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Lifetime learning, or the change (or acquisition) of behaviors during a lifetime, based
on experience, is a hallmark of living organisms. Multiple mechanisms may be involved,
but biological neural circuits have repeatedly demonstrated a vital role in the learning
process. These neural circuits are recurrent, dynamic, and non-linear and models of
neural circuits employed in neuroscience and neuroethology tend to involve, accordingly,
continuous-time, non-linear, and recurrently interconnected components. Currently, the
main approach for finding configurations of dynamical recurrent neural networks that
demonstrate behaviors of interest is using stochastic search techniques, such as
evolutionary algorithms. In an evolutionary algorithm, these dynamic recurrent neural
networks are evolved to perform the behavior over multiple generations, through
selection, inheritance, and mutation, across a population of solutions. Although, these
systems can be evolved to exhibit lifetime learning behavior, there are no explicit
rules built into these dynamic recurrent neural networks that facilitate learning during
their lifetime (e.g., reward signals). In this work, we examine a biologically plausible
lifetime learning mechanism for dynamical recurrent neural networks. We focus on
a recently proposed reinforcement learning mechanism inspired by neuromodulatory
reward signals and ongoing fluctuations in synaptic strengths. Specifically, we extend
one of the best-studied and most-commonly used dynamic recurrent neural networks
to incorporate the reinforcement learning mechanism. First, we demonstrate that this
extended dynamical system (model and learning mechanism) can autonomously learn
to perform a central pattern generation task. Second, we compare the robustness and
efficiency of the reinforcement learning rules in relation to two baseline models, a random
walk and a hill-climbing walk through parameter space. Third, we systematically study
the effect of the different meta-parameters of the learning mechanism on the behavioral
learning performance. Finally, we report on preliminary results exploring the generality and
scalability of this learning mechanism for dynamical neural networks as well as directions
for future work.

Keywords: CTRNN, dynamical neural networks, reinforcement learning, neuromodulatory reward, dynamic
synapse, lifetime learning
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1. INTRODUCTION

Adaptive behaviors, or beneficial changes to behavior over time,
are a hallmark of living organisms. Partly, these behaviors
are changed or acquired over evolutionary time, through the
evolution of the body and the basic structure of the nervous
system, but also partly based upon experiences during individual
lifetimes. Under simple enough circumstances, behaviors may
appear instinctive—an organism responds in a predictable way to
a given stimulus as a result of its evolved characteristics. However,
most, if not all, living organisms can change their behavior
during their lifetime based on experience (Sasakura and Mori,
2013; Dussutour, 2021; Shapiro, 2021). As a result, many living
organisms can adaptively improve their performance on some
behavioral tasks during their lifetime. Despite several decades of
study, how learning arises within an organism’s lifetime is still
poorly understood (Sweatt, 2016; Schaefer et al., 2017). Although
learning during a lifetime is widely considered a job performed by
the synapse, its exact contribution remains obscure (Mozzachiodi
and Byrne, 2010; Humeau and Choquet, 2019). Despite the
undisputed importance of synaptic plasticity for brain function,
computational models of embodied and situated neural systems
have not yet produced autonomous lifetime learning by merely
including synaptic plasticity.

The theoretical study of learning in neural models outside of
computational neuroscience has had a great impact within its
exploration of the space of possibilities (Abbott, 2008; van Ooyen,
2011; O’Leary et al.,, 2015). There has been impressive progress
on training increasingly large artificial neural networks to solve
certain tasks by relying on the use of gradient-descent methods,
like backpropagation (Bengio et al, 2015). These methods
require time-invariant and differentiable neural networks, which
has allowed the machine learning community to thrive while
focusing primarily on feedforward discrete neural networks
(Glaser etal., 2019). Biological neural circuits are, however, highly
recurrent, non-linear, and dynamic, and hence undifferentiable
(White et al., 1986; Franconville et al., 2018; Litwin-Kumar and
Turaga, 2019). While dynamic recurrent neural networks have
emerged as powerful and versatile tools of neuroscience research
(Harvey et al., 2005; Barak, 2017), how they can be made to
acquire behaviors through rewards is still poorly understood
(Beer and Barak, 2019).

In the field of computational neuroscience, most work focuses
on the neural activity patterns produced by either biophysical
models of a single neuron, small neural circuits, isolated regions
of a nervous system, or large-scale models that reproduce certain
statistical properties of their biological counterparts (Gerstner
et al., 2012; Kim et al., 2014; Brunel, 2016; Williamson et al.,
2019; Vyas et al., 2020), with and without synaptic plasticity.
By focusing on neural activity in a vacuum, without taking into
consideration the interactions of the nervous system with the
organisms’ body and its environment (Chiel and Beer, 1997;
Tytell et al, 2011; Krakauer et al., 2017), the study of the
relationship between synaptic plasticity and lifetime learning has
been limited in scope or altogether absent.

In the fields of computational neuroethology, evolutionary
robotics, and artificial life, there have been efforts to embed

and situate nervous systems within bodies and environments.
The nervous systems are modeled as dynamic recurrent neural
networks, and the goal is study how these systems can generate
adaptive behaviors of interest (Nolfi and Floreano, 2000; Harvey
et al, 2005; Beer and Chiel, 2008; Bongard, 2013; Doncieux
et al., 2015). However, because the goal of much of this work
is to better understand how behavior is generated by these
complex brain-body-environment systems, it has focused on the
use of evolutionary algorithms and other similar stochastic search
algorithms to find the parameters of the dynamical recurrent
neural networks that produce the behavior of interest (Beer
and Gallagher, 1992; Lehman and Miikkulainen, 2013; Stanley
et al., 2019). Therefore, the learning in these systems occurs
over evolutionary timescales; through a process of selection,
inheritance, and mutation; not through dynamic changes in the
parameters of the artificial organism as a result of experience
during their lifetime. There has been a relatively large body of
work within this field that has provided mechanisms of plasticity
to the neural circuits and used evolution to fine-tune their
properties (for a review, see Soltoggio et al., 2017). However, most
of this work has focused on demonstrating that the evolutionary
algorithm can find plasticity mechanisms that allow the neural
circuit to perform a behavior of interest. Although it is important
to understand that neural circuits can cope with plastic synapses
and still produce behaviors robustly without disruptions; the
focus has not been on demonstrating that these plasticity rules
allow the dynamical recurrent neural circuits to learn new tasks
based on experience. Importantly, by evolving neural circuits
to produce not a particular behavior but to perform well on
a learning task, there have been several demonstrations that
learning behavior can be produced with and without synaptic
plasticity (Yamauchi and Beer, 1994; Phattanasri et al., 2007;
Izquierdo et al., 2008). Despite great progress in linking behavior
to neural and synaptic dynamics, we do not yet have a good
understanding of how dynamic recurrent neural networks can
be coupled with synaptic plasticity mechanisms to produce
learning behavior.

Recently, Wei and Webb (2018a,b) proposed a biologically-
plausible reinforcement learning rule that can be applied
to non-differentiable neural networks. Most non-differentiable
neural network models assume static activation functions and
synaptic weights during their simulation, with an optimization
process, frequently an evolutionary algorithm, making changes
between simulations. In contrast, the learning rules in their
work are inspired by the dynamics in neurons’ post-synaptic
regions, which include the trafficking of neurotransmitter
receptors. This trafficking results in fluctuations in the effective
synaptic strengths of the network. Modeling this allows
the exploration of adjacent values for synaptic weights,
just as they are explored in biological neural circuits. A
global reward signal is used as a control mechanism, which
allows a networks synaptic weights to change with reward
through an explore/exploit strategy, wherein the exploration
becomes wider with negative rewards and narrower with
positive rewards. The idea of a global reward (or reward
prediction error) signal is common within reinforcement
learning and has been hypothesized to be encoded by
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neuromodulatory signals such as dopamine (Glimcher, 2011;
Dayan, 2012).

Our goal here is to extend the original work on these
biologically-plausible reinforcement learning rules by applying
them to a family of dynamical recurrent neural networks
called continuous-time recurrent neural networks (CTRNNSs)
that have been studied in great detail (Beer, 1995, 2006)
and that have been employed extensively in the evolutionary
robotics, adaptive behavior, and computational neuroethology
literature (Beer, 1997; Blynel and Floreano, 2002; Izquierdo and
Lockery, 2010). We first develop a simple pattern generation
task and examine in some detail the learning dynamics in a
single successful simulation of lifetime learning. Next, we repeat
the learning experiment multiple times in order to compare
the performance of the reinforcement learning rule to two
standard ways to search a space: hill-climbing and random
search, with the expectation that the lifetime learning mechanism
will perform better than random search and potentially as
good as hill-climbing. Then, we examine the performance of
the learning method systematically in relation to the initial
distance the solution is away from a successful solution. The
success of the reinforcement learning rules are dependent upon
multiple metaparameters that play important roles. To gain
insight into these roles, we systematically vary a few key
metaparameters of the reinforcement learning rules to report on
their relative efficacies. Finally, we also expand the fluctuation
mechanism beyond the synaptic strengths to include fluctuations
of the biases of the neurons to demonstrate that these same
reinforcement learning rules can be successfully applied more
ubiquitously to additional parameters of the dynamical system.
This also allows us to test the ability to train networks of
different sizes from random starting configurations, enabling us
to present preliminary results regarding the scalability of the
learning rules.

In what follows, we will first explain the neural model, training
strategies, and task used to conduct experiments. Next, we will
report on results evaluating the reinforcement learning rules and
comparing them to our baseline models. This will then lead into
reporting on a systematic study of metaparameters as well as
our findings in relation to scalability and generalization. Finally,
we discuss the major findings and implications of these results
and then suggest several fruitful directions for future research in
this area.

2. METHODS

This section introduces the neural model, reinforcement learning
rules applied to the neural model, the task, baseline learning
strategies, performance measures, and experimental setup. We
start by introducing the dynamical CTRNN model. Next, we
explain how we adapted the previously published model to
create the Reinforcement Learning CTRNN (RL-CTRNN). We
explain the rhythmic pattern generation task used to measure
learning ability and then describe the baseline learning strategies
used for comparison with the RL-CTRNN. After exploring the
learning strategies, we provide further details on how we calculate

the reward signals for the RL-CTRNN. Finally, we explain the
approach to conducting experiments systematically.

2.1. Dynamic Recurrent Neural
Network Model

In this work, we extend the application of the reward-modulated
plasticity rules to Continuous-Time Recurrent Neural Networks
(CTRNNS) (Beer, 1995), where each neuron’s state is governed by
the canonical state equation:

N
wji=—yi+ Yy _wio (y+6)+1 (1)
j=0

where y; is the state of each neuron, 7; is the time constant, w;;
is the weight of the connection between the jg, and iy, neuron, 6;
is a bias term, I is the injected current (which, for this work, is
fixed at zero and removed from subsequent equations) and o is
the standard logistic activation function:

1
oW = T @
While CTRNNSs can, in principle, approximate the trajectories of
any smooth dynamical system (Funahashi and Nakamura, 1993),
in this work, we start by considering the weights of edges as
analogous to synaptic strengths in correspondence with the prior
work using the reinforcement learning rules. However, we also
present alternative interpretations in the discussion and expand
upon the parameters adjusted as well.

2.2. Reward-Modulated Plasticity

The model put forth by Wei and Webb (2018a) focuses on
a dynamic model of synaptic strength modulated by reward.
Crucially, here we generalize this model of plasticity to be
applicable to any parameter of the neural circuit more generally:

k
t — T
p(t) = Asin <2nTZk°k> +C if Tx <t < Tk (3)

where p(t) represents the parameter of interest, either a weight
(wjj) or a bias (6;), t is the current time, A is the amplitude
of the parameter’s fluctuation, T} is the kth period length, and
C is the center (“true center”) of parameter’s fluctuation. As in
Wei and Webb (2018a), when a parameter’s fluctuation crosses
its center while increasing, a new period is calculated using a
Gaussian variable:

Ti ~ N, ) (4)

where p is the center of the random distribution and w? is the
variance. The fluctuation center C is updated according to the
reward and the current value of the fluctuating parameter:

C=alp(t) = O R(®) ©)

where « is the learning rate and R(t) is the reward at time ¢. This
results in the “true center” of a parameter being moved in the
direction of the current displacement (whether the fluctuation
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above/below center) when reward is positive and in the opposite
direction when the reward is negative. If the reward is precisely
zero, the fluctuation center does not shift. The fluctuation
amplitude A, is updated according to:

A= —BR() (6)

where £ is the convergence rate. This enables the explore/exploit
strategy: when the reward is positive, the amplitude of the
fluctuation shrinks; when the reward is negative, the amplitude
of fluctuation grows to explore a wider space. If the reward is
precisely zero, the amplitude does not change.

2.3. Rhythmic Pattern Generation Task

Rhythmic patterns are one of the most commonly studied neural
activities in the neuroscience literature, involved in a wide
range of behaviors, from breathing to walking. To evaluate the
effectiveness of the reinforcement learning rule on the dynamical
recurrent neural circuit, we trained the circuits to produce
rhythmic patterns. The performance on the task was measured
by calculating the average change in neural output over time.
The specific calculation of a circuit performance is given by
the equation:

N ) ot
P(t)=2|0](t)N70j(t)| (7)

j=1

where P(t) is the performance at time f, N is the number
of neurons, 0j(t) is the output of neuron j at time f; and
0j(t") is the output of neuron j at the previous time step.
We consider the output of a neuron as: o; = o(y; + 6)).
The task is performed without any sensory input (i.e., central
pattern generator). The only way a circuit can maximize this
function is by increasing and decreasing its outputs repeatedly;
moving in only one direction will result in saturation and
therefore stagnation in the fitness. As a result, optimizing the
function results in oscillatory behavior. This task does not require
oscillating at any specific frequency. However, given the way
we define performance, larger amplitudes and faster frequencies
result in increased performance.

2.4. Training Strategies

It is hard to gauge the effectiveness of a lifetime learning model
when it is the only lifetime learning model that operates on a
dynamical recurrent neural network. In order to examine of how
well this lifetime learning mechanism searches the parameter
space of the system, we compare it against two traditional search
methods: a random walk search and a hill-climbing search.
Although these two methods are not lifetime learning models
(i.e., they are not a form of continuous, online training), they
do provide a means of sampling the nearby parameter space of
a given configuration. For the hill-climbing strategy, the relative
increase in performance can be used to guide the search process.
Our expectation for a lifetime learning mechanism is that it
should be more efficient than a random walk, and at least as
efficient as a hill-climbing search. This is based on the idea that
as the system explores regions of parameter space that produce

better performance, the lifetime learning mechanisms should
guide the system toward those regions.

2.4.1. Random Walker

As a baseline comparison, we use a random walk to search
through the parameter space of synaptic weights from a random
starting location. In every iteration, a small random number
chosen from a uniform distribution is used to adjust each of the
current weights of the system. The fitness of the new modified
circuit is evaluated and recorded, and then a new random
step is taken and the whole process is repeated. Although a
random walker does not have a memory of where it found the
best location, we report on the highest fitness value obtained
throughout the random walk. The only parameter that affects the
search in a random walk is the size of the step.

2.4.2. Hill Climber

A hill climbing search operates similarly to a random walk. From
a starting configuration, a random step is taken in parameter
space. Unlike for the random walker, in a hill climbing search,
the step is only consequential if the new configuration of the
circuit performs better than or equal to the previous location
of the circuit in parameter space. If the new point in parameter
space performs worse than the original point, then a step in a
new random direction is generated, and this process is repeated.
As with the random walker, the only parameter that affects the
search is also the size of the step.

2.5. Fitness and Reward Functions

In traditional approaches to training dynamic recurrent
neural circuits, such as evolutionary algorithms, a single final
performance on the task is provided as a fitness metric. Since such
learning strategies do not explore the parameter space during
evaluation, this is the only guidance they require. In contrast,
for a reinforcement learning mechanism, the neural circuit must
receive a reward signal based on changes in performance over
time. After significant exploration of possible reward functions,
we found that taking the difference between the instantaneous
performance and a running average performance was effective.
The reward function is defined as:

R(t) = Py(t) — P(t) ®)

where R(t) is reward at time ¢, P,(¢) is the running average at t,
P(t) is the performance at t. The running average performance is
calculated by taking the average value of the performance in some
recent number of steps, which we called the sliding window size:

z .
P(t —j)
Plt+ =) ——= ©)
j=1
where Z is the sliding window size, which determines how
much of the recent history is included in the running
average calculation.

2.6. Evolving and Perturbing Solutions
In order to test the learning ability of the RL-CTRNN to perform
the task, we wanted to ensure the task was solvable. The ability
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of the network to solve the task is contingent on the biases in
addition to its synaptic weights. Thus, in order to be sure the
task was solvable via changes in synaptic weights alone, we first
evolved a high-performing solution using a Microbial Genetic
Algorithm (Harvey, 2011). We then perturbed the weights of that
high-performing solution in order to create different challenges
depending on how much and how many weights were perturbed.
For simplicity, we also fixed all time constants to be 1.0, since
they do not change the actual dynamics of the network, just the
timing scale. For consistency, when comparing different groups,
we always used the same sets of starting configurations.

3. RESULTS

In this section, we report on the results of a series of experiments
to investigate the learning characteristics of the RL-CTRNN.
We begin by looking in detail at a specific learning trajectory
of a given RL-CTRNN. We then repeat the learning process
multiple times from a common starting location and compare
to repeated learning trials using alternative training strategies.
After this we explore the ability of the RL-CTRNN to learn
from a variety of locations in parameter space. Next we offer
insight into the roles that different metaparameters play and how
they break down. Finally, we report preliminary results on the
scalability and generalization of the learning rules for training
dynamical systems.

3.1. Result 1: RL-CTRNN Can Solve the

Task

We have found that the RL-CTRNN is capable of solving the
task when it is both close to and far from potential solutions.
Figures 1, 2 show how the underlying CTRNN parameters
change as well key controlling variables in the RL rules.
Figure 1 shows the RL-CTRNN learning to oscillate when
close to possible solutions. Figure2 shows the RL-CTRNN
learning to oscillate when significantly far away from possible
solutions. In both cases, after an initial period of 100 s to allow
transient dynamics to dissipate, the network switches back and
forth between exploration and exploitation until arriving at a
high-performing solution.

3.2. Result 2: Comparing the RL-CTRNN to
Baseline Approaches

The first major result of our experimentation was the
demonstration that our RL-CTRNN model can successfully
solve the task under certain constraints. However, with the
knowledge that it is a largely stochastic process, we wondered
how consistently it could do so. To investigate we decided
to repeatedly test if a RL-CTRNN could learn from the
same starting location. In addition, to assess characteristics of
learning efficiency and robustness, we used our baseline models
for comparison. Figure 3 shows how the individual learning
strategies compare to each other over simulated time.

A direct comparison of which is superior here is not
appropriate because there are a large number of constraints,
metaparameters, and fundamental differences between these

learning strategies. Nevertheless, we tried to make a meaningful
comparison by making the relative rates of exploration similar:
the mutation size of the hill-climber (HC) and random-walker
(RW) is + 8 and the initial fluctuation size is 4 (amplitude
8) for the RL-CTRNN. For reference, when the mutation size
for the HC is set to & 4, the HC learning process is greatly
slowed. When the experiments in Figure 3 continued beyond
time 2,000, eventually all the strategies would arrive at high-
performing solutions. This particular view makes it easier to see
the relative slopes of the different strategies when they are most
clearly separated.

In addition, there are other metaparameters which could be
set to increase the learning efficiency. However, in particular for
the HC and RW these are less meaningful as a comparison to
the RL since they involve very large jumps in the parameter
space (ie., the analogy of a trajectory through parameter
space is lost when mutation sizes are very large, which
tends to help these strategies). In the results presented, the
RW and HC strategies utilize a 10 simulated second fitness
function to determine the performance. The performance for
the RW and HC are depicted on a scale of time based
on how long it takes to evaluate an individual CTRNN
configuration. In contrast, the RL-CTRNN learns online with
a continuous reward signal based on its ongoing performance,
thus it keeps updating throughout the entire duration of
its simulation.

In practice, reducing the simulated time to measure the
performance for the RW and HC to less than 10 s makes the
measure of the performance of the network unreliable. One
concern is that this may result in a network not truly oscillating,
but instead exploiting large initial transient dynamics. In fact,
there are some (rare) cases where this might still occur, but having
some transient dynamics present in the fitness measure is helpful
for guiding the network toward higher performing solutions.
To see a visualization of this, see Figure4, which shows the
difference in a slice of the fitness landscape (of a specific CTRNN
configuration, which we reuse several times), which contrasts
one fitness function including transient dynamics and one which
excludes them.

Another significant difference from the RL-CTRNN is that the
HC strategy is always allowed to start from a consistent state
(initialized to zero), whereas the RL must deal with ongoing
changes to the current state of the neurons in its system,
including potentially challenging ones to recover from. The RL-
CTRNN shows evidence of being robust at dealing with such
challenges. In contrast, when the HC strategy requires the state
to be maintained from the end of one mutation’s simulation to
the start of another (similar to the ongoing process in the RL-
CTRNN), it struggles and in some cases performs worse than
even the RW.

One of the advantages of the RL-CTRNN over the HC learning
strategy is that the fluctuation size, i.e., how much the synaptic
strengths vary over time, is controlled by the reward signal,
meaning it can increase or decrease. This would be equivalent to a
mutation size that can shift over time, much like other processes
such as simulated annealing (Kirkpatrick et al., 1983), in which
an initial exploration phase slowly is shifted toward exploitation.
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performance (dark) are shown in blue. The difference between these two determines the reward. The weight fluctuation (red) eventually decreases and converges. (B)
Synaptic weights centers do not have to shift much, but eventually settle at a high-performing configuration. (C) Neural outputs over time. Initially there are some
changes in output, but not smooth or fast. After 250 s the neural outputs are rapidly and smoothly oscillating. (D) Fluctuating synaptic weights over time. Initially the
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3.3. Result 3: Analysis of RL-CTRNN
Learning From a Variety of Starting

Configurations

Utilizing the same starting configuration from Figure 2, we
decided to do a systematic evaluations of how well the
RL-CTRNN could learn to oscillate from across the entire

synaptic weight parameter space. To do this, we varied the
4 synaptic weights from —16 to 416 in intervals of 4. After
analysis of a variety of factors, we determined that one of
the most predictive factors in the success of the RL-CTRNNs
was their initial distance from the original high-performing
solution. Figure 5 shows that there tend to be a bi-modal split
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FIGURE 2 | RL-CTRNN learning to perform oscillatory behavior from a distance starting configuration. (A) The size of synaptic weight fluctuation repeatedly shrinks as
the performance improves and expands as the performance declines. (B) The synaptic weights centers have to move considerably to find a good combination that
performs well. (C) Neural outputs over time. One neuron’s output is initially fixed and inactive. Gradually both neurons become increasingly active. By time 900 the
neural outputs are rapidly and smoothly oscillating. (D) Fluctuation of synaptic weights over time. Initially the weights are fluctuating +4, but as performance improves
the amplitude shrinks. By time 900, the weights have converged to a steady state. (E,F) Fluctuating synaptic weights trajectories over time. The weight centers
appear to have nearly-linear initial and final trajectories —seemingly guided by the learning rule. The middle portion of the trajectory appears to be less directed, but
eventually the network converges on a high-performing solution.

(Figure 5, 30-40 and 40-50) in performance, with the majority
of networks close to the original solution attaining it and in
the most extreme distance, none of the RL-CTRNNs being
successful. It is likely that even in the farthest distances, that
the RL-CTRNNs could eventually learn to oscillate, but that
the 10,000 simulated seconds provided were insufficient. In fact,
additional analysis of the data indicated even those with a low

final fitness had moved in the direction of high-performing
solutions. Interestingly, there are some starting configurations
that began close to the original (Figure 5, 0-10) known solution,
that ended up having a low fitness. Understanding why this
happens requires a deeper investigation into some of the
metaparameters of the model, which we will investigate and

discuss next.
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calculating fitness.

of the parameter space with intermediate shades of gray that would enable a learner to navigate from the darker regions to the lighter regions. In contrast, on the right
there are large regions of black space which do not have a discernible gradient because there are minimal to zero ongoing oscillatory dynamics measured when

3.4. Result 4: Metaparameter Analysis

A random selected starting location in parameter space most
will almost certainly have a very low initial performance. One of
the metaparameters of the RL-CTRNN is the initial fluctuation
size for the synaptic weights. As the RL-CTRNN adapts and
performance increases, the fluctuation’s amplitude shrinks until
the network converges and stops exploring the parameter space.

This is an inherent challenge for any learning strategy, which
is, “How do I know when to stop learning?” The setting one
provides to the initial fluctuation is effectively an estimate of
how much the network expects to increase its performance from
beginning to end. The effects of varying this metaparameter
can be seen in Figure 6. When its initial fluctuation size is too
small, the RL-CTRNN does not shifts its weights far before
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its fluctuation amplitude shrinks, which limits how far it can
travel. This is because the rate at which it changes depends on
the distance a fluctuating synaptic weight is from its center. In
contrast, when the initial fluctuation is too large, the network
moves quickly, but does not converge quickly enough in a region
of high fitness.

The advantage of a larger initial fluctuation size is the
greater ability to explore the parameter space, however, as
the fluctuation increases in amplitude, the rate at which the
network is “moving” through parameter space increases as well.
A consequence of an increased “speed” through parameter
space is that it is possible to move through a “good" region
of the parameter space so quickly that the network does not
have a chance to slow down rapidly enough to remain in
the “good” region. This “overshooting” appears to be the case
for some of the large values depicted in Figure6 as well
as mentioned earlier (Figure5, 0-10). In particular, despite
appearing to enter regions of high-performance, the network
does not converge.

The rate at which the network increases and decreases
its fluctuation amplitude is the convergence rate, which must
be aligned properly with the fluctuation amplitude if the
“overshooting” problem is to be avoided (see Figure 7). One
reasonable constraint is to set the initial fluctuation size to be
the smallest value which produces a reasonable chance of finding
solutions to a given target problem. Again, this is necessarily
related to the challenge of the particular parameter space of a
given task.

In addition to the initial fluctuation amplitude and the
convergence rate, the period of the oscillations also contributes
to the speed at which the network is moving through parameter
space. If the periods are shorter, then the network moves faster
with the increased risk for overshooting “good” regions of
parameter space, especially as fluctuation amplitude is high.
Figure 8 depicts the impact of adjusting the estimated minimal
period length [estimated based on the variance subtracted from
the mean of the distribution (Equation 4)]. The estimated
maximal period length is set to be double the minimum.

However, there is an inherent trade-off between robust
performance and efficiency with the length of periods. In general,
the shorter the period, the more of the parameter space can be
explored since there are more trajectories through the space.
With the increased speed and efficiency comes the risk of
“overshooting.” Thus, one must be sure that the period is long
enough to allow convergence to a solution, but not so long that
there are not enough trajectories to find a solution. There is
another critical consideration with respect to the periods, which
is that the RL rule depends upon the oscillations of the parameters
being slow enough that when the reward is updated that the
network is still in close proximity to the region of parameter space
that resulted in the highly rewarded behavior (this is consistent
with Wei and Webb, 2018a). For our task, the reward signal is
continuous and thus gives a chance to have a relatively fast period
since the reward can be quickly updated. However, the reward
signal is constantly fluctuating up and down due to the nature of
the oscillating behavior of the circuit (just as the rate of change
slows at the top and bottom of a sine wave), making it difficult for
the network to converge on a solution.

To help address this concern, we found that having a
running average for the performance of the circuit was helpful.
In particular it was useful to compare the instantaneous
performance to the running performance in order to calculate
a reward signal. This is somewhat analogous to the reward
prediction error hypothesized to be provided by dopamine and
commonly used in reinforcement learning (Glimcher, 2011).
In other words, we chose to provide a reward signal to the
agent based upon how much better it is currently doing
than it has recently done. This helps to guide the network
toward increasingly better regions of parameter space or toward
exploration away from worse regions.

The impact of increasing or decreasing the size of this
sliding window can be seen in Figure9. In general, the RL-
CTRNN can learn successfully with a wide range of window
sizes as long as they are sufficiently large. With an increased
window size, the rate at which the running average changes
slow down and since the reward is based on the difference
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FIGURE 6 | Impact of initial fluctuation size on a RL-CTRNN's learning trajectory. Ten runs were conducted for each value of the metaparameter and then aggregated
results are shown. (A) The different initial fluctuation sizes show very different dynamics over time, some converging, some partially converging, and some barely
converging at all. (B) The running average performance stabilizes when the fluctuation size converges toward zero. (C,D) The final locations of the various instances of
the different values of the initial fluctuations are given by X marks and the trajectories of the weight centers are shown with light thin lines of the same color. The larger
initial fluctuations (yellow, green) trajectories end (but don’t converge) in a wide range of end locations, some including the high fitness, but not consistently. The
locations of high-performance are consistent with the white regions (high fitness) of Figure 4 and are where successful solutions ended.

between the instantaneous performance and the running
average performance, the potential for premature convergence
increases as well. This can be seen in 9A and 9B, where
the convergence happens at the same time for window size
15 and 20, but the final performance with window size 20
plateaus early.

3.5. Result 5: Scalability and Generalization
To determine how well the RL-CTRNN learning scales, we
determined that we could test two things. First, we wanted

to expand the RL-CTRNN model to adjust the biases in a
similar fashion to the synaptic weights. Second, we wanted
to see if the network could be trained from a random
starting location, given that the biases were trainable. Figure 10
shows the results of this experiment. To gain a sense of the
challenge of using a single global reward signal to train a larger
number of parameters simultaneously, consider the results in
Figure 11, which shows that all 100 synaptic weights and 10
biases are simultaneously trained using the same single global
reward signal.
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FIGURE 7 | Impact of convergence rate on a RL-CTRNN’s learning trajectory. Ten runs were conducted for each value of the metaparameter and then aggregated
results are shown. (A) All start with an initial fluctuation size of 4, but those with larger convergence rates more rapidly converge and stop moving through parameter
space. (B) The running average performance stabilizes when the fluctuation amplitude converges toward zero, note that the faster convergence does not necessarily
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the trajectories of the weight centers are shown with light thin lines of the same color. (C) is zoomed in on a particularly dense region of final configurations and it is
possible to see how the faster converging solutions did not move as far into the direction of the higher performing runs. In other words, they prematurely converged.

4. DISCUSSION robustness of the RL rules for CTRNNs. Our results demonstrate

that the RL-CTRNN can learn to perform an oscillatory
In this work, we have presented the application of the previously  behavior from a variety of different initial configurations when
published reinforcement learning rules to a neural model given the proper set of values for metaparameters. We also
(CTRNNs) commonly used in computational neuroscience.  provided insights into the ways that extreme values for certain
Previously, CTRNNs have been trained predominantly via  metaparameters disrupt the learning process. In addition to our
evolutionary algorithms. This work demonstrates that the RL  application of proposed learning rules to the CTRNN model, we
rules can successfully be applied to train CTRNNs. We also  have expanded and demonstrated the ability to train additional
provided a baseline comparison to two simple learning strategies ~ parameters beyond synaptic weights (we also trained biases) in
and reported on general characteristics of the efficiency and  dynamical models. Given the ease with which this was done,
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we expect it can easily be applied to additional parameters of  or bias fluctuations as opposed to the much longer and perhaps
dynamical systems. higher quality samples utilized by the HC.

Despite the demonstrated success, there are limitations to This work opens up new possibilities for training CTRNNSs
this initial study, the biggest perhaps being that we only used  specifically, but dynamical systems more generally. As mentioned
a single task, one which is ideally suited for rapid learning in the Section 2, we originally considered the connections
given a continuous high-fidelity performance metric (change in  between nodes in the CTRNN as analogous to synaptic weights,
neural outputs, Equation 7). Our comparison to the HC learning ~ however, CTRNNs can be used to approximate dynamical
strategy is limited in that it has a number of dissimilarities. ~ systems more generally, so there is no reason to limit this rule
However, we can see that the RL is effective at sampling a large  to just synaptic weights. We should expect many biological
number of regions in the parameter space via synaptic weight  processes to include periodic variations at a variety of timescales.
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FIGURE 9 | Impact of running average performance window size (Z in Equation 7) on a RL-CTRNN's learning trajectory. (A) All start with an initial fluctuation size of 4,
the RL-CTRNN struggles to converge when the sliding window size is too short. (B) There appears to be a minimum window size sufficient to allow successful
convergence. (C,D) For the small values of the sliding window size, the trajectories appear to move sufficiently far through parameter space, but have trouble

Given that the RL rules seems to operate well at a variety
of timescales, it seems promising as a potential explanatory
mechanism for additional learning processes in the brain or body
yet to be discovered.

4.1. Future Work

We see several fruitful directions for future inquiry relating
to additional tasks, different types of reward rules, synthesis
with developmental brain/body models, and combination with
evolutionary algorithms.

4.1.1. Tasks

First, we see exciting opportunities to apply the RL-CTRNN
model to a variety of the embodied, embedded tasks that
CTRNNs have frequently been evolved for in the past. This
is also exciting as it offers a chance to test out robustness
and adaptivity via lifetime learning through oblation studies
or additional dynamical tasks. There is also an opportunity to
explore multi-functionality wherein a single controller is tasked
with performing multiple separate tasks. To date, CTRNNs
have been used to investigate multi-functionality through neural
re-use (Candadai and Izquierdo, 2018), but not where the
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FIGURE 10 | Comparing task learning from random starting configurations by network size. Top: The solid lines are mean performances of networks started from 100
random starting locations. Results show that the size 2 networks tend to have a smaller average fitness than the others, but that the rest of the network sizes up to
size 10 all seem to arrive a solution at roughly the same rate, despite have the same metaparameters across all sizes. Bottom: Distribution of running average
performance values at the end of the 10,000 simulated seconds for the 100 networks trained from size 2 to 10.

parameters can change as the tasks are being performed (outside ~ to have potential to train systems which undergo significant

of the neural dynamics themselves). structural change, such as through the addition or removal
of components, whether in a body or a brain. Given this
4.1.2. Reward Rules possibility, we foresee the potential for a developmental

We were impressed with the ability to use a single global rule  process in which a CTRNN, and potentially body, are
to train so many parameters simultaneously. This offers support  3llowed to slowly grow and then converge to an effective

to the idea that separate reward signals could also be used configuration using the fluctuating learning mechanisms
to train different parameters or components of a dynamical  explored in this article.

system. Although not explored yet, there might be advantages

to adjusting the synaptic weights of a CTRNN at a different  4.1.4, Combining Lifetime and Evolutionary Learning

period, amplitude, or convergence rate than the biases of the Increasingly, work combining evolution and lifetime learning
same network. Furthermore, it might be possible to have multiple  mechanisms have been proposed and explored (Todd
reward signals for different tasks such that the network could be ¢t 41 2020; Gupta et al,, 2021) and this offers yet another
trained to perform multiple behaviors simultaneously with mixed opportunity to combine lifetime learning and evolution. The
reward signals controlling the process, potentially at different synergy of these two forms of learning might enable training
timescales. A simple direction to start could be to train a large dynamical systems previously too difficult to train using

RIT‘CTRNN to maximize cl}an.ge. in neural 01,1tput as we did in purely lifetime learning or evolutionary approaches alone.
this work, but to allow each individual neuron’s change in output  This could open more possibilities for modeling work in

to serve as a reward for the incoming synapses to that neuron. computational neuroscience.
This might make it possible to rapidly train all the neurons in the
network to oscillate.

5. CONCLUSION
4.1.3. Developmental Model

Given the seeming universality of the RL rules to train various  Training dynamical, continuous neural networks is often
components of dynamical systems, this learning rule appears  challenging and traditional optimization methods such
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FIGURE 11 | Detailed view of a single run of a size 10 network being trained from a random starting location. (A) After 1,000 s a RL-CTRNN with 10 neurons learns to
oscillate and converges on a high-performing solution. (B,C) A total of 110 parameters are all simultaneously adjusted from the single continuous global reward signal.
(D) Some of the neurons are not changing state, so we know that better solutions exist. However, we did not attempt to optimize any of the metaparameters for the
different size networks. (E-I) The same rules for updating the synaptic weights via a single global reward signal are applied to the biases as well. Surprisingly, the
biases here use the same fluctuation size and fluctuation period metaparameters without requiring any special adjustments.

as back-propagation cannot be applied to these types
of networks. In this article, we applied reinforcement
learning-like rules to attempt to train Continuous-Time
Recurrent Neural Networks to perform oscillatory behaviors.
Results show that with the properly tuned metaparameters,
the learning rules are efficient, robust, and can easily
scale up to training a large number of parameters.
These results suggest a number of exciting areas where
this approach could be applied, which we presented in
the discussion.
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