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A B S T R A C T

Manually annotating complex scene point cloud datasets is both costly and error-prone. To reduce the reliance
on labeled data, a new model called SnapshotNet is proposed as a self-supervised feature learning approach,
which directly works on the unlabeled point cloud data of a complex 3D scene. The SnapshotNet pipeline
includes three stages. In the snapshot capturing stage, snapshots, which are defined as local collections of
points, are sampled from the point cloud scene. A snapshot could be a view of a local 3D scan directly captured
from the real scene, or a virtual view of such from a large 3D point cloud dataset. Snapshots could also
be sampled at different sampling rates or fields of view (FOVs), thus multi-FOV snapshots, to capture scale
information from the scene. In the feature learning stage, a new pre-text task called multi-FOV contrasting
is proposed to recognize whether two snapshots are from the same object or not, within the same FOV or
across different FOVs. Snapshots go through two self-supervised learning steps: the contrastive learning step
with both part contrasting and scale contrasting, followed by a snapshot clustering step to extract higher level
semantic features. Then a weakly-supervised segmentation stage is implemented by first training a standard
SVM classifier on the learned features with a small fraction of labeled snapshots. Then trained SVM is further
used to predict labels for input snapshots and predicted labels are converted into point-wise label assignments
for semantic segmentation of the entire scene using a voting procedure. The experiments are conducted on
the Semantic3D dataset and the results have shown that the proposed method is capable of learning effective
features from snapshots of complex scene data without any labels. Moreover, the proposed weakly-supervised
method has shown advantages when comparing to the state of the art method on weakly-supervised point
cloud semantic segmentation.
. Introduction

Studies on 3D point cloud data have been gaining momentum in the
ield of computer vision. Deep neural networks such as PointNet (Qi
t al., 2017a), DGCNN (Wang et al., 2019) have been proposed for
etter performances on point cloud related tasks, with the help of
arger datasets such as the ModelNet (Wu et al., 2015) and Seman-
ic3D (Hackel et al., 2017). The collective effort between deep neural
etworks and dedicated datasets continues to push the state of the art
erformance on the point cloud object classification.

On the other hand, point cloud semantic segmentation is of great
nterests in the applications of autonomous driving, robotics and remote
ensing (Xie et al., 2020b). So far most of the deep learning driven point
loud semantic segmentation methods follow the supervised workflow,
hich requires densely labeled datasets, such as the 1.6 million points
akland Dataset (Munoz et al., 2009), the 215 million points Stanford
arge-scale 3D Indoor Spaces Dataset (S3DIS) dataset (Armeni et al.,

∗ Corresponding author.
E-mail address: xli020@citymail.cuny.edu (X. Li).

2016) and the 4 billion points Semantic3D (Hackel et al., 2017).
However, annotating large scale datasets is at a very high cost both
in time and human labors. This issue is becoming more prominent
in applications such as hazard assessment where drive-by and fly-by
LiDAR mapping systems have been used to collect massive windstorm
damage datasets in recent hurricane events (Bhargava et al., 2019;
Gong et al., 2012; Gong, 2013; Hu and Gong, 2018). The fact that
LiDAR is starting to be integrated into smaller mobile devices (Apple
Inc., 2020), which could lead to a boom in the scale of real life complex
point cloud data.

To alleviate the dependence on the labels of large datasets, unsu-
pervised learning methods have drawn increasing attention. Among
the unsupervised methods, one form known as ‘‘self-supervised learn-
ing" has been popular in the studies of image data understanding.
This self-supervised approach has found success in designing ‘‘pre-
text" tasks, such as jigsaw puzzle reassembly (Noroozi and Favaro,
2016), image clustering (Caron et al., 2018) and image rotation pre-
diction (Jing et al., 2018) etc, by training deep learning models for
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Fig. 1. Visualization of some snapshots sampled from the Semantic3D dataset. The sampling procedure makes no use of labels, therefore a snapshot may contains points from
other classes. The class labels are added manually for visualization.
feature extraction without labels being involved. Based on the idea of
solving pretext tasks, we previously developed the model of Contrast-
ClusterNet (Zhang and Zhu, 2019), which works on unlabeled point
cloud datasets by part contrasting and object clustering. While this
work has shown comparable performance to its supervised counterparts
on synthetic point cloud objects classification, it inherits the problem
of other pretext-driven models used on image data: pretext tasks must
be defined regarding the prior knowledge embedded in the data. In the
context of point cloud understanding, the part contrasting and object
clustering tasks assume the input data are well separated as individual
objects. This assumption limits the model’s power on real life scene
data or where 3D data of single objects cannot be easily obtained.
We addressed this limitation posed on scene point cloud by proposing
a snapshot-based method (Li. and Zhu., 2021), which captures local
clusters of points called snapshots from the scene as input samples to
fulfill the tasks of part contrasting and object clustering. Formally, a
snapshot is defined as a collection of points, sampled from a point cloud
scene, without knowing their labels or even assuming they are from the
same objects. (Fig. 1). It could be a real view of a local 3D scan directly
captured from the real scene, or a ‘‘virtual’’ view of such a local 3D scan
from a large 3D point cloud dataset. The effectiveness of this method
is evaluated and approved by conducting classification on the captured
snapshots with a single FOV in (Li. and Zhu., 2021). In this paper, we
extend the idea to capture multi-FOV snapshots to further improve the
performance of classification.

Besides from the limitation of making assumptions on the training
data, another weakness of the Contrast-ClusterNet is that dense labels
are still needed for the downstream tasks. The full supervision involved
in the object classification contradicts the main goal of self-supervision,
that to save labeling efforts on training data. To extend the idea of
reducing labeled data usage to the downstream tasks, we seek solutions
from weak supervision.

Therefore, based on the two pieces of our previous work, we further
propose the SnapshotNet, which integrates multi-FOV snapshot gener-
ation, contrastive feature learning, and a weakly-supervised technique
for point-wise scene segmentation using a voting mechanism. First of
all, inspired by the observation that, humans are able to distinguish
objects at different scales, we present a new pre-text task for contrastive
learning, namely multi-FOV contrasting. When capturing a sample, we
take multiple snapshots in different field-of-views (FOVs). Assuming
these multi-FOV snapshots are small enough so they still represent the
same object, the task of scale contrasting is to consider whether two
snapshots, within one FOV or across multiple FOVs, are of the same
object or not. Thus the multi-FOV contrasting includes two parts: part
contrasting and scale contrasting. We will compare the performance
of the scale contrasting against the part contrasting, as well as the
combination of the two — the multi-FOV contrasting.

For the complete model pipeline, the captured snapshots first go
through a two-step self-supervised pipeline using ContrastNet and Clus-

terNet consecutively for feature learning. Then a weakly-supervised
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approach is implemented by training an SVM classifier on the learned
features of a small portion of labeled snapshot samples (mostly cluster
centers) combined with the samples automatically labeled from the
clusters of the samples generated in the pipeline. Finally, the entire
3D point cloud scene is repeatedly scanned as random snapshots to go
through the feature extractor and classifier. The predicted snapshot-
wise label is assigned to each point of a snapshot, followed by a
voting-based mechanism for the final label for each point.

This work makes the following contributions:
(1) We propose a new contrastive learning method called multi-

FOV contrasting, by leveraging point cloud samples at different scales.
This task devotes on predicting if two snapshots are of the same object,
regardless of their sampling FOVs.

(2) We develop a three-stage approach for semantic segmenta-
tion: snapshot generation, self-supervised feature learning, and point-
wise segmentation by integrating multiple weakly-supervised classified
results.

(3) We study the ‘‘purity’’ of snapshots, and show that the self-
supervised learning with impure snapshots can still effectively obtain
highly useful semantic features for object classification and scene seg-
mentation. This includes cases when some of the classes do not have
well-sampled snapshots.

(4) By using the learned features and clustering to obtain larger
pseudo labels with a small number of labels (thus weakly-supervised)
to train a simple classifier, we design a simple voting procedure to
integrating labels of randomly sample snapshots, which leads to point-
wise point cloud scene segmentation performance comparable to the
state of the art weakly-supervised methods.

The rest of the paper is organized as the following. Section 2 dis-
cusses related work on self-supervised learning methods on point cloud,
and point cloud semantic segmentation. Section 3 describes the theory
and design of the SnapshotNet for self-supervised feature learning and
point cloud semantic segmentation with fewer labeled data. Section 4
details the experimental results, including the designs and evaluations
of data capturing, feature learning, and segmentation. Finally Section 5
concludes the work with discussions of a few ideas for future work.

2. Background and related work

2.1. Self-supervised learning:

Self-supervised learning aims to predict for output labels that are
generated from the intrinsic information of the data. This topic has been
widely studied on the image data where various of pre-text tasks have
been proposed, such as context prediction (Doersch et al., 2015), jigsaw
puzzle reassembly (Noroozi and Favaro, 2016), image clustering (Caron
et al., 2018), and image rotation prediction (Jing et al., 2018) etc, and
these methods have demonstrated considerable results on ordered data

such as 2D images or videos.
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With the advancement in LiDAR technology, the cost for obtaining
arge scale point cloud data has enormously decreased. The booming
n 3D point cloud data has turned the challenge from data collection
o manual annotation, which is much more difficult and laborious
ompared to 2D data. To alleviate the use of labeled data, a number
f self-supervised models have been proposed lately (Achlioptas et al.,
018; Yang et al., 2018; Zhang and Zhu, 2019; Sauder and Sievers,
019; Xie et al., 2020a; Chen et al., 2020). In previous work of our
ab, Zhang and Zhu proposed the Contrast-ClusterNet (Zhang and Zhu,
019) with pre-text tasks of first predicting whether two segments are
rom the same object, leading to the ContrastNet for obtaining self-
earned features, which are then used for separating the objects into
ifferent clusters using KMeans++, for training another network called
lusterNet to obtain better self-learned features. The work (Zhang and
hu, 2019) has shown the capability of learning features in a self-
upervised manner, and then using the features, an SVM classifier can
e trained using labeled data for point cloud objects classification.
owever, this process still requires to know a set of 3D points belong

o a single object (even though the label is not needed). In training
he SVMs, the same amount of labeled data as in supervised models
s used, therefore decreasing the benefits of leaving out annotations in
elf-supervised learning.

.2. Semantic segmentation of point cloud:

With the recent works shifting focus to adapting deep learning
n LiDAR point cloud data, a series of deep learning based point
loud semantic segmentation methods have been proposed. As sum-
arized by Guo et al. (Guo et al., 2020), there are several main-

tream semantic segmentation methods on point cloud data, such as
he discretization-based, projection-based, and point-based methods.

The discretization-based approach is greatly inspired by the success
f deep learning on 2D grid data, where the 2D data is in a regular
epresentation, in contrast to the unordered 3D point cloud. A number
f works have been proposed using the voxel-based models (Rethage
t al., 2018; Hackel et al., 2017; Huang and You, 2016; Tchapmi et al.,
017), which voxelize the point cloud data to 3D grids to enable direct
D convolutional feature extraction. Despite that this method has made
ignificant progress on point cloud segmentation, it is very sensitive to
he voxel resolution and often has strict requirements on memory and
omputational power.

The projection-based method, on the other hand, has shown advan-
ages on computation efficiency. As a representation of this approach,
D multi-views models are designed to project a 3D point cloud to
D views from multiple directions, so that traditional convolutional
etworks can be applied for semantic segmentation tasks (Lawin et al.,
017; Boulch et al., 2017; Alonso et al., 2020). However, the downside
f this approach is that geometrical information is often lost during the
imension reduction.

PointNet (Qi et al., 2017a) is the first deep net proposed to di-
ectly work with point cloud data without the pre-processing step
f transforming the raw point cloud into voxels or 2D multi-views
epresentations. To help catching local geometrical context, the Point-
et++(Qi et al., 2017b) is developed by proposing a hierarchical
etwork based on the PointNet. The idea of exploiting local structures
f the 3D data is further explored by developing dynamic graph CNN
DGCNN) (Wang et al., 2019), which uses graphs the geometrical
elations of the point cloud and operate convolutions on such graphs.

The above segmentation methods mostly rely on densely labeled
ata, and such datasets are proven to be costly on time and hu-
an labors. There are few works focusing on weakly-supervised scene
oint cloud semantic segmentation: the segmentation-aided classifica-
ion (Guinard and Landrieu, 2017) is a non-parametric method, using
onditional random field (CRF) to process the output of a pointwise
lassifier. The pseudo-labeling approach (Xu et al., 2019) trains a

ointNet (Qi et al., 2017a) with a handful of labeled points and
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gradually assigns pseudo-labels that are generated from the trained
PointNet model to all unlabeled points, and model is also iteratively
updated with more reliable pseudo-labels. Xu and Lee (Xu and Lee,
2020) proposed an incomplete supervision model with three additional
training losses to constrain the model. Among them, two pieces of
work (Guinard and Landrieu, 2017; Xu et al., 2019) that also worked
on the outdoor datasets as ours are the baselines that our proposed
SnapshotNet will be compared with.

3. Theory and design

Self-supervised learning often requires prior knowledge about the
input data to ensure the intrinsic information of the data, from which
the labels are derived, is consistent across all samples. This is also
the case of the Contrast-ClusterNet (Zhang and Zhu, 2019), which
will be used as the base model of our proposed work. As will be
summarized below, it has two major modules called ContrastNet and
ClusterNet. Each module is centered on a deep learning neural net-
work DGCNN (Wang et al., 2019) capable of extracting features from
the point cloud inputs. First the ContrastNet takes inputs of paired
point cloud segments, which are obtained by randomly cutting the
point cloud object into two halves. The job of the ContrastNet is to
consider whether two segments of a pair are from the same object
or not, essentially doing the task of binary classification. The trained
ContrastNet is capable of extracting features at high-level due to the
nature of the pretext task of part-contrasting. The second module, the
ClusterNet, is to obtain more representative and fine-grained features.
Before starting training the ClusterNet, features of the raw point cloud
objects are extracted by the trained ContrastNet, and these features
are subsequently clustered into a much larger number of groups (than
the number of object categories) using Kmeans++; in (Zhang and
Zhu, 2019), experimental studies were also performed for the optimal
numbers of clusters. Each object is then assigned with their cluster ID
as a pseudo-label for the training of the ClusterNet.

Although there are no labels being involved in this two-step fea-
ture learning process, the nature of self-supervised learning requires
some prior assumptions regarding the pretext tasks that drive the
self-supervision. In this example, such assumption is that each train-
ing sample must be an individual point cloud object to enable part
contrasting. This assumption can be easily made on datasets such as
ModelNet (Wu et al., 2015) and ShapeNet (Chang et al., 2015), where
each sample is a synthetic CAD model of a single 3D object. However,
this soon becomes a limitation on real-life point cloud datasets, such
as the Okaland (Munoz et al., 2009) and Semantic3D (Hackel et al.,
2017) data, where an entire point cloud is a complex scene rather than
individual single objects.

To address this issue, we thus propose the SnapshotNet for the
self-supervised feature learning and weakly-supervised semantic seg-
mentation on complex scene point cloud. As illustrated in Fig. 2, our
method consists of three modules: (a) snapshot capturing, (b) feature
learning, and (c) segmentation. The snapshot capturing procedure, as
an analogy to taking snapshots with a 3D camera, captures small
areas of the entire point cloud to train the model. Then the feature
learning module uses the Contrast-ClusterNet (Zhang and Zhu, 2019)
as the backbone for self-supervised feature learning. Finally, in the
segmentation module, a classifier is trained on few labeled data and the
pseudo-labeled data for snapshot classification. A voting mechanism is
followed to convert snapshot-wise predictions to point-wise predictions,
achieving the goal of semantic segmentation. Each part of the pipeline
will be described in details in the following subsections.

3.1. Snapshot capturing

Given a real-life point cloud dataset, the snapshot capturing stage
applies random sampling with k-Nearest Neighbors (kNN) to obtain

small collections of points as snapshots (Fig. 1). During each sampling,
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Fig. 2. The SnapshotNet pipeline: (a) Snapshot capturing from the raw point cloud scenes; (b) Feature learning by conducting contrasting tasks, snapshot clustering and cluster
classification; (c) Semantic segmentation by classifying and voting on snapshots.
t
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Fig. 3. Single-FOV snapshots sampling: an illustration.

an anchor point is randomly selected from the point cloud at first, and
kNN gives a collection of k points nearest to the anchor point, where k
defines the snapshot sampling area. This kNN strategy is a simulation of
a virtual snapshot of a local 3D view, followed by point selection based
on their 3D proximity to better ensure the sameness of an object. Each
collection is therefore called a ‘snapshot’ of the local neighborhood in
the bigger point cloud pool. Here, thus sampled snapshots share the
same sampling rate with the local areas where the anchors are picked
up from the scene, meaning that the area covered by each snapshot
is determined by the local scene sampling rate. In other words, the
snapshots have one single field of view (FOV), so they are also notated
as the single-FOV snapshots (Fig. 3).

Purity of snapshots: Since the selection of an anchor point happens
randomly in the point cloud, it is possible to have the anchor sitting
close to the border between different semantic classes. This introduces
a certain degree of noises to the snapshot by including some points
from other minority classes. Compared to the object based contrasting
pretext task, which in this paper is notated as ObjectNet for easy
comparison with the SnapshotNet, our method further relaxes the
constraint that 3D points of a sample must come from the same object.
 i

4

The SnapshotNet fundamentally sees each snapshot as a collection of
points that represents a small region of the bigger complex scene, where
such a collection of points has a high probability of belonging to the
same class. In our experiment section, we will show how the noises
in snapshots will affect the performance of feature learning for later
evaluation.

To quantify the noise level of sampled snapshots, we present a
metric to evaluate our snapshot sampling quality, namely purity. When
sampling from the Semantic3D (Hackel et al., 2017), we utilize the
provided labels of the dataset to approximate the semantic label of each
snapshot for the sake of snapshot classification evaluation. A label is
assigned to a snapshot by voting from all points that are associated
with that sample. The class label that most points agree on is chosen
as the semantic label for the snapshot, the voting procedure can be
parameterized as:

𝐶𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖

𝐾
∑

𝑗=1
𝐼(𝑦𝑗 = 𝑖), (1)

where 𝑥 is the snapshot sample, 𝑦𝑗 is the point-wise label for 𝑥 (𝑗=1,
. . . , 𝐾), 𝐾 represents the number of points in the snapshot 𝑥, and 𝐼
is an indicator function for the class of each point. Thus the purity is
given by

𝑃 (𝑥) =

∑𝑘
𝑗=1 𝐼(𝑦𝑗 = 𝐶𝑥)

𝑘
(2)

The statistics of the voted semantic labels and the purity for each
sample will be further discussed in Section 4.1 using real examples.

Multi-FOV snapshots: Inspired by zooming with a camera while
aking a photo, it soon came to us that a different field of view(FOV) of
snapshot image leads to different information content. Given the same

ensor size, a larger FOV might contain more objects at low details,
hile a smaller FOV focuses on smaller views with greater details. We
dopt this observation into our design of the point cloud snapshots, to
nclude multiple FOVs for each snapshot.
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Fig. 4. Multi-FOV snapshots sampling. Three snapshots of different FOVs are pre-
ampled from the scene and each one has a different size. Then the samples are
ownsampled to meet the same input size of the network, leading to different
esolutions.

Just as the sensor size poses limitation on imaging when zooming
n or out, the neural network has similar constrains when dealing with
amples with different FOVs. The number of points in each snapshot is
ept as the same, and this leaves only the sampling rate to be altered.
herefore, we keep the original sampling rate of the point cloud as the
ase, and accordingly decrease the sampling rate by grouping points at
sparser scale. Specifically, this is achieved by pre-sampling a larger

umber of points at the base sampling rate and then randomly drop
ome points to meet the input size (i.e., the number of 3D points).
ig. 4 illustrates an example of sampling snapshots in three FOVs. When
ampling a snapshot at the base sampling rate, the down-sampling
an be well ignored. However, when capturing a sample with an FOV
wo times larger than the base FOV, a pre-sampled snapshot of double
mount of the points are first captured using kNN. This pre-sampled
napshot is then downsampled by a factor of two to agree on the
etwork input size while at half the base sampling rate.

There are several intuitions behind this multi-FOV design. As de-
cribed earlier, the part-contrasting exploits information at the object
evel by performing binary classifications on samples that share uni-
orm sampling rate. On the other hand, the human vision is able
o recognize objects at very different scales, which encourages us to
urther make use of the scale information. The multi-FOV snapshots
re able to fill in the gap of the missing scale information, giving
s an edge on contrastive learning by contrasting on various scales
n addition to the part-contrasting. Secondly, the multi-FOV snapshots
erves as an approach of data augmentation, to diversify the input data
nd indirectly making the contrasting learning more challenging to the
etwork. Furthermore, single sampling rate is inadequate when facing
scene point cloud with objects of various scales and with different

ampling resolutions. This is particularly a problem for the terrestrial
cans, where the density of points rapidly changes along the distance to
he scanning device. When the network is trained to take the sampling
ate into account, there is the opportunity to explicitly choose an FOV
hat is more suitable for sampling a specific object from the scene. For
nstance, we would want to sample a snapshot of a small object using
small FOV to maximize the purity, and on the other hand to keep a

arge FOV on larger objects. This will be discussed in more details in
ection 3.3.

.2. Self-supervised learning with snapshots

After being captured from the scene, each ‘snapshot’ is viewed as
single point-cloud object and fed into the two-stage ContrastNet-

lusterNet for feature learning. Both networks are based on the DGCNN
(Wang et al., 2019), therefore they are similar to each other in struc-
tures.

Contrastive feature learning: The contrastive learning includes
three approaches: part-contrasting, scale-contrasting, and multi-FOV
contrasting. When conducting the part-contrasting during the training

of a ContrastNet, we follow the random cutting procedure as described

5

in (Zhang and Zhu, 2019): two segments from the same snapshot make
up a positive pair, which is labeled as 1, and on the contrary, and a
negative pair consists of two segments from two different snapshots
is labeled as 0 (Fig. 5(a)). The ContrastNet then learns to recognize
whether the input pair is positive or negative, and the parameters are
optimized by the Adam optimizer on the cross-entropy loss.

The part-contrasting considers the similarity between different parts
of an object in its single-FOV snapshot, thus learning fine-grained
features. The scale-contrasting, on the other hand, attempt to learn
higher-level features for representing similarity between snapshots of
an object across different scales (i.e., with different FOVs). For instance,
the details of an object might get lost in a very small FOV, yet the
model is still required to correctly connect this sample to its large
FOV counterparts without these details. To implement this method, we
similarly make up pairs from the multi-FOV snapshots: two snapshots in
whichever FOVs sampled from the same anchor point form a positive
pair, given a label as 1. Two snapshots from two different sampling
anchors form a negative pair with a label of 0, as shown in Fig. 5(b).

The part contrasting and scale contrasting focus on very dissimilar
goals, but leading to different levels of features. However, these two
pre-texts are not mutually exclusive when governing the self-supervised
learning. Our design of the multi-FOV snapshots provides additional
room to join these two tasks when forming the training sample pairs,
and we name this combination as multi-FOV contrasting. Now a positive
pair is not limited to coming from two segments of the same single-FOV
sample, we can also take two cross-FOV segments from the same sample
as a positive pair, and vice versa for a negative pair (Fig. 5(c)). This
formation of sample pairs is expected to push the model into learning
both fine-grained and high-level abstract features.

Clustering for feature refinement: Once the ContrastNet is well
trained with one of these pre-texts, we continue to adopt the idea of
knowledge transfer for more refined features by learning similarities
and differences of samples across different snapshots. Before starting
training the ClusterNet, the learned features from the ContrastNet are
used to cluster the snapshot samples into k groups with KMeans++.
These cluster (group) labels are treated as pseudo-labels for the snap-
shots to train the ClusterNet. We use k=300 to cluster the snapshots
of all FOVs, into new classes based on the studies in our previous
work (Zhang and Zhu, 2019). Note that this number is much greater
the number of the existing semantic labels in the Semantic3D dataset
(which is eight); however the large cluster number forces the ClusterNet
to learn fine-grained features. The loss function defined in the work of
the ClusterNet (Zhang and Zhu, 2019) is described as:

𝑚𝑖𝑛
𝜃,𝑊

1
𝑁

𝑁
∑

𝑛=1
𝑙(𝑔𝑊 (𝑓𝜃(𝑥𝑛)), 𝑦𝑛) (3)

where the 𝑔𝑊 is the classifier that predicts for the correct pseudo-labels
𝑦𝑛 given the features 𝑓𝜃(𝑥𝑛).

3.3. Semantic segmentation with snapshots

The semantic segmentation has three major components, namely
feature extraction, weakly-supervised classification, and point-wise se-
mantic segmentation via voting ((c) in Fig. 2). The feature extraction
step is a straightforward process that takes snapshots captured from
the raw point cloud and extracts the deep features using the already
trained ClusterNet, as described above. We then use a small fraction of
the extracted features along with their labels to train an SVM classifier.
This classifier serves two purposes: one is to evaluate the self-supervised
features learned by the SnapshotNet in the experiments, and the second
purpose is to serve as a base classifier that will further diffuse all
snapshot predictions into point-wise predictions.

Classification with weak supervision and pseudo labeling: Follow-
ing the self-supervised feature learning, a classifier is trained on the
extracted features of labeled training data for classification. Conven-
tionally, the training process requires as many labeled data as possible
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Fig. 5. Three approaches of contrastive learning by forming positive pairs or negative pairs from two samples. In the part contrasting (a), each snapshot is split into two parts
and then pairs are formed by putting together of any two parts. On the left of (a), the left and right side of the tree form a positive pair because they are from the same snapshot,
and the same goes for the fence, whereas on the right of (a) the tree and fence form a negative pair. The scale contrasting (b) takes two snapshots across different field-of-views
as a pair. Here two snapshots of the same tree or same fence (but at different scales) form a positive pair, and a negative pair comes from different objects. The Multi-FOV
contrasting (c) combines the previous two approaches by cutting each snapshot into two parts across all FOVs, and forms positive pairs where the two parts are from the same
object regardless of their sampling FOVs. A negative pair has two parts from different objects.
for better performance. However, this approach in its essence is in
contradiction with the objective of self-supervised learning, which aims
to reduce the dependency on labeled data. Therefore, we seek solutions
from weak supervision to reduce the reliance on dense labels for the
downstream tasks following our self-supervised feature learning.

Here the weak supervision can be viewed from two perspectives.
First is that when there are only a few labels available, we still wish to
achieve comparable classification performance with the limited labels.
furthermore, the labels assigned to the snapshots are essentially coarse-
grained labels because instead of point-wise labeling, each snapshot
is labeled as a whole, regardless of the noises included during the
sampling.

Second, a pseudo labeling technique is proposed to acquire larger
training data population to feed the classifier. This technique is incor-
porated into the KMeans++ clustering in the feature learning module,
hence named cluster-based pseudo labeling. Fig. 6 visualizes the 300
clusters of training samples using KMeans++ in the feature space
against their pseudo labels. Due to the large number of clusters, each
one of them facilitates only a few to a few hundreds of samples. This
large collection of clusters breaks all samples into smaller groups by
their similarities in the feature space, where each group hosts way less
but highly alike samples. This can be seen from Fig. 6, when visualizing
the clusters against their semantic labels. This property can be well
used by just giving one label to each cluster and assign this label as
the pseudo labels of some of the most related samples to that labeled
sample in the cluster center. The selection of the nearby samples can be
designed to work geometrically or statistically. In this work, a threshold
is introduced to constrain the measurement of the normalized distance
between each point to their cluster center. A strict threshold filters out
samples far from the center to gain more accurate pseudo labeling.

Semantic segmentation by voting: Associated with our first assump-
tion that, statistically a snapshot is able to represent a small piece of an
object, we can assume that all points included in a snapshot are highly
likely to belong to the same class predicted by the classifier for this
snapshot. The predicted class label is assigned all points in the snapshot.
Thus the point-wise segmentation problem is converted into an object
classification problem. Statistically, if the snapshot capturing happens
randomly, all snapshots are able to cover the whole scene after certain
6

number of iterations. Therefore by repeating the capture-predict-assign
procedure, all points in a scene eventually get a predicted label.

The model keeps count of the points with at least one prediction to
track the progress of segmentation, and a cut off threshold is set to stop
the snapshot capturing. When 99.95% of the points are assigned with a
prediction, the model stops taking new samples and moves to the next
step of voting. Due to the randomness of the snapshot capturing, it is
expected to have multiple snapshots covering the same points from the
scene, which potentially assigns multiple labels to one point. To reach
for a final agreement on the label, a voting procedure is designed to
select the dominant label with most counts to be the final decision for
each point. It is also possible that some points obtained equal numbers
of different labels by the time the snapshot capturing stops. For points
with such labeling conditions and particularly near the boundary of
different semantic classes, it is likely two labels have the most counts
at the same time and the voting would turn into a 50% chance dice
rolling. To solve this problem, before the final voting we search through
the whole point cloud and collect one more label by voting through
kNN (𝑘 = 5) for those with even number of votes.

Multi-FOV snapshots for speed and accuracy: So far the Multi-FOV
snapshots have been participating in the network training. Yet another
important role of the multi-FOV design is to enable faster segmentation
and more precise snapshot sampling leveraging our adaptive sampling
technique. The adaptive sampling works to choose one of the pre-
listed FOVs according to the size of objects being sampled. This process
is completed in three steps: variance estimation, FOV inquiry, and
snapshot down-sampling.

Variance estimation refers to the procedure of measuring how spread
out the associated points are in a snapshot sample: we take the mean
from each of the 𝑋, 𝑌 , 𝑍 coordinates as an imaginary center point
for one pre-sampled snapshot and compute the sampling variance from
the center point. Note that we use the largest FOV from the list to
pre-sample a snapshot and keep the corresponding variance, with the
intention to adequately differentiate the variances by maximizing the
sampled area. Next is to inquire the most appropriate FOV for each
pre-sampled snapshot based on the variance and the sampling history.
During the segmentation progress, variances from all pre-sampled snap-
shots are kept to periodically update a KMeans for clustering, where
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Fig. 6. Visualization of the feature embedding of the clustered snapshots from the Semantic3D. The clusters are colored by the semantic labels in 6 classes in (a), and by the
pseudo labels in 300 classes in (b). The semantic labels in (a) are represented by the following colors: terrain — blue, vegetation — green, building — purple, hard scape —
pink, artefacts — yellow, and cars — cyan. It is shown that samples sharing the same pseudo labels are likely to have the same semantic labels as well. Due to the large number
of clusters in (b), it is not possible to distinguish all 300 colors globally, but it is possible to distinguish local clusters by their color contrasts. As a support of our claim, the
average percentage of points agree with their semantic labels in each cluster among all 300 clusters is 91.67%. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
k equals to the number of the pre-listed FOVs. Before the KMeans is
sufficiently trained, the model selects the smallest FOV for the next step
of down-sampling. The reason for this is that the KMeans at this stage
does not own enough history records to make a meaningful decision on
which FOV to utilize, so the model proceeds with the most conservative
option (a small FOV) to ensure a less risky and noisy down-sampling.
Once the KMeans is well optimized, the model starts to inquire for
cluster ID by sending in the pre-sample variance, and each cluster ID
represents one of the FOVs that will be used for final sampling. In
the end, the down-sampling follows the same principle of multi-FOV
snapshots sampling, where a larger snapshot is first obtained with the
assigned FOV using kNN, before points are randomly discarded to meet
the network input size.

It is common to have different outdoor objects at a great range
of scales. When sampling from a large regular surface, such as the
ground or the building facade, the chances of including points from
other objects is smaller. This observation motivates us to exploit the
advantages of the adaptive sampling for a faster segmentation process.
To allow this, both the down-sampled snapshot for label prediction and
the pre-sampled snapshot for segmentation are kept. It can be seen
from Fig. 4 that, the pre-sampled snapshots cover the same area as
their corresponding down-sampled snapshots but include more points,
except for the smallest FOV. Here, during the segmentation, when a
prediction is acquired from the SVM, the model assigns the prediction
to all points in the pre-sampled snapshot instead of the down-sampled
one.

This serves as a solution to the low efficiency caused by the down-
sampling operation. The discarded points are highly likely to come
from the same class as their neighbor points obtained a prediction, but
they will not be given a label until next time they are pre-sampled
again and survived the down-sampling to go through the network,
which is redundant as repetitive operations. Now that it is possible
to expedite the segmentation of a large uniformed surface at a lower
cost, we can leverage even smaller snapshot size to capture local
structures at a higher precision. Overall, the adaptive sampling helps
increasing the sampling precision for small objects while maintaining
a fast segmentation speed for large surfaces.

4. Experiments and results

Extensive experiments are conducted to evaluate the effectiveness
of our proposed approach for both self-supervised feature learning and
weakly-supervised point cloud semantic segmentation. The implemen-

tation and experimental results are described in details in the following
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sub-sections, including (1) datasets used in our experiments; (2) vari-
ations of snapshot capturing and their evaluations; (3) self-supervised
feature learning by point cloud classification with fewer labeled data;
and (4) evaluation of semantic segmentation by point-wise voting.

4.1. Datasets

The experiments are mostly conducted on the Semantic3D large
scale point cloud classification benchmark (Hackel et al., 2017). This
dataset consists of a variety of scenes across eight classes: man-made
terrain, natural terrain, high vegetation, low vegetation, buildings,
hard scape, scanning artefacts, and cars (Fig. 1). Considering the huge
scale and high density of this dataset is beyond our computational
capacity, we choose two scenes, named ‘untermaederbrunnen3’ and
‘bildstein3’ for our experiments, which consist of 27.9 million points
and 7.9 million points, respectively. We use all eight labels to conduct
snapshot classification for the evaluation of the self-supervised feature
learning. To evaluate our weakly-supervised semantic segmentation on
this dataset, we follow the experiment settings from the state of the art
methods (Guinard and Landrieu, 2017; Xu et al., 2019): to combine the
man made terrain and the natural terrain into a single class of terrain,
and merge the high vegetation and low vegetation into vegetation.

Another dataset incorporated in the semantic segmentation exper-
iments is the Oakland dataset (Munoz et al., 2009). In comparison to
Semantic3D, the Oakland data has significantly lower but more uniform
point densities as scanned from a moving platform. It has five semantic
classes: scatter misc, default wire, utility pole, load bearing and facade.
The class labels are drastically unbalanced, and out of the total 1.4
million points only 7000 points are default wire and 10 000 points are
utility poles, while the load bearing has near 1 million points.

4.2. Snapshots capturing

Snapshot generation: In this experiment, for evaluating the self-
supervised feature learning, we capture 8000 single-FOV snapshots
from the Semantic3D dataset as training set and 800 samples for
testing, with 1024 points in each sample. In an ideal setup where the
dataset is perfectly balanced between classes, we would obtain close to
1000 training snapshots each class, but this can hardly be realized in
real world scenarios (see Table 1, # of samples). The high resolution
of the Semantic3D dataset (Hackel et al., 2017) poses a dilemma
during the single-FOV snapshot sampling: a small sampling size is

insufficient to capture details while a large sample brings burdens to
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Table 1
Statistics of single-FOV snapshot sampling on the two scenes from the Semantic3D dataset (Scene 1: ‘Untermaederbrunnen3’; Scene 2: ‘Bildstein3’). The sampling is conducted 100
times, with 8000 samples per time. ‘–’ indicates no snapshots being sampled.

Statistics of Snapshot Sampling on Semantic3D dataset

Metrics Man Made
Terrain

Natural
Terrain

High
Vegetation

Low
Vegetation

Buildings Hard
Scape

Scanning
Artefacts

Cars Total

Scene 1 Purity (%) 98.42
±0.27

59.42
±6.35

96.15
±2.51

92.57
±2.05

99.47
±0.15

97.02
±0.77

78.01
±29.38

87.31
±5.23

98.37
±0.19

Samples 2891.91
±92.17

21.03
±9.57

83.25
±21.08

256.3
±35.54

3847.68
±92.13

838.01
±61.28

10.34
±6.80

51.48
±16.30

8000

Scene 2 Purity (%) 94.39
±0.81

96.42
±0.37

95.03
±0.76

91.59
±1.23

94.22
±1.10

94.40
±0.78

– 85.58
±2.93

94.96
±0.29

Samples 1139.28
±63.40

3264.49
±81.99

1075.44
±71.23

593.05
±51.52

569.86
±51.23

1240.92
±76.18

0 116.96
±28.20

8000
Table 2
Classification performance on the snapshots and labeled objects from the Semantic3D dataset, using the DGCNN, ObjectNet and SnapshotNet. Note that ‘–’ means no samples from
that class are obtained for testing.

Method Overall Accuracy (%) Per-class Accuracy (%)

Man Made
Terrain

Natural
Terrain

High
Vegetation

Low
Vegetation

Buildings Hard
Scape

Scanning
Artefacts

Cars

100% training data

DGCNN 86.5 98.41 – 100 85.71 84.38 47.14 – 20
ObjectNet 97.88 97 98 100 92 98 98 100 100
SnapshotNet on objects 98.63 100 99 100 92 100 98 100 100
SnapshotNet on snapshots 97.5 99.68 – 100 94.29 98.63 84.29 – 80

20% training data

DGCNN 84.13 99.68 – 0 85.71 79.45 55.71 – 0
ObjectNet 94.88 92 99 99 85 95 95 95 99
SnapshotNet on objects 95.63 98 95 100 89 91 95 100 97
SnapshotNet on snapshots 97.13 99.37 – 90 85.71 99.45 85.71 – 40

5% training data

DGCNN 72.88 54.33 – 0 62.86 89.86 92.86 – 0
ObjectNet 88.38 82 93 98 71 82 89 95 97
SnapshotNet on objects 90.13 90 87 100 84 86 87 92 95
SnapshotNet on snapshots 95.0 97.46 – 100 68.57 98.63 78.57 – 80
the computations. A compromise is made here, which takes a similar
approach to the multi-FOV snapshots sampling, to take a pre-sampled
snapshot with 10 times of the network input size (10240 points) and
down-sample back to 1024 points per snapshot.

For the semantic segmentation, the same amount of multi-FOV
snapshots are captured from both datasets at a smaller size of 512
points as the training data. The snapshot generation follows the multi-
FOV sampling as described previously (Fig. 4), and we choose three
FOVs for each snapshot. The original sampling rate is chosen as the base
sampling rate, and the other two larger FOVs are respectively two times
and ten times to the base sampling rate. Note that since each multi-FOV
sample has three FOVs, the total training samples are 24 000.

Snapshot purity: Based on the proposed purity metric, we run the
ingle-FOV snapshot capturing procedure on the Semantic3D at the
ase sampling rate 100 times for statistics. As shown in Table 1, the
napshot purity of a class is correlated with the numbers of sampled
napshots. From the point-wise perspective, when choosing an anchor
oint to find the nearest neighbors, each point in the scene has equal
hance being selected as the anchor. However, class-wise speaking,
hen collecting points surrounding an anchor from a smaller class

i.e., a class with smaller number of points in the scene), the chance of
ncluding inter-class points is relatively higher than for a larger class,
nd this potentially leads to lower purity on smaller classes. Despite the
act that noises are much more likely to be included in smaller class
amples, we can still see that the overall snapshot purity is above 90%.
his result is in favor of our claim that, statistically each snapshot is
ighly capable of representing a small piece of one class from the whole
oint cloud. Nevertheless, we will also investigate if low purity classes
an also be fairly treated.
Snapshots versus objects: To comparatively evaluate our

elf-supervised feature learning, we also apply the same single-FOV
8

sampling procedure on points grouped by the original semantic la-
bels, instead of the whole scene of point cloud. As a result, these
samples obtained exclusively from one class have 100% purity, and
we refer to them as ‘objects’ as opposed to the ‘snapshots’. Thus the
Contrast-ClusterNet trained with the object-based approach is referred
as ObjectNet, and is mainly for comparison purposes, even though it
may have its own value if obtaining objects is a possibility.

4.3. Self-supervised feature learning

As we discussed in our previous work (Li. and Zhu., 2021), to verify
the self-supervised feature learning of the SnapshotNet, we conduct
experiments on both single-FOV snapshots and labeled objects derived
from the scene - ‘Untermaederbrunnen3’ of the Semantic3D dataset.
The evaluations are based on the classification accuracy on the testing
samples of an SVM (with a linear kernel) trained on the extracted
features of training samples. For the experiments, we train both the
DGCNN and the SnapshotNet exclusively on the snapshot samples while
keeping the ObjectNet trained on labeled objects. For the SnapshotNet,
we also want to see if the features can be applied to object samples.
Thus we use the trained model to extract features of both snapshots and
objects separately to train a different classifier, and this is referred to as
’’SnapshotNet on snapshots" and ’’SnapshotNet on objects" in Table 2.

Learn with noises: Table 2 shows that, using 100% of the training
data, the DGCNN has the lowest accuracy compared to the other meth-
ods. In comparison, the SnapshotNet tested on labeled objects has best
performance on the total accuracy and all per-class accuracies except
for low vegetation, on which is best performed by the SnapshotNet
tested on snapshots. Both the SnapshotNet and the ObjectNet yield a
total accuracy above 97%, and they are 10% higher than the DGCNN.
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Table 3
Semantic segmentation results on Semantic3D. Three self-supervised methods are compared against the state of the art weakly-supervised methods. All 8000 labels are used in the
training of the classifier.

Method Overall Accuracy (%) Average F-score (%) Per-class F-scores (%)

Terrain Vegetation Building Hardscape Artefacts Cars

Seg-aided (Guinard and Landrieu, 2017) 83.3 82.3 98.1 67.0 98.8 91.5 51.3 82.3
Pseudo-labeling (Xu et al., 2019) 95.6 66.7 94.2 61.2 97.7 84.6 9.0 53.3

Part contrasting 96.9 80.2 97.4 85.5 98.4 95.1 32.3 72.5
Scale contrasting 92.1 74.5 90.6 75.7 97.5 87.6 33.4 62.1
Multi-FOV contrasting 97.6 90.2 98.2 85.6 98.8 96.6 74.8 87.0
This validates our claim that the proposed SnapshotNet is able to learn
effective features from the raw point cloud complex scene in a self-
supervised manner. It also shows that the noisy snapshots produce more
powerful features by self-supervised learning than the fully-supervised
DGCNN.

We see that the ObjectNet is able to achieve decent performance
given that the training samples are derived from labeled data and
each object sample has 100% purity. However, the snapshots used to
train the SnapshotNet are often noisy. As presented in Table 1, some
classes have low purity to start with, such as the Natural Terrain at a
57.47% purity, the Scanning Artefacts at 73.2% and the class of Cars
at an 87.85% purity. While the snapshots from these classes are noisy,
the SnapshotNet has shown high resistance over such noises in the
data. (Note that there are no testing snapshots in natural terrain and
scanning artefacts being sampled due to the small amount of data in
the two classes) The SnapshotNet on objects performs better than the
ObjectNet, which is trained on noiseless objects. It has also shown high
accuracies over the aforementioned three noisy classes, which further
confirms our hypothesis that powerful semantic features can be learned
by predicting whether two segments are from the same snapshot and
predicting the refined pseudo-labels for the snapshots, regardless of
their semantic labels.

Classification with fewer labeled data: To verify the effectiveness of
the proposed weakly supervised classification, we gradually reduce the
amount of labels involved in the training of the SVM. The experiments
are set up in the similar way by comparing the DGCNN, ObjectNet, and
the SnapshotNet.

Table 2 also shows how the classification accuracy of different
models vary when the percentages of the classifier training data reduce
from 100% to 20% and to 5%. It can be seen that the SnapshotNet
outperforms the other models on overall accuracy. The difference be-
tween the SnapshotNet (test on snapshots) and the DGCNN becomes
more significant when the training data reduces, which spans from 11%
to 22.12%. Comparatively, the end-to-end fully-supervised DGCNN is
very sensitive to the amount of training data due to the data hungry
problem, that it needs sufficient labeled data to learn representative
features. The SnapshotNet however, does not rely on any labeled data
for feature learning, and only need a small fraction of labeled data to
train a classifier, which is a huge advantage over the fully-supervised
model.

The snapshot-based SnapshotNet has also shown higher resistance
on the reduction of the training data than the other training schemes:
the accuracy only drops by 2.5%, to 95%, when the classifier is trained
with merely 5% of the data, while the object based SnapshotNet suffers
a drop of 8.5%, to 90.13%, and the ObjectNet shows a bigger decline of
9.5%, to 88.38%. We believe that the performance difference between
the SnapshotNet and ObjectNet can be attributed to the use of noisy
snapshots to make feature learning more robust. Compared to the high
purity objects, the snapshots forces the model to distinguish whether
two segments are from the same area despite they might contain points
from different classes. In other words, we increase the difficulty of
this pretext task by introducing noises and potentially leads to more
representative features.
9

4.4. Semantic segmentation

Following the works of the seg-aided (Guinard and Landrieu, 2017),
and pseudo-labeling (Xu et al., 2019), and for the purpose of compari-
son, we merge the natural terrain and man-made terrain into one class
of terrain, and put together the high vegetation and low vegetation as
vegetation. The experiments are carried out on these six classes cleaned
from the Semantic3D dataset and the Oakland dataset, and they are
organized as following:

1. Having verified that the single-FOV snapshots, despite being
noisy, are able to produce meaningful features from part-contra-
sting, we move forward to utilize the multi-FOV snapshot to feed
the other two pre-text tasks: scale contrasting, and the multi-FOV
contrasting, and comparison results are given.

2. For the weakly-supervised classifier, we experiment on three
different ratios of the labeled data: 100%, 20%, 10% and 5%
of our total 8000 labeled training samples, which contains 8000,
800, and 400 labels respectively. These numbers of labels follow
the distribution of the semantic labels in the dataset, therefore
the larger classes might outnumber the small class on label
numbers.

3. In addition to this, we include another test case with 30 labels
per class, which is the same setup in the work of the seg-
aided classification (Guinard and Landrieu, 2017) and pseudo-
labeling (Xu et al., 2019). To mitigate the potential issues when
using only a few labels, tests are conducted on the proposed
cluster-based pseudo labeling for automatically adding more
training samples.

4. To evaluate the robustness of our method over different scene
point clouds, the testing results are produced from two exper-
imental setups. One is to segment the scene point cloud from
which the training samples are captured, while the other setup
involves training the model on one scene but segmenting another
one. In the second case, we gradually add up the fine-tuning
samples from the to-be-segmented scene to find a sweet spot
where minimal fine-tuning is required to achieve comparable
results when performing cross-scene semantic segmentation.

Results on various contrastive learning: The results of the three
contrasting approaches are listed in Table 3, where our method with
the three approaches is compared with a state of the art method seg-
aided classification (Guinard and Landrieu, 2017) and one comparable
following study, the pseudo-labeling approach (Xu et al., 2019). By
doing part contrasting, our model yields an overall accuracy (OA) at
96.9%, 1.3% higher than the pseudo-labeling method. The average F-
score, however, is slightly lower than the Seg-aided classification at
80.2%. Looking at the per-class F-scores, the part contrasting produces
comparable results with the seg-aided method on the classes of terrain
and building, ours shows a prominent improvement over the vegeta-
tion and hardscape classes, which pushes up the per-class F-score by
18.5% and 3.6% respectively. However, the part contrasting performs
noticeably worse than the seg-aided on small objects such as artefacts
and cars. This seems to conform our conjecture that features learned
by part contrasting are vulnerable when describing smaller items.
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Table 4
Parameter studies on varying the numbers of labels involved in training. Experiments are performed on our method with the multi-FOV contrasting to compare against the state
of the art methods on Semantic3D. The number of labels corresponds to 100%, 20%, 10%, and 5% of the total available labels. An additional test case using 30 labels/class is
included to make a total 180 labels.

Method Overall Accuracy (%) Average F-score (%) Per-class F-scores (%)

Terrain Vegetation Building Hardscape Artefacts Cars

Seg-aided (Guinard and Landrieu, 2017) 83.3 82.3 98.1 67.0 98.8 91.5 51.3 82.3
Pseudo-labeling (Xu et al., 2019) 95.6 66.7 94.2 61.2 97.7 84.6 9.0 53.3

Ours 8000 labels 97.6 90.2 98.2 85.6 98.8 96.6 74.8 87.0
Ours 1600 labels 96.9 84.9 97.3 84.0 98.9 95.1 57.5 76.9
Ours 800 labels 95.9 82.6 96.3 79.7 98.3 93.6 59.8 67.7
Ours 400 labels 94.2 73.3 94.6 76.0 97.9 92.6 31.4 47.8
Ours 180 labels 85.4 63.4 84.0 57.5 94.3 89.2 11.5 44.3
Table 5
Parameter studies on 3D scene segmentation with varying the numbers of labels involved in training on the Oakland outdoor dataset. Experiments are performed
on our method with the multi-FOV contrasting to compare against the state of the art methods on the Oakland dataset. The number of labels corresponds to
100%, 10%, 5%, and 2.5% of the total available labels. An additional test case is included using a total of 150 labels randomly drew from the 8000 training
samples. Note that ‘‘–’’ suggests no training samples are available for a particular class.
Method Overall Accuracy (%) Per-class F-scores (%)

Scatter Misc Default Wire Utility Pole Load Bearing Facade

Seg-aided (Guinard and Landrieu, 2017) 96.6 93.7 46.5 8.7 99.5 93.9
Pseudo-labeling (Xu et al., 2019) 96.6 92.0 40.2 46.2 99.3 93.3

Ours 8000 labels 92.6 85.7 2.5 – 96.7 84.4
Ours 800 labels 92.2 84.6 0.2 – 96.7 83.2
Ours 400 labels 91.3 82.6 6.9 – 96.1 82.2
Ours 200 labels 89.4 78.6 – – 95.7 73.8
Ours 150 labels 88.5 76.0 – – 95.1 68.4
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The scale contrasting is proposed to bring the features at a more
bstract level into the play, thus to achieve better results on the small
bjects in the scene. There is a marginal increase on the F-score of the
rtefacts than the part contrasting, while at the cost of worsening on
ll other classes. Another small class of cars is also 10.4% worse than
he part contrasting and 20.2% lower than the seg-aided method. So far
he results have been suggesting that the scale contrasting might lack
he capability of pushing hard for powerful versatile features, and the
roduced features are less descriptive at certain levels that are vital to
istinguish larger objects.

With this finding, the scale contrasting and part contrasting are
ombined for further experiments, seeking to strengthening the fea-
ures from both perspectives. The collaborative effort of the part con-
rasting and scale contrasting urges the model to develop powerful
eatures leveraging knowledge from both the object level information
nd higher level structural information. Our method equipped with the
ulti-FOV contrasting outperforms the pseudo-labeling method on the
A by 2% at 97.6%, and on F-score by 23.5%; it is 14.3% above the
eg-aided classification (Guinard and Landrieu, 2017) on OA, and a
ain of the F-score is seen at 7.9%. There are some significant im-
rovement over the small classes: the per-class F-score of the artefacts
s 23.5% higher than the state of the art method at 74.8%. The class of
ars has seen an increase from 82.3% to 87% using our method. The
lasses of vegetation and hardscape also experienced a very noticeable
oost on their F-scores, and the terrain and building have a slight edge
ver the state of the art performance by the Seg-aided classification.
Segmentation with fewer labels on Semantic3D dataset: Table 4

shows the effect of reducing the numbers of available labels during the
training of the SVM classifier on the Semantic3D. Our method with the
multi-FOV contrasting is tested against the seg-aid classification and
the pseudo-labeling, both using 30 labels per class. When the training
data is reduced ten times to 800 labeled samples, similar performances
can still be observed despite the drastic drop in the available training
data. The OA of the 800 labels model is marginally greater than the
pseudo-labeling approach by 0.3%, the average F-score is 15.9% higher
than the pseudo-labeling approach and 0.3% over the best result from
the seg-aided classification. The per-class F-score is still significantly
greater than the state of the art method on the vegetation and artefacts,
and is in the lead on the class of hardscape. The cars, however is
10
14.6% lower than the segmentation-aided classification at this level of
available labels. A steady growth on this class can still be seen when the
labels increase and we expect a surpassing over the seg-aided method
when it is trained with more than 1600 labeled data. When further
reducing the labeled data by half, the overall performance starts to
drop. The per-class F-score on artefacts experiences a 28.4% decrease
and for the cars it also falls by 19.9%. This suggests that a further cut
down on labeled data usage by only 400 might come at a high price.

While our method has shown a superiority over the SOA methods
when using as few as 800 labels, the SOA methods are only tested on 30
labels per class, making it 180 labels in total. To make a fair comparison
with the two baseline methods, the training data is reduced to 30 labels
per class. Apart from the artefacts holding a slight advantage over the
pseudo-labeling method by 2.5%, the other classes are below the two
baselines by varying degrees. Further investigating into the cause of this
significant deficiency, two explanations are speculated. As commonly
occurred in machine learning, underfitting of the classifier might be
a big factor on the poor performance. A solution to this issue is to
deploy larger amount training data. Another factor here is that, our self-
supervised learning is trained on only 8000 samples from a particular
statistical distribution in terms of their semantic labels, meaning that
the learned features might not be as equally weighted, and the weights
seem to collapse when training the classifier with uniformly distributed
labels. Looking into more details, the recall rate of the artefacts is
86.0% while the precision is merely 6.2%. On the other hand, the recall
of the terrain is 75.7% but the precision remains as high as 94.2%.
These extremes are also seen on the vegetation and cars. This seems to
meet our conjecture that the even labels bring bias into some of these
classes.

Segmentation with fewer labels on Oakland dataset: Similar ex-
eriments are further conducted on the Oakland dataset. The results
n Table 5 illustrates the OA and per class F-score against the two
aselines. The Average F-score is not included in this test due to the lack
f training samples for the disadvantaged classes such as default wire
nd utility pole. The Oakland dataset is extremely unbalanced between
ifferent classes and among the 8000 samples there are only 10 default
ire snapshots and 6 utility pole snapshots. So when randomly select-

ng a smaller group of training samples from the pool, these classes
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Fig. 7. Visualization of the progression of segmenting ‘Untermaederbrunnen3’. The
model is governed with the pre-text of multi-FOV contrasting and the classifier is
trained with 8000 labels. The bottom picture in 7(e) shows the ground truth to compare
with. Colors correspond to semantic classes as the following: terrain is cyan, vegetation
is green, buildings are yellow, hardscapes are orange, scanning artefacts are orange red,
cars are red. The unlabeled points are in gray. We can see that snapshots gradually
covers up the whole scene, during which previously falsely labeled points can be
corrected by voting. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

become absent during the training, and these corresponding per-class
F-scores are noted as ‘‘–’’.

With the available results, we can still exploit some insights towards
our model’s characteristics. The overall accuracy gradually decreases
when using fewer labels, however the scatter misc and facade classes
experience a steeper decline than the load bearing class does. This
trend conforms the observation from the Semantic3D experiments, that
11
Table 6
Trade-off of the threshold section in the Cluster-based pseudo labeling on Semantic3D.
120 clusters are randomly selected from the total 300 clusters for pseudo labeling.
Larger threshold value puts heavier constraints on the pseudo-labeling, leading to fewer
labels but higher labeling accuracy.

Threshold Number of Pseudo Labels Accuracy in Labeling

0.9 2631 98.1%
0.8 4253 96.1%
0.75 5078 93.7%

the dominant classes have higher resistance on performance decay
over the disadvantaged classes. Unlike the Semantic3D experiments,
our model does not surpass the SOA methods with all 8000 samples.
Referring to our previous work on this problem (Li. and Zhu., 2021),
when training with single-FOV snapshots, the classification accuracy
on the Oakland dataset using all training samples is 90.6% and it is
96.4% on Semantic3D. This confirms that the segmentation results are
consistent with the classification accuracy, despite being benefited from
the new multi-FOV training. So the performance difference between the
two experiment setups reflects our model’s reaction towards these two
datasets.

Here some interpretations are made to account for this performance
discrepancy: Both experiments have shown the advantage of our model
on feature learning with the use of snapshots. However, the way we
generate these snapshots is fairly straightforward and fully statistical by
randomly taking k nearest neighbors. This poses a problem when some
classes are loosely distributed and outnumbered by other classes in the
background, such as the default wire and utility pole in this scenario.
These two classes are barely sampled as a snapshot by our definition
of ‘‘snapshots’’, and therefore exacerbates the inequality of the training
samples than it appears in the entire scene.

Results on cluster-based pseudo labeling: To mitigate the impacts of
the aforementioned two potential issues when using only a few labels,
tests are conducted on the proposed cluster-based pseudo labeling for
more training samples. Here on the Semantic3D, 120 clusters are ran-
domly selected out of 300 and each cluster center is assigned with one
label. In addition, a collection of 10 labeled sampled from each class is
joined into the pseudo labeled data, consuming a total of 180 labels.
Table 6 illustrates a trade-off effect between the number of pseudo
labels and the labeling accuracy from the choice of threshold. A larger
threshold causes a heavier constraint when selecting the samples near
the cluster center, which leads to fewer samples to be pseudo-labeled
but they are essentially much more likely to share the same semantic
label with the cluster center. According to Table 7, comparing to our
method using 180 labels without pseudo labeling, a boost of 7% on the
overall accuracy and 11% on the F-score is seen, when thresholding at
0.8. Our cluster-based pseudo labeling method has outperformed the
SOA deep learning method using pseudo-labeling on the F-score by
7.4%, particularly ours has an edge on segmenting the smaller objects
such as artefacts and cars, where increases of 23.5% and 11.4% are
gained respectively. When comparing to the seg-aided method, we also
have an advantage on the overall accuracy by 8.9%.

It is worth explaining on the decision of the random selection when
choosing 120 clusters for pseudo labeling. It was realized that for those
larger clusters, despite being able to generate more pseudo labels,
the included samples tend to be homogeneous. In other words, their
features are less representative, so it is not always a good idea to go
for larger clusters in the pursuit of more pseudo labels. For instance,
two buildings looking completely different might have their samples far
from each other in the feature space, and it would be more helpful to
have each of their samples being chosen during the pseudo labeling. On
the other hand, the very small clusters often contain few samples from
the minority classes, and these clusters are an important source of ac-
quiring distinct features from those minority classes. These factors pose
a difficult decision on the cluster selection, to obtain as many pseudo

labels as possible while maintain the diversity of the features. Thanks
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Table 7
Parameter studies on the cluster-based pseudo labeling threshold selection on Semantic3D. Experiments are performed on our method with the multi-FOV contrasting to compare
against the state of the art methods. Three threshold levels are tested on 120 random clusters for pseudo labeling samples. An test case using 30 labels/class without pseudo
labeling is included for comparison.

Method Overall Accuracy (%) Average F-score (%) Per-class F-scores (%)

Terrain Vegetation Building Hardscape Artefacts Cars

Seg-aided (Guinard and Landrieu, 2017) 83.3 82.3 98.1 67.0 98.8 91.5 51.3 82.3
Pseudo-labeling (Xu et al., 2019) 95.6 66.7 94.2 61.2 97.7 84.6 9.0 53.3

180 labels without pseudo labeling 85.4 63.4 84.0 57.5 94.3 89.2 11.5 44.3
120 clusters t0.9 + 10 labels/class 91.6 70.6 91.6 61.8 96.9 87.2 32.6 53.4
120 clusters t0.8 + 10 labels/class 92.2 74.1 91.6 71.8 96.9 87.4 32.5 64.7
120 clusters t0.75 + 10 labels/class 92.0 73.5 91.1 67.3 97.3 85.3 31.1 69.1
Table 8
Parameter studies on the cluster-based pseudo labeling threshold selection and segmentation results on the Oakland dataset. Four threshold levels are tested on 150 random clusters
for pseudo labeling samples. An additional test case using 150 random labels without pseudo labeling is included for comparison.

Method Number of
Pseudo Labels

Labeling
Accuracy (%)

Overall
Accuracy (%)

Per-class F-scores (%)

Scatter Misc Default Wire Utility Pole Load Bearing Facade

150 random labels 0 100 88.5 76.0 – – 95.1 68.4

150 clusters t0.99 312 97.4 78.2 59.4 – – 87.7 59.4
150 clusters t0.97 762 90.6 81.4 65.5 – – 89.0 66.6
150 clusters t0.95 1479 89.3 78.7 58.5 – – 88.4 64.4
150 clusters t0.90 3121 87.7 76.8 56.1 – – 86.0 64.6
to the large number of clusters, we believe that random selection is a
better way to evenly include both large and small clusters for pseudo
labeling.

The results on the Oakland dataset provide a better viewpoint on the
label number vs. labeling accuracy dilemma when the dataset is highly
unbalanced. Table 8 shows this trade-off and the leading segmentation
performance using 150 labels. The baseline is when randomly choosing
150 labeled samples without pseudo labeling, and it is worth noting
that since each sample has three FOVs, so there are a total of 450
training snapshots in this case. When loosing the threshold on the
pseudo labeling, more pseudo labels are obtained at the cost of lower
labeling accuracy. At 97%, the segmentation performance reaches the
best among all four pseudo labeling tests, where we have 762 pseudo
labels at the accuracy of 90.6%. By comparing this result with the
baseline, it is seen that 1.7 times more training samples cannot makeup
for the 9.4% loss on labeling accuracy, and it is not a problem on the
Semantic3D where thousands of pseudo labels are obtained with high
accuracy.

Segmentation across scenes: Having shown the advantages of pro-
osed method on a single scene point cloud when the learning is
overned by the multi-FOV contrasting. To verify the strength of our
odel on quickly adapting to other data, the following experiments

re designed to test on cross-scene segmentation. The goal is to find
ut if this model is capable of producing decent segmentation perfor-
ance by only fine-tuning the model on minimal amount of fine-tuning
ata. Taking the model obtained from previous experiments, which
s trained on the scene ‘Untermaederbrunnen3’ from the Semantic3D.
his model is fine-tuned with a series of number of samples from
he scene ‘Bildstein3’, such as 1600, 800, 400, 0 samples, which take
p to 20%, 10%, 5%, and 0% (no fine-tuning) of the total samples.
ecall that the model has two networks working in sequence. The
lusternet is trained with the pseudo-labels acquired from the features
xtracted using a well trained contrastnet. So to fine-tune our model
ith new data, the pseudo-labeling process is carried through first.
his involves extracting features of the fine-tuning data using a pre-
rained contrastnet and predicting new pseudo-labels for them with
he converged KMeans from our previous experiments. Then the pre-
rained clusternet is fine-tuned on the new data with their pseudo-labels
efore starting segmenting the new scene.

As demonstrated in Table 9, experiments are tested with different
mount of fine-tune data from 1600 to 0 samples. It is seen that the OA
nd average F-scores are close to each other among the four fine-tuned
12
models. Compared to the other five classes, artefacts are prone to large
fluctuations on F-score. To compare with the single-scene performance
trained with 8000 labels (Table 4), a drop of 27% on the artefacts
attracts most attention among all other results, which are considerably
close to or even surpasses the single-scene results. Despite that the
results have shown an edge of our method when adopting to new data
even without any fine-tuning, there is no significant improvement by
adding in more fine-tuning data. One interpretation of this particular
behavior is again related to the statistical distribution of the classes. As
discussed on the snapshot purity, the number of points in each class are
greatly uneven, leading to a large disparity on the number of snapshots
being captures in each class. This is particularly the case when it comes
to the artefacts, where as shown in Fig. 1 that no snapshots from this
class are picked up during sampling, meaning that the fine-tuning was
largely conducted on samples from bigger classes such as terrain or
building. Fig. 8 illustrates the visualization of the semantic labeling
compared with the ground truth. It can be observed that the hardscapes
away from the center are mislabeled as terrain, and this also happens
on the lower part of the church’s tower. The cars are correctly located
but the labeling precision is not as satisfactory because the surrounding
terrains are mislabeled into cars. These observations again align with
our hypothesis, that some classes are under-trained due to the lack of
samples or the training is contaminated with low-quality samples.

5. Conclusion and discussion

In summary, we have proposed the SnapshotNet for self-supervised
feature learning on the complex scene point cloud, including a new
pre-text task that joins the part contrasting and the proposed scale
contrasting for stronger features. We have also designed a weakly-
supervised method for point cloud semantic segmentation by training
with fewer coarse-grained labels. While reducing the labels involved
in the downstream tasks, a cluster-based pseudo labeling technique is
implemented to obtain more training data. The proposed methods are
evaluated and verified on two real life complex scene datasets and the
experimental results indicate that our method is capable of learning
effective features from unlabeled scene point cloud data. Compared to
the state of the art methods, our methods still show several advantages.
This model is able to produce comparable results at a slightly higher
cost on label collection. When the cluster-based pseudo labeling is
enabled on representative snapshots, our model is capable of producing
comparable results with the state-of-the-art methods using only 180
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Fig. 8. Semantic labeling of the scene ‘Bildstein3’ using the model trained on ‘Untermaederbrunnen3’. Colors correspond to semantic classes as the following: terrain is cyan,
vegetation is green, buildings are yellow, hardscapes are orange, scanning artefacts are orange red, cars are red, and the unlabeled points are gray. It can be seen that our method
is capable of recognizing the rough outline of the smaller items such as cars, but lacks precise semantic labeling. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Table 9
Cross scene segmentation performance of our method. The model is pre-trained on the scene ‘Untermaederbrunnen3’ and fine-tuned on different
numbers of samples from ‘Bildstein3’. The decreasing numbers of fine-tune data make up to 20%, 10%, 5%, and 0% of the total 8000 samples
captured from ‘Bildstein3’.
Fine-tune data Overall

accuracy (%)
Average
F-score (%)

Per-class F-scores (%)

Terrain Vegetation Building Hardscape Artefacts Cars

1600 93.2 84.7 94.3 94.9 94.7 87.8 47.8 88.7
800 96.2 84.8 97.1 95.4 97.5 94.7 36.9 87.9
400 94.5 85.5 95.6 95.1 94.3 90.7 47.4 89.6
0 95.9 84.7 96.8 95.4 95.2 94.4 33.4 93.4
labels. As a deep learning model, our method does not rely on hand
crafted features, and it has proven to be robust to be directly applied
to cross-scene segmentation without or with a small dose of fine-tuning
within the same dataset, saving the effort of training a model on every
new scene.

There are also some weaknesses of the proposed method, particu-
larly that the quality of snapshots capturing are greatly influenced by
the statistical distribution of the semantic classes. We have tried to re-
solve this issue by designing the multi-FOV snapshots and have gained
some significant improvement, but the performance on smaller items
still needs further improvement. In the future, the snapshot capturing
could be further investigated, such as utilizing the surface normal
or other local geometrical information, to potentially improve the
sampling quality and enhancing the local semantic labeling precision.
The noises in the snapshot sampling could also be turned into certain
advantages for a multi-level contrastive learning: noisy snapshots might
contain parts from other objects such that not all points from both
samples agree on each other when forming a positive pair. If the
dissimilarity between two parts can be quantified and well measured,
a contrastive pair can be then defined in one of the multiple levels,
instead of choosing from only positive or negative.
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