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Abstract

What insights can statistical analysis of the time series record-
ings of neurons and brain regions during behavior give about
the neural basis of behavior? With the increasing amount
of whole-brain imaging data becoming available, the impor-
tance of addressing this unanswered theoretical challenge has
become increasingly urgent. We propose a computational
neuroethology approach to begin to address this challenge.
We evolve dynamical recurrent neural networks to be capable
of performing multiple tasks. We then analyze the neural ac-
tivity using popular network neuroscience tools, specifically
functional connectivity using Pearson’s correlation, mutual
information, and transfer entropy. We compare the results
from these tools against a series of informational lesions, as
a way to reveal their degree of approximation to the ground-
truth. Our initial analysis reveals an overwhelming large gap
between the insights gained from statistical inference of the
functionality of the circuits based on neural activity and the
actual functionality of the circuits as revealed by mechanistic
interventions.

Introduction
A central goal in neuroscience is to understand how the
brain, body and environment come together to produce be-
havior. Specifically, we would like to understand in some de-
tail the functional role of the nervous system in behavior. To
this end, researchers are imaging with increasing time and
spatial resolution the neural activity of living organisms at
various scales, ranging from C. elegans to humans (Nguyen
et al., 2016; Aimon et al., 2019; Randlett et al., 2015). Fur-
thermore, technological advancements are starting to make
recording of neural activity from freely moving animals pos-
sible (Lin et al., 2022). This increase in neural activity data
has led to a similar increase in statistical measures and meth-
ods for inferring function from the time series of the neu-
ral activity (Paninski and Cunningham, 2018; Ramaswamy,
2019). Despite the incredible experimental progress and the
overwhelming explosion in data availability, a fundamental
theoretical challenge remains open (see Fig. 1): What can
statistical measures of neural activity during behavior reveal
about the function of the components of the nervous system?

Of the wide range of statistical methods that are avail-
able, the application of network theoretic tools to interpret

animal brain activity as it pertains to behavior and disease
has seen an explosion of interest in the last decade (Sporns,
2010; Fornito et al., 2016). Specifically, there has been a
myriad of methods for constructing functional connectiv-
ity networks from neural activity to understand the interac-
tion between brain regions at various scales with the ulti-
mate goal of understanding the underlying causal relation-
ships (Van Den Heuvel and Pol, 2010; Smith et al., 2011;
Yeo et al., 2011). Of these, the most popular methods in-
clude Pearson’s correlation, mutual information and transfer
entropy (Friston, 1994). While these statistical methods can
provide very useful insights about the interactions between
the different components of the neural system, they provide
no guarantees as to their ability to converge to the ground-
truth causal relationships.

Computational models of neural networks have proven to
be an excellent test bed for generating and evaluating such
statistical methods (Dayan et al., 2003). For instance, us-
ing a computational model of a fully-connected spiking neu-
ral network, Ito et al. (2011) showed that while transfer en-
tropy can get close, it still cannot estimate the structural con-
nectivity of a neural network from its activity alone. Simi-
larly, using a recurrent dynamical neural network model op-
timized to perform a task, Candadai and Izquierdo (2020)
showed that mutual information cannot disambiguate be-
tween predictive information from different sources. Mah-
eswaranathan et al. (2019) showed that analysis of some fea-
tures of the representation geometry led to conclusions that
were not related to the function of the network, while oth-
ers did. Similar approaches have been taken to show that
polyadic interactions and the presence of underlying com-
mon inputs present challenges to these methods (Stevenson
et al., 2008; James and Crutchfield, 2017). In such studies,
two aspects that is often overlooked are: (a) animals don’t
function as ”brains in a vat” but are embodied and embed-
ded in the environments that they are continuously interact-
ing with; and (b) natural systems are multifunctional, how-
ever most computational models that are studied are typi-
cally built to perform only a single behavior. This is where
computational neuroethological approaches to understand-
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Figure 1: Computational neuroethology approach to uncover what a statistical measure of functional connectivity tell us about
the actual functional connectivity of a nervous system. In order to address this theoretical challenge, we propose the following
paradigm. In scenario (A), the subject is presented with two different tasks (blue and magenta). For each task, there are
multiple trials (different sizes, different starting conditions). For each trial, neural activity is recorded for the subject. From
the combined neural recordings of each task, a node functional connectivity (nFC) is created, using one of three techniques:
Pearson’s correlation, mutual information, and transfer entropy. Finally, from the nFC the subcircuit for each task is estimated.
In scenario (B), the same subject is now tested on the same two tasks, but now the drop in performance is recorded during
information lesions to each pair of connections or each individual connection between the components of the subject’s brain.
This effect of lesions per pairwise component is considered the actual functional connectivity (aFC). From it, the ground truth
functional circuit is obtained for each task, which is used to assess the usefulness of the statistical nFC approach. We cannot
do part B of this approach with humans, or with any other living organism, given current experimental limitations and ethical
considerations. However, we can use artificial life techniques to: first generate agents capable of multiple tasks, and then
analyze them in the way proposed above.

ing the neural basis of behaviors come in (Beer, 1996; Datta
et al., 2019; Candadai, 2021): build computational models
of brain-body-environment (BBE) systems, optimize them
to perform multiple tasks, and use them as ground-truth for
neural network operation with behavior defining what func-
tion means.

We would like to revisit the question that is at the heart
of all the work that uses Network Neuroscience tools from
a computational neuroethology perspective: What can sta-
tistical analysis of the time-series of the neural activity of
brain-body-environment systems tell us about the behavioral
functionality of the system? Our overarching goals are to:
First, build intuition about what the statistical methods tell

us about the ground-truth. Second, use this to guide and
inform predictions and generate hypotheses in experiments.
Finally, improve the tools of analysis for complex BBE sys-
tems. In this paper, we would like to tackle the first of those
goals in the simplest set of conditions possible: (1) Evolve
a BBE model to perform a pair of visually-guided behav-
iors; (2) Infer the functional connectivity for each task from
neural activity time series using Pearson’s correlation, mu-
tual information, and transfer entropy; (3) Compare the in-
sights gained against the ground-truth obtained from an in-
formational lesion characterization of the circuit.

This paper is organized as follows: the next section de-
scribes the design of visually-guided behaviors, and the
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agent; the following sections describe our results with re-
gards to how the agent performed said behaviors and the
comparison between statistically-inferred functional con-
nectivity and the ground-truth; finally we discuss our results
and present ideas for future work.

Methods
We replicated the visually-guided agent described in (Beer,
1996), including two tasks previously used in (Beer, 1996;
Slocum et al., 2000). The model agent is illustrated in Fig-
ure 2. The agent has a circular body with a diameter of 30
(in an environment of size 400× 275). The agent possesses
an “eye” consisting of a foveated array of distance sensors.
The eye consists of 15 proximity sensors of maximum length
220, uniformly distributed over a visual angle of π/4. An in-
tersection between a ray and an object causes an input to be
injected into the corresponding sensory neuron. The mag-
nitude of the injected input is inversely proportional to the
distance to the object, with values ranging from 0 (no in-
tersection) to 10 (no separation). The agent has two “mo-
tors” that produce 1D movement of the entire body. The
agent moves according to first-order dynamics, with motor
neurons directly specifying the velocity of movement. The
agent’s horizontal velocity is proportional to the sum of op-
posing forces produced by a bilateral pair of effectors (with
a constant of proportionality of 8).

The agent’s behavior is controlled by a continuous-time
recurrent neural network (CTRNN) with the following state
equation:

τiẏi = −yi +
N∑
j=1

wjiσ(yj + θj) + Ii (1)

where y is the state of each neuron, τ is its time constant,
wji is the strength of the connection from the jth to the ith

neuron, θ is a bias term, σ(x) = 1/(1+ e−x) is the standard
logistic activation function, and I represents an external in-
put (e.g., from a sensor). States were initialized to 0 and cir-
cuits were integrated using the forward Euler method with
an integration step size of 0.1.

A real-valued genetic algorithm was used to evolve
CTRNN parameters. A population of individuals was main-
tained, with each individual encoded as a length M vector
of real numbers. Initially, a random population of vectors
was generated by initializing each component of every in-
dividual to random values uniformly distributed over the
range ±1 (they could not move outside this range during
evolution). Individuals were selected for reproduction us-
ing a linear rank-based method. Children were generated
by either mutation or crossover with an adjustable crossover
probability. A selected parent was mutated by adding to
it a random displacement vector whose direction was uni-
formly distributed on the M-dimensional hypersphere and
whose magnitude was a Gaussian random variable with 0

mean and variance σ2 (for details, see Slocum et al. (2000)).
Search parameters in the range ±1 were mapped linearly
into CTRNN parameters with the following ranges: connec-
tion weights ∈ [−5, 5], biases ∈ [−5, 5], and time-constants
∈ [1, 2]. The parameters of the neural circuit were bilaterally
symmetric.

For the first task, the embodied agent must be capable of
visually discriminating between objects of different sizes,
catching smaller circular objects while avoiding the larger
circular objects. Objects fell straight down with an ini-
tial horizontal offset in the range ±25 and a vertical veloc-
ity of 3. The circular objects had a diameter in the range
[20, 40]. Accordingly, the performance measure to be maxi-
mized was:

fA =
1

T

T∑
i=1

pi (2)

where pi = 1−di for smaller circular objects and pi = di for
larger circular objects, di is the horizontal distance between
the centers of the object and the agent when their vertical
separation goes to zero on the ith trial (clipped to MaxDis-
tance and normalized to run between 0 and 1), T is the total
number of trials, and D is the maximum distance. The rea-
son that di was clipped to D was to prevent the avoidance of,
for example, larger circles by large distances from dominat-
ing the fitness at the expense of accuracy in catching smaller
circles. A total of 24 evaluation trials were used during evo-
lution, uniformly distributed over the range of horizontal off-
sets.

For the second task, the embodied agent must become
sensitive to the relationship of its own body to its surround-
ings and it must be able to perceive the actions that this
environment affords. We evolved agents that could accu-
rately distinguish between passageways and obstacles in a
falling wall, passing through openings wide enough to ac-
commodate their bodies while avoiding openings that were
too narrow. Walls consisting of two squares of width 20 sep-
arated by an aperture whose width was in the range [20, 40]
dropped from above with a vertical velocity of 3 and a hor-
izontal offset of ±25 relative to the agent. Accordingly, the
performance measure to be maximized was:

fB =
1

T

T∑
i=1

pi (3)

where pi = 1−di for an aperture wide enough for the agent
to pass through and pi = di for an opening too narrow for
the agent to pass through, di is the horizontal distance be-
tween the centers of the object and the agent when their ver-
tical separation goes to zero on the ith trial (again clipped to
MaxDistance and normalized to run between 0 and 1), T is
the total number of trials, and D is the maximum distance.
A total of 24 evaluation trials were used during evolution,
uniformly distributed over the range of horizontal offsets.
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Figure 2: Agent and tasks set up. (A) Agent. Sensory neurons (blue) are interconnected to interneurons (black), then which
are in turn connected to the two motor neurons (red). The interneurons are recurrently interconnected. The nervous system is
bilaterally symmetric. (B) Object-size discrimination task. The agent moves horizontally while a circle of different size falls
from above. The rays of the agent’s proximity sensors are shown in dashed blue. (C) Perceiving affordances task. The agent
moves horizontally while a wall with an adjustable aperture falls from above.

Statistical analyses of the neural activity, namely mutual
information and transfer entropy, were estimated using the
infotheory Candadai and Izquierdo (2019) package. Both
metrics were estimated using an average shifted histogram
based binning of the normalized activity with 100 bins along
each dimension.

Part I: Generating a Multi-Functional Agent
In order to study the relationship between the statistical
functional connectivity inferred from neural activity and
the actual functional connectivity from lesion analysis, we
first need an agent that is capable of performing multi-
ple tasks. Thus, our first step was to generate an ensem-
ble of successful multi-behavioral embodied dynamic recur-
rent neural systems. The agents were tasked with solving
two minimally-cognitive tasks Beer (1996); Slocum et al.
(2000): an object-size discrimination task and a perceiv-
ing affordances task. We performed 100 evolutionary runs
with different random seeds (Fig. 3A). Agents are evolved
to solve both tasks. During each fitness evaluation, an agent
is tested first on the 24 evaluation trials of the object-size
discrimination task and then on 24 evaluation trials of the
perceiving affordances task. The performance is calculated
for each task according to the defined fitness function (see
Methods) and multiplied together to produce a score. After
1000 generations, many of the runs found successful con-
figurations of the neural circuit that could solve the multi-
ple tasks. A histogram of the final performance of each of
the best agents in each run is shown in Fig. 3B. At least
three of the runs achieved near-perfect performance on the
fitness evaluation. As far as we are aware, this is the first re-
port of agents successfully evolved for multiple minimally-
cognitive tasks.

Before setting out to analyze one of these agents in some
detail, it is important that we examine the generality and

robustness of these solutions across a wider range of be-
havioral conditions. Our goal is to use this further exam-
ination to select which circuit to analyze in detail. We
based our selection on which of the evolved agents solved
both tasks equally well and also generalized well across a
wider range of conditions for both tasks. There were three
key changes with respect to the original fitness evaluation:
(a) The step size of integration is made smaller (from 0.1 to
0.01). (b) The range of object sizes and aperture sizes was
drawn from [20,40] in steps of 0.05 instead of 1. (c) The
starting position was drawn from [1,5] in steps of 0.01. Al-
together, this corresponds to 200000 trials for the generaliza-
tion performance analysis (up from 100 trials per evaluation
for the fitness function). In Figure 3C, we show the per-
formance of each of the final circuits from each of the 100
evolutionary runs in each of the two tasks. As expected, the
same three circuits that performed best in the fitness eval-
uation also generalized best across the wider range of con-
ditions and are thus most appropriate for further examina-
tion. The best performing agent obtained a near-perfect per-
formance 0.977 on the object-size discrimination task and
0.976 on the perceiving affordances task. We focus on this
agent for the remained of this paper. What is the behavior
and neural activity of this agent? In Figure 4, we show the
behavior and neural activity for this best agent across the
two different tasks. Traces are colored according to whether
the agent has to catch or avoid the object or pass through
the aperture or avoid it. We use these neural traces for the
functional connectivity analysis ahead.

Part II: Comparing Functional Connectivities
Our second step is to analyze how well the insights gained
from the statistically-inferred functional connectivity help
us understand the actual functional connectivity of the cir-
cuit, as determined through informational lesion analysis.
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Figure 3: Generating a multifunctional agent using an evolu-
tionary algorithm. (A) Best fitness over generations for hun-
dred evolutionary runs, color coded by final fitness. (B) Rel-
ative frequency of the final fitness for each of the evolution-
ary runs. (C) Generalization performance for each of the
final solutions on the two tasks: object-size discrimination
and perceiving affordances.

In order to do this, we first characterize the node func-
tional connectivity using traditional methods from network
neuroscience (first column, Fig. 5). Specifically, we focus
here on estimating the functional connectivity between pairs
of neurons using Pearson’s correlation, mutual information,
and transfer entropy (Candadai and Izquierdo, 2019). We
perform the analysis using the neural traces generated from
each of the two tasks (Fig. 4B). From the magnitude of each
of these measures, we establish the degree of involvement
of each pair of neurons to the task. That is, pairs of neurons
with little or no correlation in their activity during a task are
deemed unlikely to be involved in that task; whereas pairs of
neurons with strong correlation (either positive or negative)
are deemed likely to be involved in the task.

Second, we characterize the two-way and one-way causal
pairwise function of the edges using informational lesions
(second column, Fig. 5). For the two-way informational
lesions, we clamp the interchange of activity between two
neurons in both directions, have the agent perform the task
at hand, and measure the deficit in performance. We do this
for a large range of potential basal outputs for each neuron
in the pair (from an output of 0 to 1 in steps of 0.01 for each
neuron), and we select the smallest deficit generated. The
two-way lesions is used as the ground-truth for the nFC gen-
erated using Pearson’s correlation and mutual information,
because both provide only symmetric information between
two neurons. For the nFC calculated using transfer entropy,
which is directional, we perform a one-way information le-
sion analysis. The method here is the same as the previous
one but it is perform for each individual connection in the
circuit.

Finally, we compare the difference between the estimated
involvement of each of the pairs calculated using nFCs to
the ground-truth functional involvement characterized dur-
ing the lesion studies for the two tasks (third column, Fig. 5).
In these plots, each point represents a pair of neurons in
the circuit and the different colors represent the different
tasks, with the gray line connecting the same pair of neu-
rons across different tasks. Points in the upper left corner
represent unimportant connections for the task that are well
captured by the statistical measurements. That is, connec-
tions between neurons that do not have much correlation
and whose physical disruption does not cause a noticeable
effect on task performance. Points in the bottom right cor-
ner represent important connections for the task that are also
well captured by the statistical measurements. That is, con-
nections between neurons that have a strong correlation and
whose physical disruption causes a noticeable effect on task
performance. Points in the upper right triangle represent
points that are not causally important to the task, but that
come up as important in the statistical measurements. Points
in the bottom left triangle represent points that are causally
important, but that do not show up as relevant in the statis-
tical measures. The distance between the yellow and blue
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Figure 4: Behavior and neural activity across both tasks. (A and B) Behavioral traces during object-size discrimination and
perceiving affordances tasks, respectively. Relative position of the agent in relation to the center of the falling objects over time.
Traces are color coded depending on whether they need to be caught or avoided. In the object-size discrimination task, trials
with the smaller circles are shown in yellow and traces with the larger circles are shown in blue. In the perceiving affordances
task, trials with the smaller apertures are shown in green and those with the larger apertures are shown in red. (C and D) Neural
activity from the seven recurrently interconnected interneurons driving behavior for each of the two tasks. Color coding follows
the same pattern used for panels A and B.

points shown by the gray line represent the functional varia-
tion across tasks.

We highlight here four key qualitative insights gained
from this analysis (Fig. 5). First, across all levels of analysis,
the functional connectivities are different depending on the
task being performed. This is true across all levels of anal-
ysis, including the informational lesion studies. This shows
how the same nervous system, even without neuromodula-
tion and synaptic plasticity, can have functionally different
configurations, based on task engagement alone. This high-
lights the importance of studying nervous systems in the
context of behavior. Second, the one-way lesion analysis
reveals major differences in the directionality of interactions
between components in the circuit. This, of course, high-

lights the inherent limitations of the two more established
methods for estimating functional connectivity due to their
symmetrical treatment of the relationships, Person’s corre-
lation and mutual information. Third, as can be appreciated
by even a mere cursory look at how much darker the range
of shades of the maps in the nFC column are in relation to
those in the aFC column, all of the statistical measures over-
infer the importance of the relationship between the vari-
ables relative to the actual role that those relationships play,
as determined by the information lesions. As can be seen
more easily in the third column, across all three measure-
ments, lesions to the majority of connections have little or
no effect on the behavior, despite the statistical measures in-
ferring high levels of correlation, mutual information, and
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Figure 5: Comparing insights gained from the statistical measures of node functional connectivity based on neural activity to
the ground-truth characterization from informational lesions analysis across tasks. (A) A comparison of the nFC using Pear-
son’s correlation to the aFC using two-way lesions. (B) A comparison of the nFC using mutual information to the aFC using
two-way lesions again. (C) A comparison of the nFC using transfer entropy to the aFC using one-way lesions. Across the first
two columns, the matrix represents the pairwise interactions between the seven interneurons in the circuit. The shade of each
cell represents the level of involvement of that pair in each task. The lighter the color represents little or no involvement, where
white corresponds to no correlation, no mutual information, no transfer entropy, and no deficit in performance after a two-way
lesion, or a one-way lesion, respectively. The darker shades represent increasing involvement, where black corresponds to the
maximum level of correlation, mutual information, and transfer entropy for the statistical measurements, and a complete dis-
ruption in the performance of the task in the case of the two-way and one-way lesions. The last column depicts the comparison
between statistical inference (nFC) and ground-truth (aFC). Each point represents a pair of neurons in the circuit (blue for the
perceiving affordances task and yellow for the object-size discrimination task). The gray line connecting two dots represents
the same pair of neurons across the different tasks. On the y-axis, the two-way and one-way lesions are defined such that the
value represents the deficit in performance. So a performance of 0.95 after a lesion to the connection between neurons X and
Y means that this link was not very important to the functioning of the circuit; on the other hand a resulting performance of 0.5
after a lesion would indicate that the connection between those pair of neurons is extremely important to the functioning of the
circuit. See main text for interpretation of the results.
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transfer entropy between them. Although this is expected
to some degree, the full effect can be quantified here con-
cretely. Fourth, despite the tendency for statistical measures
to over-infer causality that we just discussed, our analysis of
this agent allows us to see some clear examples of connec-
tions that are causally important that do not show up in the
statistical measurements. These are, of course, much less
common. They are particularly salient in the Pearson’s cor-
relational analysis and in the transfer entropy analysis.

Discussion
In this paper, we set out to answer the question: What does
functional connectivity tell us about the behaviorally func-
tional connectivity of a multifunctional neural circuit? We
used a computational neuroethology approach to begin to
address this theoretical challenge. We evolved a dynamical
recurrent neural network to be capable of performing mul-
tiple tasks, and then we analyzed its neural activity using
traditional network neuroscience tools. While our analy-
ses were performed on a neuron-to-neuron basis and func-
tional connectivity is typically performed across brain re-
gions, CTRNNs are universal function approximators and
can model neural activity in brain regions thus enabling our
analyses to scale. We then compared the results against a se-
ries of informational lesions as a way to reveal their degree
of approximation to the ground-truth. Overall, our analysis
reveals a large gap between the insights gained from statis-
tical inference of the functionality of the circuits based on
neural activity and the actual functionality of the circuits as
revealed by mechanistic interventions.

It is important to note that the measures of functional con-
nectivity being investigated in this paper are measures of a
statistical relationship. They are neither measures of causal
effect nor of how such a statistical relationship might relate
to interventional impact on a task. However, these statistical
methods are often used as tools to make claims about the re-
lationship between neural activity and behavior. The goal of
this paper is to examine the degree to which those measures
of a statistical relationship estimate causal effect on behav-
ior, as determined in this case through the interventional im-
pact on task function. While there has been some work that
had attempted to answer this question in the past (Ay and
Polani, 2008; Lizier and Prokopenko, 2010; Chicharro and
Ledberg, 2012), that work considered only neural circuits in
a vacuum; here we extend this work to consider functional
and complete brain-body-environment systems.

It is relatively straightforward to understand why a con-
nection between two neurons may have a high correlation,
a high mutual information, or a high transfer entropy, and
yet not have a high interventional causality: The two neu-
rons can be correlated for reasons other than their connec-
tion to each other. The opposite is also straightforward to
understand (i.e., why a connection between two neurons
may have a low correlation, low mutual information, or low

transfer entropy and nevertheless have a high interventional
causality): The transformation of information between the
two neurons may be such that the two neurons do not have
similar informational profiles and yet they are still causally
linked. Finally, it is only to the degree that the two neu-
rons are causally linked, that lesioning the connection will
have some effect on functional performance. In other words,
a causal link is necessary for function, but not sufficient.
There may be some connections that are causally linked, but
that do not contribute to the circuit’s function. Finally, it
is important to note that all analyses in this work was done
on dyads and the statistical and interventional methods alike
would benefit from polyadic analysis.

Future Work
We have three main directions of future work. (1) In this
paper, we deliberately focus our analysis on a single circuit
as a way to begin to gather intuition. One direction for fu-
ture work is to perform a similar analysis across an ensem-
ble of successful but different solutions, as a way to uncover
the more general principles. This will involve examining
methods for quantifying how close the different statistical
methods approximate the causal relationships. (2) The neu-
ral network under consideration in our current analysis was
fully recurrent. We would like to study the degree to which
the structural connectivity of the neural circuit affects the
usefulness of the functional connectivity. One direction for
future work will be to systematically study the effect that the
structure of the connectivity of the circuit has on the perfor-
mance of the statistical measures of functional inference. As
part of this analysis, we also plan to study structures that are
grounded in available connectomes. (3) Finally, we deliber-
ately focused our analysis on the most popular measures of
node functional connectivity. One additional direction for
future work is to study the wider range of measurements
used in the network neuroscience literature. Crucially, we
would like to use further refined versions of the compu-
tational neuroethology approach proposed here as an ideal
testground for generating novel variations of statistical mea-
surements to gain insights on the functional connectivity of
these complex neural circuits.
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