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Soil organic matter (SOM) has often been separated into operational physical fractions, such as particulate
organic matter (POM) and mineral-associated organic matter (MAOM), to improve our understanding of SOM
persistence. While it is generally assumed that POM and MAOM have distinct biogeochemical characteristics, it
remains unresolved where and why POM and MAOM differ in their composition and relationships to total SOM
decomposition among heterogenous soils. We analyzed elemental, isotopic, and chemical composition, including
diffuse reflectance infrared Fourier transform (DRIFT) spectra, of POM and MAOM in 156 soil samples collected
from 20 National Ecological Observatory Network (NEON) sites spanning diverse ecosystems (tundra to tropics)
across North America. We used a classic size separation method for POM (53-2000 pm) and MAOM (<53 pm)
following chemical dispersion. Values of C/N, 613C, and DRIFT spectra for C-H (aliphatic)/C—O0 were correlated
and often similar in POM and MAOM fractions across diverse soils; DRIFT spectra for C—C (aromatic)/C—0 were
often similar but uncorrelated between fractions. A prevalent hypothesis holds that MAOM is dominated by
microbial-derived OM, yet our findings suggest that plant-derived OM can also contribute substantially to
MAOM, especially in wet forests receiving >1200 mm annual precipitation (with MAOM C/N > 15). Multiple
statistical analyses showed that C quantity and chemical composition of MAOM could as effectively predict soil C
decomposition during an 18-month incubation as measures of POM. Thus, POM and MAOM both likely
contributed significantly to decomposition over timescales of months, possibly because characteristics of POM
and MAOM were often related and/or a large pool size of MAOM could compensate for its lower decomposition
rate relative to POM. Further, we found that soil geochemical composition (such as silt and clay, calcium,
oxalate-extractable iron and aluminum), along with climate and ecosystem type, could partly predict differences
in quantity and composition between POM and MAOM. Overall, relative coupling vs. decoupling between POM
and MAOM among soils was predictable based on geochemistry, and these similarities/differences provide
insight into variation in the plant-derived sources of MAOM across diverse ecosystems. The importance of MAOM
to short-term soil C decomposition has probably been underappreciated.

1. Introduction

Soil organic matter (SOM) has often been separated experimentally
into different physical fractions, under the hypothesis that physical
fractions are related to theoretical pools with differing decomposition
rates because of differences in protection mechanisms and biogeo-
chemical characteristics (Christensen, 1996; Smith et al., 2002). Phys-
ical separation of SOM into operational measures of particulate organic
matter (POM) and mineral-associated organic matter (MAOM) by size
and/or density, following dispersion of aggregates, is a classic approach
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that remains popular in the research community, and it has led to
important insights about SOM distribution and responses to environ-
mental change (Cambardella and Elliott, 1992; Song et al., 2012; Follett
et al., 2015; Cotrufo et al., 2019; Witzgall et al., 2021; Heckman et al.,
2022). POM and MAOM are typically hypothesized to have distinct
biogeochemical properties and turnover rates as a consequence of their
presumed differences in sources (e.g., plant vs. microbial residues) and
degrees of physicochemical protection (Lavallee et al., 2020). However,
both POM and MAOM fractions are also known to contain mixtures of
faster- and slower-cycling C pools with likely contributions from both
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plant and microbial detritus (von Liitzow et al., 2007; Torn et al., 2013;
Hall et al., 2015; Poeplau et al., 2018; Angst et al., 2021). These con-
flicting findings point to an unresolved question: how different are POM
and MAOM in their biogeochemical characteristics and their relation-
ships to soil C decomposition across diverse environments, and what
factors influence the differences between these operational fractions?
Further clarifying our interpretation of these commonly measured
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fractions could improve mechanistic understanding of SOM dynamics
and help to clarify the sources and persistence mechanisms of SOM
within and among ecosystems.

It is still unclear whether POM and MAOM could similarly predict
soil organic carbon (SOC) decomposition across diverse soils. On one
hand, POM and MAOM are generally considered to have decoupled
turnover rate, source and composition, POM is often assumed and
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Fig. 1. Conceptual hypotheses of differences in dynamics, source, and composition between POM and MAOM. Under “Decoupled” hypotheses, POM dominates short-
term SOC decomposition and POM and MAOM have generally decoupled source and composition; under “Coupled” hypotheses, both POM and MAOM drive short-
term SOC decomposition and POM and MAOM often have coupled source and composition. Shaded areas: approximate predicted values based on previous work.
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demonstrated to decompose more rapidly than MAOM (Parton et al.,
1987; Feng et al., 2016), and POM generally has shorter residence times
(years—decades) than MAOM (decades—centuries) based on e analysis
(Kleber et al., 2015). Thus, POM may dominate heterotrophic respira-
tion (Elliott, 1986; Arevalo et al., 2012) and may be a good predictor of
short-term SOC decomposition, measured as soil respiration (Alvarez
and Alvarez, 2000). We summarize these ideas in Fig. 1a as a hypoth-
esized “decoupling” of dynamics of POM and MAOM. On the other hand,
both POM and MAOM contain faster- and slower-cycling components
(Torn et al., 2013; Paul, 2016), and a relatively fast-cycling MAOM
component with annual to decadal turnover times appears to be present
in many soils (von Liitzow et al., 2007; Torn et al., 2013; Hall et al.,
2015; Keiluweit et al., 2015; Giannetta et al., 2019). MAOM might also
be a major contributor to SOC decomposition, especially in cases where
a large pool size of MAOM compensates for its lower decomposition rate
relative to POM (Christensen 1987). We summarize these ideas in Fig. 1a
as a hypothesized “coupling” of dynamics of POM and MAOM.

In addition to their potential differences in turnover (Fig. 1a), POM
and MAOM are also expected to differ in their sources and biochemical
composition (Fig. 1b and ¢, Decoupled hypotheses; Lavallee et al.,
2020). POM is thought to be largely made up of partially decomposed
plant residues (Baldock and Skjemstad, 2000), while microbial necro-
mass and metabolites have been proposed as a major source for C in
MAOM based on the Microbial Efficiency-Matrix Stabilization (MEMS)
hypothesis (Cotrufo et al., 2013; Liang et al., 2017). According to this
hypothesis (Fig. 1b Decoupled), high-quality litters would be efficiently
converted to microbial biomass and necromass that form
organo-mineral associations and accumulate in MAOM (Cotrufo et al.,
2013). A growing body of evidence supports this hypothesis by showing
that microbial processing of higher-quality substrates resulted in more
MAOM C than low-quality ones (Cyle et al., 2016; Lavallee et al., 2018)
and MAOM stored much more microbial necromass than POM (Grie-
pentrog et al., 2014; Angst et al., 2019).

Based on this hypothesis (Fig. 1b Decoupled), we infer that POM
should have generally higher and more variable C/N ratios than MAOM
and their C/N ratios should be relatively decoupled (Fig. 1c and
d Decoupled hypothesis), as the C/N of POM and MAOM should largely
correspond to the C/N of plant litter and microbial necromass, respec-
tively. Plant litters vary substantially in their C/N ratio (e.g., 40-120
across a subset of National Ecological Observatory Network (NEON)
sites; Hall et al., 2020) while soil microbes have a lower and more
constrained C/N ratio (3-15; Strickland and Rousk, 2010). Lavallee et al.
(2020) proposed that POM generally has C/N ratios between 10 and 40
while MAOM has C/N ratios between 8 and 13. By this logic, we expect
differences between MAOM and POM in their C functional groups, as
measured by diffuse reflectance infrared Fourier transform (DRIFT)
spectra. We expect higher and more variable C—=C (aromatic) relative to
C=O0 in POM than in MAOM (Fig. le Decoupled hypothesis). Most ar-
omatic C=C is derived from plants while C=0 is often contributed by
microbes (Christensen, 2001; Nocentini et al., 2010; Miltner et al., 2012;
Heckman et al., 2013; Hall et al., 2018). We also expect higher and more
variable C-H (aliphatic) relative to C=0 in POM than in MAOM (Fig. 1e
Decoupled hypothesis). Higher C-H (aliphatic) in POM has been related
to a major contribution of plants to POM (Demyan et al., 2012; Laudi-
cina et al., 2015). Finally, we expect that MAOM should have consis-
tently higher 8'3C values than POM (Fig. 1f Decoupled hypothesis) as a
result of 13C-enrichment in microbial biomass as compared to plants and
whole SOM (Werth and Kuzyakov, 2010; Klink et al., 2022). Similarly,
MAOM should have higher §!°N than POM (Fig. 1f Decoupled hypoth-
esis), due to '°N-enriched microbial biomass as well as fractionating
losses during repeated cycling of N in SOM (Craine et al., 2015; Klink
et al., 2022).

Nevertheless, microbial necromass is not the only contributor to
MAOM. Soluble constituents of plant litter have long been known to
preferentially sorb to minerals (Kalbitz and Kaiser, 2008; Kramer et al.,
2012). Substantial and even major contributions of plant-derived C to
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MAOM have been shown (Fig. 1b Coupled hypothesis; Coward et al.,
2018; Coérdova et al., 2018; Huang et al., 2019; Angst et al., 2021). In
these cases, we expect that POM and MAOM should have relatively
coupled C/N, similar C functional groups measured by DRIFT, and
similar 5!3C and 5'°N values (Fig. 1c, d, 1e, and 1f Coupled hypotheses).
Note that the “decoupled” and “coupled” hypotheses are not mutually
exclusive; rather, they represent two end members of a continuum.
Given the divergent implications of coupled vs decoupled POM and
MAOM for how we understand and model soil carbon cycling, we sought
to evaluate these differing hypotheses.

Moreover, if the degree of coupling/decoupling varies, it is impor-
tant to uncover which environmental factors predict these differences
among diverse soils. Soil pH, silt and clay particles containing reactive
minerals, temperature, and precipitation all had disparate relationships
with SOC mass in POM and MAOM fractions (Song et al., 2012; Benbi
et al.,, 2014; Haddix et al., 2020; Lugato et al., 2021). Forests had
generally higher C/N in POM relative to grasslands and C/N in MAOM
was negatively related to silt + clay and pH in a study across Europe
(Cotrufo et al., 2019). We thus expect that the difference in C/N between
POM and MAOM would increase with increasing silt + clay and pH and
be larger in forests compared with other ecosystems. Compared with
SOC mass and C/N, there is little research on how these environmental
conditions, especially geochemical factors, would affect differences in
isotopic and chemical composition between POM and MAOM. Reactive
minerals and/or metals including aluminum (Al), iron (Fe), and calcium
(Ca) play important roles in SOC protection (Torn et al., 1997; Ras-
mussen et al., 2018; Rowley et al., 2018; Yu et al., 2021). Thus, we
expect that increasing reactive minerals and metals could increase the C
content in MAOM relative to POM. As organic matter decomposes, the
remaining C usually becomes more oxidized with lower C-H
(aliphatic)/C=0 (Ryals et al., 2014) and more likely to bind with
minerals. Therefore, we predict that increasing reactive minerals would
correspond to greater coupling of C-H (aliphatic)/C=O between POM
and MAOM. We also expect that increasing reactive minerals and metals
could lead to greater adsorption of aromatic C=C from soluble con-
stituents of plant litter (Kalbitz and Kaiser, 2008; Kramer et al., 2012),
increasing C—C (aromatic)/C—=0 in MAOM and greater coupling of
C=C (aromatic)/C—0 between POM and MAOM.

Here, we address where and why POM and MAOM differ among
diverse soils, using replicate samples at 0-15 and 15-30 cm depths from
20 terrestrial sites in the National Ecological Observatory Network
(NEON). These sites spanned diverse ecosystems, climatic zones (tundra
to tropics), and soil orders across North America (Table S1). We
compared C quantity and composition between the two fractions on a
per-sample basis. We investigated relative importance of soil
geochemistry, climate, and ecosystem type for explaining differences
between the two fractions by linear mixed model (LMM) and random
forest model (RFM). We assessed the capacity of POM and MAOM traits
to predict cumulative SOC decomposition in laboratory incubations
using partial least squares regression (PLSR), principal component
analysis (PCA), and LMM. Leveraging the large-scale environmental
gradient afforded by NEON sites, we ask: 1) where do POM and MAOM
converge vs diverge in their C quantity and composition across these
greatly contrasting soils? 2) do POM and MAOM have similar relation-
ships with SOC decomposition? 3) can soil geochemistry, climate, and
ecosystem type individually or jointly predict differences between the
fractions?

2. Materials and methods
2.1. Site selection and soil sampling

All samples were collected from sites included in the NEON, a U.S.
based, continental-scale ecological monitoring network that provides

open data, samples, and research infrastructure to reveal how ecosys-
tems are responding to environmental change (Keller et al., 2008). We



W. Yuetal

partnered with NEON to collect soil samples from 20 NEON terrestrial
sites, denoted by their NEON acronyms as follows: BONA, CPER, DSNY,
GRSM, HARV, KONZ, LENO, NIWO, ONAQ, OSBS, PUUM, SJER, SRER,
SCBI, TALL, TOOL, UNDE, WREF, WOOD, YELL (Fig. S1). These sites
span wide edaphic, climatic, and ecosystem gradients, from the tundra
to the tropics (Table S1). These soils included 9 out of the 12 soil orders
(no Histosols, Oxisols, or Vertisols) in the United States Department of
Agriculture (USDA) soil classification system. The sites had mean annual
temperature (MAT) of -9-22 °C, mean annual precipitation (MAP) of
262-2657 mm, and included diverse ecosystem types (forest, wetland,
grassland, and shrubland).

Soils at each site were sampled by NEON staff in 2019. Most were
sampled in April and May, and the colder sites were sampled in July/
August after thaw. Mineral soil samples were collected at two depths
(0-15 cm and 15-30 cm following removal of any O horizon) around the
perimeter of one 40 x 40-m “distributed base plot” which was selected
to represent the dominant upland vegetation type and soil type of that
site, whenever possible, in accordance with site access constraints.
These two depths roughly correspond to A and B/E horizons, respec-
tively. Despite different depths of A horizon across sites, 15 cm is the
average bottom depth of A horizon across ten NEON sites with data on
natural soil horizons (Table S2). For this study we used four sampling
locations per plot (one from each side of the 40 x 40-m plot, 4 m outside
of the plot boundary). Soils at the KONZ site were collected only at 0-15
cm due to the shallow soil depth. Soils were shipped overnight on ice
(~4 °C) to Iowa State University (ISU). Each sample was gently ho-
mogenized inside a plastic bag after any coarse roots and macrofauna
were manually removed. The following year (2020), a grab-sample of
surface litter was collected from the plot in each site and shipped to ISU
for chemical analysis.

2.2. Soil geochemical analysis

Field-moist soil subsamples were measured for pH in 1:1 slurries of
soil and deionized water. Air-dried subsamples were extracted with acid
ammonium oxalate in the dark at pH 3 to measure organo-metal com-
plexes and poorly crystalline phases of Al and Fe (denoted Alyy and Feyy),
and with sodium citrate/dithionite to measure crystalline and poorly
crystalline phases of Fe (Feq) as well as co-occurring Mn (Mn,q) and Ca
(Cacq) (Loeppert and Inskeep, 1996). Metals were analyzed via induc-
tively coupled plasma optical emission spectrometry (PerkinElmer Op-
tima 5300 DV, Waltham, MA). The difference between Fe.q and Feqy
represents crystalline phases (Fe.q.ox). We interpret Mn.q as including
exchangeable Mn, organo-metal complexes, and poorly crystalline
phases, as Mn dissolved by oxalate and citrate-dithionite were very
similar (data not shown). We interpret Ca.q as a measure of exchange-
able Ca and Ca in organo-Fe associations (Hall and Huang, 2017).
Field-moist subsamples were also extracted with hydrochloric acid (HCL)
to measure dissolved and adsorbed Fe(II) as well as dissolved or
organically-complexed Fe(III) and a reactive fraction of Fe(II[) minerals
(Hall and Silver, 2015). Concentrations of Fe(II) and Fe(IIl) were
measured colorimetrically using a ferrozine assay (Huang and Hall,
2017) and summed as Feycy.

2.3. SOM fractionation method and fraction chemical analysis

Soil fractionation methods are varied and contentious, and all known
methods yield fractions composite in nature and turnover rates (von
Liitzow et al., 2007; Poeplau et al., 2018). It should be acknowledged
that all POM/MAOM fractions are operationally defined, because
different fractionation methods yield different combinations of material
along a continuum of plant detritus to mineral-associated phases (Wagai
et al., 2020), and because even at nanometer scale, organic matter may
be protected by aggregation rather than by organo-mineral complexes
(Chenu and Plante, 2006). Protocols with sonication and density sepa-
ration more precisely isolate distinct organo-mineral fractions, yet it is
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challenging to optimize a single method for diverse soils, given differ-
ences in required sonication energy input and solution density (Wagai
et al., 2015, 2020). Here, we used a classic method where POM and
MAOM fractions were determined by size following chemical dispersion
of aggregates (Cambardella and Elliott, 1992; Cotrufo et al., 2019), for a
total of 312 fractions (156 soils x 2 fractions). This method has been
shown to isolate fractions similar in size, biogeochemical properties, and
turnover rates to density fractionation (Cambardella and Elliott, 1992;
Six et al., 2002; Poeplau et al., 2018). More importantly, size fraction-
ation can be consistently applied to diverse soils and requires less
workload than density fractionation (Cotrufo et al., 2019).

To conduct the size fractionation, 10 g of air-dried and sieved (<2
mm) soil was shaken in 50 mL of 0.5% sodium hexametaphosphate
dispersing solution for 18 h. The dispersed soil solution was rinsed onto
a 53-um sieve and organic material passing through (<53 pm) was
defined as MAOM and organic material in the fraction remaining on the
sieve (53-2000 pm) was defined as POM. In many cases this coarse
fraction is dominated by sand; we emphasize that POM was measured
directly by its C concentration and SOC mass in POM was obtained by
POM SOC concentration multiplying by POM mass proportion (corre-
sponding to sand content; see Supplemental equation (1)). The fine
fraction containing MAOM was further separated into silt (2-53 pm) and
clay (<2 pm) according to the difference in their sedimentation time
(Kettler et al., 2001). The fractions settling to the bottom and suspended
in water after 4 h were collected as silt and clay, respectively. The
fractions were oven-dried at 60 °C to constant mass and were finely
ground with a mortar and pestle.

The POM and MAOM (combined silt and clay) fractions as well as
dried and finely ground samples of original (non-fractionated) soils and
surface litter were analyzed for SOC and N concentrations, 5'°C, and
51°N by an elemental analyzer coupled with isotope ratio mass spec-
trometer (ThermoFinnigan Delta Plus XL, Waltham, MA) at ISU. All
samples at two sites (ONAQ and WOOD) had pH > 7 and mean car-
bonate >4 mg C g’1 soil (Huang and Hall, 2018). Fractions from the two
sites were fumigated by HCI for 72 h to remove carbonate prior to SOC
and 8'3C analysis (Harris et al., 2001). Some samples from sites CPER,
SRER, and YELL had circumneutral pH, and NEON acidifies these sites
for routine analyses to account for possible carbonate interferences. Yet
all of our samples from these sites had measured carbonate <0.1 mg C
¢! soil, thus they were not acidified. SOC mass and proportion of total
SOC in each fraction were calculated and missing values in POM samples
were estimated when they were below detection limits (Supplemental
Materials and Methods).

Chemical composition of POM and MAOM were analyzed via diffuse
reflectance infrared Fourier transform spectroscopy (DRIFT), a method
that provides information on the abundance of different chemical
functional groups of organic matter and/or minerals (Parikh et al.,
2014). Spectra were recorded on a Fourier transform infrared (FTIR)
spectrophotometer (Bruker Tensor 37, Ettlingen, Germany) with a
diffuse reflectance apparatus (Harrick Scientific Seagull, Ossining, NY).
Based on preliminary analyses that compared multiple sample prepa-
ration methods, most samples were homogenized in a 1:2 ratio with
spectroscopy-grade KBr using a mortar and pestle; several samples with
high SOC concentrations were prepared in a 1:10 ratio because the
signal was too high for certain functional groups. Using finely ground
KBr as a background reference, DRIFT spectra were measured between
4000 and 400 cm ™' averaged over 32 scans at 4 cm ™! resolution and
converted to absorbance via the Kubelka-Munk function. The spectra
were truncated to 4000-500 cm ! and baseline corrected before being
imported into R. We selected the following broad regions for chemical
composition analysis: peaks spanning 2826-3000 cm ™~ * were attributed
to aliphatic C-H stretch, a broad peak spanning 1550-1760 em™! was
attributed to C=O stretch, and a shoulder peak spanning 1480-1550
em ™! was attributed to aromatic G=C stretch (Figs. 52 and $3; Parikh
etal., 2014; Ryals et al., 2014; Hall et al., 2018). Peak areas of the three
regions were calculated and baseline areas were subtracted using the
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“approxfun” and “integrate” functions in R. Two ratios were used to
indicate chemical composition of POM and MAOM. Increases in aro-
matic C=C (1480-1550 cm ™) relative to C=0 (1550-1760 cm ™) may
reflect increased contributions of plant-derived aromatic lig-
nin/phenol/charcoal relative to microbially altered compounds
(Nocentini et al., 2010; Heckman et al., 2013; Hall et al., 2018). De-
creases in aliphatic C-H (2826-3000 cm™!) relative to C=O
(1550-1760 cm™!) may reflect increased microbial oxidization (Ryals
et al., 2014; Fissore et al., 2017) and/or decreased plant contribution
(Demyan et al., 2012; Laudicina et al., 2015). HCI fumigation tended to
greatly diminish one or all of the three regions (see representative DRIFT
spectra from ONAQ in Figs. S2 and S3); untreated fractions from two
sites with carbonates (ONAQ and WOOD) were thus used for DRIFT
analyses despite the fact that carbonate peaks sometimes overlapped
with the 1480-1550 cm ™! shoulder peak.

2.4. Lab incubation experiments

To measure SOC decomposition rate, additional soil subsamples (1 g
dry mass equivalent) were brought to field moisture capacity and
incubated under oxic conditions in the dark at 23 °C for 571 d. Soil was
kept in an open 50 mL centrifuge tube inside a glass jar (946 mL) sealed
with a gas-tight aluminum lid with butyl septa for headspace gas purging
and sampling. The jars were flushed with CO»-free air following periodic
headspace sampling as described below. Soil moisture was monitored by
recording the mass of each sample, and water was added (every month
before 179 d and every other month thereafter due to less frequent
sampling) to replenish vapor lost during headspace flushing. Headspace
gas was initially measured at 4 d and 11 d, every other week for another
140 d, and then every four weeks after 179 d. The CO, concentrations
and their 3'3C values were measured by a tunable diode laser absorption
spectrometer (TDLAS, TGA200A, Campbell Scientific, Logan, UT)
immediately prior to flushing the headspace (Hall et al., 2017). Two SOC
decomposition variables, remaining percentage of initial SOC mass and
cumulative decomposed SOC mass over 18 months were used in sub-
sequent statistical models.

2.5. Statistical analysis

All statistical analyses and plotting were performed in R statistical
software version 3.6.1 (R Core Team, 2019). The map data were
downloaded using the “get_stamenmap” function in the “ggmap” pack-
age (Kahle and Wickham, 2013). Paired-sample T-tests were used to
examine if means of proportion of total SOC, SOC concentration, C/N,
513C, C=C (aromatic)/C=0, C-H (aliphatic)/C=0, 8'°N, and SOC mass
were significantly different between POM and MAOM. Linear mixed
models (LMM) were used to identify important predictors for differences
in C quantity and composition between the two fractions. In these
models, we used values measured in POM minus the values measured in
MAOM for each response variable, as a quantitative measure of sim-
ilarity/difference between POM and MAOM for each attribute. Note that
the order of subtraction (POM minus MAOM, vs. MAOM minus POM) is
arbitrary for our purposes. Twelve predictors potentially important for
differences between POM and MAOM were selected: soil pH, silt + clay,
Alox, Feox, Fecd.ox, Fencl, Mneg, Cacd, MAT, MAP, categorical ecosystem
type, and depth. Based on preliminary analysis, six ecosystem types
defined from the National Land Cover Database and provided by NEON
were binned into three broad types: deciduous/evergreen forest (here-
after forest), grassland-herbaceous/shrub-scrub/dwarf scrub (grass-
land/shrubland), woody wetlands (wetland). Homoscedasticity and
normality assumptions were met by raw data based on graphical
assessment. All variables were standardized to a mean of zero and a
standard deviation of one to estimate importance of predictors with
different units. All predictor variables were used as fixed effects and site
was included as a random intercept to account for possible intra-site
dependence in the LMMs. Adding sampling location as an additional
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random effect to account for correlations between 0-15 and 15-30 cm
samples did not improve model performance. All predictors exhibited
variance inflation factor values < 3 and correlation coefficients <0.70
or > —0.70, implying that collinearity was acceptable. Some predictors
were removed from final models through comparison of Akaike Infor-
mation Criterion (AIC) values of nested models using stepwise backward
selection. The relative contributions of fixed effects were determined by
standardized regression coefficient estimates, and their significance was
tested by the Wald chi-square test. LMM performance was evaluated by
R? representing variance explained by the model and by only the fixed
effects, respectively. The LMM analyses were conducted with the “lme4”
package (Bates et al., 2015).

Random forest models (RFM) (Breiman 2001) were also imple-
mented to explore possible nonlinear relationships among predictors
and differences in C quantity and composition between the two frac-
tions. Variables were not standardized for an easier interpretation of the
RFM partial dependency plot, which shows the marginal effect of each
predictor on the predicted response variable. RFM was applied with
1000 trees, with other options sticking to default parameters in the
“randomForest” package (Liaw and Wiener, 2002). RFM performance
was evaluated by R? and variable importance was assessed using in-
crease of mean squared error (%IncMSE) when a given variable is
randomly permuted; a larger increase in MSE illustrates greater impor-
tance of the permuted variable. Variable importance as indicated by
Z-score was further examined in the “Boruta” package (Kursa and
Rudnicki, 2010).

Partial least squares regressions (PLSR) were used to compare
whether DRIFT spectra of POM and MAOM could similarly predict SOC
decomposition. The following steps were performed separately for POM
and MAOM spectra. After comparing varying spectral processing
methods and regions as well as sample partition algorithms (Table S3),
the 4000-1340 cm ™! spectral region, which receives less interference
from soil minerals (Parikh et al., 2014), was selected due to generally
higher predictive powers than other regions. The absorbance of each
wavelength was normalized by a maximum absorbance within
1550-1760 cm_l, a dominant feature of SOM. To enhance the separa-
tion of overlapping peaks, the first derivative of the normalized spectra
was calculated: the number of data points over which the derivative was
taken and the segment size over which the function was smoothed was
set to 11 and 10, respectively. The Kennard-Stone algorithm based on
Euclidean distance was applied to identify 110 of the 156 samples that
best accounted for variability in the spectra. The 110 samples were
included in a calibration set, leaving the remaining 46 samples in a
validation set. By regressing the response variable (C decomposition) on
the principal components of scores decomposed from predictors
(spectra), a PLSR model was developed on the calibration set and was
tested on the independent validation set. To avoid overfitting, the
appropriate number of principal components (maximum = 10) was
determined by minimizing root mean square error using full cross
validation in the calibration set. The correlation coefficient between
model-predicted and measured decomposition in the validation set was
used to assess how well DRIFT spectra could predict SOC decomposition.
The PLSR analyses were conducted with the “pls” package (Mevik et al.,
2016).

Principal component analyses (PCA) were also used to examine if
SOC decomposition was significantly associated with DRIFT spectra.
The PCAs were based on the baseline-corrected 4000-500 cm ™! spectra,
so as to examine whether spectral regions influenced by minerals and
SOM would both relate to SOC decomposition. No further preprocessing
of the spectra was applied. The PCAs were conducted with the “vegan”
package (Oksanen et al., 2019). The SOC decomposition variables were
fitted to the PCAs using the “envfit” function in the “vegan” package.
Insignificant variables (P > 0.05) assessed by backward selection using
Monte Carlo permutation tests were removed from the analysis.

LMMs were also used to compare prediction of SOC decomposition
by POM and MAOM variables, respectively. Five C quantity and
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composition predictors of either POM or MAOM were selected: SOC
mass, C/N, 8'%C, C-H (aliphatic)/C=0, and C—=C (aromatic)/C=O0.
Data processing, model fitting, and evaluation were similar as above.
Decomposed SOC mass was log 10 transformed to meet statistical
assumptions.

3. Results
3.1. Differences in C quantity and composition between POM and MAOM

Most response variables significantly differed (P < 0.05, paired t-
tests) between POM and MAOM fractions (Fig. S4), except for SOC mass
(0.3-247.2 mg g~ ! soil, mean = 16.3 mg g~ * soil). However, variables
often overlapped between the two fractions (Fig. S4) and were
frequently correlated and similar on a per-sample basis, i.e., close to 1:1
lines (Fig. 2). We used normal linear regressions here for a more
straightforward interpretation of relationships between POM and
MAOM metrics, because linear mixed models accounting for the random
effect of site showed similar results (data not shown). Partly consistent
with both Fig. 1d Decoupled and Coupled expectations, although the C/
N ratios in POM were generally higher and more variable (8-45, mean =
19) than those in MAOM (7-27, mean = 14), C/N ratios of POM and
MAOM were generally coupled (r = 0.85; Fig. 2a). Surface litter C/N
varied greatly across 18 sites (27-99) and forests generally had higher
litter C/N (mean = 61) than grassland/shrubland and wetland (mean =
45; Table S4). The C/N of MAOM was >15 in 9 out of 60 grassland/
shrubland samples and in 43 out of 80 forest samples; the 43 samples
came from six forest sites (Fig. S5a), five of which had MAP >1200 mm
(Table S1). Partly consistent with both Fig. 1e Decoupled and Coupled
expectations, although the C—=C (aromatic)/C—O ratio was greater on
average in POM (0.04-0.30, mean = 0.11) than in MAOM (0.04-0.12,
mean = 0.08), POM and MAOM often had similar ratios (i.e., many
samples from different ecosystem types clustered near the 1:1 line in
Fig. 2b). Consistent with Fig. le Coupled expectation, the C-H
(aliphatic)/C=0 ratios in POM (0-0.34, mean = 0.09) were correlated
with (r = 0.76) and were often similar to those in MAOM (0-0.44, mean
= 0.10; Fig. 2c). Partly consistent with both Fig. 1f Decoupled and
Coupled expectations, 3'3C values in MAOM (—29.0 to —14.6%o, mean
= —24.5%0) were generally higher than those in POM (-29.6 to
—15.0%0, mean = —25.8%o; r = 0.82; Fig. 2d), yet they were often close
to the 1:1 line. The 5'°N values in MAOM (—1.5-20.6%o, mean = 7.5%o)
were consistently higher than those in POM (—1.3-18.7%o0, mean =
4.5%0; r = 0.72; Fig. 2e). Notably, soils from three grassland/shrubland
sites (CPER, SRER, WOOD) had much higher 513C in MAOM than in
POM (mean difference = 5.1%o; Fig. S5b). POM constituted 2%-96%
(mean = 41%) of total SOC while MAOM constituted 4%-98% (mean =
59%) of total SOC (Fig. S4g). A majority (50 out of 60) of grassland/
shrubland soils stored more SOC in MAOM than in POM while nearly
half (32 out of 80) of forest soils stored more SOC in POM than in
MAOM, especially for the eight evergreen tropical forest soils from
PUUM (Fig. 21).

Besides ecosystem type, soil depth also affected how POM and
MAOM differed in C-H (aliphatic)/C=0, 613C, and SOC mass, but not in
C/N, C=C (aromatic)/C=0, and 5'°N (Fig. $6). The C-H (aliphatic)/
C=O0 ratios in MAOM were correlated (r = 0.64) with those in POM in
0-15 cm samples; the ratios were even more strongly correlated (r =
0.82) with and mostly higher than those in POM in 15-30 cm samples
(Fig. S6¢). The 513C values in POM were more correlated (r = 0.92) with
those in MAOM in 0-15 cm than 15-30 cm samples (r = 0.65; Fig. S6d).
Few (14 out of 76) soils had more C in POM than in MAOM in 15-30 cm
while nearly half (35 out of 80) of soils had more C in POM than in
MAOM in 0-15 cm samples (Fig. S6f).

3.2. Predictors for differences between POM and MAOM

Two statistical models, LMM and RFM, identified important soil
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geochemical, climate, and vegetation predictors for differences between
the two fractions. The LMM showed that silt + clay, Feox, MAP, and
depth significantly (P < 0.05) predicted POM proportion of total SOC
minus MAOM proportion of total SOC (Table 1). Silt + clay was nega-
tively while MAP was positively related to the difference. The RFM also
showed that these two predictors had IncMSE >20% and further
revealed nonlinear relationships between the difference and predictors
(Fig. 3). Silt + clay and ecosystem type were consistently related to POM
C/N minus MAOM C/N in both models (Table 1 and Fig. 3). Silt + clay
had a positive relationship with the difference. Forests had a larger
difference in C/N between POM and MAOM than grassland/shrubland
and wetland soils (Fig. 3). No variables significantly predicted POM 5'3C
minus MAOM 5'3C in the LMM (Table 1).

Both models identified important geochemical predictors for the
difference in C=C (aromatic)/C=0 between POM and MAOM (Table 1
and Fig. 3). Silt + clay and Ca.q were negatively related to the difference
in the LMM. In the RFM, the difference decreased with initial increases
in Al (0.2-1.0 mg g_1 soil), Fesx (0.1-0.8 mg g_1 soil), and Feyq
(0.1-0.5 mg g~ soil) but remained constant at higher concentrations of
these elements. Ca.q and depth predicted the difference in C-H
(aliphatic)/C=0 between POM and MAOM in both models, and Cacq
had a positive relationship with the difference.

The fixed-effect predictors explained 54% of the variation in POM
proportion of SOC minus MAOM proportion of SOC in the LMM
(Table 1). When incorporating the random effect of site, the LMMs
explained >70% of the variation in differences between POM and
MAOM in proportion of total SOC, 8'3C, and C=C (aromatic)/C=0.
Predictors also explained >65% of the variation in these differences in
the RFM, and approximately 50% of the variation in differences in C/N
and C-H (aliphatic)/C=0.

3.3. Relationships of SOC decomposition with POM and MAOM

The PLSR analyses showed that SOC decomposition could be well
predicted by DRIFT spectra of both POM and MAOM (Tables 2 and S3).
Selected POM spectra could effectively predict decomposed SOC mass (r
= 0.87) and remaining SOC percentage (r = 0.73) for the validation soils
(Table 2). Selected MAOM spectra could also effectively predict
decomposed SOC mass (r = 0.70) and remaining SOC percentage (r =
0.80) for the validation soils. We further confirmed that SOC decom-
position could often be well predicted by both POM and MAOM spectra
(r > 0.70 for decomposed SOC mass and >0.60 for remaining SOC
percentage), using varying spectral processing methods and regions as
well as sample partition algorithms (Table S3).

The PCA plots showed no clear separation of DRIFT spectra by
ecosystem type but they did show significant associations between POM
spectra and remaining SOC percentage (Fig. 4a) and between MAOM
spectra and decomposed SOC mass (Fig. 4c). The first two principal
components (PC1 and PC2) explained 74.7% and 58.8% of the variation
in overall POM and MAOM spectra, respectively. Scores of PC1 from
POM spectra were positively correlated with remaining SOC percentage
(r = 0.20; Fig. 4a) and scores from MAOM spectra were negatively
correlated with decomposed SOC mass (r = —0.27; Fig. 4c). For both
POM and MAOM spectra, loadings of PC1 were mostly positive within
4000-500 cm™! and larger within regions influenced by mineral
absorbance (e.g., 3800-3000 and 1200-500 cm’l) than from those
mainly caused by SOM absorbance (e.g., 3000-2800 and 1760-1300
em ™} Fig. 4b and d). Scores of PC2 had weaker relationships with SOC
decomposition (r = 0.12 for remaining SOC percentage in POM in Fig. 4a
and r = 0.04 for decomposed SOC mass in MAOM in Fig. 4c).

The LMM analyses showed that POM and MAOM variables were both
significantly related to SOC decomposition (Table 3). Optimum models
containing all potential POM predictors (except for 5'C) and all MAOM
predictors (except for C-H (aliphatic)/C—=0) could explain 67% and
41% of the variation in decomposed SOC mass, respectively. SOC mass
in POM was most important in the model using POM predictors (POM
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Table 1
Statistical models predicting differences between POM and MAOM.

Soil Biology and Biochemistry 172 (2022) 108756

Predictors Proportion of total SOC C/N 5'%¢C C=C (aromatic)/C—=0 C-H (aliphatic)/C=0
LMM RFM LMM RFM LMM RFM LMM RFM LMM RFM
R? Rfixeq = 0.54 R%= Réxea = 0.26 R®= Réyeq = 0.31 R*= Réxed = 0.45 R*= Rfxed = 0.27 R%=
RZ0gel = 0.83 0.68 RZoqel = 0.48 0.44 RZ0qel = 0.72 0.66 RZ0gel = 0.77 0.67 RZogel = 0.52 0.50
Importance Standardized IncMSE Standardized IncMSE Standardized IncMSE Standardized IncMSE Standardized IncMSE
coefficient % coefficient % coefficient % coefficient % coefficient %
pH -0.13 23.4 - 12.4 - 13.6 - 5.8 - 20.3
Silt + Clay —0.55* 22.0 0.36* 19.3 0.11 15.7 —0.22* 16.0 0.15 15.8
Cacq 0.14 23.5 - 25.7 - 12.6 —0.82* 6.5 0.32* 23.6
Alox - 20.0 - 15.7 - 17.2 —0.08 23.9 - 16.5
Feox 0.15*% 18.5 - 16.7 - 16.8 - 26.4 - 13.1
Fecd.ox - 16.7 —0.22 15.3 - 7.1 - 19.5 0.20 12.0
Feuq - 13.3 - 9.8 - 13.4 - 24.8 0.10 18.6
Mnegq - 9.5 - 8.9 - 11.4 - 6.6 - 21.3
MAT -0.22 19.5 - 14.9 —0.36 14.2 0.50* 15.3 - 19.5
MAP 0.42* 40.6 - 16.7 0.24 20.2 -0.19 15.0 - 16.5
Ecosystem - 6.4 21.4 - 13.6 - 9.9 - 8.5
type”
Depth * 19.9 - - - - * - * 4.7

* denotes P < 0.05 in the linear mixed model (LMM); — denotes retained in the LMM but P > 0.05.
- denotes predictors deemed unimportant and removed from the model by AIC using stepwise backward selection in the LMM or by the boruta approach in the RFM.
% IncMSE in the RFM shows the increase of the mean squared error when a given predictor is randomly permuted. The larger the value, the more important the

predictor.

@ Ecosystem type is a categorical variable, so a regression coefficient is not shown.

model); SOC mass in MAOM was most important in the model using
MAOM predictors (MAOM model). Optimum models containing all POM
predictors (except for 3'°C) and all five MAOM predictors could explain
22% and 25% of the variation in remaining SOC percentage,
respectively.

4. Discussion
4.1. Similarities and differences in composition between POM and MAOM

Despite the overall significant differences among measures of POM
and MAOM composition, C/N, 5'3C, and C-H (aliphatic)/C=0 of POM
and MAOM were strongly correlated and these metrics as well as C=C
(aromatic)/C—=0 of POM and MAOM fell close to the 1:1 line in many
samples (Fig. 2). These findings partially challenge expectations based
on the MEMS hypothesis (Fig. 1b Decoupled), where composition of
POM and MAOM are presumed to diverge during the transformation of
plant residues into microbial necromass (Fig. 1c, d, 1e, and 1f Decou-
pled). The overall strong similarities between variables measured in
POM and MAOM (Fig. 2, often corresponding to Fig. 1d, e, and 1f
Coupled) are consistent with substantial or even dominant contributions
of plant-derived OM to MAOM (Fig. 1b Coupled) for at least some soils in
our dataset. Given the large differences in C/N between surface litter
(27-99 across these NEON sites; Table S4) and microbes (typically 3-15;
Cleveland and Liptzin, 2007; Strickland and Rousk, 2010), our obser-
vations of relatively low and constrained C/N values in MAOM support
greater microbial contributions while higher and more variable C/N in
POM reflect major contributions from plant litter (Fig. 2a, consistent
with Fig. 1d Decoupled). However, these hypotheses do not explain the
coupled C/N values of POM and MAOM observed for many samples
(Fig. 2a, corresponding to Fig. 1d Coupled), which are instead consistent
with a similar organic matter source to both fractions and a significant
role of plant litter in MAOM (Fig. 1b Coupled). Furthermore, the C/N of
MAOM was often >15 (Fig. 2a), inconsistent with the proposed range of
MAOM C/N for soils with dominant microbial contributions to MAOM
(8-13; Lavallee et al., 2020).

Metrics of isotopic and DRIFT-derived chemical composition also
point to variable contributions of plant litter in MAOM (Fig. 1b
Coupled). Partly consistent with both Fig. 1e decoupled and coupled
hypotheses, while C—=C (aromatic)/C=0 ratio was larger in POM than

in MAOM for some soils, the ratio was also similar between POM and
MAOM for many soils (Fig. 2b), pointing to likely contributions of plant-
derived C to MAOM. In these cases, dissolved organic matter from plant
litter, e.g., carboxylated aromatics such as lignin polyphenols and
charcoal, may have been selectively adsorbed to minerals and copreci-
pitated with metals (Kalbitz and Kaiser, 2008; Kogel-Knabner et al.,
2008; Kramer et al., 2012; Hall et al., 2020) and provided the source of
aromatic C=C in MAOM. Similar C-H (aliphatic)/C=0 between POM
and MAOM (Fig. 2c, corresponding to Fig. le Coupled) also suggest
substantial contributions of plant-derived C to MAOM because higher
C-H (aliphatic) has been related to more plant-derived C (Demyan et al.,
2012; Laudicina et al., 2015). Frequent similarities in 513C values be-
tween POM and MAOM (Fig. 2d, often corresponding to Fig. 1f Coupled)
also likely reflect cases where MAOM had significant plant litter con-
tributions. Because microbial biomass tends to have higher §'3C values
than plant or soil C (Werth and Kuzyakov, 2010; Klink et al., 2022), we
would expect higher §'3C in MAOM than in POM if microbial-derived C
is a major source of MAOM. Overall, the coupled and often overlapping
elemental, isotopic, and chemical composition between POM and
MAOM in soils from diverse environments indicate that microbial and
plant residues contribute to both of these factions to varying extents
(Cérdova et al., 2018; Huang et al., 2019; Angst et al., 2021), high-
lighting that both plant- and microbial-derived C should be considered
for MAOM.

Plant-derived C may especially contribute to MAOM in wet forests
with MAP >1200 mm. Consistent with European studies (Cotrufo et al.,
2019; Giannetta et al., 2019), the C/N of MAOM was generally <15 in
grassland/shrubland sites but was >15 in five wet forest sites with MAP
>1200 mm (Figs. 2a and S5a), suggesting a larger contribution of
plant-derived C to MAOM in wet forests. The observations of MAOM
C/N < 15 in grasslands can be attributed to fast microbial turnover of
high quality litter under favorable pH conditions and thus a major
proportion of microbial-derived C to MAOM (Angst et al., 2021). In
contrast, frequently high lignin and charcoal concentrations in forested
NEON sites (Hall et al., 2020), along with wet conditions favoring
downward movement of soluble aromatic compounds, could result in
larger contributions of plant-derived products to MAOM and greater
C/N of MAOM in wet forests.

Soils from three grassland/shrubland sites (CPER, SRER, and WOOD)
had much higher §'3C values in MAOM than in POM, especially for
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Fig. 3. Partial dependence plots of the random forest model (RFM) showing selected marginal effects of predictors on the predicted differences between POM and

MAOQM, i.e., POM variable - MAOM variable.

Table 2
Model performance based on partial least squares regression (PLSR) to predict
SOC decomposition using POM and MAOM DRIFT spectra (4000-1340 em™ ).

C decomposition Dataset POM MAOM
r RMSEP T RMSEP
Decomposed SOC (mg C g~* calibration  0.56 4.6 0.54 6.8
soil) validation 0.87 5.5 0.70 4.7
Remaining SOC (% of initial C  calibration  0.65  13.9 0.46 18.6
mass) validation 0.73 145 0.80 10.1

1, correlation coefficient; RMSEP, root mean square error of prediction.

15-30 cm (Fig. S5b). These differences (mean = 5.1%o) are much larger
than typical differences between plant and microbial sources (usually
<2.5%0; Werth and Kuzyakov, 2010). Ruling out the possibility of car-
bonate interference in MAOM in these sites, these differences could
reflect variable contributions of C3 (mean 51%C = —27%o) and C4 (mean
813C = —13%0; Werth and Kuzyakov, 2010) plants to POM vs. MAOM as
a consequence of variation in plant composition and OM inputs, such as

niche partitioning observed among Cs3 and C4 species at fine spatial and
temporal scales (e.g., Martin et al., 2014).

4.2. Predictors for differences in C quantity and composition between
POM and MAOM

We found that differences in POM and MAOM characteristics across
the diverse NEON soils could be predicted in part by climate, ecosystem,
and soil physicochemical properties (Table 1 and Fig. 3). The strong
negative effect of silt + clay concentration on POM proportion of SOC
minus MAOM proportion of SOC indicates that relatively more C can be
stored by MAOM in soils with more fine particles, consistent with the
finding of Haddix et al. (2020). MAP increased C stored in POM but not
in MAOM and was positively related to the difference in proportion of
SOC between POM and MAOM. This finding is consistent with the report
that increased precipitation significantly stimulated POM C in North
China (Song et al., 2012) but inconsistent with findings that MAOM
accumulation was related to increasing MAP in North America (Follett
et al., 2015; Haddix et al., 2020). Increasing MAP might favor POM
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Fig. 4. Variations in overall DRIFT spectra of a) POM and ¢) MAOM samples from 20 NEON sites and their relationships with SOC decomposition as illustrated by
score plots of principle component analysis (PCA). Vectors on score plots a) and c¢) indicate the direction of the increasing gradient for each variable, with the length
of an arrow proportional to the correlation between ordination axes and an explanatory variable. Insignificant correlations (P > 0.05) were removed from the plots.
The loading plots b) and d) show how strongly each wavelength influences PC1 (black) and PC2 (red) in POM and MAOM, respectively. The larger the absolute
loading value, the stronger the influence. Triangle, circle, and star represent forest, grassland/shrubland, and wetland, respectively. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the Web version of this article.)

accumulation through increases in plant C input to POM, even if
decomposition also increased (Song et al., 2012). Soil pH had a negative
effect on POM proportion of SOC minus MAOM proportion of SOC and
this effect was more pronounced below pH 5 in the RFM, suggesting that
inhibited microbial decomposition caused by low pH favors POM
accrual (Lugato et al., 2021). Although ecosystem type was less impor-
tant for predicting POM proportion of SOC minus MAOM proportion of
SOC, most grassland/shrubland soils stored more SOC in MAOM than in
POM while nearly half of forest soils stored more SOC in POM than in
MAOM (Fig. 2f). Similarly, SOM in European ectomycorrhizal forests
was dominated by POM while grasslands and arbuscular mycorrhizal
forests were dominated by MAOM (Cotrufo et al., 2019). Overall, our
results indicate that POM accrual is favored in acidic and wet conditions
while MAOM accrual is favored by fine particles, partly consistent with
Christensen et al. (2001).

Soil geochemical composition was also related to differences in C

10

composition between POM and MAOM (Table 1 and Fig. 3). Consistent
with a study using soils in European forests and grasslands (Cotrufo
et al., 2019), forests generally had higher POM C/N relative to grass-
land/shrubland and wetland, owing to higher litter C/N in forests than
grassland/shrubland and wetland (Table S4). The positive relationship
between POM C/N minus MAOM C/N and silt + clay are consistent with
the finding of a lower MAOM C/N with increasing silt 4+ clay across
Europe (Cotrufo et al., 2019), reflecting that more fine particles favor
the accumulation of microbial products in MAOM. The difference in
C—C (aromatic)/C=0 decreased sharply with initial increases of reac-
tive minerals or metals (Alyy, Feox, Feycy) but remained constant at
higher levels (Fig. 3). These patterns may indicate that soluble constit-
uents of plant litter are easily adsorbed but sorption sites are quickly
saturated (Baldock and Skjemstad, 2000). We also observed a positive
relationship between the difference in C-H (aliphatic)/C=0 and Caq,
mainly attributed to lower MAOM C-H (aliphatic)/C=O as Cacq
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Table 3
Optimal predictors of SOC decomposition based on linear mixed model (LMM)
using POM and MAOM variables of C quantity and composition.

Predictor of Decomposed SOC (mg C g~ " Remaining SOC (% of initial C

POM or MAOM soil) mass)
POM MAOM POM MAOM
RZxed = 0.67  Riyxed =041  Rigea =022  Rieq=0.25
Riodel = Rodel = Rodel = Riodel =
0.80 0.76 0.62 0.59
SOC mass (mg C 0.66* 0.54* —0.09 —0.24*
g1 soil)
C/N -0.07 -0.14 —0.29* —0.29*
3'3C - -0.18 - 0.21
C-H (aliphatic)/  0.36% - -0.15 0.10
=0
C=C —0.08 0.15% 0.20* —0.16
(aromatic)/
Cc=0

* denotes P < 0.05; numbers are regression coefficients of standardized vari-
ables.

- denotes predictors removed from the model after deemed unimportant by AIC
using stepwise backward selection.

increased. Exchangeable Ca appears to play an important role in SOC
protection by bridging negatively charged sites in SOM and clay min-
erals (Rowley et al., 2018; Yu et al., 2021). Thus, increasing Ca.q would
increase C content in MAOM, which usually becomes more oxidized and
more likely to interact with minerals as organic matter decomposes. Soil
depth also impacted the difference in C-H (aliphatic)/C=O0. Despite the
finding that the ratio was generally similar between POM and MAOM,
MAOM seemed to be less oxidized than POM as indicated by higher C-H
(aliphatic)/C=0 ratios in MAOM in 15-30 cm of many soils (Fig. S6).
Our findings reveal that soil geochemical composition can partly explain
differences in elemental and chemical composition between POM and
MAOM.

4.3. MAOM was as good a predictor as POM for SOC decomposition

Multiple statistical analyses suggested that C quantity and compo-
sition of MAOM was similarly effective in predicting SOC decomposition
as those of POM (Fig. 4; Tables 2 and 3). The PCA showed that SOC
decomposition was more closely related to DRIFT spectra influenced by
mineral composition than by those corresponding to SOM composition,
as indicated by larger loadings of PC1 within the former vs. the latter
spectral regions (Fig. 4b and d). However, the PLSR analyses showed
that the DRIFT regions receiving less mineral absorbance well predicted
SOC decomposition (Table 2). Thus, for both POM and MAOM, mineral-
and OM-influenced regions could both effectively predict SOC decom-
position. In addition to overall DRIFT spectra, the LMM analyses also
showed that POM and MAOM shared similar individual predictors for
total SOC decomposition: SOC mass for decomposed SOC and C/N and
C=C (aromatic)/C=O0 for remaining SOC (Table 3). Altogether, the
findings suggest that attributes of POM and MAOM both effectively
predicted SOC decomposition and these fractions also had similar pre-
dictors, probably because attributes of POM and MAOM were bio-
geochemically coupled (Fig. 2) and/or a large pool size of MAOM could
compensate for its lower decomposition rate relative to POM (Chris-
tensen, 1987; Hall et al., 2015). Overall, our findings are consistent with
the coupled evidence that both POM and MAOM were closely related to
short-term SOC decomposition (Fig. 1a Coupled; Elliott, 1986; Chris-
tensen, 1987; Alvarez and Alvarez, 2000; Arevalo et al., 2012; Hall et al.,
2015).

4.4. Constraining effects of source mixing on MAOM interpretation

SOM fractionation methods based on size vs. density have different
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caveats for interpretation. The <53 pm fraction defined as MAOM in size
fractionation protocols (Cambardella and Elliott, 1992; Cotrufo et al.,
2019) also contains dissolved organic matter (DOM), fine particulate
organic matter (POM <53 pm), and pyrogenic C, but previous literature
along with a sensitivity analysis demonstrate that these contributions
would not greatly affect our interpretations. First, contributions of DOM
to our operational MAOM fraction are likely to be negligible. DOM
usually makes up < 2% of total SOM and at least some DOM is actually
derived from MAOM (von Liitzow et al., 2007). Second, sensitivity an-
alyses based on our data (Supplemental Discussion) indicate that mixing
of a small proportion of fine POM with MAOM would not lead to
different interpretations of our results. Third, much of the pyrogenic C in
size-based MAOM fractions may actually be bound to minerals. Pyro-
genic C occurs not only as particulate matter, but also interacts with
minerals in clay-size (<2 pm) fractions (Brodowski et al., 2005; Cusack
etal., 2012). In some long-term agricultural research stations in the U.S.,
dense fractions contained much more pyrogenic C than light fraction
(Lavallee et al., 2019). Thus, we argue that any contributions of DOM,
fine POM, and/or particulate pyrogenic C to our sized-based MAOM
fractions would not substantially alter our conclusions.

5. Conclusions

To conclude, this continental-scale study suggests that elemental,
isotopic, and chemical composition of POM and MAOM were coupled
and often overlapped across diverse soils. These data indicate that plant
constituents were likely an important source of MAOM in many eco-
systems, particularly in wet forests, suggesting that the MEMS hypoth-
esis may not apply universally and should be considered along with
other mechanisms of MAOM accrual. POM and MAOM had similar
predictive performances for SOC decomposition, emphasizing that the
importance of MAOM as a source of short-term SOC mineralization
should not be overlooked. Soil geochemical composition could explain
some of the observed differences between POM and MAOM, providing a
path to predict differences in SOM fractions among diverse soils.
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