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crowds is useful for safety, management, and measuring significance of an event. In this work,
we show that the regularly accepted labeling scheme of crowd density maps for training deep
neural networks may not be the most effective one. We propose an alternative inverse k-nearest
neighbor (ikNN) map mechanism that, even when used directly in existing state-of-the-art
network structures, shows superior performance. We also provide new network architecture
mechanisms that we demonstrate in our own MUD-1ANN network architecture, which uses
multi-scale drop-in replacement upsampling via transposed convolutions to take full advantage
of the provided ikNN labeling. This upsampling combined with the ixNN maps further improves
crowd counting accuracy. We further analyze several variations of the ikNN labeling mecha-
nism, which apply transformations on the kNN measure before generating the map, in order to
consider the impact of camera perspective views, image resolutions, and the changing rates of the
mapping functions. To alleviate the effects of crowd density changes in each image, we also
introduce an attenuation mechanism in the iXNN mapping. Experimentally, we show that inverse
square root kNN map variation (IRKNN) provides the best performance. Discussions are provided
on computational complexity, label resolutions, the gains in mapping and upsampling, and details
of critical cases such as various crowd counts, uneven crowd densities, and crowd occlusions.

Keywords: Crowd counting; convolutional neural network; k-nearest neighbor; upsampling.

1. Introduction

Every year, gatherings of thousands to millions occur for protests, festivals,
pilgrimages, marathons, concerts, and sports events. For any of these events, there
are countless reasons to desire to know how many people are present. For those
hosting the event, both real-time management and future event planning are de-
pendent on how many people are present, where they are located, and when they are
present. For security purposes, knowing how quickly evacuations can be executed and
where crowding might pose a threat to individuals is dependent on the size of the
crowd. For public health reasons, especially during and after the COVID-19 pandemic,
measuring real-time crowd densities with surveillance cameras is valuable in enforcing
social distancing while maintaining privacy. In journalism, crowd size information is
frequently used to measure the significance of an event, and systems which can accu-
rately report on the event size are important for a rigorous evaluation.

Many systems have been proposed for crowd counting purposes, with most recent
state-of-the-art methods being based on convolutional neural networks (CNNs). To
the best of our knowledge, every CNN-based dense crowd counting approach in
recent years relies on using a density map of individuals, primarily with a Gaussian-
based distribution of density values centered on individuals labeled in the ground
truth images. Often, these density maps are generated with the Gaussian distribu-
tion kernel sizes being dependent on a k-Nearest Neighbor (kNN) distance to other
individuals.?” In this work, we explain how this generally accepted density map
labeling is lacking and how an alternative inverse kNN (ikNN) labeling scheme,
which does not explicitly represent crowd density, provides improved counting ac-
curacy (Fig. 1). We will show how a single iXNN map provides information similar to
the accumulation of many density maps with different Gaussian spreads, in a form
which is better suited for neural network training. This labeling provides a significant
gradient spatially across the entire label while still providing precise location
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Fig. 1. An example of a crowd image and various kinds of labelings. From left to right, on top: the original
image, the density map, the kNN map with £ = 1. On bottom: the inverse kNN map with k = 1, k = 3, and
k =1 shown with a log scaling (for reader insight only). Note that in the case of the density map, any
values a significant distance from a head labeling are very small. In contrast, the inverse kNN map has a
significant gradient even a significant distance from a head position.

information of individual pedestrians (excluding exactly overlapping head labelings).
We show that by simply replacing density map training in an existing state-of-the-
art network with our ikNN map training, the testing accuracy of the network
improves. This is the first major contribution of the paper.

Furthermore, coupling multi-scale drop-in replacement upsampling with densely
connected convolutional networks® and our proposed ikNN mapping, we provide a
new network structure, MUD-ikNN, which integrates Multi-scale Upsampling with
transposed convolutions®* in the DenseBlock structures from DenseNet201,” and
utilizes our ikNN labeling scheme. The transposed convolutions are used to spatially
upsample intermediate feature maps to the ground truth label map size for com-
parison. This approach provides several benefits. First, it allows the features of any
layer to be used in the full map comparison, where many existing methods require a
special, architecture-specific network branch for this comparison. Notably, this
upsampling, comparison, and following regression module can be used at any point in
any CNN, with the only change being the parameters of the transposed convolution.
This makes the module useful not only in our specific network structure, but also
applicable in future state-of-the-art, general-purpose CNNs. Second, as this allows
features which have passed through different levels of convolutions to be compared to
the ground truth label map, this intrinsically provides a multi-scale comparison
without any dedicated additional network branches, thus preventing redundant
parameters which occur in separate branches. Third, because the transposed con-
volution can provide any amount of upsampling (with the features being used to
specify the upsampling transformation), the upsampled size can be the full ground
truth label size. In contrast, most existing works used a severely reduced size label
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map for comparison. These reduced sizes remove potentially useful training infor-
mation. Although some recent works use full-size labels, they require specially crafted
network architectures to accomplish this comparison. Our proposed upsampling
structure can easily be added to most networks, including widely used general-pur-
pose networks, such as DenseNet. This proposed multi-scale network structure is the
second major contribution of the paper.

To validate the effectiveness and robustness of the ikNN mapping scheme, we
additionally evaluate several variants of the ikNN mapping/labeling scheme. We
analyze if additional considerations in designing mapping schemes impact the per-
formance of crowd counting and examine the cause of the impact. Experiments are
performed to test if these variant approaches improve the performance of crowd
counting. For example, one such experiment tests how the variants affect perfor-
mance detecting crowds with various per-person pixel resolutions. In this experi-
ment, we divide the images of a dataset into the near half and far half with different
crowd densities per pixel, in order to perform comparisons of the original ikNN
mapping and its variants. Experimental results demonstrate that the inverse square
root kNN mapping (iRENN) achieves in the lowest errors, while the kNN is close in
performance. The mappings designed to account for considerations in both per-
spective views and resolutions performed worse than those which do not implement
special mechanisms for these purposes. Details and discussion of the reasoning will be
provided. The analysis of the various potential alternative mapping schemes is the
third major contribution of the paper.

To alleviate the effects of crowd density changes in each image, we also introduce
an attenuation mechanism to the ikNN mapping, which we propose to mitigate the
estimation errors in far empty regions of the image. We performed experiments on
original ikNN mapping, inverse square root kNN mapping and normalized ikNN
mapping. We choose iREKNN mapping because our evaluation results show
iRENN has the lowest error. The original ikXNN map has performance close to the
iRENN map. Since the normalized ikNN mapping can apply extra weight on
pedestrians at farther distances in an effort to “correct” the perspective distortion,
especially when further region is empty, this may result in overestimation. We apply
our attenuation approach to adjust weights of these far empty regions, and further,
we evaluate how our attenuation method can balance the extra weight that nor-
malized the ikNN mapping applied in those regions.

The paper is organized as follows. Section 2 discusses related work. Section 3
proposes our overall new multi-scale network architecture for crowd counting, MUD-
ikNN, to motivate the design of the iXNN mapping. Section 4 details the proposed
inverse k-nearest neighbor map labeling method and its justification. Section 5
provides further proposed variations of the ikNN mapping schemes and the atten-
uation mechanism. Section 6 presents experimental results on several crowd datasets
and analyzes the findings. Section 7 provides a few concluding remarks.
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2. Related Work

Many works use explicit detection of individuals to count pedestrians.?*16:22

However, as the number of people in a single image increases and a scene becomes
crowded, these explicit detection methods become limited by occlusion effects.
Early works to solve this problem relied on global regression of the crowd count using
low-level features.»%® While many of these methods split the image into a grid to
perform a global regression on each cell, they still largely ignored detailed spatial
information of pedestrian locations. Ref. 14 introduced a methods of counting objects
using density map regression, and this technique was shown to be particularly ef-
fective for crowd counting by Ref. 25. Since then, to the best of our knowledge, every
CNN-based crowd counting method in recent years has used density maps as a
primary part of their cost function.!'!»!#21:22:27:19,15,17:20

A primary advantage of the density maps is the ability to provide a useful gra-
dient for network training over large portions of the image spatially, which helps the
network identify which portion of the image contains information signifying an in-
crease in the count. These density maps are usually modeled by representing each
labeled head position with a Dirac delta function, and convolving this function with a
2D Gaussian kernel.'*
equal to the total count of individuals, while the density of a single individual is

This forms a density map where the sum of the total map is

spread out over several pixels of the map. The Gaussian convolution allows a
smoother gradient for the loss function of the CNN to operate over, thereby allowing
slightly misplaced densities to result in a lower loss than significantly misplaced
densities.

In some works, the spread parameter of the Gaussian kernel is often determined
using a k-nearest neighbor (kNN) distance to other head positions.?” This provides a
form of pseudo-perspective which results in pedestrians which are more distant from
the camera (and therefore smaller in the image) having their density spread over a
smaller number of density map pixels. While this mapping will often imperfectly map
perspective (especially in sparsely crowded images), it works well in practice.
Whether adaptively chosen or fixed, the Gaussian kernel size is dependent on arbi-
trarily chosen parameters, usually fine-tuned for a specific dataset.

We compare with adaptive version in this work, due to its success and being more
closely related to our method. For example, in a recent work,'! the authors used
multiple scales of these kNN-based, Gaussian convolved density maps to provide
levels of spatial information, from large Gaussian kernels (allowing for a widespread
training gradient) to small Gaussian kernels (allowing for precise localization of
density). While this approach effectively integrates information from multiple
Gaussian scales, thus providing both widespread and precise training information,
the network is left with redundant structures and how the various scales are chosen is
fairly ad hoc. Our alternative ikNN labeling method supersedes, these multiple scale
density maps by providing both a smooth training gradient and precise label loca-
tions (in the form of steep gradients) in a single label. Our new network structure
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utilizes a single branch CNN structure for multi-scale regression. Together with the
ikNN labeling, it provides the benefits of numerous scales of these density maps.
Though most CNN-based approaches use a reduced label size, some recent
19,159,313 have begun using full resolution labels. In contrast even to these works,
we provide a generalized map module which can be added to existing network

works

structures. Specifically, the map module can be used as a drop-in replacement for the
density map comparisons. This map module can be added to most dense crowd
counting architectures with little or no modification to the original architecture. In
this paper, our proposed network is based off the DenseNet201,” with our map
module added to the end of each DenseBlock.

Our ikNN mapping is obliquely related to a distance transform, which has been
used for counting in other applications.! However, the distance transform is analo-
gous to a kNN map, rather than our ikxNN. Notably, the ikNN crowd labeling pre-
sents the network with a variable training gradient to the network, with low values
far from head labelings and cusps at a head labeling. In contrast, a kNN or distance
transform provides constant training gradients everywhere. To our knowledge, nei-
ther the distance transform nor a method analogous to our ikNN labeling has been
used for dense crowd counting.

To deal with uneven crowd densities in each image, some works®?%!2
attention mechanism to count pedestrians. A most recent work'? uses attention
scaling network to overcome the prediction bias of regions with different density
levels. The authors proposed an approach to improve the performance by generating
scaling factors and attention masks related to the far regions with different density

use

levels, and generating attention-based density maps above the original density maps.
Instead of training attention networks to generate new maps, we add an attenuation
function to our ikNN mapping to reduce the map values to the far regions where
there are little or no people to mitigate the estimation errors and improve the crowd
estimation performance.

3. MUD-ikNN: A New Multi-Scale Network Architecture

We propose a new network structure, MUD-ikNN, with both multi-scale upsampling
using DenseBlocks” and our ikXNN mapping scheme. For providing a context of our
proposed ikNN mapping scheme, we will describe the network structure first, before
the detailed description of the ikNN mapping in Sec. 4. We show that the new MUD-
ikNN structure performs favorably compared with existing state-of-the-art networks.
In addition to the use of iXNN maps playing a central role, we also demonstrate how
features with any spatial size can contribute to the prediction of iXNN maps and
counts through the use of transposed convolutions. This allows features of various
scales from throughout the network to be used for the prediction of the crowd.
Throughout this section, a “label map” may refer to either our ikNN map or a
standard density map, as either can be used with our network.
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Fig. 2. A diagram of the proposed network architecture MUD-ikNN: multiscale regression with
DenseBlocks and ikNN mapping. Best viewed in color.

3.1. MUD-ikNN architecture

The proposed MUD-ikNN network structure is shown in Fig. 2. Our network uses the
DenseBlock structures from DenseNet201° in their entirety. DenseNet has been
shown to be widely applicable to various problems. The output of each DenseBlock
(plus transition layer) is used as the input to the following DenseBlock, just as it is
in DenseNet201. However, each of these outputs is also passed to a map module
(excluding the final DenseBlock output), which includes a transposed convolutional
layer, a map prediction layer, and a small count regression module with four con-
volution layers. For each transposed convolution, the kernel size and stride are the
same value, resulting in each spatial input element being transformed to multiple
spatial output elements. The kernel size/stride value is chosen for each DenseBlock
such that resulting map prediction is the size of the ground truth label. This form of
upsampling using transposed convolutions allows the feature depth dimensions to
contribute to the gradients of the map values in the predicted label map. Both the
stride and kernel size of the transposed convolutions of our network are 8, 16, and 32
for the first three Denseblocks, respectively.

The label map generated at after each DenseBlock is individually compared
against the ground truth label map, each producing a loss which is then summed,

Em = ZMSE(MJ?MJ)7 (1)
J

where j is the index of the DenseBlock that the output came from, M is the ground
truth label map, and M is the predicted map labeling.

Each predicted label map is then also used as the input to a small count regression
module. This module is a series of four convolutional layers, shown in the inset of
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Table 1. A specification of the map module layers. This module is used at 3 points throughout our
network as shown in Fig. 2, so the initial input size varies. However, the transposed convolution always
produces a predicted map label which is uniform size (1x224x224).

Layer Output size Filter
Input from DenseBlock 128 x 28 x 28

256 x 14 x 14

896 x 7 x 7

Transposed convolution 1 x 224 x 224 (map prediction)  (8,16,32) x (8,16, 32)stride = (8, 16, 32)
Convolution 8 x 112 x 112 2 x 2stride = 2
Convolution 16 x 56 x 56 2 x 2stride = 2
Convolution 32 x 28 x 28 2 x 2stride = 2
Convolution I1x1x1 28 x 28

Fig. 2. The sizes of these layers are specified in Table 1. The regression module then
has a singleton output, corresponding to the predicted crowd count.

The mean of all predicted crowd counts from the regression modules,
three in Fig. 2, and the output of the final DenseBlock is used as the final count
prediction

C G
L,=MSE (—d T2 G ,C’) (2)
m-+1

with C being the ground truth count, éend being the regression count output by
the final DenseBlock, and C'j being the count from the jth map regression module
(j=1,2,...,m; m=3 in Fig. 2). This results in a total loss given by
L=L,+L..

3.2. MUD-ikNN benefits

This approach has multiple benefits. First, if an appropriately sized stride and kernel
size are specified, the transposed convolutional layer followed by label map predic-
tion to regression module can accept any sized input. For example, an additional
DenseBlock could be added to either end of the DenseNet, and another of these map
modules could be attached. Second, each label map is individually trained to improve
the prediction at that layer, which provides a form of intermediate supervision,
easing the process of training earlier layers in the network. At the same time, the final
count is based on the mean values of the regression modules. This means that if any
individual regression module produces more accurate results, its results can indi-
vidually be weighted as being more important to the final prediction.

We note that the multiple Gaussian approaches by Ref. 11 has some drawbacks.
The spread of the Gaussians, as well as the number of different density maps, is
arbitrarily chosen. Additionally, without upsampling, a separate network branch is
required to maintain spatial resolution. This results in redundant network para-
meters and a final count predictor which is largely unconnected to the map predic-
tion optimization goal. Our upsampling approach allows the main network to retain
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a single primary branch and connects all the optimization goals tightly to this
branch.

With both the Gaussian density maps and our ixNN maps, it is worth noting the
importance of the label resolution. Taken to an extreme, one might reduce the label
resolution to 1 x 1. Of course, this is equivalent to the global count label used by

46:5 Ag the resolution increases, finer details of label

works prior to density map labels.
training gradients emerge, allowing for the network to take advantage of the label
training gradients. To take full advantage of the ikNN map label features (e.g.
precise head position label cusps), a label resolution matching the original image

resolution is ideal.

3.3. MUD-ik NN implementation details

The input to the network is 224 x 224 image patches. At evaluation time, a 224 X
224 sliding window with a step size of 128 was used for each part of the test images,
with overlapping predictions averaged. The label maps use the same size patches,
and predictions from the network are of the same resolution. Each count regression
module contains the same four layers, as specified in Table 1.

For each experiment, the network was trained for 10° training steps. The network
was designed and training process carried out using PyTorch (v0.4.0). The network
was trained on an Nvidia GTX 1080 Ti.

Computational complexity in training and testing. As is typical for deep
neural networks methods, training a neural network is time-consuming, while using
the trained network for inference on new examples is computationally efficient. Using
the above configuration, training the model to convergence takes several days. Using
the trained model, the network can perform inference on a batch of image patches in
63 ms. Such inference speeds enable real-time inference of video data.

Complete details of the network code and hyperparameters can be found at
https://github.com/golmschenk /sr-gan.

4. Inverse k-Nearest Neighbor Map Labeling

We propose using full image size ikNN maps as an alternative labeling scheme from
the commonly used density map explained in Sec. 2. Formally, the commonly used
density map'!1®21:2527 ig provided by

H 1
D, 70) = ,; N <_ 2(03)?

where H is the total number of head positions for the example image, 0, is a size
determined for each head position (z,y;) using the kNN distance to other heads
positions (a fixed size is also often used), and f is a manually determined function
for scaling o, to provide a Gaussian kernel size. We use this adaptive Gaussian
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label as the baseline in our experiments. For simplicity, in our work, we define f
as a simple scalar function given by f(o,,) = Boy,, with 8 being a hand-picked
scalar. Though they both apply to head positions, the use of kNN for ¢, in the
density map is not to be confused with the full kNN map used in our method,
which is defined by

K@ k) =1 Y min(y/lo—a)? + (7~ 3)2.Vh € H), (4)

where H is the list of all head positions. In other words, the kNN distance from
each pixel, & = (z,y), to each head position, &, = (3, ys), is calculated.
To produce the inverse kNN (ikNN) map, we use

Mixx(z, k) = K( O (5)

x, k) +1°
where M.y is the resulting ikNN map, with the addition and inverse being applied
element-wise for each pixel @ = (x,y), K is defined in Eq. (4), and «,, is a constant
scalar parameter to control the magnitude of the values in M;j,xy. Note that a term
+1 is added in the denominator to prevent division by zero.

4.1. Justifying itk NN map labeling

To understand the advantage of an ikNN map over a density map, we can consider
taking the generation of density maps to extremes with regard to the spread pa-
rameter of the Gaussian kernel provided by f. At one extreme, is a Gaussian kernel
with zero spread. Here the delta function remains unchanged, which in practical
terms translates to a density map where the density for each pedestrian is fully
residing on a single pixel. When the difference between the true and predicted density
maps is used to calculate a training loss, the network predicting density 1 pixel away
from the correct labeling is considered just as incorrect as 10 pixels away from the
correct labeling. This is not desired, as it both creates a discontinuous training
gradient, and the training process is intolerant to minor spatial labeling deviations.
The other extreme is a very large Gaussian spread. This results in inexact spatial
information of the location of the density. At this extreme, this provides no benefit
over a global regression, which is the primary purpose for using a density map in the
first place. The extreme cases are shown for explanatory purposes, yet any inter-
mediate Gaussian spread has some degree of both these issues. Using multiple scales
of Gaussian spread, Ref. 11 tries to obtain the advantage of both sides. However, the
size of the scales and the number of scales are then arbitrary and hard to determine.
A similar explanation is illustrated in Fig. 3.

In contrast, a single ikNN map provides a substantial gradient everywhere while
still providing steep gradients in the exact locations of individual pedestrians. No-
tably, near zero distance, the (kNN mapping clearly has a greater slope, and in
comparison, for any Gaussian, there exists a distance at which all greater distances
have a smaller slope than the equivalent position on the ikNN mapping. This means
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Fig. 3. (Color online) A comparison of the values of map labeling schemes with respect to the distance
from an individual head position (normalized for comparison). Two Gaussians are shown in green. The
blue line shows a composite of several Gaussians with spread parameters between those of the two
extremes (The work'" uses three Gaussian spreads in their work). This provides both precise and distant
training losses. Our approach of the ikNN map shown in red (with & = 1) approaches a map function with
a shape similar to the integral on the spread parameter of all Gaussians for a spread parameter range from
0 to some constant.

the slope of the Gaussian is only greater than the slope of the kNN mapping for a
middle range arbitrarily determined by the Gaussian spread. The ikNN curve and its
derivative’s magnitude (the inverse distance squared) monotonically increase toward
zero. We want to note here that directly using a ANN map does not have the
advantage of using an inverse kNN map, since a kNN or distance transform provides
constant training gradients everywhere. This was further verified in our preliminary
experiments. An example of our ikNN map compared with a corresponding density
map labeling can be seen in Fig. 1. Reference'! uses three density maps with different
Gaussian spread parameters, with the Gaussian spread being determined by the kNN
distance to other head positions multiplied by one of the three spread parameters.
For a single head position, all Gaussian distributions integrated on 3 from 0 to an
arbitrary constant result in a form of the incomplete gamma function. This function
has a cusp around the center of the Gaussians. Similarly, the inverse of the kNN map
also forms a cusp at the head position and results in similar gradients at corre-
sponding distances as the integrated Gaussian function. In our experiments, we
found that an inverse kNN map outperformed density maps with ideally selected
spread parameters.

4.2. Implementing ik NN map labeling

In one experiment, we first use an existing network architecture!! which uses Den-
seNet” as the backbone architecture, although we replace the density maps with
ikNN maps and show there is an improvement in the prediction performance of the
trained model. This demonstrates a direct improvement gained using our kNN
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method on an existing state-of-the-art network. Note that the regression module
from ikNN map to count is then also required to convert from the ikNN map to a
count. The difference in error between the original approach in Ref. 11 and the
network in Ref. 11 with our iXNN maps, though improved, is relatively small. We
suspect this is because the density maps (or ikNN maps) used during training are
downsampled to a size of 28 x 28 (where the original images and corresponding labels
are 224 x 224). This severe downsampling results in significant binning of pixel in-
formation, and this seems to reduce the importance of which system is used to
generate the label. Taken to the extreme, when downsampled to a single value, both
approaches would only give the global count in the patch (where the ikNN map gives
the inverse of the average distance from a pixel to a head labeling which can be
translated to an approximate count). This downsampling is a consequence of the
network structure only permitting labels of the same spatial size as the output of the
DenseBlocks of the DenseNet. Our MUD-ikNN network described in Sec. 3 remedies
this through transposed convolutions, allowing for the use of the full-size labels.

Label generation computational complexity. The generation of the ikNN
labels occurs as a one-time data preprocessing step before the training process, and
thus, the label generation method does not have an impact on the speed of training
steps, or the testing step. The same is true for all the variations of the mapping
approaches as described below.

Discussions on occlusion. The primary goal of the network is a statistical
prediction of the number of people in a crowd. As such, resolving individual occlu-
sions is not a critical issue, so long as the network accurately predicts the overall
crowd size. That said, inspecting how ikxNN maps handle occlusions differently than
Gaussian-based density maps may provide interesting insights differentiating the
methods. In the Gaussian-based density map, two overlapping individuals will
provide density totals summing to 2, taking into account the fact that two indivi-
duals are overlapping in the image. Notably, two perfectly overlapping individuals
(center head locations being selected as the same pixel) will not be resolved by the
ikNN map when k = 1. However, such overlaps leading to an overall count increase
are still captured by the global count label used in ikNN approach. In such a case of
perfect occlusion, we expect little or no visual information to suggest the presence of
another person. In which case, the position of the additional person count is not
useful to training the network. It can actually be detrimental, as without visual
evidence, there is no way for the network to determine whether any particular person
has a prefect occlusion, and it must guess between 1 and 2 individuals being at each.
In this way, only including the additional count in the global count, and not in the
map label (as the ikNN approach does), may be beneficial. However, perfect occlu-
sions are a rare occurrence (indeed, perfectly overlapping heads likely cannot have
been marked by the original human-created ground-truth). When occlusion is not a
perfect overlap, the ikNN map has an advantage over the density maps. When the
head positions are 2 pixels away, the iXNN forms two distinct peaks in the map label
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(one for each head location). Typically, this is not the case for the Gaussian-based
labeling, where the Gaussians form a mixture model, often containing only a single
peak. As explained in Sec. 4.1, the value of the ikNN maps comes from providing
improved training gradients. These distinct peaks in the map label demonstrate a
case where the ikNN map provides useful training information which may be lost in
the density map, as implied by our experimental results in Sec. 6.

5. Generalization of ikxNN Mapping, Variations, and Attenuation

To motivate the generalization of the ixNN mapping, additional analysis was per-
formed on the training samples of the UCF-QNRF dataset. This training dataset has
1201 images, with a average image resolution of 2013 x 2902. The dataset contains
images which are viewed from a variety of perspectives, most of which results in a
significant perspective distortion, which results in wider coverage of the physical area
on the far end of an image than the near end. This results in denser crowd counts
per pixel in more distance locations in the image (such as can be seen in Fig. 4(a)).
To analyze whether additional mechanisms in the labeling scheme which account for
these distortions improve crowd counting performance, we generate statistics of
the full images as well as the far half (y > 0) and the near half (y < 0) of the images

‘sunmaton abe e psn

B S L ICELIES

(i) () (k) (1)1

Fig. 4. (Color online) A crowd image (a) and its counts (b) and various maps (c-1). In (a), the origin of
the image is at the center where the optical axis of the camera points to, the positive y goes up, and the
positive z goes to the left, aligning with the camera coordinate system. In (b), the count numbers of every
80 rows are shown in the horizontal coordinates. Map values of four different maps (with a log scaling) and
the plots of their summation-per-person versus the y-coordinate are shown from (c) to (1): (c) and (d) —
iINN; (e) and (f) — iSINN; (g) and (h) — iRINN; (i) and (j) — n-iINN; (k) and (1) — w-iINN. In each
plot, the vertical axis is the y coordinate aligned with the image, and the horizontal coordinate value of
each blue dot shows the summation of map values of a person at that y coordinate. The red line in each of
(d), (f) and (h) is a linear fitting of the summation plot.
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Table 2. Statistics of mean and median counts and summation-per-person values on various maps for the
UCF-QNRF dataset.

Count iINN sum iSINN sum  iRINN sum n-iINN sum w-iINN sum

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

Full image 838 421 147 105 18 17 668 360 1.71 136 12 11
Near half 337 136 300 180 21 20 1994 714 146 0.90 16 12
Far half 501 228 131 7 17 16 591 201 3.02 152 16 11
Near/far ratio 0.67 0.60 229 234 124 125 337 355 048 059 1.00 1.09

(with the origin of the coordinate system zoy defined in the center of the image where
the optical axis of the camera points to; see Fig. 4(a)), and their ratios in Table 2.
As many images do not have uniformly distributed crowd in the more distant part of
the image, we show both the mean and median values. The mean (median) count of
the ground truth person labeling shows a ratio of 0.67 (0.60) in the near half com-
pared to the far half; the smaller ratio of the median indicates that images often do
not have a significant crowd density in the far end of the images. Details of other
columns will be explained in the following.

Examples of crowd images are shown in Fig. 5. To further analyze the impact of
uneven crowding in the images, we first subcategorized the images into different
categories based on the location of the people for both training samples and test
samples of UCF-QNRF dataset. These categories consist of the cases when the far
half is empty, the far half is not empty, and the far half has less than 5% of the head
counts (Table 3). The proportion of each category for both the training set and the
test set are roughly the same. Next, we analyze the subcategories based on the total
count of the images. In Table 4, we show the that proportion of each category in the

Fig. 5. Examples of crowd images from UCF-QNRF dataset. On top: examples of dataset images which
contain head positions in far half. On bottom: examples of dataset images in which the far half is empty.
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Table 3. Number of images based on people location of UCF-QNRF dataset.

No. of images  Far half empty  Far half not empty  Far half count less than 5%

Train 1201 85 (7%) 1116 (93%) 131 (11%)
Test 334 25 (7%) 309 (93%) 34 (10%)

Table 4. Statistics for images based on total count of UCF-QNRF dataset. We categorize the dataset into five
subsets based on total count of the image: 0-250, 251-500, 501-750, 751-1000, 1001-2500, 25015000, 5001-10000
and > 10000.

No. of images ~ 0-250 251-500  501-750 751-1000 1001-2500 2501-5000 5001-10000 10000+

Train 1201 340 (28%) 359 (30%) 159 (13%) 88 (T%) 175 (16%) 61 (5%) 16 (1.3%) 4 (0.3%)
Test 334 88 (26%) 100 (30%) 43 (14%) 35 (10%) 54 (16%) 14 (4%) 0 (0%) 0 (0%)

test set is similar to the training set. However, there are no images which have total
count over 5000 in test set, where there is a small portion of images (1.3%) that have
a count of over 5000 in the training set.

To produce variants of the inverse kNN (ikNN) map, we define
am

R(z)(K(xz,k)1+1)’

M(x, k) = (6)

where M is the resulting generalized ikNN map, ¢ is the distance normal order of the
kNN map, R is the weighting factor considering perspective views (ranges) and/or
image resolutions, and the operations are applied element-wise for each pixel € = (z,y).

5.1. The original ik NN mapping and its variations

For each of the below mappings, the statistics of the means and medians of the
summation-per-person values of the full, near half, and far half images, as well their
ratios, are shown in Table 2.

5.1.1. The original ik NN mapping

When R(x) =1 and ¢ =1 in Eq. (6), the mapping is the original ikNN in Eq. (5),
am

Mixn(z, k) = K@ k)11 (7)

To analyze the distributions of the map values, we approximate the summation of
ikNN map values per labeled person, Sk (xy,, k), by summing up the ixNN map values
with a circular region whose radius r is half of the kNN distance of that head position

x, = (Tp, Yn):

Si(@n, k) =Y Myxy(my, 7, k). (8)

Figure 4(c) shows the iINN map (i.e. k = 1) with a log scaling for the image in Fig. 4
(a), and Fig. 4(d) shows the distribution of the summations per person along their y
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coordinates. We can see that in the ilNN mapping, for people from far to near ranges,
the summation values increase with the increase of image resolution due to the
perspective view, with almost six times from the far end to the near end (roughly
from 100 to 600 on the fitted red line). This implies that the iXNN mapping might
favor the near parts of the images more, as more weight is assigned per person
compared to the far regions of the image (Fig. 4(b), “counts per 80 rows” from 5 to 30
from near to far). The statistics shown in the “iINN Sum” column of Table 2 shows
that the summation values decrease from near to far, by about 2.3 times.

5.1.2. Inverse squared kNN mapping

To reduce the effect of unbalanced map values due to perspective views, a potential
solutions is an inverse squared kNN mapping. This method turns distance-related
measures into area-related measures in the mapping function, which increases the
gradient of values in the resulting maps near head positions. When R(x) =1 and
g =2 in Eq. (6), the mapping is the inverse squared kNN (iSkKNN):
am

M; —
K(xz,k)2+1

isinn (@, k) = (9)
Since the values of the iISKNN map decrease more quickly from a head position
than in the ixNN map, and individuals closer to the camera have a relatively large
pixel area before reaching the boundary of the kNN, this mapping will tend to
provide a smaller map summation per individual for those in the nearer regions of the
image. Figure 4(e) shows the iSINN map (iSENN when k = 1) with a log scaling of
the image Fig. 4(a), and Fig. 4(f) shows its distribution of the summations per
person. We can see that in the iISINN mapping, for people from far to near ranges,
summation values do not increase as dramatically as in the i1NN mapping. Instead,
the rate is about 1.5 times from the far end to the near end (summation values are
roughly from 20 to 30 on the fitted red line). The statistics shown in Table 2 shows
that the summation values per person do not decrease as fast as in the i1NN mapping
from near to far (about 1.2 times compared to 2.3 times). Since the far end has more
counts than the near end of images, the squared ixNN map may incentivize the network
to learn how to count more distant individuals which occupy a smaller pixel space.

5.1.3. Inverse square root kNN mapping

The next mapping to compare is an inverse square root kNN mapping (denoted as
iRENN), which turns distance-related measures into square root measures in the
mapping function, thus making the changing rates of the mapping function slower —
the opposite direction of the iSkNN. When R(z) =1 and ¢ =1/2 in Eq. (6), the
mapping is the iRKNN:

am,

Mg (z, k) = m

(10)
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Since the values of the iREKNN map as a function of pixel distance from a head
position decrease at a slower rate than does the ixNN map, the mapping will tend to
favor the near parts of an image than the far parts compared to the ikNN map.
Figure 4(g) shows the iRINN map (iRKNN when k = 1) with a log scaling of the
image Fig. 4(a), and Fig. 4(h) shows its distribution of the summations per person.
We can see that in the iRINN mapping, for people from far to near portions of the
image, summation values change more dramatically than the i1NN mapping, with
the increase of image resolutions due to the perspective view, with a rate of about 10
times from the far end to the near end (summation values roughly from 300 to 3000
on the fitted red line). The statistics shown in Table 2 show that the summation
values per person decrease faster than i1NN from near to far (about 3.4 times ver-
sus 2.3 times). Since the near end has much higher resolutions than the far end of
images, the iRENN map may improve the performance of counting at least to the
near end.

5.1.4. Normalized itk NN mapping

The third method is a normalized ixNN mapping, which makes the sum of values for
each person (almost) invariant to the distance of the person to the camera, thus
reducing the effects of camera perspective changes. When R(x) in Eq. (6) is a
function of the ranges, given by fitting a line to the point set (S (xp, k), y;,) (the red
line in Fig. 4(d) of the corresponding ikNN map (Fig. 4(d)):

Nk (z, k) = ay +b, (11)

where a and b and the slope and the intercept of the fitted line, only subject to
the change of y, and ¢ = 1 in Eq. (8), the mapping is the normalized ikXNN (denoted
as n-ikNN):

am

MnfikNN(wv k) = NK(QZ)(K(QJ, ki) + 1) . (12)

Figure 4(i) shows the n-iINN map (k = 1) with a log scaling of the image Fig. 4(a),
and Fig. 4(j) shows its distribution of the summations per person. We can see that
in the n-iINN mapping, for people from far to near ranges, summation values are
almost normalized to 1, which is about invariant to the image resolution due to the
perspective view, from the far end to the near end. The statistics shown in the “n-
iINN Sum” column of Table 2 show that the mean/median summation values per
person are scaled to a single digit (ideally it would be 1), which shall not change
much from near to far. Since the far end has much more counts than the near end
of images, the normalized ikNN map may improve the performance of counting at
least to the far end. However, due to the approximation of the summation per
person in Eq. (8), the actual “normalized” results favor more toward the far end,
which may cause significant suppression of the map values in the near range with
high image resolution, and enlargement of the map values of the far range with low
image resolution and sparse crowd for some of the images and thus high noise level.
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This might have negative affect, which will be validated this in our experiment
section.

5.1.5. Weighted ik NN mapping

As mentioned above, the n-ikNN mapping may potentially apply too much weight on
people in distance portions of the image, with lower image resolutions than people in
near ranges, thus our final mapping is a weighted ikNN, which means to strike a
balance between perspective views and image resolutions, and calibrating the bias of
the approximation of summation-per-person calculation in Eq. (8). When R(x) is a
weighted function to consider both the perspective and resolution, and ¢ =1 in
Eq. (6), the mapping is the weighted ikNN (denoted as w-ikNN):
am

My _pnn (2, k) = N (@)(K (@, k) + 1) )

(13)

where we use the square root of the mean summation per person along the y coor-
dinates as a weight function. Figure 4(k) shows the weighted iINN map (k = 1) with
a log scaling of the image Fig. 4(a), and Fig. 4(1) shows its distribution of the
summations per person. We can see that in the weighted i1NN mapping, for people
from far to near ranges, the summation values from the far end to the near end
actually are equally distributed, around 20, which hopefully balance the consider-
ation of different image resolutions and distance ranges. The statistics shown in the
“n-iINN Sum” column of Table 2 show that the summation values per person from
near to far behave somewhere between the original i1NN and the normalized 11NN,
which is actually a ratio of about 1:1.

5.2. kNN mapping with attenuation

A recent work'? proposed an approach to improve the performance by applying
scaling factors and attention masks related to the far regions with different density
levels, thus generating attention-based density maps. We add an attenuation func-
tion to our ikNN mapping, applied to the far regions which often contain little or no
people. This may help mitigate the estimation errors and improve the performance.
This is similar to the attention masks, but applied during the preprocessing step of
the label maps rather than within the network itself. To generalize the inverse kNN
(ikNN) map with attenuation, we define an attenuation function A(x):

Ymin — Y
- D =+ ]-7 ye [ymim yma.x]
A(m) = Ymax — Ymin (14)

1 ’ Y < Ymin

where & = (2,¥), [Ymin, Ymax) Tepresents range of the far empty region in the y di-
rection where has no people in the image, and D is a scale factor. 1 is added in the

2160012-18



Int. J. Patt. Recogn. Artif. Intell. 2021.35. Downloaded from www.worldscientific.com
by 24.0.249.53 on 08/04/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

Impact of Labeling Schemes on Dense Crowd Counting

denominator to prevent division by zero in the following equation:

Mattenuatioxl(mv k) =

«@ m

A(z)R(z)(K(z, k)1 +1)

(15)
Here M, icnuation 1S the resulting generalized ikNN map with attenuation.

5.2.1. Original ik NN mapping with attenuation
When R(z) =1 and ¢=1 in Eq. (15), the mapping is the original ikXNN with
attenuation:

A

MattonuationfikNN(w’ k) = A(a:)(K(:c, k) + 1) :

(16)

As discussed in Sec. 5.1.1, the original ikNN mapping may favor the nearer parts of
the images where there is greater pixel resolution per person. In further consideration
of the uneven crowd distribution, we experimented with decreasing the weights of the
farther parts by applying an attenuation function to these far empty regions.

5.2.2. Inverse square root kNN mapping with attenuation

An inverse square root kNN mapping (denoted as iRENN) reduces the relative im-
pact of distances within the mapping label. When R(x) = 1 and ¢ = 1/2 in Eq. (15),
the mapping is defined by

@
M, I ion—i €T, If = m . 17

attenuatio: RkNN( ) A(il:)( K(Ji, k‘) + 1) ( )
In our experiments, iRENN provided the best performance of the nonattenuation
variations. As such, we compare iRENN with attenuation to base ikNN with at-
tenuation (Sec. 6.5).

5.2.3. Normalized ik NN mapping with attenuation

With R(xz) described for normalization as was presented in Sec. 5.1.4 and ¢ =1
for Eq. (15), the mapping is the normalized ikNN with attenuation (attenuation-n-
iINN) and is given by

a7n

MattcnuationfnfikNN(w? k) = A(:B)NK(QJ)(K(m, k.) + ]_) '

(18)

Although the unattenuated n-iINN reduces the effects of camera perspective chan-
ges, the normalization may over emphasize map values areas of the image where no
individuals exist. By adding the attenuation function to the n-iINN mapping, we
may reduce the weights in these farther parts of the image, with the potential for
improved performance.

Figure 6 shows the attenuation mapping results for three i1INN mapping varia-
tions. We can see our attenuation function reduced map values for the farther, empty
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Fig. 6. An example of a crowd image and three mapping variations without and with attenuation (all
shown in a log scale). From left to right, iINN mapping, iRINN mapping and n-iINN mapping (top); iINN
mapping, iIRINN mapping and n-i1NN mapping after applying attenuation (bottom). The scale factor D is
set as 100 in our experiments.

regions of the image, with the potential to lower the estimation errors. These per-
formance improvements are evaluated in Sec. 6.5.

6. Experimental Results

6.1. Ewvaluation metrics

For each dataset that we evaluated our method on, we provide the mean absolute
error (MAE), normalized absolute error (NAE), and root mean squared error
(RMSE). These are given by the following equations:

MAE = N z:: (19)

NAE = N; € — G (20)
1L ,

RMSE = N;(oi—q) . (21)

In the first set of experiments, we demonstrate the improvement of the ikNN
labeling scheme compared to the density labeling scheme. We trained our network
using various density maps produced with different Gaussian spread parameters,
B (as described in Sec. 4) and compared these results to the network using ikNN
maps with varying k. We also analyze the advantage of upsampling the label for
both density and ikNN maps. In the second set of experiments, we provide
comparisons to the state-of-the-art on standard crowd counting datasets. In these
comparisons, the best (kNN map and density map from the first set of experi-
ments is used. Most works provide their MAE and RMSE results. Reference'!
provided the additional metric of NAE. Though this result is not available for
many of the datasets, we provide our own NAE on these datasets for future works
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Table 5. General statistics for the tested datasets.

Dataset No. of images Total count Mean count Max count Average resolution
UCF-QNRF 1535 1251642 815 12865 2013 x 2902
ShanghaiTech Part A 482 241677 501 3139 589 x 868
ShanghaiTech Part B 716 88488 123.6 578 768 x 1024
UCF-CC-50 50 63974 1279 4633 2101 x 2888

to refer to. The most directly relevant work'' has only provided their results
for their latest dataset, UCF-QNRF. As such, their results only appear with
regard to that dataset. Finally, we design an experiment to test if the more
sophisticated variations of ikNN mapping would improve the performance of
crowd counting.

General statistics about the datasets used in our experiments is shown in Table 5.
Results show that (1) overall iXNN mapping has better performance than the density
mapping; (2) iINN mapping has the best performance among all; and (3) ikNN
mapping is better than the density mapping when k is not larger than 3.

6.2. Impact of labeling approach and upsampling
6.2.1. Density maps versus ikNN maps

We used the ShanghaiTech dataset’” part A for this analysis. The results of these
tests are shown in Table 6. The density maps provide a curve, where too large and
too small of spreads perform worse than an intermediate value. Even when choosing

Table 6. Results using density maps versus ikNN maps with varying
k and 8, as well as the various upsampling resolutions on the
ShanghaiTech Part A dataset. If a resolution is not shown, it is the
default 224 x 224. Multiple 3 correspond to a different Gaussian
density map for each of the three map module comparisons.

Method MAE NAE RMSE
MUD-density/30.3 28x28 79.0 0.209 120.5
MUD-density/30.3 56 x56 74.8 0.181 121.0
MUD-density30.3 112x112 73.3 0.176 119.1
MUD-i1NN 28x28 75.8 0.180 120.3
MUD-i1NN 56x56 72.7 0.181 1174
MUD-i1NN 112x112 70.8 0.166 117.0
MUD-density30.05 84.5 0.233 139.9
MUD-density0.1 76.8 0.189 120.3
MUD-density30.2 75.3 0.175 124.2
MUD-density50.3 72.7 0.174 120.4
MUD-density50.4 75.7 0.176 130.5
MUD-density 0.5 76.3 0.182 130.0
MUD-density3,0.5, 3,0.3, 350 78.5 0.205 124.2
MUD-density(3;0.5, 5,0.3, 550.05 7.8 0.207 124.9
MUD-density(,0.4, 3,0.2, 350.1 76.7 0.202 122.7
MUD-density$,0.1, 3,0.2, 5;0.4 75.1 0.191 119.0
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Table 6. (Continued)

Method MAE NAE  RMSE
MUD-density(3,0.2, 3,0.3, 350.4 76.0 0.196 122.1
MUD-i1NN 68.0 0.162 117.7
MUD-i2NN 68.8 0.168 109.0
MUD-i3NN 69.8 0.169 110.7
MUD-i4NN 72.2 0.173 116.0
MUD-i5NN 74.0 0.182 119.1
MUD-i6NN 76.2 0.188 120.9

the best value (where 8 = 0.3), which needs to manually determined, the iINN label
significantly outperforms the density label.

Included in the table are experiments, in the fashion of Ref. 11, with density maps
using three different § values. Here §; denotes the spread parameter used as the label
map for the first map module, while 8, and (5 are for the second and third modules.
Contrary to findings of Ref. 11, we only gained a benefit from three density labels
when the first output had the smallest spread parameter. Even then, the gain was
minimal. Upon inspection of the weights produced by the network from the map to
the count prediction, the network reduces the predictions from the nonoptimal /3
maps to near zero and relies solely on the optimal map (resulting in a reduced
accuracy compared to using the optimal map for each map module).

With varying k, we find that an increased k results in lower accuracy. This is likely
due to the loss of precision in the location of an individual. The most direct expla-
nation for this can be seen in the case of k = 2. Every pixel on the line between two
nearest head positions will have the same map value, thus losing the precision of an
individual location.

6.2.2. Upsampling analysis

Most existing works use a density map with a reduced size label for testing and
training. Those that use the full label resolution design specific network architectures
for the high-resolution labels. Our map module avoids this constraint by upsampling
the label using a trained transposed convolution, which can be integrated into most
existing architectures. Using the ShanghaiTech part A dataset, we tested our net-
work using various label resolutions to determine the impact on the predictive
abilities of the network. These results can be seen in Table 6. Experiments without no
label resolution given are 224 x 224. In the top section of this table, we see the
performance of the network when using output labels with sides of size 28, 56, 112.
The corresponding comparison with size of 224 is seen in the third section of the
table. In each case, a higher resolution results in a higher accuracy. Note that this
results in a minor change to the map module structure, as the final convolution
kernel needs to match the remaining spatial dimension. A set of predicted ixNN map
labels can be seen in Fig. 7, where a grid pattern due to the upsampling can be
identified in some cases.
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(a) Input patches with corresponding iINN (b) Input patches with corresponding
labels and predictions. i3NN labels and predictions.

Fig. 7. A set of randomly selected input image patches, along with their corresponding ground truth map
labels and map predictions. Figure 7(a) shows the iINN case and Fig. 7(b) shows the i3NN case. In each
subfigure, there are three rows, each corresponding to a randomly selected input image. In each subfigure,
the five columns from left to right are the original image patch, the ground truth label, and the patches
from the three map modules in order through the network.

6.3. Comparisons on standard datasets

The following demonstrates our network’s predictive capabilities on various data-
sets, compared to various state-of-the-art methods. Again, we note that our
improvements are expected to complementary to the existing approaches, rather
than alternatives.

For these experiments, we used the best k, 1, and best (3, 0.3, from the first set of
experiments.

The first dataset we evaluated our approach on is the UCF-QNRF dataset.!! The
results of our MUD-ikNN network compared with other state-of-the-art networks are
shown in Table 7. Our network significantly outperforms the existing methods.
Along with a comparison of our complete method compared with the state-of-the-art,
we compare with the network of Ref. 11, but replace their density map predictions
and summing to count with our ixNN map prediction and regression to count. Using
the ikNN maps, we see that their model sees improvement in MAE with ixNN maps,
showing the effect of the ikXNN mapping. This experiment shows that the improve-
ment of the performance of the ikNN mapping without the use of the MUD model, a

Table 7. Results on the UCF-QNRF dataset.

Method MAE NAE RMSE
Idrees et al.'’ 315 0.63 508
MCNN?7 277 055 426
Encoder—Decoder” 270 0.56 478
CMTL” 252 0.54 514
SwitchCNN'® 228  0.44 445
Resnet101” 190  0.50 227
DenseNet201” 163 0.40 226
Idrees et al."! 132 0.26 191
Idrees et al."' with iINN maps 122 0.252 195
MUD-i1NN 104 0.209 172
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Table 8. Results on the ShanghaiTech Part A, ShanghaiTech Part B and UCF-CC-50 datasets.

ShanghaiTech Part A ShanghaiTech Part B UCF-CC-50
Method MAE NAE RMSE MAE NAE RMSE MAE NAE RMSE
ACSCP 75.7 — 102.7 18.7 — 26.0 291.0 — 404.6
D-ConvNet-v1 73.5 — 112.3 17.2 — 274 288.4 — 404.7
ic-CNN 68.5 — 116.2 10.7 — 16.0 266.1 — 397.5
CSRNet 68.2 — 115.0 10.6 — 16.0 260.9 — 365.5
MUD-density/350.3 72.7 0.174 120.4 16.6 0.130 26.9 246.44  0.188 348.1
MUD-i1NN 68.0 0.162  117.7 134 0.107 21.4 237.76  0.191  305.7

reduction of MAE error of 10 counts; with the MUD model (including upsampling),
the performance is further improved, a further reduction of the MAE error of 18
counts.

The second dataset we evaluated our approach on is the ShanghaiTech datase
The dataset is split into two parts, Part A and Part B. For both parts, we used the

t.%7

training and testing images as prescribed by the dataset provider. The results of our
evaluation on part A are shown in Table 8. Our MUD-ikNN network slightly out-
performs the state-of-the-art approaches on this part. The results of our evaluation
on part B are also shown in Table 8. Here our network performs on par or slightly
worse than the best-performing methods. Notably, our method appears perform
better on denser crowd images, and ShanghaiTech Part B is by far the least dense
dataset we tested.

The third dataset we evaluated our approach on is the UCF-CC-50 dataset.'? We
followed the standard evaluation metric for this dataset of a five-fold cross-evalua-
tion. The results of our evaluation of this dataset can be seen in the last portion of
Table 8.

Overall, our network performed favorably compared with existing approaches. An
advantage to our approach is that our modifications can be applied to the archi-
tectures we’re comparing against. The most relevant comparison is between the
ikNN version of the MUD network, and the density map version of the same MUD
network. Here, the ikNN approach always outperformed the density version. We
speculate that the state-of-the-art methods we have compared with, along with other
general-purpose CNNs; could be improved through the use of ikNN labels and
upsampling map modules. Note that the overall mean absolute errors (MAE) across
all the five datasets are still relatively high compared to the latest state-of-the-art
network architectures Table 9. Applying ikNN labels to more powerful crowd
counting architectures would be an interesting future direction.

6.4. Fvaluating itk NN mapping variations

Experiments were also performed on our additional mapping mechanisms that ex-
plicitly account for image perspective and mapping change rates to analyze their
impact on crowd counting performance. To test how they perform on various image
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Table 9. Summary of statistics (crowd data and MAE results) for the tested datasets.

No. of Relative
Dataset images Total count Mean count Max count Resolution MAE MAE
UCF-QNRF 1535 1251642 815 12865 2013 x 2902 104 12.8%
ShanghaiTech Part A 482 241677 501 3139 589 x 868 68 13.6%
ShanghaiTech Part B 716 88488 123.6 578 768 x 1024 134 10.9%
UCF-CC-50 50 63974 1279 4633 2101 x 2888 238 18.6%

Table 10. Performance statistics of counts errors (MAEs) using various maps (ikNN, iSKNN, iRENN, n-
ikNN and w-ikNN, where k = 1) for the UCF-QNRF dataset. The first column of values are the three mean
counts of the ground truth labels. Inside the parentheses after each MAE, the relative error over its corre-
sponding mean count is listed.

Mean
count iINN (1e-3) iSINN(le-3) iRINN(le-3) n-iINN(le-3) w-i1NN(le-3) w-iINN(le-2)

Full Image 838 104.9 (12.5%) 107.0 (12.8%) 100.6 (12.0%) 125.7 (15.0%) 120.3 (14.3%) 122.7 (14.6%)
Near Half 337 44.4 (13.2%) 43.6 (12.9%) 47.0 (13.9%) 62.1 (18.4%) 58.0 (17.2%) 58.1 (17.2%)
Far Half 501 77.3 (15.5%) 78.8 (15.6%) 73.3 (14.6%) 89.8 (17.9%) 85.8 (17.1%) 85.5 (17.1%)

resolutions, we divide the images of the UCF-QNRF dataset'! into the near halves
and far halves, which typically have different crowd densities per pixel, in order to
compare the performance of the original ixNN mapping and its four variations. Since
it was also observed that the sums of the various mapping mechanisms are different
(as shown in Table 2), up to several orders of magnitude, we have also have used
various map multipliers (i.e. the constant scalar parameter «,,) so that the averages
of the map values are normalized to the same order of magnitude.

Table 10 shows the results of these comparisons. In the following experiments, by
default, o, = 1073, o, = 102 was used for w-i1NN, to bring its map values to the
same order of magnitude as the baseline i1NN.

From these experiments, we note the following observations:

e The iRENN mapping (k = 1) results in the best performance of all the approaches.
Note that this approach increases the map values of near end more than the far end
of the image by flattening the map value distribution curve for each person.
However, the results show that it not only increases the accuracy of the overall
count, but also the accuracy of the far half. This likely because it reduces the noise
of the far end of the image where they is either very sparse crowding or very dense
crowding (resulting in more noise). This may be reduced by using a flattened curve
so it focuses on the overall counts rather than individuals.

e The iSENN mapping (k = 1) improves the accuracy of the higher resolution end of
the images (near half) slightly. Note that the iSkNN mapping of each person has
more significant gradients near head locations. Due to the high-resolution nature
of the near half, the rapidly decreasing may increase the accuracy of the models
with respect to head locations.
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o Consistently, the accuracy of counts for the near halves are better than the far half
of images, across all the three (ikNN, iRANN, iSKNN) mapping approaches
without normalization or weighting. This indicates image resolution significantly
impacts the performance. Compared to these approaches, the weighted and nor-
malized approaches appear to balance the performance of the near and far halves.
This is most apparent for the normalized version.

e The attempts to improve the performance of the far end by increasing the map
values as functions of ranges did not produce a benefit. Instead, a decrease in
performance in the near halves of the images was observed, likely due to
suppressing the map values. A decrease in performance in the far halves was also
observed, likely due to increases in the noise level of in the low resolution. It is
possible these losses in performance would not occur if we used the true camera
geometry as opposed to estimates. However, this camera geometry is unavailable.

e Although the performance appears to increase as the orders of magnitudes of
various maps increase, the multipliers actually do not significantly impact the
overall performance. This is observed in the similar results of different multipliers
for the weighted mapping approach.

6.5. Fvaluating tkNN mapping with attenuation

We further performed experiments on the effectiveness of our attenuation approach
using the UCF-QNRF dataset.!! We group the images of the UCF-QNRF dataset
based on the uneven crowd densities in the far half (categorized into cases where the
far half is empty, the far half is not empty, and the far half has less than 5% of total
count of an image). We also group the images based on the total crowd counts in five
categories (0-250, 251-500, 501-750, 751-1000) for images which have total counts
under 1000, and 2 categories (1001-2500, 2501-5000) for images which have total
counts over 1000. In order to compare the performance of our attenuation mecha-
nism, we chose the original ixNN mapping and two other variations: the iRKNN
mapping and the n-ikNN mapping. The iRENN mapping demonstrated the best
performance prior to attenuation. The n-ikNN mapping seems to emphasize the
farther regions of the images, and thus has the potential for significant improvements
via the attenuation. We perform experiments to evaluate the effectiveness of our
attenuation method on these three mappings. Table 11 shows the results.

For each case, «,, = 1073. From these experiments, we draw the following
observations:

e Of the three attenuated mappings, the attenuation-iINN mapping results in
the best performance. With attenuation, ikNN further decreases the weight of
far, empty regions of the image, and the overall count accuracy has slight
improvements. iRINN performs significantly worse with attenuation. As the
iRINN variant already reduces the value of sparsely crowded areas, we speculate
that the additional attenuation results in under-emphasized sparse areas. While
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Table 11. Performance comparison of counts errors (MAESs) using various maps (iINN, iRINN and n-
iINN) and attenuation maps (attenuation-iINN, attenuation-iRINN, and attenuation-n-i1NN) for the
UCF-QNRF dataset. The first column of values are the mean counts of the ground truth labels for each
category. We use the default multiplier which is a,,, = 1073,

Mean Attenuation- Attenuation- Attenuation-

count iINN iINN iRINN iRINN n-iINN n-iINN
Overall 838 104.9 103.8 100.6 110.9 125.7 116.6
Far half empty 626  109.2 103.4 104.3 134.2 134.9 93.1
Far half not empty 726 104.3 103.8 100.3 109 124.9 118.5
Far half less than 5% 413 106 91.4 121.1 124.8 150.5 85.1
0-250 173 94.7 109.7 91.6 124.1 150.5 146.6
251-500 360 124 98.3 116.8 110.6 139.9 107
501-750 617 92.2 77.6 104.5 97 91.7 109.7
751-1000 867 111 107.2 92 106.8 97.9 108.1
1001-2500 1610 94.4 115.8 92.7 108.7 112.1 106
2501-5000 3206 145 131.5 80.9 92.1 94.9 80.2

the attenuation improved the average n-ilNN performance, it was still out-pre-
formed by both attenuated and nonattenuated versions of the other two mapping
variants.

e Both the attenuation-ikNN mapping and the attenuation-n-ixNN mapping sur-
pass their original mappings’ performance. Attenuation-ikNN mapping only
slightly improves overall performance, likely due to the original ikNN mapping
already favoring the near regions, thus our attenuation approach may less of an
impact. Comparatively, the attenuation provides a significant improvement for
the performance of the n-ikNN mapping. This is likely due to the normalization
favoring the far end, which may result in overemphasized values. The attenuation
reduces these far region values. The iRENN mapping performs worse with atten-
uation, likely for the reasons explained above.

e The performance of both the ixNN and n-ikNN mappings improve with attenua-
tion not only in cases of uneven density distributions (far half empty, far half not
empty and far half less than 5%), but also on most of the total count grouping
categories. The attenuation-ikNN mapping performs worse on 0-250 and 1001—
2500 categories than original ikxNN mapping, likely due to the various density
distributions in these two categories. The attenuation-n-ikNN mapping performs
worse than the n-ikNN mapping for the 501-750 and 751-1000 categories. This
may be due to the denser near end of the images, in which our normalization
suppresses the map values and may cause larger errors.

7. Conclusions

We have presented a new form of labeling for crowd counting data, the ikXNN map.
We have compared this labeling scheme to commonly accepted labeling approach for
crowd counting, the density map. We show that using the iXNN map with an existing
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state-of-the-art network improves the accuracy of the network compared to density
map labelings.

We have also provided a new network architecture MUD-1kNN, which uses multi-
scale drop-in replacement upsampling via transposed convolutions to take full ad-
vantage of the provided ikNN labeling. This upsampling combined with the ikNN
maps further improves crowd counting accuracy.

We have further studied several variations of the ikNN labeling mechanism, in-
cluding the inverse squared kNN, the inverse square root kNN, the normalized ikNN
and the weighted ikNN to analyze the impact of camera perspective views, image
resolutions, and the changing rates of the mapping functions. Experiments on a
dataset show that the inverse square root kNN has the best performance, with the
original ikNN being a close second.

In addition, we have investigated an attenuation mechanism to handle
uneven crowd distributions in an image, especially when the far end of the image is
(approximately) empty. We further study the impact of weighting and attenuation
to various cases of the crowd distributions and have found that the attenuation
mechanism helps in cases of uneven crowd distributions, thus improving the overall
performance. Critical discussions are provided for future studies in terms of per-
spective distortions, crowd occlusions, and label resolutions.

Statistically, the mnormalized and weighted approaches do correct the
perspective distortion crowd mapping values as expected, but the preliminary
experiments on one dataset show that the overall performance is degraded when
using these distortion corrections. This presents an avenue for further future inves-
tigation. For example, the use of real camera geometry with respect to the ground
plane, which could be available for real-world applications such as surveillance or
transportation cameras, could be used to correct the perspective distortion, rather
than use the crowd count labeling of individual images, which can often be inaccurate
or even erroneous for some of the images due to the varying distributions of
the crowd.

Finally, we want to note here the mean absolution error (MAE) is still relatively
large (over 10%) and therefore there is still space to improve. Using our mapping
approaches with the latest state-of-the-art crowd counting architectures may provide
further developments. We have demonstrated the improvements gained by using
increased label resolutions and provide an upsampling map module which in prin-
ciple can be generally used by other crowd counting architectures. These approaches
can be used a drop-in replacement in other crowd counting architectures, as we have
done for DenseNet, which resulted in a network which performs favorably compared
with the state-of-the-art.
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