposes, with most recent

state-of-the-art methods being based on convolutional neural networks (CNNs). To

the best of our knowledge, every CNN-based dense crowd counting approach in

recent years relies on using a density map of individuals, primarily with a Gaussian-

based distribution of density values centered on individuals labeled in the ground

truth images. Often, these density maps are generated with the Gaussian distribu-

tion kernel sizes being dependent on a k-Nearest Neighbor (kNN) distance to other

individuals.27 In this work, we explain how this generally accepted density map

labeling is lacking and how an alternative inverse kNN (ikNN) labeling scheme,

which does not explicitly represent crowd density, provides improved counting ac-

curacy (Fig. 1). We will show how a single ikNN map provides information similar to

the accumulation of many density maps with di®erent Gaussian spreads, in a form

which is better suited for neural network training. This labeling provides a signi¯cant

gradient spatially across the entire label while still providing precise location

G. Olmschenk et al.
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information of individual pedestrians (excluding exactly overlapping head labelings).

We show that by simply replacing density map training in an existing state-of-the-

art network with our ikNN map training, the testing accuracy of the network

improves. This is the ¯rst major contribution of the paper.

Furthermore, coupling multi-scale drop-in replacement upsampling with densely

connected convolutional networks9 and our proposed ikNN mapping, we provide a

new network structure, MUD-ikNN, which integrates Multi-scale Upsampling with

transposed convolutions24 in the DenseBlock structures from DenseNet201,9 and

utilizes our ikNN labeling scheme. The transposed convolutions are used to spatially

upsample intermediate feature maps to the ground truth label map size for com-

parison. This approach provides several bene¯ts. First, it allows the features of any

layer to be used in the full map comparison, where many existing methods require a

special, architecture-speci¯c network branch for this comparison. Notably, this

upsampling, comparison, and following regression module can be used at any point in

any CNN, with the only change being the parameters of the transposed convolution.

This makes the module useful not only in our speci¯c network structure, but also

applicable in future state-of-the-art, general-purpose CNNs. Second, as this allows

features which have passed through di®erent levels of convolutions to be compared to

the ground truth label map, this intrinsically provides a multi-scale comparison

without any dedicated additional network branches, thus preventing redundant

parameters which occur in separate branches. Third, because the transposed con-

volution can provide any amount of upsampling (with the features being used to

specify the upsampling transformation), the upsampled size can be the full ground

truth label size. In contrast, most existing works used a severely reduced size label

Fig. 1. An example of a crowd image and various kinds of labelings. From left to right, on top: the original

image, the density map, the kNNmap with k ¼ 1. On bottom: the inverse kNNmap with k ¼ 1, k ¼ 3, and

k ¼ 1 shown with a log scaling (for reader insight only). Note that in the case of the density map, any

values a signi¯cant distance from a head labeling are very small. In contrast, the inverse kNN map has a
signi¯cant gradient even a signi¯cant distance from a head position.
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map for comparison. These reduced sizes remove potentially useful training infor-

mation. Although some recent works use full-size labels, they require specially crafted

network architectures to accomplish this comparison. Our proposed upsampling

structure can easily be added to most networks, including widely used general-pur-

pose networks, such as DenseNet. This proposed multi-scale network structure is the

second major contribution of the paper.

To validate the e®ectiveness and robustness of the ikNN mapping scheme, we

additionally evaluate several variants of the ikNN mapping/labeling scheme. We

analyze if additional considerations in designing mapping schemes impact the per-

formance of crowd counting and examine the cause of the impact. Experiments are

performed to test if these variant approaches improve the performance of crowd

counting. For example, one such experiment tests how the variants a®ect perfor-

mance detecting crowds with various per-person pixel resolutions. In this experi-

ment, we divide the images of a dataset into the near half and far half with di®erent

crowd densities per pixel, in order to perform comparisons of the original ikNN

mapping and its variants. Experimental results demonstrate that the inverse square

root kNN mapping (iRkNN) achieves in the lowest errors, while the ikNN is close in

performance. The mappings designed to account for considerations in both per-

spective views and resolutions performed worse than those which do not implement

special mechanisms for these purposes. Details and discussion of the reasoning will be

provided. The analysis of the various potential alternative mapping schemes is the

third major contribution of the paper.

To alleviate the e®ects of crowd density changes in each image, we also introduce

an attenuation mechanism to the ikNN mapping, which we propose to mitigate the

estimation errors in far empty regions of the image. We performed experiments on

original ikNN mapping, inverse square root kNN mapping and normalized ikNN

mapping. We choose iRkNN mapping because our evaluation results show

iRkNN has the lowest error. The original ikNN map has performance close to the

iRkNN map. Since the normalized ikNN mapping can apply extra weight on

pedestrians at farther distances in an e®ort to \correct" the perspective distortion,

especially when further region is empty, this may result in overestimation. We apply

our attenuation approach to adjust weights of these far empty regions, and further,

we evaluate how our attenuation method can balance the extra weight that nor-

malized the ikNN mapping applied in those regions.

The paper is organized as follows. Section 2 discusses related work. Section 3

proposes our overall new multi-scale network architecture for crowd counting, MUD-

ikNN, to motivate the design of the ikNN mapping. Section 4 details the proposed

inverse k-nearest neighbor map labeling method and its justi¯cation. Section 5

provides further proposed variations of the ikNN mapping schemes and the atten-

uation mechanism. Section 6 presents experimental results on several crowd datasets

and analyzes the ¯ndings. Section 7 provides a few concluding remarks.

G. Olmschenk et al.
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2. Related Work

Many works use explicit detection of individuals to count pedestrians.23,16,22

However, as the number of people in a single image increases and a scene becomes

crowded, these explicit detection methods become limited by occlusion e®ects.

Early works to solve this problem relied on global regression of the crowd count using

low-level features.4,6,5 While many of these methods split the image into a grid to

perform a global regression on each cell, they still largely ignored detailed spatial

information of pedestrian locations. Ref. 14 introduced a methods of counting objects

using density map regression, and this technique was shown to be particularly ef-

fective for crowd counting by Ref. 25. Since then, to the best of our knowledge, every

CNN-based crowd counting method in recent years has used density maps as a

primary part of their cost function.11,18,21,25,27,19,15,17,20

A primary advantage of the density maps is the ability to provide a useful gra-

dient for network training over large portions of the image spatially, which helps the

network identify which portion of the image contains information signifying an in-

crease in the count. These density maps are usually modeled by representing each

labeled head position with a Dirac delta function, and convolving this function with a

2D Gaussian kernel.14 This forms a density map where the sum of the total map is

equal to the total count of individuals, while the density of a single individual is

spread out over several pixels of the map. The Gaussian convolution allows a

smoother gradient for the loss function of the CNN to operate over, thereby allowing

slightly misplaced densities to result in a lower loss than signi¯cantly misplaced

densities.

In some works, the spread parameter of the Gaussian kernel is often determined

using a k-nearest neighbor (kNN) distance to other head positions.27 This provides a

form of pseudo-perspective which results in pedestrians which are more distant from

the camera (and therefore smaller in the image) having their density spread over a

smaller number of density map pixels. While this mapping will often imperfectly map

perspective (especially in sparsely crowded images), it works well in practice.

Whether adaptively chosen or ¯xed, the Gaussian kernel size is dependent on arbi-

trarily chosen parameters, usually ¯ne-tuned for a speci¯c dataset.

We compare with adaptive version in this work, due to its success and being more

closely related to our method. For example, in a recent work,11 the authors used

multiple scales of these kNN-based, Gaussian convolved density maps to provide

levels of spatial information, from large Gaussian kernels (allowing for a widespread

training gradient) to small Gaussian kernels (allowing for precise localization of

density). While this approach e®ectively integrates information from multiple

Gaussian scales, thus providing both widespread and precise training information,

the network is left with redundant structures and how the various scales are chosen is

fairly ad hoc. Our alternative ikNN labeling method supersedes, these multiple scale

density maps by providing both a smooth training gradient and precise label loca-

tions (in the form of steep gradients) in a single label. Our new network structure

Impact of Labeling Schemes on Dense Crowd Counting
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utilizes a single branch CNN structure for multi-scale regression. Together with the

ikNN labeling, it provides the bene¯ts of numerous scales of these density maps.

Though most CNN-based approaches use a reduced label size, some recent

works19,15,3,13 have begun using full resolution labels. In contrast even to these works,

we provide a generalized map module which can be added to existing network

structures. Speci¯cally, the map module can be used as a drop-in replacement for the

density map comparisons. This map module can be added to most dense crowd

counting architectures with little or no modi¯cation to the original architecture. In

this paper, our proposed network is based o® the DenseNet201,9 with our map

module added to the end of each DenseBlock.

Our ikNN mapping is obliquely related to a distance transform, which has been

used for counting in other applications.1 However, the distance transform is analo-

gous to a kNN map, rather than our ikNN. Notably, the ikNN crowd labeling pre-

sents the network with a variable training gradient to the network, with low values

far from head labelings and cusps at a head labeling. In contrast, a kNN or distance

transform provides constant training gradients everywhere. To our knowledge, nei-

ther the distance transform nor a method analogous to our ikNN labeling has been

used for dense crowd counting.

To deal with uneven crowd densities in each image, some works8,26,12 use

attention mechanism to count pedestrians. A most recent work12 uses attention

scaling network to overcome the prediction bias of regions with di®erent density

levels. The authors proposed an approach to improve the performance by generating

scaling factors and attention masks related to the far regions with di®erent density

levels, and generating attention-based density maps above the original density maps.

Instead of training attention networks to generate new maps, we add an attenuation

function to our ikNN mapping to reduce the map values to the far regions where

there are little or no people to mitigate the estimation errors and improve the crowd

estimation performance.

3. MUD-ikNN: A New Multi-Scale Network Architecture

We propose a new network structure, MUD-ikNN, with both multi-scale upsampling

using DenseBlocks9 and our ikNN mapping scheme. For providing a context of our

proposed ikNN mapping scheme, we will describe the network structure ¯rst, before

the detailed description of the ikNN mapping in Sec. 4. We show that the new MUD-

ikNN structure performs favorably compared with existing state-of-the-art networks.

In addition to the use of ikNN maps playing a central role, we also demonstrate how

features with any spatial size can contribute to the prediction of ikNN maps and

counts through the use of transposed convolutions. This allows features of various

scales from throughout the network to be used for the prediction of the crowd.

Throughout this section, a \label map" may refer to either our ikNN map or a

standard density map, as either can be used with our network.

G. Olmschenk et al.
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3.1. MUD-ikNN architecture

The proposed MUD-ikNN network structure is shown in Fig. 2. Our network uses the

DenseBlock structures from DenseNet2019 in their entirety. DenseNet has been

shown to be widely applicable to various problems. The output of each DenseBlock

(plus transition layer) is used as the input to the following DenseBlock, just as it is

in DenseNet201. However, each of these outputs is also passed to a map module

(excluding the ¯nal DenseBlock output), which includes a transposed convolutional

layer, a map prediction layer, and a small count regression module with four con-

volution layers. For each transposed convolution, the kernel size and stride are the

same value, resulting in each spatial input element being transformed to multiple

spatial output elements. The kernel size/stride value is chosen for each DenseBlock

such that resulting map prediction is the size of the ground truth label. This form of

upsampling using transposed convolutions allows the feature depth dimensions to

contribute to the gradients of the map values in the predicted label map. Both the

stride and kernel size of the transposed convolutions of our network are 8, 16, and 32

for the ¯rst three Denseblocks, respectively.

The label map generated at after each DenseBlock is individually compared

against the ground truth label map, each producing a loss which is then summed,

Lm ¼
X
j

MSEðM̂ j;MjÞ; ð1Þ

where j is the index of the DenseBlock that the output came from, M is the ground

truth label map, and M̂ is the predicted map labeling.

Each predicted label map is then also used as the input to a small count regression

module. This module is a series of four convolutional layers, shown in the inset of

Fig. 2. A diagram of the proposed network architecture MUD-ikNN: multiscale regression with
DenseBlocks and ikNN mapping. Best viewed in color.

Impact of Labeling Schemes on Dense Crowd Counting
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Fig. 2. The sizes of these layers are speci¯ed in Table 1. The regression module then

has a singleton output, corresponding to the predicted crowd count.

The mean of all predicted crowd counts from the regression modules,

three in Fig. 2, and the output of the ¯nal DenseBlock is used as the ¯nal count

prediction

Lc ¼ MSE
Ĉ end þ

Pm
j¼1 Ĉ j

mþ 1
;C

 !
ð2Þ

with C being the ground truth count, Ĉ end being the regression count output by

the ¯nal DenseBlock, and Ĉ j being the count from the jth map regression module

(j ¼ 1; 2; . . . ;m; m ¼ 3 in Fig. 2). This results in a total loss given by

L ¼ Lm þ Lc.

3.2. MUD-ikNN bene¯ts

This approach has multiple bene¯ts. First, if an appropriately sized stride and kernel

size are speci¯ed, the transposed convolutional layer followed by label map predic-

tion to regression module can accept any sized input. For example, an additional

DenseBlock could be added to either end of the DenseNet, and another of these map

modules could be attached. Second, each label map is individually trained to improve

the prediction at that layer, which provides a form of intermediate supervision,

easing the process of training earlier layers in the network. At the same time, the ¯nal

count is based on the mean values of the regression modules. This means that if any

individual regression module produces more accurate results, its results can indi-

vidually be weighted as being more important to the ¯nal prediction.

We note that the multiple Gaussian approaches by Ref. 11 has some drawbacks.

The spread of the Gaussians, as well as the number of di®erent density maps, is

arbitrarily chosen. Additionally, without upsampling, a separate network branch is

required to maintain spatial resolution. This results in redundant network para-

meters and a ¯nal count predictor which is largely unconnected to the map predic-

tion optimization goal. Our upsampling approach allows the main network to retain

Table 1. A speci¯cation of the map module layers. This module is used at 3 points throughout our
network as shown in Fig. 2, so the initial input size varies. However, the transposed convolution always

produces a predicted map label which is uniform size (1�224�224).

Layer Output size Filter

Input from DenseBlock 128� 28� 28

256� 14� 14

896� 7� 7

Transposed convolution 1� 224� 224 (map prediction) ð8; 16; 32Þ � ð8; 16; 32Þstride ¼ ð8; 16; 32Þ
Convolution 8� 112� 112 2� 2stride ¼ 2

Convolution 16� 56� 56 2� 2stride ¼ 2

Convolution 32� 28� 28 2� 2stride ¼ 2

Convolution 1� 1� 1 28� 28

G. Olmschenk et al.
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a single primary branch and connects all the optimization goals tightly to this

branch.

With both the Gaussian density maps and our ikNN maps, it is worth noting the

importance of the label resolution. Taken to an extreme, one might reduce the label

resolution to 1� 1. Of course, this is equivalent to the global count label used by

works prior to density map labels.4,6,5 As the resolution increases, ¯ner details of label

training gradients emerge, allowing for the network to take advantage of the label

training gradients. To take full advantage of the ikNN map label features (e.g.

precise head position label cusps), a label resolution matching the original image

resolution is ideal.

3.3. MUD-ikNN implementation details

The input to the network is 224� 224 image patches. At evaluation time, a 224�
224 sliding window with a step size of 128 was used for each part of the test images,

with overlapping predictions averaged. The label maps use the same size patches,

and predictions from the network are of the same resolution. Each count regression

module contains the same four layers, as speci¯ed in Table 1.

For each experiment, the network was trained for 105 training steps. The network

was designed and training process carried out using PyTorch (v0.4.0). The network

was trained on an Nvidia GTX 1080 Ti.

Computational complexity in training and testing. As is typical for deep

neural networks methods, training a neural network is time-consuming, while using

the trained network for inference on new examples is computationally e±cient. Using

the above con¯guration, training the model to convergence takes several days. Using

the trained model, the network can perform inference on a batch of image patches in

63ms. Such inference speeds enable real-time inference of video data.

Complete details of the network code and hyperparameters can be found at

https://github.com/golmschenk/sr-gan.

4. Inverse k-Nearest Neighbor Map Labeling

We propose using full image size ikNN maps as an alternative labeling scheme from

the commonly used density map explained in Sec. 2. Formally, the commonly used

density map11,18,21,25,27 is provided by

Dðx; fð�ÞÞ ¼
XH
h¼1

1ffiffiffiffiffiffi
2�

p
fð�hÞ

exp � ðx� xhÞ2 þ ðy� yhÞ2
2fð�hÞ2

� �
; ð3Þ

where H is the total number of head positions for the example image, �h is a size

determined for each head position ðxh; yhÞ using the kNN distance to other heads

positions (a ¯xed size is also often used), and f is a manually determined function

for scaling �h to provide a Gaussian kernel size. We use this adaptive Gaussian
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label as the baseline in our experiments. For simplicity, in our work, we de¯ne f

as a simple scalar function given by fð�hÞ ¼ ��h, with � being a hand-picked

scalar. Though they both apply to head positions, the use of kNN for �h in the

density map is not to be confused with the full kNN map used in our method,

which is de¯ned by

Kðx; kÞ ¼ 1

k

X
min
k

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xhÞ2 þ ðy� yhÞ2

p
; 8h 2 HÞ; ð4Þ

where H is the list of all head positions. In other words, the kNN distance from

each pixel, x ¼ ðx; yÞ, to each head position, xh ¼ ðxh; yhÞ, is calculated.

To produce the inverse kNN (ikNN) map, we use

MikNNðx; kÞ ¼
�m

Kðx; kÞ þ 1
; ð5Þ

where MikNN is the resulting ikNN map, with the addition and inverse being applied

element-wise for each pixel x ¼ ðx; yÞ, K is de¯ned in Eq. (4), and �m is a constant

scalar parameter to control the magnitude of the values in MikNN. Note that a term

þ1 is added in the denominator to prevent division by zero.

4.1. Justifying ikNN map labeling

To understand the advantage of an ikNN map over a density map, we can consider

taking the generation of density maps to extremes with regard to the spread pa-

rameter of the Gaussian kernel provided by f. At one extreme, is a Gaussian kernel

with zero spread. Here the delta function remains unchanged, which in practical

terms translates to a density map where the density for each pedestrian is fully

residing on a single pixel. When the di®erence between the true and predicted density

maps is used to calculate a training loss, the network predicting density 1 pixel away

from the correct labeling is considered just as incorrect as 10 pixels away from the

correct labeling. This is not desired, as it both creates a discontinuous training

gradient, and the training process is intolerant to minor spatial labeling deviations.

The other extreme is a very large Gaussian spread. This results in inexact spatial

information of the location of the density. At this extreme, this provides no bene¯t

over a global regression, which is the primary purpose for using a density map in the

¯rst place. The extreme cases are shown for explanatory purposes, yet any inter-

mediate Gaussian spread has some degree of both these issues. Using multiple scales

of Gaussian spread, Ref. 11 tries to obtain the advantage of both sides. However, the

size of the scales and the number of scales are then arbitrary and hard to determine.

A similar explanation is illustrated in Fig. 3.

In contrast, a single ikNN map provides a substantial gradient everywhere while

still providing steep gradients in the exact locations of individual pedestrians. No-

tably, near zero distance, the ikNN mapping clearly has a greater slope, and in

comparison, for any Gaussian, there exists a distance at which all greater distances

have a smaller slope than the equivalent position on the ikNN mapping. This means

G. Olmschenk et al.

2160012-10

In
t. 

J. 
Pa

tt.
 R

ec
og

n.
 A

rti
f. 

In
te

ll.
 2

02
1.

35
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 2

4.
0.

24
9.

53
 o

n 
08

/0
4/

22
. R

e-
us

e 
an

d 
di

st
rib

ut
io

n 
is

 st
ric

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



the slope of the Gaussian is only greater than the slope of the ikNN mapping for a

middle range arbitrarily determined by the Gaussian spread. The ikNN curve and its

derivative's magnitude (the inverse distance squared) monotonically increase toward

zero. We want to note here that directly using a kNN map does not have the

advantage of using an inverse kNN map, since a kNN or distance transform provides

constant training gradients everywhere. This was further veri¯ed in our preliminary

experiments. An example of our ikNN map compared with a corresponding density

map labeling can be seen in Fig. 1. Reference11 uses three density maps with di®erent

Gaussian spread parameters, with the Gaussian spread being determined by the kNN

distance to other head positions multiplied by one of the three spread parameters.

For a single head position, all Gaussian distributions integrated on � from 0 to an

arbitrary constant result in a form of the incomplete gamma function. This function

has a cusp around the center of the Gaussians. Similarly, the inverse of the kNN map

also forms a cusp at the head position and results in similar gradients at corre-

sponding distances as the integrated Gaussian function. In our experiments, we

found that an inverse kNN map outperformed density maps with ideally selected

spread parameters.

4.2. Implementing ikNN map labeling

In one experiment, we ¯rst use an existing network architecture11 which uses Den-

seNet9 as the backbone architecture, although we replace the density maps with

ikNN maps and show there is an improvement in the prediction performance of the

trained model. This demonstrates a direct improvement gained using our ikNN

Fig. 3. (Color online) A comparison of the values of map labeling schemes with respect to the distance
from an individual head position (normalized for comparison). Two Gaussians are shown in green. The

blue line shows a composite of several Gaussians with spread parameters between those of the two

extremes (The work11 uses three Gaussian spreads in their work). This provides both precise and distant

training losses. Our approach of the ikNN map shown in red (with k ¼ 1) approaches a map function with
a shape similar to the integral on the spread parameter of all Gaussians for a spread parameter range from

0 to some constant.
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method on an existing state-of-the-art network. Note that the regression module

from ikNN map to count is then also required to convert from the ikNN map to a

count. The di®erence in error between the original approach in Ref. 11 and the

network in Ref. 11 with our ikNN maps, though improved, is relatively small. We

suspect this is because the density maps (or ikNN maps) used during training are

downsampled to a size of 28� 28 (where the original images and corresponding labels

are 224� 224). This severe downsampling results in signi¯cant binning of pixel in-

formation, and this seems to reduce the importance of which system is used to

generate the label. Taken to the extreme, when downsampled to a single value, both

approaches would only give the global count in the patch (where the ikNN map gives

the inverse of the average distance from a pixel to a head labeling which can be

translated to an approximate count). This downsampling is a consequence of the

network structure only permitting labels of the same spatial size as the output of the

DenseBlocks of the DenseNet. Our MUD-ikNN network described in Sec. 3 remedies

this through transposed convolutions, allowing for the use of the full-size labels.

Label generation computational complexity. The generation of the ikNN

labels occurs as a one-time data preprocessing step before the training process, and

thus, the label generation method does not have an impact on the speed of training

steps, or the testing step. The same is true for all the variations of the mapping

approaches as described below.

Discussions on occlusion. The primary goal of the network is a statistical

prediction of the number of people in a crowd. As such, resolving individual occlu-

sions is not a critical issue, so long as the network accurately predicts the overall

crowd size. That said, inspecting how ikNN maps handle occlusions di®erently than

Gaussian-based density maps may provide interesting insights di®erentiating the

methods. In the Gaussian-based density map, two overlapping individuals will

provide density totals summing to 2, taking into account the fact that two indivi-

duals are overlapping in the image. Notably, two perfectly overlapping individuals

(center head locations being selected as the same pixel) will not be resolved by the

ikNN map when k ¼ 1. However, such overlaps leading to an overall count increase

are still captured by the global count label used in ikNN approach. In such a case of

perfect occlusion, we expect little or no visual information to suggest the presence of

another person. In which case, the position of the additional person count is not

useful to training the network. It can actually be detrimental, as without visual

evidence, there is no way for the network to determine whether any particular person

has a prefect occlusion, and it must guess between 1 and 2 individuals being at each.

In this way, only including the additional count in the global count, and not in the

map label (as the ikNN approach does), may be bene¯cial. However, perfect occlu-

sions are a rare occurrence (indeed, perfectly overlapping heads likely cannot have

been marked by the original human-created ground-truth). When occlusion is not a

perfect overlap, the ikNN map has an advantage over the density maps. When the

head positions are 2 pixels away, the ikNN forms two distinct peaks in the map label

G. Olmschenk et al.
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(one for each head location). Typically, this is not the case for the Gaussian-based

labeling, where the Gaussians form a mixture model, often containing only a single

peak. As explained in Sec. 4.1, the value of the ikNN maps comes from providing

improved training gradients. These distinct peaks in the map label demonstrate a

case where the ikNN map provides useful training information which may be lost in

the density map, as implied by our experimental results in Sec. 6.

5. Generalization of ikNN Mapping, Variations, and Attenuation

To motivate the generalization of the ikNN mapping, additional analysis was per-

formed on the training samples of the UCF-QNRF dataset. This training dataset has

1201 images, with a average image resolution of 2013� 2902. The dataset contains

images which are viewed from a variety of perspectives, most of which results in a

signi¯cant perspective distortion, which results in wider coverage of the physical area

on the far end of an image than the near end. This results in denser crowd counts

per pixel in more distance locations in the image (such as can be seen in Fig. 4(a)).

To analyze whether additional mechanisms in the labeling scheme which account for

these distortions improve crowd counting performance, we generate statistics of

the full images as well as the far half (y > 0) and the near half (y < 0) of the images

Fig. 4. (Color online) A crowd image (a) and its counts (b) and various maps (c–l). In (a), the origin of

the image is at the center where the optical axis of the camera points to, the positive y goes up, and the
positive x goes to the left, aligning with the camera coordinate system. In (b), the count numbers of every

80 rows are shown in the horizontal coordinates. Map values of four di®erent maps (with a log scaling) and

the plots of their summation-per-person versus the y-coordinate are shown from (c) to (l): (c) and (d) —
i1NN; (e) and (f) — iS1NN; (g) and (h) — iR1NN; (i) and (j) — n-i1NN; (k) and (l) — w-i1NN. In each
plot, the vertical axis is the y coordinate aligned with the image, and the horizontal coordinate value of

each blue dot shows the summation of map values of a person at that y coordinate. The red line in each of

(d), (f) and (h) is a linear ¯tting of the summation plot.
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(with the origin of the coordinate system xoy de¯ned in the center of the image where

the optical axis of the camera points to; see Fig. 4(a)), and their ratios in Table 2.

As many images do not have uniformly distributed crowd in the more distant part of

the image, we show both the mean and median values. The mean (median) count of

the ground truth person labeling shows a ratio of 0:67 (0:60) in the near half com-

pared to the far half; the smaller ratio of the median indicates that images often do

not have a signi¯cant crowd density in the far end of the images. Details of other

columns will be explained in the following.

Examples of crowd images are shown in Fig. 5. To further analyze the impact of

uneven crowding in the images, we ¯rst subcategorized the images into di®erent

categories based on the location of the people for both training samples and test

samples of UCF-QNRF dataset. These categories consist of the cases when the far

half is empty, the far half is not empty, and the far half has less than 5% of the head

counts (Table 3). The proportion of each category for both the training set and the

test set are roughly the same. Next, we analyze the subcategories based on the total

count of the images. In Table 4, we show the that proportion of each category in the

Table 2. Statistics of mean and median counts and summation-per-person values on various maps for the
UCF-QNRF dataset.

Count i1NN sum iS1NN sum iR1NN sum n-i1NN sum w-i1NN sum

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

Full image 838 421 147 105 18 17 668 360 1.71 1.36 12 11

Near half 337 136 300 180 21 20 1994 714 1.46 0.90 16 12

Far half 501 228 131 77 17 16 591 201 3.02 1.52 16 11
Near/far ratio 0.67 0.60 2.29 2.34 1.24 1.25 3.37 3.55 0.48 0.59 1.00 1.09

Fig. 5. Examples of crowd images from UCF-QNRF dataset. On top: examples of dataset images which

contain head positions in far half. On bottom: examples of dataset images in which the far half is empty.

G. Olmschenk et al.
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test set is similar to the training set. However, there are no images which have total

count over 5000 in test set, where there is a small portion of images (1.3%) that have

a count of over 5000 in the training set.

To produce variants of the inverse kNN (ikNN) map, we de¯ne

Mðx; kÞ ¼ �m

RðxÞðKðx; kÞq þ 1Þ ; ð6Þ

where M is the resulting generalized ikNN map, q is the distance normal order of the

kNN map, R is the weighting factor considering perspective views (ranges) and/or

image resolutions, and theoperations are applied element-wise for eachpixelx ¼ ðx; yÞ.

5.1. The original ikNN mapping and its variations

For each of the below mappings, the statistics of the means and medians of the

summation-per-person values of the full, near half, and far half images, as well their

ratios, are shown in Table 2.

5.1.1. The original ikNN mapping

When RðxÞ ¼ 1 and q ¼ 1 in Eq. (6), the mapping is the original ikNN in Eq. (5),

MikNNðx; kÞ ¼
�m

Kðx; kÞ þ 1
; ð7Þ

To analyze the distributions of the map values, we approximate the summation of

ikNNmap values per labeled person, SKðxh; kÞ, by summing up the ikNNmap values

with a circular region whose radius r is half of the kNN distance of that head position

xh ¼ ðxh; yhÞ:
SKðxh; kÞ ¼

X
r

MikNNðxh � r; kÞ: ð8Þ

Figure 4(c) shows the i1NN map (i.e. k ¼ 1) with a log scaling for the image in Fig. 4

(a), and Fig. 4(d) shows the distribution of the summations per person along their y

Table 3. Number of images based on people location of UCF-QNRF dataset.

No. of images Far half empty Far half not empty Far half count less than 5%

Train 1201 85 (7%) 1116 (93%) 131 (11%)
Test 334 25 (7%) 309 (93%) 34 (10%)

Table 4. Statistics for images based on total count of UCF-QNRF dataset. We categorize the dataset into ¯ve

subsets based on total count of the image: 0–250, 251–500, 501–750, 751–1000, 1001–2500, 2501–5000, 5001–10000
and > 10 000.

No. of images 0–250 251–500 501–750 751–1000 1001–2500 2501–5000 5001–10 000 10 000þ
Train 1201 340 (28%) 359 (30%) 159 (13%) 88 (7%) 175 (16%) 61 (5%) 16 (1.3%) 4 (0.3%)

Test 334 88 (26%) 100 (30%) 43 (14%) 35 (10%) 54 (16%) 14 (4%) 0 (0%) 0 (0%)

Impact of Labeling Schemes on Dense Crowd Counting
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coordinates. We can see that in the i1NNmapping, for people from far to near ranges,

the summation values increase with the increase of image resolution due to the

perspective view, with almost six times from the far end to the near end (roughly

from 100 to 600 on the ¯tted red line). This implies that the ikNN mapping might

favor the near parts of the images more, as more weight is assigned per person

compared to the far regions of the image (Fig. 4(b), \counts per 80 rows" from 5 to 30

from near to far). The statistics shown in the \i1NN Sum" column of Table 2 shows

that the summation values decrease from near to far, by about 2.3 times.

5.1.2. Inverse squared kNN mapping

To reduce the e®ect of unbalanced map values due to perspective views, a potential

solutions is an inverse squared kNN mapping. This method turns distance-related

measures into area-related measures in the mapping function, which increases the

gradient of values in the resulting maps near head positions. When RðxÞ ¼ 1 and

q ¼ 2 in Eq. (6), the mapping is the inverse squared kNN (iSkNN):

MiSkNNðx; kÞ ¼
�m

Kðx; kÞ2 þ 1
: ð9Þ

Since the values of the iSkNN map decrease more quickly from a head position

than in the ikNN map, and individuals closer to the camera have a relatively large

pixel area before reaching the boundary of the kNN, this mapping will tend to

provide a smaller map summation per individual for those in the nearer regions of the

image. Figure 4(e) shows the iS1NN map (iSkNN when k ¼ 1) with a log scaling of

the image Fig. 4(a), and Fig. 4(f) shows its distribution of the summations per

person. We can see that in the iS1NN mapping, for people from far to near ranges,

summation values do not increase as dramatically as in the i1NN mapping. Instead,

the rate is about 1:5 times from the far end to the near end (summation values are

roughly from 20 to 30 on the ¯tted red line). The statistics shown in Table 2 shows

that the summation values per person do not decrease as fast as in the i1NNmapping

from near to far (about 1:2 times compared to 2:3 times). Since the far end has more

counts than the near end of images, the squared ikNNmapmay incentivize the network

to learn how to count more distant individuals which occupy a smaller pixel space.

5.1.3. Inverse square root kNN mapping

The next mapping to compare is an inverse square root kNN mapping (denoted as

iRkNN), which turns distance-related measures into square root measures in the

mapping function, thus making the changing rates of the mapping function slower—
the opposite direction of the iSkNN. When RðxÞ ¼ 1 and q ¼ 1=2 in Eq. (6), the

mapping is the iRkNN:

MiRkNNðx; kÞ ¼
�mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kðx; kÞp þ 1
: ð10Þ

G. Olmschenk et al.
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Since the values of the iRkNN map as a function of pixel distance from a head

position decrease at a slower rate than does the ikNN map, the mapping will tend to

favor the near parts of an image than the far parts compared to the ikNN map.

Figure 4(g) shows the iR1NN map (iRkNN when k ¼ 1) with a log scaling of the

image Fig. 4(a), and Fig. 4(h) shows its distribution of the summations per person.

We can see that in the iR1NN mapping, for people from far to near portions of the

image, summation values change more dramatically than the i1NN mapping, with

the increase of image resolutions due to the perspective view, with a rate of about 10

times from the far end to the near end (summation values roughly from 300 to 3000

on the ¯tted red line). The statistics shown in Table 2 show that the summation

values per person decrease faster than i1NN from near to far (about 3.4 times ver-

sus 2.3 times). Since the near end has much higher resolutions than the far end of

images, the iRkNN map may improve the performance of counting at least to the

near end.

5.1.4. Normalized ikNN mapping

The third method is a normalized ikNN mapping, which makes the sum of values for

each person (almost) invariant to the distance of the person to the camera, thus

reducing the e®ects of camera perspective changes. When RðxÞ in Eq. (6) is a

function of the ranges, given by ¯tting a line to the point set ðSKðxh; kÞ; yhÞ (the red
line in Fig. 4(d) of the corresponding ikNN map (Fig. 4(d)):

NKðx; kÞ ¼ ayþ b; ð11Þ
where a and b and the slope and the intercept of the ¯tted line, only subject to

the change of y, and q ¼ 1 in Eq. (8), the mapping is the normalized ikNN (denoted

as n-ikNN):

Mn�ikNNðx; kÞ ¼
�m

NKðxÞðKðx; kÞ þ 1Þ : ð12Þ

Figure 4(i) shows the n-i1NN map (k ¼ 1) with a log scaling of the image Fig. 4(a),

and Fig. 4(j) shows its distribution of the summations per person. We can see that

in the n-i1NN mapping, for people from far to near ranges, summation values are

almost normalized to 1, which is about invariant to the image resolution due to the

perspective view, from the far end to the near end. The statistics shown in the \n-

i1NN Sum" column of Table 2 show that the mean/median summation values per

person are scaled to a single digit (ideally it would be 1), which shall not change

much from near to far. Since the far end has much more counts than the near end

of images, the normalized ikNN map may improve the performance of counting at

least to the far end. However, due to the approximation of the summation per

person in Eq. (8), the actual \normalized" results favor more toward the far end,

which may cause signi¯cant suppression of the map values in the near range with

high image resolution, and enlargement of the map values of the far range with low

image resolution and sparse crowd for some of the images and thus high noise level.
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This might have negative a®ect, which will be validated this in our experiment

section.

5.1.5. Weighted ikNN mapping

As mentioned above, the n-ikNNmapping may potentially apply too much weight on

people in distance portions of the image, with lower image resolutions than people in

near ranges, thus our ¯nal mapping is a weighted ikNN, which means to strike a

balance between perspective views and image resolutions, and calibrating the bias of

the approximation of summation-per-person calculation in Eq. (8). When RðxÞ is a
weighted function to consider both the perspective and resolution, and q ¼ 1 in

Eq. (6), the mapping is the weighted ikNN (denoted as w-ikNN):

Mw�ikNNðx; kÞ ¼
�mffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NKðxÞ
p ðKðx; kÞ þ 1Þ ; ð13Þ

where we use the square root of the mean summation per person along the y coor-

dinates as a weight function. Figure 4(k) shows the weighted i1NN map (k ¼ 1) with

a log scaling of the image Fig. 4(a), and Fig. 4(l) shows its distribution of the

summations per person. We can see that in the weighted i1NN mapping, for people

from far to near ranges, the summation values from the far end to the near end

actually are equally distributed, around 20, which hopefully balance the consider-

ation of di®erent image resolutions and distance ranges. The statistics shown in the

\n-i1NN Sum" column of Table 2 show that the summation values per person from

near to far behave somewhere between the original i1NN and the normalized i1NN,

which is actually a ratio of about 1:1.

5.2. ikNN mapping with attenuation

A recent work12 proposed an approach to improve the performance by applying

scaling factors and attention masks related to the far regions with di®erent density

levels, thus generating attention-based density maps. We add an attenuation func-

tion to our ikNN mapping, applied to the far regions which often contain little or no

people. This may help mitigate the estimation errors and improve the performance.

This is similar to the attention masks, but applied during the preprocessing step of

the label maps rather than within the network itself. To generalize the inverse kNN

(ikNN) map with attenuation, we de¯ne an attenuation function AðxÞ:

AðxÞ ¼
ymin � y

ymax � ymin

Dþ 1; y 2 ½ymin; ymax�

1; y < ymin

8<
: ; ð14Þ

where x ¼ ðx; yÞ, ½ymin; ymax� represents range of the far empty region in the y di-

rection where has no people in the image, and D is a scale factor. 1 is added in the

G. Olmschenk et al.
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denominator to prevent division by zero in the following equation:

Mattenuationðx; kÞ ¼
�m

AðxÞRðxÞðKðx; kÞq þ 1Þ : ð15Þ

Here Mattenuation is the resulting generalized ikNN map with attenuation.

5.2.1. Original ikNN mapping with attenuation

When RðxÞ ¼ 1 and q ¼ 1 in Eq. (15), the mapping is the original ikNN with

attenuation:

Mattenuation�ikNNðx; kÞ ¼
�m

AðxÞðKðx; kÞ þ 1Þ : ð16Þ

As discussed in Sec. 5.1.1, the original ikNN mapping may favor the nearer parts of

the images where there is greater pixel resolution per person. In further consideration

of the uneven crowd distribution, we experimented with decreasing the weights of the

farther parts by applying an attenuation function to these far empty regions.

5.2.2. Inverse square root kNN mapping with attenuation

An inverse square root kNN mapping (denoted as iRkNN) reduces the relative im-

pact of distances within the mapping label. When RðxÞ ¼ 1 and q ¼ 1=2 in Eq. (15),

the mapping is de¯ned by

Mattenuation�iRkNNðx; kÞ ¼
�m

AðxÞð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðx; kÞp þ 1Þ : ð17Þ

In our experiments, iRkNN provided the best performance of the nonattenuation

variations. As such, we compare iRkNN with attenuation to base ikNN with at-

tenuation (Sec. 6.5).

5.2.3. Normalized ikNN mapping with attenuation

With RðxÞ described for normalization as was presented in Sec. 5.1.4 and q ¼ 1

for Eq. (15), the mapping is the normalized ikNN with attenuation (attenuation-n-

i1NN) and is given by

Mattenuation�n�ikNNðx; kÞ ¼
�m

AðxÞNKðxÞðKðx; kÞ þ 1Þ : ð18Þ

Although the unattenuated n-i1NN reduces the e®ects of camera perspective chan-

ges, the normalization may over emphasize map values areas of the image where no

individuals exist. By adding the attenuation function to the n-i1NN mapping, we

may reduce the weights in these farther parts of the image, with the potential for

improved performance.

Figure 6 shows the attenuation mapping results for three i1NN mapping varia-

tions. We can see our attenuation function reduced map values for the farther, empty

Impact of Labeling Schemes on Dense Crowd Counting
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regions of the image, with the potential to lower the estimation errors. These per-

formance improvements are evaluated in Sec. 6.5.

6. Experimental Results

6.1. Evaluation metrics

For each dataset that we evaluated our method on, we provide the mean absolute

error (MAE), normalized absolute error (NAE), and root mean squared error

(RMSE). These are given by the following equations:

MAE ¼ 1

N

XN
i¼1

jĈ i � Cij; ð19Þ

NAE ¼ 1

N

XN
i¼1

jĈ i � Cij
Ci

; ð20Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðĈ i � CiÞ2
vuut : ð21Þ

In the ¯rst set of experiments, we demonstrate the improvement of the ikNN

labeling scheme compared to the density labeling scheme. We trained our network

using various density maps produced with di®erent Gaussian spread parameters,

� (as described in Sec. 4) and compared these results to the network using ikNN

maps with varying k. We also analyze the advantage of upsampling the label for

both density and ikNN maps. In the second set of experiments, we provide

comparisons to the state-of-the-art on standard crowd counting datasets. In these

comparisons, the best ikNN map and density map from the ¯rst set of experi-

ments is used. Most works provide their MAE and RMSE results. Reference11

provided the additional metric of NAE. Though this result is not available for

many of the datasets, we provide our own NAE on these datasets for future works

Fig. 6. An example of a crowd image and three mapping variations without and with attenuation (all

shown in a log scale). From left to right, i1NNmapping, iR1NNmapping and n-i1NNmapping (top); i1NN

mapping, iR1NNmapping and n-i1NN mapping after applying attenuation (bottom). The scale factorD is

set as 100 in our experiments.
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to refer to. The most directly relevant work11 has only provided their results

for their latest dataset, UCF-QNRF. As such, their results only appear with

regard to that dataset. Finally, we design an experiment to test if the more

sophisticated variations of ikNN mapping would improve the performance of

crowd counting.

General statistics about the datasets used in our experiments is shown in Table 5.

Results show that (1) overall ikNN mapping has better performance than the density

mapping; (2) i1NN mapping has the best performance among all; and (3) ikNN

mapping is better than the density mapping when k is not larger than 3.

6.2. Impact of labeling approach and upsampling

6.2.1. Density maps versus ikNN maps

We used the ShanghaiTech dataset27 part A for this analysis. The results of these

tests are shown in Table 6. The density maps provide a curve, where too large and

too small of spreads perform worse than an intermediate value. Even when choosing

Table 5. General statistics for the tested datasets.

Dataset No. of images Total count Mean count Max count Average resolution

UCF-QNRF 1535 1 251 642 815 12 865 2013� 2902
ShanghaiTech Part A 482 241 677 501 3139 589� 868

ShanghaiTech Part B 716 88 488 123.6 578 768� 1024

UCF-CC-50 50 63 974 1279 4633 2101� 2888

Table 6. Results using density maps versus ikNN maps with varying
k and �, as well as the various upsampling resolutions on the

ShanghaiTech Part A dataset. If a resolution is not shown, it is the

default 224� 224. Multiple � correspond to a di®erent Gaussian

density map for each of the three map module comparisons.

Method MAE NAE RMSE

MUD-density�0:3 28�28 79.0 0.209 120.5

MUD-density�0:3 56�56 74.8 0.181 121.0
MUD-density�0:3 112�112 73.3 0.176 119.1

MUD-i1NN 28�28 75.8 0.180 120.3

MUD-i1NN 56�56 72.7 0.181 117.4

MUD-i1NN 112�112 70.8 0.166 117.0
MUD-density�0:05 84.5 0.233 139.9

MUD-density�0:1 76.8 0.189 120.3

MUD-density�0:2 75.3 0.175 124.2
MUD-density�0:3 72.7 0.174 120.4

MUD-density�0:4 75.7 0.176 130.5

MUD-density�0:5 76.3 0.182 130.0

MUD-density�10:5, �20:3, �30 78.5 0.205 124.2
MUD-density�10:5, �20:3, �30:05 77.8 0.207 124.9

MUD-density�10:4, �20:2, �30:1 76.7 0.202 122.7

MUD-density�10:1, �20:2, �30:4 75.1 0.191 119.0

Impact of Labeling Schemes on Dense Crowd Counting
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the best value (where � ¼ 0:3), which needs to manually determined, the i1NN label

signi¯cantly outperforms the density label.

Included in the table are experiments, in the fashion of Ref. 11, with density maps

using three di®erent � values. Here �1 denotes the spread parameter used as the label

map for the ¯rst map module, while �2 and �3 are for the second and third modules.

Contrary to ¯ndings of Ref. 11, we only gained a bene¯t from three density labels

when the ¯rst output had the smallest spread parameter. Even then, the gain was

minimal. Upon inspection of the weights produced by the network from the map to

the count prediction, the network reduces the predictions from the nonoptimal �

maps to near zero and relies solely on the optimal map (resulting in a reduced

accuracy compared to using the optimal map for each map module).

With varying k, we ¯nd that an increased k results in lower accuracy. This is likely

due to the loss of precision in the location of an individual. The most direct expla-

nation for this can be seen in the case of k ¼ 2. Every pixel on the line between two

nearest head positions will have the same map value, thus losing the precision of an

individual location.

6.2.2. Upsampling analysis

Most existing works use a density map with a reduced size label for testing and

training. Those that use the full label resolution design speci¯c network architectures

for the high-resolution labels. Our map module avoids this constraint by upsampling

the label using a trained transposed convolution, which can be integrated into most

existing architectures. Using the ShanghaiTech part A dataset, we tested our net-

work using various label resolutions to determine the impact on the predictive

abilities of the network. These results can be seen in Table 6. Experiments without no

label resolution given are 224� 224. In the top section of this table, we see the

performance of the network when using output labels with sides of size 28, 56, 112.

The corresponding comparison with size of 224 is seen in the third section of the

table. In each case, a higher resolution results in a higher accuracy. Note that this

results in a minor change to the map module structure, as the ¯nal convolution

kernel needs to match the remaining spatial dimension. A set of predicted ikNN map

labels can be seen in Fig. 7, where a grid pattern due to the upsampling can be

identi¯ed in some cases.

Table 6. (Continued )

Method MAE NAE RMSE

MUD-density�10:2, �20:3, �30:4 76.0 0.196 122.1

MUD-i1NN 68.0 0.162 117.7

MUD-i2NN 68.8 0.168 109.0
MUD-i3NN 69.8 0.169 110.7

MUD-i4NN 72.2 0.173 116.0

MUD-i5NN 74.0 0.182 119.1

MUD-i6NN 76.2 0.188 120.9

G. Olmschenk et al.
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6.3. Comparisons on standard datasets

The following demonstrates our network's predictive capabilities on various data-

sets, compared to various state-of-the-art methods. Again, we note that our

improvements are expected to complementary to the existing approaches, rather

than alternatives.

For these experiments, we used the best k, 1, and best �, 0.3, from the ¯rst set of

experiments.

The ¯rst dataset we evaluated our approach on is the UCF-QNRF dataset.11 The

results of our MUD-ikNN network compared with other state-of-the-art networks are

shown in Table 7. Our network signi¯cantly outperforms the existing methods.

Along with a comparison of our complete method compared with the state-of-the-art,

we compare with the network of Ref. 11, but replace their density map predictions

and summing to count with our ikNN map prediction and regression to count. Using

the ikNN maps, we see that their model sees improvement in MAE with ikNN maps,

showing the e®ect of the ikNN mapping. This experiment shows that the improve-

ment of the performance of the ikNN mapping without the use of the MUD model, a

Table 7. Results on the UCF-QNRF dataset.

Method MAE NAE RMSE

Idrees et al.10 315 0.63 508

MCNN27 277 0.55 426

Encoder–Decoder2 270 0.56 478
CMTL21 252 0.54 514

SwitchCNN18 228 0.44 445

Resnet1017 190 0.50 227

DenseNet2019 163 0.40 226
Idrees et al.11 132 0.26 191

Idrees et al.11 with i1NN maps 122 0.252 195

MUD-i1NN 104 0.209 172

(a) Input patches with corresponding i1NN
labels and predictions.

(b) Input patches with corresponding
i3NN labels and predictions.

Fig. 7. A set of randomly selected input image patches, along with their corresponding ground truth map

labels and map predictions. Figure 7(a) shows the i1NN case and Fig. 7(b) shows the i3NN case. In each
sub¯gure, there are three rows, each corresponding to a randomly selected input image. In each sub¯gure,

the ¯ve columns from left to right are the original image patch, the ground truth label, and the patches

from the three map modules in order through the network.
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reduction of MAE error of 10 counts; with the MUD model (including upsampling),

the performance is further improved, a further reduction of the MAE error of 18

counts.

The second dataset we evaluated our approach on is the ShanghaiTech dataset.27

The dataset is split into two parts, Part A and Part B. For both parts, we used the

training and testing images as prescribed by the dataset provider. The results of our

evaluation on part A are shown in Table 8. Our MUD-ikNN network slightly out-

performs the state-of-the-art approaches on this part. The results of our evaluation

on part B are also shown in Table 8. Here our network performs on par or slightly

worse than the best-performing methods. Notably, our method appears perform

better on denser crowd images, and ShanghaiTech Part B is by far the least dense

dataset we tested.

The third dataset we evaluated our approach on is the UCF-CC-50 dataset.10 We

followed the standard evaluation metric for this dataset of a ¯ve-fold cross-evalua-

tion. The results of our evaluation of this dataset can be seen in the last portion of

Table 8.

Overall, our network performed favorably compared with existing approaches. An

advantage to our approach is that our modi¯cations can be applied to the archi-

tectures we're comparing against. The most relevant comparison is between the

ikNN version of the MUD network, and the density map version of the same MUD

network. Here, the ikNN approach always outperformed the density version. We

speculate that the state-of-the-art methods we have compared with, along with other

general-purpose CNNs, could be improved through the use of ikNN labels and

upsampling map modules. Note that the overall mean absolute errors (MAE) across

all the ¯ve datasets are still relatively high compared to the latest state-of-the-art

network architectures Table 9. Applying ikNN labels to more powerful crowd

counting architectures would be an interesting future direction.

6.4. Evaluating ikNN mapping variations

Experiments were also performed on our additional mapping mechanisms that ex-

plicitly account for image perspective and mapping change rates to analyze their

impact on crowd counting performance. To test how they perform on various image

Table 8. Results on the ShanghaiTech Part A, ShanghaiTech Part B and UCF-CC-50 datasets.

ShanghaiTech Part A ShanghaiTech Part B UCF-CC-50

Method MAE NAE RMSE MAE NAE RMSE MAE NAE RMSE

ACSCP 75.7 — 102.7 18.7 — 26.0 291.0 — 404.6

D-ConvNet-v1 73.5 — 112.3 17.2 — 27.4 288.4 — 404.7

ic-CNN 68.5 — 116.2 10.7 — 16.0 266.1 — 397.5
CSRNet 68.2 — 115.0 10.6 — 16.0 260.9 — 365.5

MUD-density�0:3 72.7 0.174 120.4 16.6 0.130 26.9 246.44 0.188 348.1

MUD-i1NN 68.0 0.162 117.7 13.4 0.107 21.4 237.76 0.191 305.7

G. Olmschenk et al.
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resolutions, we divide the images of the UCF-QNRF dataset11 into the near halves

and far halves, which typically have di®erent crowd densities per pixel, in order to

compare the performance of the original ikNN mapping and its four variations. Since

it was also observed that the sums of the various mapping mechanisms are di®erent

(as shown in Table 2), up to several orders of magnitude, we have also have used

various map multipliers (i.e. the constant scalar parameter �m) so that the averages

of the map values are normalized to the same order of magnitude.

Table 10 shows the results of these comparisons. In the following experiments, by

default, �m ¼ 10�3. �m ¼ 10�2 was used for w-i1NN, to bring its map values to the

same order of magnitude as the baseline i1NN.

From these experiments, we note the following observations:

. The iRkNN mapping (k ¼ 1) results in the best performance of all the approaches.

Note that this approach increases the map values of near end more than the far end

of the image by °attening the map value distribution curve for each person.

However, the results show that it not only increases the accuracy of the overall

count, but also the accuracy of the far half. This likely because it reduces the noise

of the far end of the image where they is either very sparse crowding or very dense

crowding (resulting in more noise). This may be reduced by using a °attened curve

so it focuses on the overall counts rather than individuals.

. The iSkNN mapping (k ¼ 1) improves the accuracy of the higher resolution end of

the images (near half) slightly. Note that the iSkNN mapping of each person has

more signi¯cant gradients near head locations. Due to the high-resolution nature

of the near half, the rapidly decreasing may increase the accuracy of the models

with respect to head locations.

Table 10. Performance statistics of counts errors (MAEs) using various maps (ikNN, iSkNN, iRkNN, n-
ikNN and w-ikNN, where k ¼ 1) for the UCF-QNRF dataset. The ¯rst column of values are the three mean
counts of the ground truth labels. Inside the parentheses after each MAE, the relative error over its corre-
sponding mean count is listed.

Mean
count i1NN (1e-3) iS1NN(1e-3) iR1NN(1e-3) n-i1NN(1e-3) w-i1NN(1e-3) w-i1NN(1e-2)

Full Image 838 104.9 (12.5%) 107.0 (12.8%) 100.6 (12.0%) 125.7 (15.0%) 120.3 (14.3%) 122.7 (14.6%)
Near Half 337 44.4 (13.2%) 43.6 (12.9%) 47.0 (13.9%) 62.1 (18.4%) 58.0 (17.2%) 58.1 (17.2%)
Far Half 501 77.3 (15.5%) 78.8 (15.6%) 73.3 (14.6%) 89.8 (17.9%) 85.8 (17.1%) 85.5 (17.1%)

Table 9. Summary of statistics (crowd data and MAE results) for the tested datasets.

Dataset

No. of

images Total count Mean count Max count Resolution MAE

Relative

MAE

UCF-QNRF 1535 1 251 642 815 12 865 2013� 2902 104 12.8%

ShanghaiTech Part A 482 241 677 501 3139 589� 868 68 13.6%

ShanghaiTech Part B 716 88 488 123.6 578 768� 1024 13.4 10.9%

UCF-CC-50 50 63 974 1279 4633 2101� 2888 238 18.6%
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. Consistently, the accuracy of counts for the near halves are better than the far half

of images, across all the three (ikNN, iRkNN, iSkNN) mapping approaches

without normalization or weighting. This indicates image resolution signi¯cantly

impacts the performance. Compared to these approaches, the weighted and nor-

malized approaches appear to balance the performance of the near and far halves.

This is most apparent for the normalized version.

. The attempts to improve the performance of the far end by increasing the map

values as functions of ranges did not produce a bene¯t. Instead, a decrease in

performance in the near halves of the images was observed, likely due to

suppressing the map values. A decrease in performance in the far halves was also

observed, likely due to increases in the noise level of in the low resolution. It is

possible these losses in performance would not occur if we used the true camera

geometry as opposed to estimates. However, this camera geometry is unavailable.

. Although the performance appears to increase as the orders of magnitudes of

various maps increase, the multipliers actually do not signi¯cantly impact the

overall performance. This is observed in the similar results of di®erent multipliers

for the weighted mapping approach.

6.5. Evaluating ikNN mapping with attenuation

We further performed experiments on the e®ectiveness of our attenuation approach

using the UCF-QNRF dataset.11 We group the images of the UCF-QNRF dataset

based on the uneven crowd densities in the far half (categorized into cases where the

far half is empty, the far half is not empty, and the far half has less than 5% of total

count of an image). We also group the images based on the total crowd counts in ¯ve

categories (0–250, 251–500, 501–750, 751–1000) for images which have total counts

under 1000, and 2 categories (1001–2500, 2501–5000) for images which have total

counts over 1000. In order to compare the performance of our attenuation mecha-

nism, we chose the original ikNN mapping and two other variations: the iRkNN

mapping and the n-ikNN mapping. The iRkNN mapping demonstrated the best

performance prior to attenuation. The n-ikNN mapping seems to emphasize the

farther regions of the images, and thus has the potential for signi¯cant improvements

via the attenuation. We perform experiments to evaluate the e®ectiveness of our

attenuation method on these three mappings. Table 11 shows the results.

For each case, �m ¼ 10�3. From these experiments, we draw the following

observations:

. Of the three attenuated mappings, the attenuation-i1NN mapping results in

the best performance. With attenuation, ikNN further decreases the weight of

far, empty regions of the image, and the overall count accuracy has slight

improvements. iR1NN performs signi¯cantly worse with attenuation. As the

iR1NN variant already reduces the value of sparsely crowded areas, we speculate

that the additional attenuation results in under-emphasized sparse areas. While
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the attenuation improved the average n-i1NN performance, it was still out-pre-

formed by both attenuated and nonattenuated versions of the other two mapping

variants.

. Both the attenuation-ikNN mapping and the attenuation-n-ikNN mapping sur-

pass their original mappings' performance. Attenuation-ikNN mapping only

slightly improves overall performance, likely due to the original ikNN mapping

already favoring the near regions, thus our attenuation approach may less of an

impact. Comparatively, the attenuation provides a signi¯cant improvement for

the performance of the n-ikNN mapping. This is likely due to the normalization

favoring the far end, which may result in overemphasized values. The attenuation

reduces these far region values. The iRkNN mapping performs worse with atten-

uation, likely for the reasons explained above.

. The performance of both the ikNN and n-ikNN mappings improve with attenua-

tion not only in cases of uneven density distributions (far half empty, far half not

empty and far half less than 5%), but also on most of the total count grouping

categories. The attenuation-ikNN mapping performs worse on 0–250 and 1001–
2500 categories than original ikNN mapping, likely due to the various density

distributions in these two categories. The attenuation-n-ikNN mapping performs

worse than the n-ikNN mapping for the 501–750 and 751–1000 categories. This

may be due to the denser near end of the images, in which our normalization

suppresses the map values and may cause larger errors.

7. Conclusions

We have presented a new form of labeling for crowd counting data, the ikNN map.

We have compared this labeling scheme to commonly accepted labeling approach for

crowd counting, the density map. We show that using the ikNNmap with an existing

Table 11. Performance comparison of counts errors (MAEs) using various maps (i1NN, iR1NN and n-
i1NN) and attenuation maps (attenuation-i1NN, attenuation-iR1NN, and attenuation-n-i1NN) for the

UCF-QNRF dataset. The ¯rst column of values are the mean counts of the ground truth labels for each

category. We use the default multiplier which is �m ¼ 10�3.

Mean

count i1NN

Attenuation-

i1NN iR1NN

Attenuation-

iR1NN n-i1NN

Attenuation-

n-i1NN

Overall 838 104.9 103.8 100.6 110.9 125.7 116.6

Far half empty 626 109.2 103.4 104.3 134.2 134.9 93.1
Far half not empty 726 104.3 103.8 100.3 109 124.9 118.5

Far half less than 5% 413 106 91.4 121.1 124.8 150.5 85.1

0–250 173 94.7 109.7 91.6 124.1 150.5 146.6

251–500 360 124 98.3 116.8 110.6 139.9 107
501–750 617 92.2 77.6 104.5 97 91.7 109.7

751–1000 867 111 107.2 92 106.8 97.9 108.1

1001–2500 1610 94.4 115.8 92.7 108.7 112.1 106
2501–5000 3206 145 131.5 80.9 92.1 94.9 80.2
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state-of-the-art network improves the accuracy of the network compared to density

map labelings.

We have also provided a new network architecture MUD-ikNN, which uses multi-

scale drop-in replacement upsampling via transposed convolutions to take full ad-

vantage of the provided ikNN labeling. This upsampling combined with the ikNN

maps further improves crowd counting accuracy.

We have further studied several variations of the ikNN labeling mechanism, in-

cluding the inverse squared kNN, the inverse square root kNN, the normalized ikNN

and the weighted ikNN to analyze the impact of camera perspective views, image

resolutions, and the changing rates of the mapping functions. Experiments on a

dataset show that the inverse square root kNN has the best performance, with the

original ikNN being a close second.

In addition, we have investigated an attenuation mechanism to handle

uneven crowd distributions in an image, especially when the far end of the image is

(approximately) empty. We further study the impact of weighting and attenuation

to various cases of the crowd distributions and have found that the attenuation

mechanism helps in cases of uneven crowd distributions, thus improving the overall

performance. Critical discussions are provided for future studies in terms of per-

spective distortions, crowd occlusions, and label resolutions.

Statistically, the normalized and weighted approaches do correct the

perspective distortion crowd mapping values as expected, but the preliminary

experiments on one dataset show that the overall performance is degraded when

using these distortion corrections. This presents an avenue for further future inves-

tigation. For example, the use of real camera geometry with respect to the ground

plane, which could be available for real-world applications such as surveillance or

transportation cameras, could be used to correct the perspective distortion, rather

than use the crowd count labeling of individual images, which can often be inaccurate

or even erroneous for some of the images due to the varying distributions of

the crowd.

Finally, we want to note here the mean absolution error (MAE) is still relatively

large (over 10%) and therefore there is still space to improve. Using our mapping

approaches with the latest state-of-the-art crowd counting architectures may provide

further developments. We have demonstrated the improvements gained by using

increased label resolutions and provide an upsampling map module which in prin-

ciple can be generally used by other crowd counting architectures. These approaches

can be used a drop-in replacement in other crowd counting architectures, as we have

done for DenseNet, which resulted in a network which performs favorably compared

with the state-of-the-art.
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