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Abstract—Scene reconstruction using Monodepth2 (Monocular
Depth Inference) which provides depth maps from a single RGB
camera, the outputs are filled with noise and inconsistencies.
Instance segmentation using a Mask R-CNN (Region Based
Convolution Neural Networks) deep model can provide object
segmentation results in 2D but lacks 3D information. In this
paper we propose to integrate the results of Instance segmen-
tation via Mask R-CNN’s, CAD model Car Shape Alignment,
and depth from Monodepth2 together with classical dynamic
vision techniques to create a High-level Semantic Model with
separability, robustness, consistency and saliency. The model is
useful for both virtualized rendering, semantic augmented reality
and automatic driving. Experimental results are provided to
validate the approach.

Index Terms—Monocular Depth Inference, Instance Segmen-
tation, Scene Reconstruction, Deep Models, Augmented Reality.

I. INTRODUCTION

E seek to infer an informative and robust 3D semantic

model from a single RGB image or set of video frames.
Performing these estimations seems impossible without a
second image or without a stereo system. Yet humans do
possess the capability to learn via navigation and infer not only
depth but accurate and complete model shaping for classes of
objects on a novel scene (Fig. 1).

On one hand, general classical StM (Structure from Motion)
methods require point triangulation from many pictures of
varying angles followed by sparse bundle adjustment [12]
to assemble a scene reconstruction that can then undergo
semantic segmentation. On the other hand, to be able to infer
depth using only a single image would require a large and
varied set of ground truth data to train a deep neural network.
Recent approaches to training such a network using a large real
world dataset have used a self-supervised system. There are
two approaches, taking either synchronized stereo or monoc-
ular video pairs from various scenes to train the monodepth
networks [1]. Monocular video pair training, where an image is
compared to the previously taken image is attractive due to its
simplicity of hardware, but the stereo training methods where
a right image is compared to its left counterpart have more
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Fig. 1. A: Video frame when driving down a street. B: Its High-level Semantic
Model (HLSM). C: Its HLSM Augmented Reality Version.

simplistic depth networks for an increase in the training cost,
with some occlusion issues [1]. Both monocular and stereo
based training are available models for Monodepth2. While
each method has its trade-offs, the overall self-supervised
monodepth approach is a state of the art system.

However, integration of multiple local depth maps created
via a monocular depth inferencing method using Perspective-
n-point (PnP) with Random sample consensus (RANSAC) and
Global Optimization demonstrate the lack of consistency and
noise with Monodepth2. One cannot readily tell where the
cars, pedestrians and roads are by looking at this model,
as shown in Fig. 2. This demonstrates the variance in the
Monodepth2 depth prediction. the backbone of Monodepth2
(DispNet) used synthetic 3D models to train for disparity via
rendered scenes [5]. Self-supervised monocular depth methods
intend on using real images to solve for synthetic versus real
life mismatches, but there is still a gap between self-supervised
monodepth and the synthetic DispNet, as evidenced by the



Fig. 2. Noisy point cloud from SfM based reconstruction.

variance and consistency issues in Monodepth2 prediction.

These inaccuracies and the limitations revealed by trying
to get a scene reconstruction from this approach led us
to the High-level Semantic Model (HLSM). We wanted a
geometrically robust and separable model that would be more
useful for either virtual rendering or autonomous driving, but
still taken from a single lens. We decided to continue using
the Monodepth2 network as our base model with the hope that
we could ultimately use our HLSM in a refinement process
as well as a virtual rendering pipeline for fast semantic depth
predictions.

The HLSM will also have labels on it for the 4 primary
components: the Cars, Road, Sky and Side-walls. The side
walls give us the boundaries beyond which are the myriad
of complex 3D models that often exist outside of the road
environment. This model will have robust 3D shapes of the
pertinent objects such as cars and roads. Having such a model
is useful for resource selective rendering of a virtual scene.
Where certain objects are rendered in lower quality or at a
lower refresh rate to conserve computational expense. As well
as an interactive augmented street scene, with information that
could be useful for disabled people.

II. RELATED WORK
A. Self-Supervised Monocular Depth Inference

Niantic and Toyota are two groups that have made impres-
sive progress in the field of self-supervised monocular depth
inferencing. Niantic’s Monodepth system [1] and the Toyota
Research Institute’s (TRI) Superdepth system [3] both are
SOA monocular inferencing systems. Both use the powerful
DispNet [5] as their backbone. DispNet is a fully convolutional
deep neural network that was created to infer disparity maps
from synthetic 3D scenes and CAD (Computer Aided Design)
models in Blender. [5].

TRI’s Superdepth takes an input image and pushes it for-
ward through the monocular depth network where a depth
prediction is made. That depth prediction is then used to
estimate what the image should look like from the other
camera in the stereo trained system or the previous frame
for the monocular video trained system. Then a series of

Appearance Matching loss, Disparity Matching loss and, for
Niantic, Left-Right Consistency matching loss functions are
used to back-propagate and train the system. [2] [3]. The
Left-Right Consistency matching loss is needed to resolve the
issue of the network learning depth parameters for the opposite
image, thus loosing input image alignment in the final product.

Niantic uses both the left and right images of the stereo
training pair to estimate the depth map and predict the trans-
lated opposite image [2]. TRI only uses one image but uses
a flipped disparity augmentation layer to handle the left-right
consistency issue [3]. TRI Superdepth also uses a Sub-pixel
convolution layer to allow for higher resolution predictions
improving benchmarks. Both models have improved the SOA
KITTI Eigen Test Split Benchmarks, but still have to close the
gap to fully-supervised methods. In this paper we use the pre-
trained Niantic Monodepth2 network out of the box since it
was readily available on github [1], uses a similar architecture
to Superdepth (which we want to study) and is ranked 16th
on the KITTI Eigen Test Split Benchmark. We specifically use
the stereo-1024x320 model.

B. Instance Segmentation

The matterport Mask R-CNN available on github is a widely
used instance segmentation network [6]. It is trained off of the
COCO dataset [19] and based on the Feature Pyramid Network
with a ResNetl01 backbone [14]. The matterport Mask R-
CNN gives very accurate masking for cars and pedestrians
walking on the street. It is however a computationally heavy
process and forbids us from real time processing of the HLSM.
Still, the performance benefits outweigh the computational
expense.

C. 3D Object Detection and Mesh Deformation

Estimating the location of cars in the 3D world, including
their orientation, is necessary for autonomous driving. 3D
bounding boxes can be used to impute canonical 3D object
models. Filder et. al [11] used a deformable cuboid model
to estimate the 3D bounding boxes for the location of cars
from a singular monocular image. In the end of the paper
they augment CAD models into those bounding boxes as
a solely visual representation of the effectiveness of their
methods. However, for more accurate car shape alignment we
can look towards Takeo Kanade’s paper on the subject. There
they trained a Random Forest Classifier to choose vehicle
landmarks, these were then used to create a hypothesis of the
cars position in 3D space via a minimization technique. In
that paper the car can also be deformed to better minimize the
reprojection error. For our paper we will be using a pre-trained
Neural Network from Pirazh Khorramshahi to choose vehicle
landmarks and then will use the PnP method to align the cars
with further steps for shaping [18]. This network was chosen
since it fit our needs of attaining 20 vehicle landmarks and
was available on Github.

III. METHODOLOGY

The HLSM Pipeline comprises the following stages (Fig. 3).
An image is fed into both the Monodepth2 [1] Inference and
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Fig. 3. Left to right shows the multiple stages to get the HLSM.

Mask R-CNN Instance segmentation networks [6] as well
as Pirazh Vehicle Landmark Network [18] to generate its
depth map and car detection mask map, respectively. After
the depth map passes through a de-flicker stage and a SfM
reconstruction stage, the two maps are integrated to generate
a 3D semantic segmentation of road, cars, and other parts
of the scene. Then the models of cars, road, roadside and
sky are combined to create the high-level semantic model.
For demonstration purposes, a clean HLSM depth map is
generated, and a HLSM + Monodepth2 prototype combination
depth map is also provided.

A. RGB Image to Depth Map

For the development of the pipeline, we used a video
of a car driving down a block. For our data collection we
used a Sony RX100V using manual settings, at 24 mm focal
length (35 mm equivalent) and shot the video at 30 FPS. All
videos were taken around various areas around Queens, NY.
These videos do not include any pedestrians, intersections or
turns. As of now the system is limited from turning, in the
future we will incorporate GPS and/or gyroscopic data into
the system to create a more accurate reconstruction system
addressing these issues. Using the Monodepth2 pre-trained
model (stereo 1024x320 model) [1] we get the depth output
and the visualization counterpart. Monodepth2 takes 0.03 s
to complete a singular depth prediction. A magma color-
mapped depth map is the visualization counterpart to the depth
prediction.

B. De-Flickering

In testing we noticed camera jitters induce hallucinations
of objects. By this we mean Monodepth2 predicts an object
close to the camera that does not exist. It is possible that
the KITTI dataset (Monodepth2 used for training) had a more

stable environment for the camera, or road. When the camera
we used was jolted by a bump on the road the jitters from the
camera caused the Monodepth2 network to erroneously predict
depth. It would often hallucinate a large blob close to the car
(Fig. 4). In some instances the hallucination hung around for
a few frames greatly affecting reconstruction accuracy.

To resolve the flickering without adding additional and
expensive hardware we created a software to minimize the
effect. We used the visual counterpart of the depth prediction,
taking frame by frame pairs. We use homographies to provide
temporal matching of the input image series and depth images,
finding areas to be excluded in reconstruction. Below is the
algorithm:

o If the current depth image and the previous depth image
show no significant differences over large areas, both
images are real.

¢ If the current depth image shows a large area that does not
match the homography transformed previous depth image
the different area is classified as not-real and purged.

o If the previous depth image also had a flicker detected
the frame four images ago is used.

o To avoid pixel drift every ten frames the homography
prediction is reset to the Monodepth2 predicted depth
image.

In the case that multiple frames have a consistent flicker issues
arise. In those cases we back off 4 frames as in the algorithm.
This was determined experimentally as enough frames to
handle long flickers, yet not too long that the camera has
moved too far for homography to work without significant
pixel drift. We call pixel drift the corresponding corruption of
quality as pixel information changes and errors propagate over
the course of de-flickering. This is a result of the current image
being partly based on the previously altered depth image, it
will therefore carry errors. For this reason we also reset the



Fig. 4. From left to right: an input image, its depth map from Monodepth2
that has a hallucinated blob on the right and the de-flickering result.

image every 10 frames to take not from an altered depth image
but from the original depth map to curtail these corruptions.
The OpenCV library was used to implement this stage [7]. We
only use the de-flickered depth images to ascertain where on
the Monodepth2 depth map data should not be included in the
reconstruction phase.

C. SfM Reconstruction

Though Monodepth2 is a singular frame depth prediction,
we can use SfM to enforce consistency and reduce noise on
longer depth prediction sequences. Here we use the previous
output and textbook techniques via multiple video frames
and Solve-PnP-RANSAC from OpenCV [7]. The standard
approach is to make the first depth prediction and use it’s 3D
output as the base. PnP then uses the 3D-2D corresponding
pairs of the first color images pointcloud and the previous
2D image to determine the camera pose. Since we have
depth data here we do not perform triangulation adding to
a global point set for future registration. Instead we perform
the PnP iteratively on each pair of images, this yields a
dense output. We then continue this for each (t-1,t) pairs
of images. We use Open3D’s Global Optimization method
(Levenberg—Marquardt algorithm) to get a final reconstructed
3D model. Implemented with OpenCV and Open3D [8] [7].
We do allow for a non-Globally optimized model, and a
Colmap type model as options. As mentioned previously this
output is very noisy, however it is needed for the next steps
(Fig. 2).

D. Road Shape Alignment

Monodepth2 generates a relatively noisy road, especially
the part of the road immediately in-front of the car. This
issue combined with general errors in prediction can make the
road depth prediction inaccurate, and after reconstruction at-
tempts inconsistencies of road depth between different frames
becomes apparent. To solve this we generate a road surface
mesh to create a consistent and flattened singular road surface.
We first take the SfM reconstructed point cloud data from
the previous step and with the Camera Extrinsic information
provided by PnP we begin scanning along the road surface.
The user can set the number of intervals, the more intervals
the more accurate the road surface (to a limit) with added
processing time. We settled at 25 intervals for our system (i7-
4790k, 32 GB RAM, RTX 2080). For each interval a camera

is chosen, in this cameras frame the small lower region right
in front of the car (a 30x400 region was used here, user can
change these dimensions) is scanned to collect the road height.
That road height is used as a local constraint for finding a
plane via the three point RANSAC method, the plane found
should be the road. This is ensured via a small distance to
plane threshold per inlier (0.5) and a total inlier threshold of
1000. The important assumption here is that roads are planes
at a very local scale. Finally we perform alpha shape surface
reconstruction to get our road mesh. The figure below shows
the road shape alignment scanning method described above.
Parameters are found experimentally as the optimum between
accuracy and cost.

E. Car Shape Alignment

1) Primary Car Hypothesis: In order to get geometrically
proper car shapes we use a car shape alignment method
similar to the one Takeo Kanade proposed [17]. However,
we use a neural network and PnP for the hypothesis and
minimization method respectively. We first run the Matterport
instance segmentation network over the RGB video frames
to detect individual cars. Using Monodepth2’s depth data we
cut off cars beyond a distance threshold, 40 meters in our
case. This parameter was found experimentally since beyond
this distance car transformation approximations tend to be
inaccurate. These parameters can be changed by the user.
Masked images cropped to focus on the car are then sent to
the Pirazh Car Landmark NN for landmark point detection.
There are 20 potential landmarks to be detected. This NN does
not take into account where landmarks are in relation to each
other in its first stage. It’s vehicle orientation predictions (2nd
stage) are sub-par. We therefore built a method to detect and
filter landmarks depending on the order of special landmarks
(licence plates, and mirrors). We now have our landmarks
filtered for car orientation.

We have 3 canonical CAD models with their landmarks
labeled in 3D coordinates. The 3 types of canonical models
are Sedan, Van and Truck (more to be added later), they are
standard with the HLSM pipeline and do not change per scene.
Using PnP we minimize the reprojection of the 3D Car Land-
marks against the 2D landmarks found. We used the SolvePnP-
EPNP(EPNP) [7] method here as opposed to the more typical
RANSAC method used for the StM Reconstruction part of the
pipeline. EPNP gave the best results (most cars placed with
smallest reprojection error) out of all the available methods.
Out of the 3 types of cars we select the car type based off
of minimal reprojection error. Next we allow 3D landmark
morphing to better fit the unique and individual cars in the
dataset. The amount of morphing is constrained, which is why
initial car type estimation is important. Symmetry constraints
are then applied to this model to ensure geometrically proper
car shapes.

To decide if a cars shape alignment is good we need
more than just reprojection error. If 3 landmarks have a low
reprojection error we found that more often than not the fit was
not as accurate as a higher reprojection error with 9 points.



We devised the formula Threshold > TP _error
n—landmark—points

to handle the reprojection error and number of landmark
points relationship. The threshold value of 3.6 was determined
experimentally by maximizing the number of aligned cars but
minimizing poor fits. To finish up we texture the cars with
their associated car image for an augmented reality system.
In the case that a car is not imputed, likely due to too much
occlusion in the RGB images we have a back-off car alignment
hypothesis method described below.

2) Back-off Car Hypothesis: The back-off method does not
use Car Landmarks, we assume a car we see is facing away
from us along the Z-axis. Usually this assumption would be
inaccurate, but since our model right now is constrained in
straight lines its a sufficient plan B. (Fig. 3 row 2, col 2). In
this case we chose a step of every 20 frames to reduce cost.
Instance segmentation and the distance threshold are the same
as the above method.

The Monodepth2 depth map is then referenced over the
cropped region containing a certain instance segmentation of
one of the cars. We assume that car as viewed from the point
of view that the car will be facing away from the users car,
creating an L shape as viewed from the top. Where the back
and side are showing to some extent. With that assumption
we take the 6 points defining this L shape (top and bottom) to
build a 3D Bounding Cube where a car should be located. A
dot product between the direction of the cube and the actual
coordinate location of the max Z point of the L shape to
properly orient the box. We label key-points of the boxes and
CAD models and use SVD (Singular Value Decomposition)
and the basic RMSE (Root Mean Square Error) minimization
technique used in the closed form solution to ICP (Iterative
Closest Point) to find the transformation matrix to place
and orient the CAD model of the car within the determined
bounding box [15].

We then iterate through the video sequence, using every
20 frames and continue to impute the cars. The 20 frame
interval was considered a compromise between getting re-
dundant car alignments, compute cost and getting the most
amount of unique cars, balancing against the aforementioned
distance threshold. To ID the cars using color of the car given
by the RGBD segmented area around the car. We use this
ID and a centroid distance checker to locate duplicate car
imputations and combine redundant car models. There is no
shape morphing in the back-off method.

FE Side-Walls

The noisiest and most inaccurate parts of the Monodepth2
prediction are the areas outside of the roadway (Fig. 2). To
work around this (since these areas are not important to an
automated car, and would be cumbersome for an AR system)
we create a side-wall and floor to bound the entire High-level
Semantic Model within the confines of the road environment.

Using the car models and the road from the previous steps
to algorithmically identify the boundaries of the road we then
add a few meters to either side of the road beyond that to
define the road area. This is because the road shape found

Monodepth2

Monodepth2 + HLSM

Fig. 5. Top shows the Monodepth2 and HLSM Output. Bottom is a prototype
of the combined depth information.

in Section III-D often neglects parts of the road where cars
are parked. We build side walls for demonstration purposes.
The walls are usually generated in 10 segments, this number
is arbitrary and optional. The boundary information is useful
for the augmented reality scene boundary.

G. Final Output

We give two final outputs. One of the final outputs includes
the green colored or textured cars, the side-walls colored in
blue, the road colored in grey and a Sky Dome colored in
Sky-Blue to finish off the augmented reality environment. We
also generate depth maps from the new model to show the
geometric robustness of the HLSM system. We provide a
prototype of the HLSM + Monodepth2 Depth Map, no KITTI
benchmark testing has been conducted yet. We ultimately
believe we can use this more geometrically robust model with
less variance and accurate shapes of important 3D objects such
as cars and the road to refine the output of the Monodepth2
network and improve the depth estimation benchmarks (SILog
and Stereo KITTI) for the cars and road, in particular [16]. In
its current state the model is not ready to be tested on KITTI
dataset and we do not have Lidar equipment for ground truth
testing, therefore at the moment observations and qualitative
reports of the system are used as report cards for the system.
Reprojection error and other similar metrics are used wherever
possible. In the future when the model is tested on KITTI data
we can test it against the SILog and Stereo benchmarks.

IV. RESULTS

Fig. 5 demonstrates the Monodepth2 stereo 1024x320 out-
put, and the HLSM output on the top, for the same scene
and camera pose. We then provide a prototype of the depth
averaging that can be used to improve the Monodepth2 predic-
tions. We can see how the more robust and proper car and road
shapes affect the Monodepth2 output. The windows of the car,
the road area right at the bottom of the frame and the boxy
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Fig. 6. A: A Birds Eye View of the whole HLSM model with the cars
highlighted in green. The Sky dome is omitted here since it would block the
screen. B: A close up of a shape aligned car and its textured version.

definitions of the cars are all improvements in consistency and
smoothness.

Fig. 1B shows the HLSM model in its separable augmented
reality format where the various classes of the model are given
their distinct ID color tags. This model format is useful for 3D
detection, interaction, and piece-wise rendering as described
previously. Fig. 1C Shows the Augmented Reality final version
with textured cars. It is a more forensic core model. Fig. 6A
shows a birds eye view of the reconstructed core model scene
in orthographic view. The Shape Aligned cars are highlighted
in green, this view demonstrates the success of HLSM in
creating a separable and clean street scene with proper road
object shapes. Fig. 6B also shows a close up of a shape aligned
car and its textured version.

V. CONCLUSION AND FUTURE WORK

We have shown that the combination of classical com-
puter Vision algorithms and more advanced deep learning
frameworks can resolve the noisy, inconsistent output of the
Monodepth2 system to create a High-level Semantic Model
(HLSM) with separability and saliency in mind, with the help
of Instance Segmentation via Mask R-CNN. We have shown
that all of this can be done without needing any external
knowledge of the scene that is not provided from the Mon-
odepth2 system. This, we hope, means that the Monodepth2
system can be retrained with the HLSM on a second pass to be
refined and be made more robust, with better shape definition,
and less noise. The primary goal of our work is to improve
the KITTI depth prediction benchmarks on elements specific
to the road environment (Vehicles, Pedestrians and the Road).
By retraining the system in a Self-Semi-Supervised manner,
we may be able to achieve improvements in these areas, or at
the least create an inference model to perform this same HLSM
creation at a fast rate. The system as it stands right now can
be used in the creation for augmented reality focused on street
scenes, this could be useful for people with disabilities or for
mapping projects.

For future work on this system we intend on incorporating
moving cars. We also want to incorporate GPS data and/or
gyroscopic data and Kalman filters to handle turns better. As
well as looking for ways to make the system more efficient,
including alternatives to the expensive Mask R-CNN models.
In the far future we eventually intend to add pedestrians.
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