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ABSTRACT

In this work, a storefront accessibility image dataset is collected
from Google street view and is labeled with three main objects for
storefront accessibility: doors (for store entrances), doorknobs (for
accessing the entrances) and stairs (for leading to the entrances).
Then MultiCLU, a new multi-stage context learning and utilization
approach, is proposed with the following four stages: Context in
Labeling (CIL), Context in Training (CIT), Context in Detection
(CID) and Context in Evaluation (CIE). The CIL stage automatically
extends the label for each knob to include more local contextual
information. In the CIT stage, a deep learning method is used to
project the visual information extracted by a Faster R-CNN based
object detector to semantic space generated by a Graph Convolu-
tional Network. The CID stage uses the spatial relation reasoning
between categories to refine the confidence score. Finally in the
CIE stage, a new loose evaluation metric for storefront accessibility,
especially for knob category, is proposed to efficiently help BLV
users to find estimated knob locations. Our experiment results show
that the proposed MultiCLU framework can achieve significantly
better performance than the baseline detector using Faster R-CNN,
with +13.4% on mAP and +15.8% on recall, respectively. Our new
evaluation metric also introduces a new way to evaluate storefront
accessibility objects, which could benefit BLV group in real life.

CCS CONCEPTS
« Computing methodologies — Computer vision; Deep Learn-
ing.

KEYWORDS

Object Detection, Context Learning, Convolutional Neural Net-
works, Graph Convolutional Network, Knowledge Graph

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICMR °22, June 27-30, 2022, Newark, N, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9238-9/22/06...$15.00
https://doi.org/10.1145/3512527.3531361

Jiajun Chen
Stony Brook University
Stony Brook, New York, USA
jiajun.chen.2@stonybrook.edu

Zhigang Zhu
The City College and The Graduate Center, The City
University of New York
New York, New York, USA
zzhu@ccny.cuny.edu

ACM Reference Format:

Xuan Wang, Jiajun Chen, Hao Tang, and Zhigang Zhu. 2022. MultiCLU:
Multi-stage Context Learning and Utilization for Storefront Accessibility
Detection and Evaluation. In Proceedings of the 2022 International Conference
on Multimedia Retrieval (ICMR ’22), June 27-30, 2022, Newark, Nj, USA. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3512527.3531361

1 INTRODUCTION

According to the IAPB Vision Atlas [1], there are 1.1 billion people
living with vision loss in 2020 globally. Among them, 43 million
people are blind, 295 million people have moderate to severe vision
impairment, remaining people have mild or near vision impairment.
Blind or low vision (BLV) people are facing different daily chal-
lenges. One of the obstacles they are facing in their daily life is to
access essential activities, such as visiting local stores, visiting mu-
seums, and using public transportation facilities, etc. Helping BLV
users to identify the accessibility of local stores in street environ-
ments can ease their daily burdens and improve their independence.

There are urban various image datasets for different computer
vision tasks. Cityscapes [8] is a large-scale street level dataset that
is mainly used for semantic urban scene understanding tasks. The
Street View Text Dataset, known as SVT [41], is another open source
outdoor street level imagery for text detection and recognition
of business signage and business names. However, both datasets
don’t include annotations for storefront accessibility features. For
providing accessibility detection features in a complicated street-
level environment, we identify three categories of objects in helping
BLYV people to identify the storefront accessibility: 1) doors (for store
entrances), 2) Knobs (for accessing the entrances) and 3) stairs (for
leading to the entrances). We further collected our own storefront
accessibility image (SAI) dataset for detection and evaluation in
this work.

Current labeling approaches in object detection tasks heavily
rely on human labelers to create labels on their datasets. To obtain
the consistency of the labels, there are predefined description of
the target classes and instructions on how to draw labels on images.
Usually tight bounding boxes are fit to the target objects. However,
for small objects, these tight bounding boxes may not provide
enough information for recognition, even for human observers
(e.g., the doorknob in Fig 1). But the object will have higher chance
to be recognized as a knob if we consider its context (e.g. the door)
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Figure 1: An example of the importance of contextual infor-
mation for small object - the doorknob.

where it is located. Related works [21, 22] also show that context
information from the surroundings of small objects could provide
important cues for successful detection. In this work, in the labeling
stage, instead of performing relabeling by humans, we first apply
an automatic approach to enhance the tight bounding box for each
small object to include some local context information before the
training stage.

In addition to the local visual context of an object, semantic
context can also provide important information for detecting the
object. For example, without looking at the image, and if we know
that there is a knob in the image, we can easily guess there is
a door in the image. To represent this kind of semantic context,
word embeddings from Natural Language Processing (NLP) have
been used in image classification task [5]. In order to align the
visual context with semantic context in our machine learning model
training task, we employed a Graph Convolution Network [19] to
generate a semantic space and project the regional visual features
into the semantic space for classification. Futhermore, objects do
not appear in isolation. For our SAI dataset, doors and knobs are
highly co-related not only in the semantic context, but also in the
spatial context. As common senses, a doorknob must be inside
a door frame, and a stair (if exists) should be under the door. We
further utilize this type of spatial relation reasoning in the detection
stage to refine the object classification before evaluation.

How can we measure the accuracy of an object detector? The
most common way is to use the intersection over union (IoU). In a
object detection task, IoU measures the overlapping area between
the predicted bounding box and the ground-truth bounding box of
an object. Sometimes the IoU accuracy is not necessarily equivalent
to the "accuracy” in real world. For example, when a BLV user
tries to open a door, they may prefer to know where the knob’s
approximate location is (e.g., left middle of the door or right side
of the door), rather than to provide the exact location (1.5m height
and 20cm from left of the door). For this real world application, we
further introduce a relaxed criteria to evaluate a doorknob on the
door, in a way that can benefit BLV people in real life.

In summary, we collected SAI - a storefront accessibility image
dataset using Google StreetView API and labeled three categories:
doors, doorknobs and stairs. We proposed MultiCLU: a multi-stage
context learning and utilization framework to detect storefront ac-
cessibility objects. Our MultiCLU approach is a unified framework
that includes four consecutive stages of context learning and uti-
lization: Context in Labeling (CIL) is mainly applied to small object

categories such as doorknobs in the labeling stage, Context in Train-
ing (CIT) to model semantic context in the training stage, Context
in Detection (CID) to utilize spatial contact in the detection stage,
and finally Context in Evaluation(CIE) in redefining the evaluation
of detection for practical applications. The main contributions of
this paper are:

o A storefront accessibility image dataset is collected at street
level scene, which contains three main categories: doors,
doorknobs and stairs.

o A unified method is proposed for multi-stage context learn-
ing and utilization to employ local visual context, semantic
context, spatial context, and application context information
into one single framework.

e Our proposed method achieved significantly better perfor-
mance over a standard end-to-end object detector with both
individual and combined context information in the four
stages.

e A new evaluation criteria is introduced for a real-world ap-
plication, such as the storefront accessibility detection task,
which could better benefit not only BLV people, but also
people with other disabilities.

The paper is organized as follows. Section 2 discusses related
work. Section 3 discusses how we collected and processed our
dataset. Section 4 proposes our mutli-stage context learning and
utilization framework and describes each contextual component
in detail. Section 5 presents experimental results on our collected
dataset and the ablation study for each component. Section 6 pro-
vides a few concluding remarks.

2 RELATED WORK
2.1 Context Understanding

Humans use visual context effortlessly to perceive the real world.
An object hanging on the wall is probably a painting, not a car. A
doorknob should be within the frame of a door, not on the ground.
Contextual information provides critical information to help us
visually find and recognize objects faster and more accurately. Not
only in human perception, contextual information also plays an
important role in many computer vision tasks, such as object de-
tection [10, 12, 40, 49, 50], video event recognition [42, 43], video
action detection [47, 51], scene graph generation [45, 48], data aug-
mentation [11], image classification [27], and image inpainting [33].
In these tasks, different forms of contextual information have been
employed. The contextual information used in the literature in-
cludes: global context [48], local neighborhood context [10, 11, 33],
prior semantic knowledge [42, 43], geographic information [27],
spatial relation between objects [40, 45, 47, 48] and temporal in-
formation [42, 43, 47, 51]. In [11], the author shows that the visual
context surrounding objects is crucial to predict the presence of
objects. Wang et al. [42, 43] introduces a hierarchical context model
to recognize events in videos. Although contextual information
has been used in different ways and gains more successes over
context-free approaches, context could be misleading if an object
present in irrelevant scenes. Choi et al. [7] present a context model
for out-of-context detection, where the object is unusual for a given
scene in a image. In our work, objects (doors, doorknobs and stairs)
in our collected data is highly correlated, our proposed method



makes use of various contextual information by applying a unified
multi-stage framework in context learning and utilization from data
labeling, model training, to object detection and result evaluation.

2.2 Object Detection in Urban Scenes

Many object detection approaches have been proposed in urban
scenes. Several works [10, 36, 49] focus on text detection and recog-
nition in street level imagery and urban signage. [3] proposes an
approach to mine existing spatial image databases for discover of
zebra crosswalks in urban settings in order to increasing safety
for blind travelers. [6] introduces a curb detection paradigm for
road and sidewalk detection for mobile robots using stereo vision
in the urban residential region. Another work [40] uses pair-wise
existence of curb ramps: curb ramps usually appears in pairs in
common sense, to find missing curb ramps at city street regions,
which could help millions of people with mobility disabilities. Weld
et al. [44] provide a method to automatically assess sidewalks acces-
sibility in Google Street View. To our best knowledge, none of these
works explicitly explore context information for the given tasks,
and few studies have been done to detect storefront accessibility
using street level imagery. In this paper, we focus on the use of
context information in detecting storefront accessibility in urban
scenes.

2.3 Accessibility Data Collection and Analysis

Sighted people can navigate to the destination using current naviga-
tion platform like Google Map without much difficulties. However,
in order to facilitate the mobility and independence of people with
disabilities, including blind, low vision and mobility disabilities,
accessibility data needs to be collected on street crossings, side-
walks and transportation centers, etc. This kind of data is often
required for uses by local government agencies [29, 30], but navi-
gation platforms like Google Map do not include this data because
of the lack of wide availability. Another challenge is that it is hard
to obtain the complete city-scale data. One of the approaches to
collect accessibility data is using crowdsourcing method. Compare
to other approaches, such as sending people on site or hiring human
collectors with heavy cost of labors, crowdsourcing provides a more
efficient and cost-effective data collection approach. Many works
[20, 28, 31, 37, 39] have shown the successful usage of crowdsourc-
ing for transit and infrastructure. Other works combine Google
Street View and crowdsourcing method for collecting street-level
accessibility data of sidewalk issues [16], street crossings [14] and
bus stop locations [15]. Our group are developing a crowd-sourcing
based storefront image collection app [2, 25] for future use, but
at the current stage, we manually collected a dataset called SAI -
Storefront Accessibility Image dataset for performing context ex-
ploration.

3 SAI DATASET DESCRIPTION

The storefront accessibility image dataset (Fig.2) is collected from
Google Street View of New York city using Google Street View
API [13]. We then use [4] to compose the panorama images. Each
panorama image is formed of 16 (vertical) by 32 (horizontal) tiles
and often captures building facade on both sides of a street in
NYC. Then each formed panorama images are divided into two

Figure 2: A formed panorama image and the cropped sub-
images from Google Street View API of New York City. Top:
The panorama image with all tiles. Bottom: cropped images
from the middle 5x7 tiles as labeled in the panoramic image.

halves, each covers one side of facade. We cropped 5 (vertical) by 7
(horizontal) tiles in the center of each image in which storefronts
are clearly seen and can be labeled easily.

Figure 3: An example of labeled objects. Red: Ground truth
bounding box of Door. Cyan: Ground truth bounding box of
Knob. Green: Ground truth bounding box of Stair.

Table 1: Statistics of collected storefront accessibility data

Dataset # of Images Doors Knobs Stairs

Train 992 1885 1614 420
Test 110 233 126 141

We collected 1102 images in total and labeled the three main
categories for accessibility (Door, Knob, Stair) using Labelbox[38].
Ten (10) percent of collected data were random sampled as the
testing set while the remaining 90% of the data were used as the
training set. Details of the data are shown in Table 1. Examples of
labeled storefront objects in an image is shown in Fig. 3.
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Figure 4: The architecture of our multi-stage context learning and utilization (MultiCLU) framework. Contextual components
(in four stages) are shaded in light blue. CIL: Context in Labeling. CIT: Context in Training. CID: Context in Detection. CIE:
Context in Evaluation. "®": dot product. "FC": Fully-connected layer.

4 PROPOSED METHOD

Our muti-stage context learning and utilization (MultiCLU) frame-
work (Fig. 4) uses Faster R-CNN [35] as the underling detection
model (the detector) to extract features and propose candidate
bounding boxes for object classes. The proposed MultiCLU frame-
work explores various context information in four processing stages:
Context in Labeling (CIL), Context in Training (CIT), Context in
Detection (CID) and Context in Evaluation (CIE), in order to im-
prove recognition performance. Local context around small objects,
e.g., door knobs, are utilized in the CIL stage (Section 4.1) by au-
tomatically extending the bounding box of each doorknob (using
the knob label) withing a door frame (using the door label where
the knob belongs to), before the original images were fed into the
detector. In the CIT stage (Section 4.2), we represent object labels us-
ing word embeddings extracted from a pretrained language model
[34]. A contextual co-occurrence graph is built over the prior object
appearance knowledge to describe the relation among different
categories. A Graph Convolution Network (GCN) [19] is learned
over the contextual graph and built a semantic space from word
embeddings. Instead of using the original classification head of
Faster R-CNN, we output feature vector from each region proposal
and then project the region visual features into the semantic space.
Then in the CID stage (Section 4.3), We refine the confidence scores
of detected object candidates using spatial relations among various
objects that satisfy certain conditions. Finally we apply a new eval-
uation criteria for the knob category in the CIE stage (Section 4.4)
to produce more applicable recognition results using application-
related context information. In the following, we will detail each of
the four components of our MultiCLU framework.

4.1 Context in Labeling

Starting from our original human annotated labels for knobs, we
want to include more contextual information from the surrounding
area of each knob, which could have important cues to help the
MultiCLU framework to detect and recognize knob precisely. In
order to achieve this, we automatically extend the bounding box
of a knob within its door frame by using the information of the
labeled door the knob belongs to. We use the center of knob bound-
ing box as the center, a certain percent of the door width (now

Figure 5: Three examples of Context in Labeling for different
knob types. Left: extend both width and height. Middle: Only
extend width. Right: Only extend height. In each example,
the left image shows the original labels and the right image
shows the extended labels.

we chose a = 20%) as the threshold for the minimal width of the
extended bounding box for the knob, then the width of extended
knob bounding box is give as:

’ _ ) @Wdoors if Winob < @Wgoor
Wknob = : 1)
Winob»  Otherwise

where wyp,,p and wl’mo , denote the original and the updated widths

of the ground truth knob label. Door height usually is longer than
door width, so we use a smaller percentage (beta=15%) of the door
height as the threshold; the new height of knob is calculated as:

’ {ﬂhdoors if hknob < ;Bhdoor

knob — (2)

hinops  otherwise

’

where hypop and by . denote the original and the updated heights
of the ground truth knob label. Note that in order to keep the
original shape of the knobs which have larger width or height,
we only extend either the width or the height of a knob only if
the width or the height satisfies the condition in eq.1 and eq. 2.
Restricting the new knob labels within the door frames is applied
when extend original knob labels. Three examples are shown in
Fig. 5. Also note that we keep both the original and the extended
bounding boxes for each knob. Therefore each knob has two labels
(of the same knob class), in order to improve the robustness of
detection.



4.2 Context in Training

4.2.1  Graph Convolutional Network. Kipf and Welling [19] first
introduced the Graph Convolutional Network (GCN) to perform
semi-supervised classification of nodes in a graph. GCN has also
been used to solve computer vision tasks, such as image classifica-
tion [5], visual relationship detection[9] and scene graph generation
[18, 46], etc. As described in [19], A graph G takes: (1) a feature
description of all nodes: H € R4, and (2) a relation descriptor
between all nodes: A € R™", as the input to learn a function f
over G. Here n is the number of nodes, d is the dimensionality of
the node feature. Then the updated node feature H is:

H' = f(H,A) ®)

After applying a convolution operation, the function in eq. 3 can
be written as:
F(H, A) = o(AHW) @

where o is a non-linear activation function and W is the weight.

4.2.2  Contextual Graph for GCN. As shown in Fig 4, the GCN
network takes feature description of labels Hj,pers € R™4_and
contextual graph A € R™" as input, where n is the number of labels
(number of nodes) and d is the dimensionality of the label word
embedding (dimensionality of the node feature). fregions € RDxN
is the region features of all proposed region extracted from Faster
R-CNN, where D is the dimensionality of the region features and N
is the number of proposed regions. The output of the GCN network
is represented as the label semantic space H'jgpe;s € R™P. In-
spired by [50], we project the region features fregions into semantic
space H'j4pels, then the final probability distribution P for object
predictions is calculated as:

P = softmax(H’gpels fregions) ©)

where P € R™N | represents the class probability distribution for
each proposed region.

The GCN uses relation descriptor A to propagate information
between nodes. For different applications, there are predefined re-
lation descriptor A. However, there is no standard definition on
generating A for an object detection task. In order to model rela-
tionship between categories in our storefront accessibility image
dataset, we built the contextual graph following the way described
in ML-GCN [5] to define the relation descriptor, by using prior
label appearance knowledge acquired from the training set. The
co-occurrence between each pair of labels is described by the con-
ditional probability, P(L;|L;), which denotes the probability of oc-
currence of label L; when label L; appears. P(L;|L;) is not equal
to P(L;|Lj), e,g., there must be a door if a knob appears, but there
might be a knob if a door appears. Thus the contextual graph is
asymmetrical. We count the occurrence of label pairs in the training
set as prior semantic knowledge and generate the contextual graph
built up by A € R™", where n is the number of labels. Background
label represents regions that do not belong to any of the categories.
Fig. 6 shows the relation descriptor matrix generated from the SAI
training dataset.

4.3 Context in Detection

Information such as how objects are related to each other, whether
there are spatial relations of objects or co-occurrences of objects in a

Background Doer Knob Stair

Background 1 0.57 071 0.23

Door 1 1 0.74 0.21

Knob 1 1 1 0.18
Stair 1 0.87 0.56 1

Figure 6: Relation descriptor matrix generated from the SAI
training dataset.
natural scene, has been encapsulated in spatial context in our work.

For our collected SAI dataset, the three category has very strong
spatial relations. A knob can only appear inside a door frame. A
stair, if exists, must be under a door, etc. We model these relations by
not only using prior knowledge from the training set (as in the CIT
stage) but also the spatial relations of door vs knob and door vs stair
to refine their confidence scores in detection before the predictions
are sent to final evaluation. We apply an adaptive Bayesian approach
to update confidence scores for recognized objects that satisfy the
above spatial relations.

0.0 0.01 0.0

fop

0.19 0.5

middle

0.01 0.05 0.01

iight

et riddie fight

Figure 7: Knob probabilistic distribution inside a door frame
using the training set. Left: 3x3 regions of a door. Right: 3x3
knob conditional probability distribution array.

To model the spatial relation between a knob and a door, we
measure conditional probabilities of the knob distribution inside a
door, by dividing the door frame into 3x3 equal-sized regions and
count the labeled knobs falling in each region from the training data
(Fig. 7). During detection, if a knob is predicted inside a predicted
door (from the detector), the knob confidence score is updated as
Cl’cnob:

cllcnob = 1Cknob + HZCknob\dooeroor (6)
where Cip,p and Cy,,, are the original confidence scores of the
predicted knob and door, respectively, and Cyop|door is the con-
ditional probability of where the knob is located inside the door
frame, which is calculated from training data (Fig. 7 right). We take
the weighted average of the original prediction score (from the
detector) and the "deduction" score (from the Bayesian deduction),
where p1 and py are the weights applied to them, respectively.

A stair usually is located under the door. Because of the various
reasons, such as special design layouts, camera perspectives and
human labeling inaccuracy, there might be overlaps or spatial dis-
alignments between these two categories (see Fig 8). We thus define
a search area to find whether there should be a predicted stair under
a predicted door. The height of the search area S is defined as:

Sheight = heightsiair + 0.2height4o0r @)



Figure 8: Two special cases for stair-door relations. left: door
and stair have an overlapped area. Right: The stair is on the
left bottom of the door due to camera perspective. Yellow
dashed box: Search areas S.

and the width is defined as:
Swidth = widthstair + Widthdaor (8)

To check if a predicted stair connects to a predicted door, We search
the stair centroid within the search area of the predicted door. If
the centroid is located inside the search area, then the predicted
stair is confirmed as under predicted door, and then we increase the
confidence of the stair recognition to this updated stair confidence

’ .
score Csml.r, as:

/7
Cstair = a1Cstair + azcstairldoorcdoor (9)

where Cstqir and Cy,0, denote the original confidence scores of a
predicted stair and a predicted door, respectively, and Cs;gir|door 15
the conditional probability of a stair under a door, which is mea-
sured from the training data. ¢; and ay are the weights applied to
the two terms.

Finally, we apply both the detection results of a stair and a knob
as conditional terms to update confidence score of a door. The

updated door confidence score C él as:
oor

’
Cdaar = WlCdoor+W2Cdaor|knobcknob+W3Cdoor|staircstair (10)

where Cgoor|knob and Cgoor|stair denote the conditional probabili-
ties of a door given a knob and a door given a stair, respectively,
which can be estimated from the training data. w1, wy and w3 are
the weights applied to the three terms.

Currently the Faster R-CNN has had the following key steps to
post-process the predictions: (1) Remove predictions with the back-
ground label; (2) Remove predictions with low confidence scores
under the threshold of 0.05; (3) Remove empty boxes; (4) Apply
non-maximum suppression to remove overlapping regions with
a threshold of 0.5 (i.e., 50% of overlapping between two regions);
and (5) Keep top K scoring predictions with a threshold of K=100
for all the objects. However, in Step (2) of the Faster R-CNN post-
processing, certain amount of good predictions will be removed if
the threshold of their confidence scores is set at 0.05.

To keep more positive predictions for applying the spatial context
in this CID stage, our new post-process steps are modified as:

(1) Remove predictions with the background label.

(2) Remove empty boxes.

(3) Apply non-maximum suppression with an overlapping
threshold of 0.5.

(4) Apply spatial relation reasoning to all the predictions as long
as their original confident scores are greater than zeros.

(5) Remove predictions with refined confidence score using the
threshold of 0.05.

(6) Keep top K scoring predictions with the threshold K=100 for
all the objects.

We apply our spatial relation reasoning to the predictions from
Faster R-CNN to refine the confidence scores using equations 6-10
in Step (4) of the CID stage. Then in Step (5), we apply the same
score threshold (0.05 as the original Faster R-CNN) to remove low
scoring predictions.

Note that if there are overlaps for proposed doors, knobs and
stairs, we use the proposal with the max confidence as the base for
each, then find all of those that overlap with the best proposal. We
further only use the max confidence score of each category of one
object to update all of the overlapped regions of another object (e.g.,
using the max confidence score from overlapped door predictions
to update all the overlapped knob predictions) and vice versa. We
propose max score door prediction and stair prediction from the
overlapped prediction groups. Some doors could have multiple
similar knobs labeled around same location, we propose the five
highest scoring knobs from the overlapped prediction groups.

4.4 Context in Evaluation

When BLV people arrive a store independently, in order to open
the door, they may want to know "the knob is on the left middle
of the door" rather than "The knob is located at 1.5m high on the
door". And the estimated location could better benefit the people
with disability. The commonly used evaluation metric for object
detection task is the IoU evaluation, defined as:

area(Bpred n Bgt)

u area(Bpreq U Bgt) (11)
which measures the overlapping percentage of predicted bounding
box By,eq and ground-truth bounding box By of target object. It is
not necessarily equivalent to describe the accuracy in the real world.
In order to achieve this, we further define a new criteria in the CIE
stage for the detection of knobs considering it is a small objects
within the doors, which could help to better estimate the knob
location. We segment a door into 3x3 regions as we did in the CID
stage, shown also in right figure in Fig 7. If the centroids of ground
truth knob bounding box and the actual detection are within the
same region, we count the knob as a true positive detection. An
example has been shown in Fig 9 when the IOU threshold is set to
0.5 (50% overlap between the prediction and the ground truth).

5 EXPERIMENTS

In this section, we first describe our MultiCLU model implemen-
tation details. We then compare various evaluation results. First,
we compare the mean average precision (mAP) over all categories
of our SAI dataset when adding the first three contextual compo-
nents with all the combinations of local CIL - Context in Labeling,
semantic CIT - Context in Training, and spatial CID - Context in
Detection. Then we compare the recall(%) and precision(%) per
category. Furthermore, we provide results of our Context in Evalua-
tion(CIE) approach for knob category comparing with the standard
IoU@0.5 evaluation criteria. Finally, we provide ablation analysis
on the overall results and our multiCLU learning components.
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Figure 9: Comparison of the commonly used IoU evaluation
and our Context in Evaluation (CIE) for knob. The IoU score
for predicted knob is 0.49. Left: IoU at 0.5 threshold will treat
it as false positive and not detected. Right: CIE uses door
distributed regions to evaluate the knob, the predicted knob
is accepted as a correct detection.

5.1 Implementation Details

Our proposed MultiCLU model is based on Faster R-CNN [35]. We
adopt ResNet-50 [17] and Feature Pyramid Network [23] as the
feature extraction backbone, which is pretrained on the Coco [24]
dataset. For contextual graph learning in CIT, our GCN model con-
sists of one layer with the output dimensionality of 1024. We use
LeakyReLu [26] as the activation function for GCN model (o in
Section 4.2.1). For word representations, we use 300-dim word vec-
tors (d is 300 in Section 4.2.2) extracted from the language model
GloVe [34] pretrained on the Wikipedia dataset. Stochastic Gradi-
ent Descent (SGD) is used as the optimizer during training. The
momentum and the weight decay to 0.95 and 0.0001, respectively.
The initial learning rate is 0.005, which drops by 0.25 for every 8
epochs. The network is trained for 40 epochs in total. For the CID
stage, without otherwise stated, we set yi1, ua to be 0.75, 0.25 in Eq.
(6), a1, az to be 0.75, 0.25 in Eq. (9) and w1, wa, w3 to be 0.7, 0.2, 0.1
in Eq. (10). Our MultiCLU is implemented in Pytorch [32].

5.2 Experimental Results

5.2.1 Comparison with Various Contextual Components. We com-
pare our proposed multiCLU approach with various combinations
of the contextual components to the baseline Faster R-CNN [35],
and measure the overall recall and mean average precision (mAP)
over a 0.5 IoU threshold. If CIL has been applied to the baseline, We
measure knob category using both the original labels and the CIL
labels. If either label was detected for same knob, we only count
as one detection to avoid duplication. We first applied each contex-
tual component to the baseline method. As shown in Table 2, only
applying one single contextual component among all the four can
improve the baseline recall from +3% to 11%. mAP was improved
when applying CIT and CIL individually. The recall was improved
when applying CID component individually, even though overall
mAP decrease slightly ( 0.3%).

When applying combination of two contextual components, all
combinations outperform the baseline method, in both mAP (+2.9%
to +12.7%) and recall (+6.6% to +11.2%). In addition, we found that

Table 2: mAP over 0.5 IoU of all categories on the SAI dataset
by applying various combinations of three contextual com-
ponents (CIL, CIT and CID) to baseline Faster R-CNN.

Model CIL CIT CID mAP Recall
Faster R-CNN [35] - - - 53.1 69.4

v - - 622 804

Single Component - v - 55.1 74.1

- -y 528 722

v v - 658 820

Two Components - v vV 56.0 76.0
v - 4 620 806

All Components (M3)  +/ v v 664  85.2

CIL component has greater impact than the other two components,
which implies that the local contextual information used can help
detect small objects more accurately in this SAI task. Comparing
the results between CID only and CIT plus CID, CID have a positive
impact on the CIT component, and further improved both mAP
and recall. When apply CID with the CIL component, although
both mAP and recall outperform the baseline with large margins
(10%+), mAP actually decreases slightly ( 0.3%) comparing to apply
CIL only. When applying all the three components to the baseline
detector, leading to our MultiCLU approach with three components
(M3), the best result is achieved for both mAP and recall, where
mAP improves from 53.1% to 66.4% ( +13.3%) and recall improves
from 69.4% to 85.2% ( +15.8%).

5.2.2  Comparison per Category. In order to better understand how
effective our contextual components to each category are, we fur-
ther compare the precision (%) and recall (%) measures per category
with various combinations of the four components. First we added
a single contextual component to the baseline Faster R-CNN. As
shown in Table 3, CIL has the best performance on recall for door
and stair, and with a great improvement on knob with 23.9% on pre-
cision and 30.2% on recall respectively. Our CIT component slight
outperforms the baseline on precision for all categories, with 5.6%
and 6.3% recall improvement on recall of knob and stair respectively.
Although CID decreases the precision a little bit for all categories,
the recall improves for all category from 0.9% to 6%. Our proposed
method with the first three components (CIL+CIT+CID), which
denoted as M3 in Table 3, achieves the best result for both precision
and recall compare to other combinations. Not only the knob cate-
gory has great improvement on both precision ( +33.5%) and recall
(+32.8%), both door and stair also achieve 2.4% and 4% improvement
on precision, and +4.8%, +9.9% improvement on recall, respectively.
5.2.3 Context in Evaluation Comparison. We further compare the
result of our new evaluation criteria on knob category between
the baseline method and our M3 method. The baseline model can
achieve 94.2% on precision and 74.6% on recall on the knob when
we apply the new evaluation approach (Section 4.4). Our full model
(M3+CIE, which leads to the full MultiCLU model) achieves 90.4%
(+15.8%) on recall but 83.2% (-11%) on precision comparing to the
baseline with CIE component. This is because all the knobs detected



Table 3: Results on recall(%) and precision(%) per category
for various combinations of the four contextual components

Model Precision Recall

Door Knob Stair Door Knob Stair
Faster R-CNN (FR) 75.6 17.7 66.0 87.5 47.6 73.1

+CIL 782 416 668 88.8 77.8 745

+CIT 77.8 191 685 897 532 794

+CID 74.9 16.2 67.2 884 53.6 745
+CIL+CIT 784 504 685 914 756 79.0
+CIT+CID 78.2 206 692 903 56.4 813
+CIL+CID 78.8 404 668 838.8 78.5  74.5
+CIL+CIT+CID (M3) 78.0 512 70.0 923 804 83.0
FR+CIE 756 942 660 875 746  73.1

M3+CIE (MultiCLU)  78.0 832 700 923 904 83.0

from baseline Faster R-CNN where the IoU with ground truth is
lower than 0.5 will be included when CIE is applied, hence the
precision is higher and recall is also improved. Our full model
achieves higher recall because the model have more detected knobs
with contextual components, compared to the baseline model. Based
on our experience with BLV people and storefront accessibility
labeling with volunteers [2, 25], they prefer higher recall and can
tolerate slightly lower precision. Also note that the final MultiCLU
model achieves the best performance for all categories in both
precision and recall with CIE than without CIE.

5.3 Ablation Study

We further studied the contribution of each contextual component.
As we applied Context in Labeling (CIL 4.1), Context in Training
(CIT 4.2), Context in Detection (CID 4.3) to the baseline Faster R-
CNN [35] with ResNet-50 [17] and FPN [23] as backbone, with
various combinations, we can clearly see the contributions of each
and the integration of them in Table 2 and Table 3.

First, CIL was applied before feeding the training images into the
network. We used the ground-truth door labels that contain knobs
as constraint to updated the knob labels automatically, using sur-
rounding areas as local contextual information for network to learn.
Our result shows that when there is enough local visual contextual
information for knobs, the network can gain significant improve-
ment on both mAP and recall, with 9.1% mAP and 11% recall gains
over the baseline (Table 2), respectively. When we further analyzed
the result in Table 3, we found that not only knob category achieved
great improvement from using the local contextual information, the
detection of door and stair categories also outperforms the baseline
in both precision and recall, probably because fewer false positive
and negative cases for the knob as other two categories help in
improving the performance of these two classes.

During the training stage, we used word embeddings for each
category and our contextual graph generated from prior semantic
knowledge learnt from the training dataset as the input to Graph
Convolutional Network [19], previously used in image recognition
task [5], to construct the semantic space. We projected the region
proposals extracted from Faster R-CNN [35] to semantic space to
obtain the predicted score for each proposed region (Section 4.2.)

As the results shown in Table 2 and Table 3, CIT did improve the
baseline, but not as effective as the CIL, which might due to that the
semantic context information was not specific to individual objects
but rather to object categories statistically. with a small dataset
as the SAI, the improvement is not statically significant enough.
With CID, we used specific spatial relation reasoning to refine the
confidence score for each region proposal which satisfied certain
criteria (Section 4.3) and filtered the low confidence predictions us-
ing the refined confidence score. The precision slightly decreases as
recall improved for all three categories, as shown in Table 3. This is
because the way we refined the confidence for overlapping objects,
which could introduce more false positives than correct predictions,
hence the precision could decrease while recall improved.

Our proposed method with all the first three components
(CIL+CIT+CID) exhibited improvement over any other combina-
tions. This shows that the proposed contextual components can
benefit each other, hence maxing the performance over the baseline.
Furthermore, we introduced an application-oriented evaluation met-
ric for our real-world task - finding the rough location of a doorknob.
The new metric used the door regions instead of the standard IoU
evaluation (Section 4.4). We hope this proposed evaluation metric
can provide a new way to think the object detection evaluation in
specific task, which is not only to check the accuracy in a strict
condition, but also to take into account what will be useful in real
world applications.

6 CONCLUSION

In this work, we have proposed MultiCLU: a new multi-stage con-
text learning and utilization approach for storefront accessibility
detection, in order to benefit BLV people for their daily life. We
collected our own storefront accessibility image dataset SAI with
3 target categories: door, knob, stair. We applied our MultiCLU
framework over the Faster R-CNN and demonstrated the superior
performance of our approach with various combinations of the
four contextual components. Furthermore, our proposed MultiCLU
provide a generic pipeline of contextual learning in deep learning,
from data preprocessing, training, post processing to result evalu-
ation, which can be applied to a wide variety of objects in object
detection task. The proposed MultiCLU also has the flexibility to
use each contextual component individually and with various com-
binations, and this model would be readily applicable to other tasks.
In addition as the fourth contextual component, we introduced a
new evaluation metric for the knob category in our task, which
could provide a new way to think the evaluation standard in real
world applications.
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