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ABSTRACT

In this paper, we formulate a two-player zero-sum game under
dynamic constraints given in terms of hybrid dynamical systems.
We present sufficient conditions with Hamilton-Jacobi-Isaacs-like
equations to guarantee attaining a solution to the game. It is shown
that when the players select the optimal strategy, the value function
can be evaluated without the need of computing solutions. Under
additional conditions, we show that the optimal feedback laws ren-
der a set of interest asymptotically stable. Using this framework,
we address an optimal control problem under the presence of an
adversarial action in which the decision-making agents have dy-
namics that might exhibit both continuous and discrete behavior.
Applications of this problem, as presented here, include disturbance
rejection and security scenarios, for which the effect of the worst-
case adversarial action is minimized.

CCS CONCEPTS

« Computer systems organization — Robotic control; « The-
ory of computation — Solution concepts in game theory;
Mathematical optimization; « Information systems — Pro-
cess control systems; - Computing methodologies — Multi-
agent systems.

KEYWORDS

Game Theory, Optimal Control, Hybrid Systems, Robust Control,
Security

ACM Reference Format:

Santiago J. Leudo and Ricardo G. Sanfelice. 2022. Sufficient Conditions for
Optimality and Asymptotic Stability in Two-Player Zero-Sum Hybrid Games.
In 25th ACM International Conference on Hybrid Systems: Computation and
Control (HSCC °22), May 46, 2022, Milan, Italy. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3501710.3519514

1 INTRODUCTION

Games involving multiple players with potentially different inter-
ests emerge in multi-agent systems, both in benign (or cooperative)
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and contested (or noncooperative) settings. A list of examples in-
cludes and is not limited to route selection in a road network
[25], heavy duty vehicle platooning [12], control of smart grids
[30], trading modeling in the stock market [9], and control of large
populations of systems [16]. Generally speaking, a game is an opti-
mization problem with multiple players, constraints that enforce the
“rules” of the game, and payoff functions to be optimized through
the selection of decision variables. Constraints on the actions played
by the players formulated as dynamic relationships (i.e., involving
time) lead to dynamic games. Differential games pertain to the case
when these constraints are given in terms of differential equations;
see, e.g., [4] and the references therein. Of particular interest is the
contested setting, which occurs when the players have indepen-
dent objectives, such as when one agent aims at minimizing a cost
function and another agent aims at maximizing it under dynamic
constraints. If the players select their actions seeking their own
benefit, a dynamic noncooperative game emerges. This type of dy-
namic games have been thoroughly studied in the literature, when
the dynamic constraints are given in terms of difference equations
or differential equations — in general, referred to as differential
games — including, to just list a few, 3, 11, 19, 20, 24, 33].

In recent years, significant progress has been made in the under-
standing of dynamic games with agents sharing information over
networks; see, e.g., [22]. Interestingly, the combination of physics,
computing, and networks leads to dynamic constraints that exhibit
both continuous and discrete behavior. In particular, intermittent
information availability, resets of variables, such as expiring timers,
and other nonsmooth and instantaneous changes lead to dynamic
constraints that can be conveniently captured using hybrid system
models. The design of algorithms that guarantee optimality under
such hybrid dynamic constraints requires new tools, since using
tools from the differential games literature would most likely lead
to suboptimal solutions. Unfortunately, tools for the design of algo-
rithms for games with such hybrid dynamic constraints, which we
refer to as hybrid games, are not as developed as those for differen-
tial games, as cited above. In [18, 32], a control design approach
using game theory that is applicable to a class of hybrid automata
models is presented. Specifically, the models considered therein
are based on finite-state automata, the specifications are defined in
terms of temporal logic formulae, and the payoff is solely given by
a terminal cost. Decidability for hybrid automata given a winning
condition are studied in [34]. Applications of the approach in [32]
include reachability-based controller design [7, 10]. The work in
[26, 27] pertains to a class of dynamic games in which the evolution
of the variables associated to each of the players is modeled using
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differential equations, while the interactions between the players is
modeled as switches that occur at isolated time instances, similar to
switched systems. Conditional viability for impulsive systems with
two competing input actions was considered in [2] and treated as
an evolutionary game. Other efforts pertaining to differential games
with impulsive (or discontinuous) elements include establishing
continuity of bounds on value functions and (viscosity) solutions
[6], formulating necessary and sufficient conditions for optimal
strategies for the special case of bimodel linear-quadratic differen-
tial games [17], and a class of stochastic two-player differential
games in the context of sail boat competitions [5].

Motivated by the lack of tools for the design of algorithms for hy-
brid games with dynamic constraints that are richer than those
allowed by finite-state automata and switched systems, we formu-
late a framework for the study of two-player zero-sum games with
generic hybrid dynamic constraints. Specifically, we formulate an
infinite horizon optimization problem in which the cost functional
includes a stage cost that penalizes the continuous evolution (or
flow) and the discrete evolution (or jumps) of the variables, as well
as their final value, via a terminal cost. The dynamic constraint is
hybrid and given in terms of hybrid equations [14, 15, 29], which
allows the modeling of continuous-time dynamics with logical
modes, switching systems, hybrid automata, impulsive differential
equations, and dynamics described by algebraic differential inclu-
sions. More precisely, we model the hybrid dynamic constraints as
a hybrid system denoted H given in terms of the hybrid equation

(H{x =  F(x,uci,ucz) (xucruc) €C (1)
x* = G(x,up,upz) (x,upi,upz) €D

where x € R" is the state, (uc1, upy) € R™Ct X R™D! s the input
chosen by player P;, and (ucy, upy) € R™C2 x R™D2 is the input
chosen by player P;. The flow map F : R" x R™C — R™ captures
the continuous evolution of the system on the flow set C. The
Jjump map G : R" x R"™P — R describes the discrete evolution of
the system on the jump set D. In this framework, the data of the
hybrid system H is given by (C, F, D, G). For such broad class of
systems, when solutions are unique, we consider a cost functional
J : R® X R™C x R™D associated to the solution to H from ¢ and
study the problem

min max j(§9 Uct, Uc2; Upis, ”Dz) (2)
(uct,up1) (ucz,upz)

as a zero-sum two-player hybrid game. This type of hybrid game
emerges in several settings, as we illustrate next.

APpPLICATION 1. (Robust Control) Given the system H as in (1)
with state x, the disturbance rejection problem consists of finding
the control input (uc1,up1) that upper bounds the cost of solu-
tions to H in (1) in the presence of a disturbance (ucz, up2). This
problem reduces to finding conditions such that the action of P;
upper bounds the values of a cost functional 7, under the presence
of any disturbance chosen by P,. This bound also applies for the
worst-case disturbance that seeks to maximize 7.

APPLICATION 2. (Security) Given the system H as in (1) with state
x and

Ja(x,uc1) + fa(ucz)

9a(x,up1) + ga(upz)

F(x,uc1,ucz)
G(x,up1,upy)
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the security problem consists of ensuring the control input (uc1, up1)
renders H to minimize a cost functional J under the action of an
attacker (ucsg, upz), that knows f; and g4 and is designed to harm
the system as much as possible. This problem reduces to finding
the conditions such that (uci, up1) minimizes J under the attack
(uca, upz), which aims to maximize it.

The main contributions of this paper are summarized as follows.

e We present a framework for the study of two-player zero-sum
games with generic hybrid dynamic constraints.

e We present sufficient conditions based on Hamilton-Jacobi-
Isaacs-like equations to attain a saddle-point equilibrium and
evaluate the game value function without computation of solu-
tions.

e Connections between optimality and asymptotic stability of
a closed set are revealed and framed in the game theoretical
approach employed.

e We address an optimal control problem in robust and security
scenarios as a two-player zero-sum dynamic game problem for
the case in which the players might exhibit continuous and
discrete behavior as in [14].

To the best of our knowledge, there are no results in the literature
that can be used to solve two-player zero-sum games with hybrid
dynamics modeled as in (1), following the framework introduced in
[15]. Recent advances on optimality of such hybrid system models
include the results in [8] providing cost evaluation techniques for
adversarial scenarios [21]. Sufficient conditions to guarantee the
existence of optimal solutions are provided in [13]. The results
therein relate the cost functional to a Lyapunov-like function to
guarantee optimality of the closed-loop system. An extension of
these ideas to a receding-horizon algorithm is presented in [1].

The remainder of this paper is organized as follows. Section 2
presents preliminary definitions that will be used along the devel-
opment of this article. In Section 3, we present a formulation of
two-player zero-sum hybrid games and provide the main results of
the paper in Theorem 3.8 and Corollary 3.15, which focus on infi-
nite horizon games. A numerical example and application covering
a type of hybrid systems are presented, displaying the versatility
of the approach. Applications to a robust control problem and to
a security problem are presented in Section 4. Section 5 provides
conclusions, closing remarks and future work.

Notation. Given two vectors x, y, we use the equivalent notation
(x,y) = [x"y"]". The symbol N denotes the set of natural num-
bers including zero. The symbol R denotes the set of real numbers
and Ry denotes the set of nonnegative reals. Given a vector x
and a nonempty set A, the distance from x to A is defined as
|x| 7 = infyeq [x — y|. In addition, we denote with SY the set of
real positive definite matrices of dimension n, and with Sg fn the
set of real positive semidefinite matrices of dimension n. Given a
nonempty set C, denote by intC its interior and by C its closure.
Given a symmetric matrix A € R™", the scalars A(A) and I(A)
denote the minimum and largest eigenvalue of A, respectively.
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2 PRELIMINARIES
2.1 Hybrid Systems with Inputs

Since solutions to the dynamical system H can exhibit both con-
tinuous and discrete behavior, we use ordinary time ¢ to determine
the amount of flow, and a counter j € N that counts the number
of jumps. Thus, the concept of a hybrid time domain, in which
solutions are fully described, is proposed.

DEFINITION 2.1. (Hybrid time domain) A set E C Ry XN isa
hybrid time domain if, for each (T,]) € E, the set E N ([0, T] X

{0,1,...,J}) is a compact hybrid time domain, i.e., it can be written
in the form
J
@t tisad x 451
j=0

; . . 1.
for some finite nondecreasing sequence of times {t; }520 with tjy =
T. Each element (t, j) € E denotes the elapsed hybrid time, which
indicates that t seconds of flow time and j jumps have occurred.

Ahybrid signal is a function defined on a hybrid time domain. Given
a hybrid signal ¢ and j € N, we define Ié) ={t:(t,j) € dom¢}.

DEFINITION 2.2. (Hybrid arc) A hybrid signal ¢ : dom¢p — R"
is called a hybrid arc if for each j € N, the function t — ¢(t, j) is
locally absolutely continuous on the interval I,. A hybrid arc ¢ is

¢

compact if dom ¢ is compact.

In this article, the same symbols are used to denote input actions
and its values. The context clarifies the meaning of u, as follows:

» &«

“the function u,” “the signal u,” or “the hybrid signal u” that appears
in “the solution pair (¢, u)” refer to the input action, whereas “u”
refers to the input value as a point in R™€ X R™D in any other case.
The reader can replace “the function u” by “ug,” that is the input
action yielding the system to a response described by the hybrid

arc ¢.

DEFINITION 2.3. (Hybrid Input) A hybrid signal u is a hybrid input
if for each j € N, the function t = u(t, j) is Lebesgue measurable
and locally essentially bounded on the interval I,

Let X be the set of hybrid arcs ¢ : dom¢p — R, and U = Uc xUp
the set of hybrid inputs u = (uc,up) : domu — R™C x R™P A
solution to the hybrid system with input H is defined as follows.

DEFINITION 2.4. (Solution to the hybrid system H) A hybrid
signal (¢, u) defines a solution pair to the hybrid system (1) if ¢ € X,
u = (uc,up) € U, dom¢ = domu, and

e (¢(0,0),uc(0,0)) € C or (¢(0,0),up(0,0)) € D,

o Foreach j € N such that I, has a nonempty interior intl’., we

¢

have, forallt € intI;;,

(p(t, )),uc(t, j)) € C
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and, for almost all t € Iq];,

L 9t.1) = F@(t ) uc(t, )

e Forall (t, j) € dom ¢ such that (t,j+ 1) € dom ¢,

(¢(t,)),up(t.j)) € D
Pptj+1) = Gt ))up(t)))

A solution pair (¢, u) is a compact solution pair if ¢ is a compact
hybrid arc.

We say that a solution pair (¢, u) to H is maximal if it cannot be
extended and we say it is complete when dom ¢ is unbounded. We
denote by Sﬂ(M) the set of solution pairs (¢, u) to H asin (1) such
that ¢(0,0) € M. The set S¢y(M) C SW(M) denotes all maximal
solution pairs and Sg; (M) C Sq.{(M) the set of complete solutions.
Given ¢ € R", we denote by (L[;f’{(f) the set of input actions u such
that maximal solutions to H from £ for u are complete. For a given
u € U, we denote the set of maximal state trajectories, or responses,
to H from & for u by R(&u) = {¢ : (p,u) € Sgy(&)}. We say u
renders a maximal response ¢ to H from & if ¢ € R(& u).

We define the projections of C and D onto R”, respectively as
I(C) = {¢ e R" : uc € R™C s.t. (£ uc) € C}
(D) = {£ e R" : Jup € R™P st. (§,up) € D}
We also define the set-valued maps
I, (x,C) = {uc € R™C : (x,uc) € C}
I, (x,D) = {up € R™P : (x,up) € D}
denoting the input values available for a given state. Likewise, we

denote by sup; dom¢ := {supj € Nxg : 3t € Ryg s.t. (t,j) €
dom ¢} .

The following conditions guarantee uniqueness of solutions to H
as in (1) [14, Proposition 2.11].

ProrosITION 2.5. (Uniqueness of Solutions) Consider the hybrid
system H as in (1). For every ¢ € II(C) UTI(D) and eachu € U
there exists a unique maximal response ¢ with $(0,0) = & provided
that the following holds:

(%) forevery& € II(C) \II(D), if two absolutely continuous functions
21,22 : [0,T] — R™ and a measurable function u : [0,T] —
R™C are such that z;(t) = F(z;(t), u(t)) for almost allt € [0, T],
(zi(t),u(t)) € C forallt € (0,T], and z;(0) = &, for each
i € {1,2}, then z1(t) = z2(t) for everyt € [0, T].

2.2 Closed-loop Hybrid Systems

Given a hybrid system H and a function k := (x¢,xp) with k :
R™ — R™C x R™P, the autonomous hybrid system resulting from
assigning u = k(x), namely, the hybrid closed-loop system, is given
by
x = F(x,kc(x)) xeC

Hy { + GEx, Kgix)); x € D’; )
where C := {x € R" : (x,kc(x)) € C} and Dx = {x € R" :
(x,xp(x)) € D}.

=
|
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A solution to the hybrid closed-loop system Hy is defined as follows.

DEFINITION 2.6. (Solution to the hybrid system Hy) A hybrid arc
¢ defines a solution to the hybrid system Hy in (3) if

e $(0,0) € Cc U Dy,

e For each j € N such that I, has a nonempty interior intl’, we

) [ [
have, forallt € intl”,
$(t,j) € Cx
and, for almost all t € Ié,

L9(11) = F@(t. ) ke (9(1,1)

e Forall (t, j) € dom ¢ such that (t, j+ 1) € dom ¢,

¢(t.j) € Dy
¢t j+1) = G(§(t ). kp(9(t.))))

A solution ¢ is a compact solution if ¢ is a compact hybrid arc.

We denote by SWK (M) the set of solutions ¢ to Hy as in (3) such
that $(0,0) € M. The set Sq¢;_(M) C S(HK (M) denotes all maximal
solutions and Sﬁf{ M) c S(HK (M) the set of complete solutions.

3 TWO-PLAYER ZERO-SUM HYBRID GAMES
3.1 Formulation

Following the formulation in [4], for each i € {1, 2}, consider the
i-th player P; with dynamics described by H; as in (1) with data
(Ci, Fi, Dj, G;), state x; € R™, and input u; = (uc;, up;) € R™Ci X
R™Di where C; c R™ x R™¢i F; : R x R™M¢i — R™ D; C
R"™ x R™Di and G; : R™ x R™Pi — R™ . The maps F; and G; are
single-valued maps. We denote by U; = Uc; X Up; the set of
hybrid inputs for H;.

DEFINITION 3.1. (Elements of a two-player zero-sum hybrid game)
A two-player zero-sum hybrid game is composed by

1) The state x = (x1,x2) € R", where, ny + nz = n and, for each
i € {1,2}, x; € R™ is the state of player P;.

2) The set of joint input actions U = Uy X Uy with elementsu =
(u1,u2), where, for each i € {1,2}, u; is a hybrid input. For each
i € {1,2}, P; selectsu; independently from us_;, thus allowing the
Jjoint input action u to have components u; that are independently

chosen by each player.

3) The dynamics of the game, described as in (1) and denoted by
H, with data
C:=C1xCy
F(x,uc) = (F1(x,uc), Fa(x,uc))
D = {(x,up) € R"* x R™D: (xj,up;) € Dj,i € {1,2}}
G(x,up) = {Gi(x,up) : (xi,up;) € Dy, i € {1,2}}
where uc = (uc1, ucz), me1 + mez = me, up = (up1,upz),
mpi1+mpz = mp,G1(x,up) = (G1(x,up), In,), and G2 (x, up) =
(Inl: Gz (x’ UD)) M
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4) Foreachi € {1,2}, astrategy space K; of P; defined as a collection
of mappings k; : R™ — R™Ci x R™Di, Eqch K; is such that the
strategy space of the game, namely, K, that is the collection of
mappings with elements k = (k1,k2), where k; € K; for each
i € {1,2}, is such that every maximal solution (§, u) to H with
input assigned as dom¢ > (t,j) v u;(t,j) = ki(¢p(t,j)) for
eachi € {1, 2} is complete. Each k; € K; is said to be a permissible
pure! strategy for P;.

5) A scalar-valued functional (&,u) — Ji(& u) defined for each
i € {1, 2}, and called the cost associated to P;. Foreachu € U,
we refer to a single cost functional J = J1 = —J2 as the cost
associated to the unique solution to H from & for u, and its
structure is specified for each type of game.

We say that a game formulation is in normal (or matrix) form when
it describes only the correspondences between different strategies
and costs. On the other hand, we refer to the mathematical descrip-
tion of a game to be in the Kuhn’s extensive form if the evolution
of the game defined by the dynamical equations, the decision mak-
ing process defined by the strategies, the sharing of information
between the players defined by the communication network and
their outcomes defined by the cost associated to each player, are
described in the formulation. For the formulation in Definition
3.1 to be in Kuhn'’s extensive form, additional assumptions are re-
quired such that each strategy has a unique cost correspondence.
For a given initial condition, a given strategy potentially leads to
nonunique solutions to H, each of which may have a different cost.

Given the formulation of the elements of a zero-sum hybrid game
in Definition 3.1, its solution is defined as follows.

DEFINITION 3.2. (Saddle-point equilibrium) Consider a two-player
zero-sum game, with dynamics H asin (1) with 1 = J, o = -9,
for a given cost functional J : R" x U — R. We say a strategy
Kk = (k1,k2)€ K is a saddle-point equilibrium if for each & € TI(C U
D), every u* = (uj,u;) rendering a maximal response ¢* to H
from £, with components defined as dom ¢ > (t,j) — ui(t,j) =
ki(4* (¢, 7)), for each i € {1, 2}, satisfies

T (& (uf,u2)) < T (Eu") < T (& (u1,u3)) 4)

for all uy such that there exists ¢ such that (¢, (u1,u;)) € Sg(£),
and for all uy such that there exists ¢ such that (¢, (uy,uz)) € Sg(&).

Definition 3.2 is a generalization of the classical pure strategy Nash
equilibrium [4, (6.3)] to the case where the players exhibit hybrid
dynamics and opposite optimization goals. In words, we refer to the
strategy k™ = (x7,x3) as a saddle-point when a player P; cannot
improve the cost J; by playing any strategy different from x; when
the player P5_; is playing the strategy of the saddle-point, x_;.
Notice that the saddle-point, as a solution to the zero-sum two-
player game, is a strategy in K, though the concept of a solution to
a hybrid system H, as in Definition 2.4, is a hybrid arc.

!This is in contrast to when K; is defined as a probability distribution, in which case
k; € K; is referred to as a mixed strategy.
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REMARK 3.3. (Equivalent costs) Given ¢ € II(CUD) and a strategy
k* = (kjx3) € K, denote by U™ (& k™) the set of joint actions u =
(u1,u2) rendering a maximal response ¢ toH from & with components
defined asdom ¢ > (t, j) = u;i(t, j) = k] (¢(t, j)) foreachi € {1,2}.
By expressing the cost associated to every solution to H from &
under the strategy k* as J (£ k%) = supy cqp ety J (£ u), an
equivalent condition to (4) for when J (£,x*) = J (£,u®) for every
u* € U (& k™) is

T (& (K}, k2)) < T (E67) < Fi (& (k1,K5))
forallk; € Kj, i € {1,2}.

REMARK 3.4. (Relation to the literature) Given a discrete-time two-
player zero-sum game with final time (0, J), fi and X defining the
Jjump map and jump set, respectively, as in [4], setting the data of H
asC=0,G = fi fork € N¢j, and D = X reduces Definition 3.1 to [4,
Def. 5.1] for the case in which the output of each player is equal to its
state and there is a feedback information structure as in [4, Def. 5.2].
Thus, items (vi) — (ix) in [4, Def- 5.1] are omitted in the formulation
herein and items (i) — (v) and (x) — (xi) are covered by Definition
3.1, the definition of the hybrid time domain with final time (0, J),
and the set Sqy.

Given a continuous-time two-player zero-sum game with final time
(T,0), f and S° defining the flow map and flow set, respectively, as
in [4], setting the data of H asD =0, F = f, and C = SO reduces
Definition 3.1 to [4, Def. 5.5] for the case in which the output of each
player is equal to its state and there is a feedback information struc-
ture as in [4, Def. 5.6]. Thus, items (vi) — (vii) in [4, Def. 5.5] are
omitted in the formulation herein and items (i) — (v) and (viii), (ix)
are covered by Definition 3.1, the definition of the hybrid time domain
with final time (0, T), and the set Sqy.

By considering a discrete-time system with the single-valued function
G or by considering a continuous-time system with F Lipschitz con-
tinuous in C, and by removing the initial condition as an argument of
the cost functionals and specifying it in the state equation, Remark 3.3
presents equivalent conditions to those in [4, (6.3)]. Thus, Definition
3.2 covers the definitions of a pure strategy Nash equilibrium in [4,
Sec. 6.2, 6.5] for the zero-sum case.

Next, we formulate an infinite-horizon optimization problem to
solve the two-player zero-sum hybrid game and provide the suf-
ficient conditions to characterize the solution. Consider a two-
player zero-sum hybrid game with dynamics H as in (1) for given
(C,F,D,G). The cost evaluation tools employed in approaches
based on dynamic programming require uniqueness of solutions
to H for a given input action u from an initial condition £. This
justifies the following assumption.

ASSUMPTION 3.5.  The flow map F is Lipschitz continuous on IL(C).
The jump map G is single valued, i.e., D1 = Ds.

Under Assumption 3.5, the conditions in Proposition 2.5 are satis-
fied, so for a given u € U, the solution to H from & is unique.

Given & € C U D, a joint input action u = (uc,up) € U such
that maximal solutions to H from ¢ for u are complete, the stage
cost for flows Lc : R X R™C — Ry, the stage cost for jumps
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Lp : R® X R™P — R0, and the terminal cost ¢ : R? — R, we
define the cost associated to the solution (¢, u) to H from &, under
Assumption 3.5, as

sup; dom ¢
JEw= )
j=0

sup; dom ¢—1 (5)
+ > Lot up(tisn, ) + limsup q(g(t, )
- t+j—00
/=0 (t,j) edome

tjiv1
[_mwnmww

sup; dom¢ | . R
where {t; }jzoj is a nondecreasing sequence associated to the

definition of the hybrid time domain of ¢@; see Definition 2.2. Under
the said assumptions, the solution to the two-player zero-sum game
consists of solving the following problem.

Problem (¢): Given ¢ € R", under Assumption 3.5, solve

T (& u) (6)

minimize maximize
1 uz
u=(u,uz) €Uy (&)

where (L(ﬁ is the set of joint input actions yielding maximal com-
plete solutions to H, as defined in Section 2.2.

REMARK 3.6. (Saddle-point equilibrium and min-max control) A
solution to Problem (o), when it exists, can be expressed in terms of
the pure strategy saddle-point equilibrium k = (k1, x2) for the two-
player zero-sum infinite-horizon game. Each u* = (uj, u3) rendering
a response ¢* such that (¢*,u*) € S,‘;f’[(ﬁ), defined as dom ¢* >
(t, ) = u(t,j) = ki(¢* (¢, ))) for each i € {1,2}, satisfies

u* = arg minmax J (& u)

U U

u=(u,uz) €U (&)

and it is referred to as a min-max control at &.

DEFINITION 3.7. (Value function) Given & € II(C U D), under
Assumption 3.5, the value function at & is given by

T = J(Eu) = J(&u) (7)

min max
uy uz

u=(ur,up) €U (8)

max min
u U

u=(u1,uz) €Ug (§)

3.2 Design of Saddle-Point Equilibrium for
Two-player Zero-sum Infinite-horizon
Hybrid Games

The following result provides sufficient conditions to characterize
the value function, and the feedback law that attains it. It addresses
the solution to Problem (o) for each £ € TI(C U D) showing that
the optimizer is the saddle-point equilibrium.

TuEOREM 3.8. (Hamilton-Jacobi-Isaacs (HJI) for Problem (o)) Given
a two-player zero-sum hybrid game with dynamics H as in (1) de-
scribed by (C,F, D, G), satisfying Assumption 3.5, stage costs L¢ :
R" X RMC¢ — Rs¢ and Lp : R X R™P — R, and terminal
cost q : R™ — R, if there exists a function V : R"™ — R that is
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continuously differentiable on a neighborhood of II(C) that satisfies
the Hamilton-Jacobi-Isaacs hybrid equations given as

0= rbrllin max {Le(x,uc) + (VV(x), F(x,uc))}

uc=(uci,ucz) €lly, (x,C)

= max min {Lc(x,uc) +(VV(x),F(x,uc))} (8)
Ucz Uci
uc=(uci.ucz) €lly (x,C)
Vx € I1(C),
V(x) = minmax {Lp(x,up) + V(G(x,up))}
up1 up2
up=(up1,upz) €lly (x,D)
= max min {Lp(x,up) +V(G(x,up))}  (9)
up2 upi
up=(up1,upz) €lly (x,D)
Vx € II(D),
and for each £ € II(C U D), each (¢,u) € Sﬁ;"{(§) satisfies
limsup V(¢(t,j)) = limsup q(4(t, ), (10)
t+j—o0 t+j—oo
(t,j) edome¢ (t,j) edom¢
then _
T =V V¢ e I(CUD), (11)

and any stationary feedback law k := (kc, kp) : R" — R™C x R"™P
with values

kc(x) earg r:}in max {Le(x,uc) + (VV(x), F(x,uc))}

uc=(uci,ucz) €lly, (x,C) (12)
Vx € TI(C)
and
kp(x) € arg min max {Lp(x,up) + V(G(x,up))}
upi1 up2
up=(up1,upz) €lly (x,D) (13)

Vx € II(D)

is a pure strategy saddle-point equilibrium for the two-player zero-

sum hybrid game with infinite horizon and 1 = J, J2 = -J.

Proof Sketch. To show the claim we apply cost evaluation tools
built upon dynamic programming approaches and proceed as fol-
lows:

1) Pick an initial condition ¢ and evaluate the cost associated to
any solution yielded by k = (kc, kp), with values as in (12) and
(13), from &. Show that this cost coincides with the value of the
function V at &

2) Lower bound the cost associated to any solution from ¢ when P
plays k2 := (kc2, kp2) by the value of the function V evaluated
at &

3) Upper bound the cost associated to any solution from ¢ when P;
plays k1 := (xc1, kp1) by the value of the function V evaluated
at &

4) By showing that the cost of any solution from & when P; plays
K1 is not less than the cost of any solution yielded by « from &,
and by showing that the cost of any solution from ¢ when P
plays k3 is not larger than the cost of any solution yielded by x
from &, we show optimality of k in Problem (¢) in the min-max
sense.

S. J. Leudo and R. G. Sanfelice

O

Notice that when the players select the optimal strategy, the value
function equals the function V evaluated at the initial condition.
This makes evident the independence of the result from computing
solutions/trajectories.

REMARK 3.9. ( Connections between Theorem 3.8 and Problem (¢))
Given & € TI(C U D), if there exist a function V satisfying the condi-
tions in Theorem 3.8, then a solution to Problem (o) exists, namely
there exists an input actionu™ = (ug, upy) = ((ugy, up,), (Uf. up),)) €
‘Llf,’_’}(’g’) such that J (&, u*) < co, that attains the min-max in (6),
and as a consequence satisfies (4) in Definition 3.2. In addition, the
strategy k € K with values as in (12) and (13) is such that every
complete solution to the closed-loop system Hy. from & has a cost that

is equal to the min-max in (6).

3.3 Linear Quadratic Hybrid Games

Next, we consider a special case of our result that emerges in hybrid
systems with linear flow and jump maps and periodic jumps. We
introduce a state variable 7 that plays the role of a timer. Once 7
reaches a fixed threshold T, it triggers a jump in the state and resets
710 0.

Given a time T € R, consider a two-player zero-sum game with
state x = (xp, 7)= (Xp1, Xp,, T) € R" X [0, T], input u = (uc,up) =
((uc1, ucs), (up1,up2)) € R™C X R™P, and dynamics H as in (1),
described by

C = R"x[0,T] xR™
F(x,uc) = (Acxp+Bcuc,1)

=: (I:AglA(éz][§§;]+[BCIBCZ][$g;]’1)
D = R*x{T}xRMP
G(x,up) = (Apxp+Bpup,0)

=: ([AODI A(J)Dz] [iz;] + [ Bp1 Bpz | [Zg;],O)

where C U D is nonempty. The input u; = (uc1, up1) is assigned
by P; and the input uz = (ucy, upy) is assigned by Py. The problem
of finding conditions for u; to minimize a cost functional J in the
presence of the action uy that seeks to maximize it, is formulated
as a two-player zero-sum game. Thus, by solving Problem (¢) for
every ¢ € II(C U D), the control objective is achieved.

With the aim of pursuing minimum energy and distance to the ori-
gin, consider the cost functions Lo (x, uc) = x; chp+ug1 Reiuct+
ungczucz, Lp(x,up) := x;QDxp+u£1RD1uD1 +uBZRD2uD2, and
terminal cost g(x) := x‘;',—P(T)xIJ where Qc,Qp € ST, Ry € STCl ,
~Rey € ST, Rpy € ST, —Rpy € S, and P(1) € STV €
[0, T]. These functions define . as in (5). Inspired by [8] and [28],
the following result presents a tool for the solution of the optimal
control problem for hybrid systems with linear maps and periodic
jumps under an adversarial action.

CororLARY 3.10. (Hybrid Riccati equation for periodic jumps)
GivenT € R, Ac,Ap € R Be = [Bci Bez] € RPXmc, Bp =
[Bo1 Bpsl € R™™>, Qc, Op € ST, Rey € Sy, —Rez € 57,
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Rp; € STDI, —Rpy € STDz, suppose there exists a matrix P :
0,T] — S" continuously differentiable such that
+ Yy

dP(r) -1pT —-1pT
- ar = —P(T)(Bcchchz + BClRClBCI)P(T) (14)
+Qc +P(1)Ac +ALP(r)  Vre (0,1),
—Rpy — B),P(0)Bpy € S;}°, (15)
Rp1+B},P(0)Bp1 € Si°,

RD1+BEIP(0)BD1
BBZP(O)BDI

BEIP(O)BDZ

the matrixR, = [ Rpu+BJ,P(0)Bp,

] is invertible, and
P(T) = Qp + ALP(0)Ap

T
BDIP(O)AD

~ [ApP(0)Bp1  ALP(0)Bpz| R, BBZP(O)AD} "

Then, the feedback law k = (k¢c, kp), with values

ke (x) = (~RABL P(1)xp, ~R3BLP(T)xp)  Vx € II(C), (17)

-1 [BEIP(O)AD % VxeTI(D)  (18)

kp(x) = -K, B},P(0)Ap

is the pure strategy saddle-point equilibrium for the two-player zero-
sum hybrid game with periodic jumps. In addition, for each x =
(xp,7) € [I(CUD), the value function is equal to V (x) := x;P(f)xp.

By following the same modeling approach and imposing conditions
of the hybrid time domains, games for switching systems can be
covered by Corollary 3.10. By selecting appropriate stage costs, op-
timality is encoded in the satisfaction of the infinitesimal conditions
instead of in the knowledge of specific solutions/trajectories. Note
that for switching systems, the function V might be independent
of the timer state if the stage costs are independent of it as well.

As illustrated next, there are useful families of hybrid systems
for which a pure strategy saddle-point equilibrium exists. The fol-
lowing example characterizes both the pure strategy saddle-point
equilibrium and the value function in a two-player zero-sum game
with a one-dimensional state, that is associated to player P;. Thus,
n1 = 1,nz = 0, and the role of player P, reduces to select the action
us.

ExampLE 3.11. (Hybrid game with nonunique solutions) Consider
a system with state x € R, input uc := (uc1,ucz) € R?, and
dynamics H as in (1) described by

x= F(x,uc):=ax+Buc xe€][0,6]
xt= G(x)=0 xX=pu

(19)

where a < 0,B = [by by] and let > § > o > 0. Consider the
cost functions Lo (x, uc) == x?Qc + ugRCuc, Lp(x) := P(x? — 62),
and terminal cost g(x) := Px?, defining J as in (5), with Rc :=

[Rgl < ] QOc, Ret, =Rea, P> 0 and Qc + 2Pa — P2(2RC1 +

bgREé) = 0. Here, uc; is designed by player P; which aims to
minimize J while by means of uc,, player P, seeks to maximize

it. This is formulated as a two-player zero-sum hybrid game. The
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function V(x) := Px? is such that
{Le(x,uc) +(VV(x), F(x,uc))}

min max
ucy ucz
uc=(ucn,ucz) ER?

= min max +2Pa)x?% + Rpoqu?
nin, max, {(Qc ) c1us,  (20)

+Rczué2 + 2xP(brucy + bzuCz)}
=0
holds for all x € [0, §]. In fact, (20) is attained by
kc(x) = (—RablPx, —RE;bsz)A In particular, given that Q¢ +
2Pa = Pz(b%Ra + bgRE;), we have
Le(x,ke(x)) + <VV(2x),2F(x1, Kc(2x))>l Cp
= [P2(bIR:] + bIRC)) + RCllblP + RczblzP )
—2P(b1R1b1P + baRC3b2P) | x
=0
Then, V(x) = Px? is a solution to (8). In addition, the function V is
such that
minmax {Lp(x) +V(G(x))} = P(x? — ¢%) + Po?
Upi uUp2
(up1.ups) ER? (21)
= Px?

at x = p , which makes V(x) = Px? a solution to (9). Thus, given
that V is continuously differentiable on R, and that (8) and (9) hold
thanks to (20) and (21), from Theorem 3.8 we have that the value
function is J*(£) := P& for any & € [0,58] U {u}.

To investigate the case of nonunique solutions, now assume that
d=p > o > 0 and notice that solutions can potentially flow or
jump at x = p. The set of all maximal responses from x = § is
denoted Ry (6) = {¢«, 1}, where the continuous response ¢y is
such that dom ¢, = R>0Xx{0}, and is given by ¢, (¢,0) = S exp((a—
RablP - RabgP)t) for all t € [0, 00). In simple words, ¢, flows
from x = § towards x = 0. The maximal response ¢, is such
that dom ¢, = ([0, "] x {0}) U ([t", 0) x {1}), and is given by
¢n(1,0) = Sexp((a—Rz1b1P—R:1b2P)E),  @p(t,1) = o exp((a—
Ré%blP - RE; byP)(t — th)). In simple words, the response ¢y, flows
from x = § towards x = p, then it jumps to x = o, and flows
towards x = 0. Figure 1 illustrates this behavior. By denoting the
corresponding input signals as u, = x(¢x) and up = x(¢y), we
show in Figure 1(c) that the costs of the solutions (¢, ux) and
(¢p» up) are equal to P52, O

3.4 Asymptotic Stability for Hybrid Games

Next, we introduce definitions of some classes of functions to
present a result that connects optimality and asymptotic stabil-
ity for two-player zero-sum hybrid games.

DEFINITION 3.12. (Class-Ko functions) A functiona : R>g — Rxo
is a class-Kw function, also written as @ € Kw, if a is zero at zero,
continuous, strictly increasing, and unbounded.

DEFINITION 3.13. (Positive definite functions) We say that a func-
tion p : Ryo — Ryg is positive definite, also written as p € PD,
if p(s) > 0 foralls > 0 and p(0) = 0. We say that a function
p : R?"xXR™ — Ry is positive definite with respect to a set A c R",
in composition with k : R™ — R™, also written as p € PD(A), if
p(x,x(x)) > 0 forallx € R* \ A and p(A, k(A)) = {0}.
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Figure 1: Nonnunique solutions attaining minmax optimal
costfora =-1,by =by =1, =¢=2pu=10=050Qc =
1, Rcy = 1.304, Rcy = —4, and P = 0.4481. Continuous solution
(green). Hybrid solution (blue and red).

LEMMA 3.14. (Equivalent conditions) Given H as in (3) described by
(C’ F,D, G) andx := (KC: KD) = ((KCI’ KCZ)’ (KDl’ KDZ)) :R" —
R™MEXR™D  if there exists a functionV : R"™ — R that is continuously
differentiable on a neighborhood of T1(C) such that Cx, = II(C), Dy =
I(D)?, then (8), (9), (12), and (13) are satisfied if and only if

Lo(x, ko (x)) +{(VV(x), F(x,kc(x))) =0  Vx € Cx, (22)
Le(x, (uct ke2(x))) +(VV(x), F(x, (uc1, kc2(x)))) = 0
V(X, uCl) : (.X', (ucls KCZ(X))) € C>

Le(x, (ke1(x), uc2)) +(VV (x), F(x, (kc1(x), uc2))) < 0
Y(x, ucz) : (x(kc1(x), ucz)) € C,

Lp(x,xp(x)) +V(G(x,kp(x))) =V(x) Vx € Dy, (25)

Lp(x, (up1, kp2(x))) + V(G(x, (up1, kp2(x)))) = V(x)
V(X, uDl) : (X, (uDl’ KD2 (X))) € D’

Lp(x, (kp1(x),up2)) + V(G(x, (kp1(x), up2))) < V(x)
Y(x,upz) : (x, (kp1(x),upz)) € D.

(23)

(24)

(26)
27)

CoroLLARY 3.15. (Saddle-point equilibrium under the existence of
a Lyapunov function) Consider a two-player zero-sum hybrid game
with closed-loop dynamics Hy as in (3) described by (C, F, D, G)
satisfying Assumption 3.5, and k := (kc,kp) : R" — R™C x R™D
such that Cx = II(C), Dy = II(D), and every maximal solution to
Hy from Ce UDy is complete. Given a closed set A C R", continuous
functions Lc : C — Rso and Lp : D — Ry defining the stage
costs for flows and jumps, respectively, and q : R* — R defining
the terminal cost, suppose there exists a function V : R"™ — R that is
continuously differentiable on an open set containing Cy, satisfying

2The conditions C, = II(C), D, = II(D) hold when k¢ (x) € II, (x, C) for all
x € II(C) and kp (x) € I, (x, D) for all x € II(D). In words, the feedback law x
defining the closed-loop system H,. does not render input actions outside of C U D.
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(22)-(27), and such that for each £ € Cy U Dy, each ¢ € Sf;’{ (€3]
satisfies (10). If there exist a1, az € Koo such that

ai(lx[z) < V(x) < aza(lx]7) VxeCeUDe  (28)
and one of the following conditions holds
1) Lc € PDy(A) and Lp € P Dy, (A);

2) Lp € P Dy, (A) and there exists a continuous functionn € PD
such that Le(x, xp (x)) = n(|x| #) forall x € Cx;

3) Lc € PDy(A) and there exists a continuous functionn € PD
such that Lp (x,xp(x)) = n(|x|#) for allx € Dy;

then
THE) =V(§) VEeCcUDy (29)
Furthermore, the feedback law k is the saddle-point equilibrium (see

Definition 3.2) and it renders A uniformly globally asymptotically
stable [15] for Hy.

In the next example, notice that we do not necessarily compute
the value function but, similar to the application of a Lyapunov
theorem, we propose a candidate with the needed regularity and
then check if the conditions in Corollary 3.15 hold.

ExampLE 3.16. (Hybrid game with nonunique solutions) From
Example 3.11, recall that xc(x) = (—RE}blPx, —REébng) for ev-
ery x € TI(C). Let A = {0} and given that Lo € P Dy (A),
(22)-(27) hold, and the function s +— n(s) =: P% is such that
Lp(x,kp(x)) = n(|x|x) for all x € Dy, by setting a1(|x|#) =
A(P)|x|? and aa(|x| #) = A(P)|x|?, from Corollary 3.15 we have
that x¢ is the saddle-point equilibrium and renders A uniformly
globally asymptotically stable for H as in (19). O

4 APPLICATIONS

We illustrate in the following applications with hybrid dynamics
and quadratic costs how Theorem 3.8 provides conditions to solve
the disturbance rejection and security problems introduced above
by addressing them as zero-sum hybrid games.

4.1 Application 1: Robust Hybrid LQR

We study a special case of Application 1 and apply Theorem 3.8 in
this section. Consider a hybrid system with state x € R", input u =
(uc,up) = ((uc1,uce), (up1, up2)) € R™ X R™P, and dynamics
H as in (1), described by

C c R*xRM™c

F(x,uc) = Acx+Bcuc
- [Agl Aocz ] [g ] + [ Be1 Bez | Zg; ] (30)
D c Rn X RmD
G(x,up) = Apx+Bpup

|40 [ 1]+ U Bon ] [ 4]

where C U D is nonempty. Following Application 1, the input u;: =
(uc1, up1) plays the role of the control and uz: = (ucy, upy) is the
disturbance input. The problem of upper bounding the effect of the
disturbance uy in the cost of complete solutions to H is formulated
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as a two-player zero-sum game. Thus, by solving Problem (¢) for
every & € II(C U D), the control objective is achieved.

With the aim of pursuing minimum energy and distance to the ori-
gin, consider the cost functions Le(x, uc) == x T ch+ugch1u01 +
ungczucz, Lp(x,up) == x"Qpx+ uBIRDluDl + VBZRDZUDZ) and
terminal cost q(x) := x"Px, where Qc,QOp € S”, Rey € STCl ,
~Rep € SV Rpy € ST, —Rpy € S, and P € S". These
functions define J as in (5). The following result presents a tool
for the solution of the optimal control problem for hybrid systems
with linear maps under the presence of disturbances.

CoOROLLARY 4.1. (Hybrid Riccati equation for disturbance rejec-

tion) Given Ac,Ap € R™" B- = [Bc1 Bez] € R™Mc Bp =
[Bar Bpz] € ™™, Qc, Qp € S}, Rey € SU, —Rea € 8§77,
Rp; € STDI, —Rpy € STDZ, suppose there exists a matrix P € ST
such that

0 = —P(BcaRyBl, + BoiRABL )P+ Qc + PAc + ALP,  (31)

T mp
—Rpy — BLI_)ZPBDZ € S%D, (32)
RDI +BD1PBD1 € SO+ B
RD1+B-£)1PBD1 BBIPBDZ

the matrix R, = [ ] is invertible, and

BBZPBDI RD2+BBZPBDZ

0=-P+Qp+ALPAp
BT PAp (33)
- [ALPBp1 AL PBp:|R;! [ D1 }
D D ° |B],PAp
Then, for the feedback law k1 = (kc1, kp1) with values®
kc1(x) = —R;BL, Px Vx € II(C), (34)

.
kpi(x) = = [R; (L) R (1.2)] [ 52 |
the cost of complete solutions to H from & in the presence of any

disturbance uy is upper bounded by £' P£. In addition, for each x €

II(C U D), the value function is equal to V(x) := x' Px and the

worst-case disturbance is given by k2 := (kcg, kKp2), with values

Vx € II(C), (36)

_ _ BT PA
kpa(x) = ~[R; 2. 1) By 2.2)] [ 270 |

Vx € II(D), (35)

kc2(x) = —RoyBL,Px

Vx € (D). (37)

4.2 Application 2: Security jumps-actuated
hybrid game
We study a special case of Application 2 and apply Theorem 3.8

in this section. Consider a hybrid system with state x € R”, input
up = (up1, up2) € R™P, and dynamics H as in (1), described by

x= F(x) x eC

xt = Apx+[BpiBp:] [Zm ] (x,up)e D (38)

D2
with Lipschitz continuous F : R™" — R™" Ap € R™" and
C c R",D c R" x R™P such that C U D is nonempty . The input
up; plays the role of the control and up; is the disturbance input.
Following Application 2, the problem of minimizing a cost func-
tional 7 in the presence of the worst-case attack uy is formulated

3The notation Ry (p, q) denotes the (p, q) entry of the matrix R;?.
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as a two-player zero-sum game. Thus, by solving Problem (¢) for
every & € II(C U D), the control objective is achieved.

With the aim of pursuing minimum energy and distance to the
origin during jumps, consider the cost functions Lc(x, uc) := 0,
Lp(x,up) := x" Qpx+u}, Rp1up1 +u}5,Rpatpy, and terminal cost
q(x) :== x" Px, where Qp € S", Rp; € STDl, -Rp;y € STDZ and
P € ST. These functions define J as in (5). The following result
presents a tool for the solution of the optimal control problem for
jumps-actuated hybrid systems with state-affine flow maps under
a malicious input attack designed to cause as much damage as
possible.

COROLLARY 4.2. (Hybrid Riccati equation for security) Given F :

R® — Rn,AD (S Rnxn’ Bp := [BD1 BDZ] (S Rnme, QD € Sz,
Rp1 € STDl, —Rps € STDZ, { € R™, suppose there exists a matrix
P e S such that

0 = 2x" PF(x)
—Rpy — BBZPBDZ
RDl + BIT)lpBDl

. RD1+BT PBp; B, PBp»
the matrix R, = [ b1 b1
v B;F)ZPBpl RD2+B;;2PBD2

Vx € II(C), (39)

€ SpP,
e shio (40)
P

] is invertible, and
0=-P+Qp+ALPAp
BT PAp| (41)
—|ALPBp1  ALPBp;| R,! [ D1 ]
D T
D ¢ |Bp,PAD
Then, with the feedback law
pT
BQ1PAD
[BpaPAD |
the cost functional J is minimized in the presence of the worst-case
attack uy, given by

kp1(x) = —=[R;(1,1) R, (1,2)] x VxeIl(D) (42)

.
BJ,PAp

kp2(x) = —[Ry"(2,1) R, (2, 2)] B pap|* Vx € TI(D) (43)
L7 D2

In addition, for each x € TI(C U D), the value function is equal to
V(x) := x' Px.

ExAMPLE 4.3. (Bouncing ball) Inspired by the problem in [31],
consider a simplified model of a juggling system as in [23], with
state x € R?, input up := (upy,upz) € R?, and dynamics H as in
(1), described by

C = RsoxR
F(x) = [fﬁ
D = {0}xRgyxR? (44)
0
G(x’ uD) [—sz +up1 +upy

where up; is the control input, up, is the action of an attacker,
and A € (0, 1) is the coefficient of restitution of the ball. Let A =
{0}. As an instance of Application 2, the scenario in which up; is
designed to minimize a cost functional J under the presence of
the worst-case attack up, is formulated as a two-player zero-sum
game. With the aim of pursuing minimum energy and distance to
the origin during jumps, consider the cost functions L¢ (x, uc) = 0,
Lp(x,up) = ngD + uBRDuD, and terminal cost q(x) = %xé +x1



HSCC ’22, May 4-6, 2022, Milan, Italy

defining  asin (5), with Rp := [RDI Rf)z] and Op, Rp1, —Rpz > 0.

0
Here, up, is designed by player P; which aims to minimize J

while player P, seeks to maximize it by means of choosing up;.

The function V(x) := 2 x5 Z + x1 is such that (VV(x), F(x)) = 0 for
all x € R>9 xR, making V a solution to (8). In addition, the function
V is such that

min max
upi1 up2

up=(up1,upz) ER?

{Lp(x,up) +V(G(x,up))}

- 2 45
= min max szD"'UDRDuD"'w} (45)
up1 €Rupy R

2%

for all (x,up) € D, and attained by kp (x) = (kp1(x), kp2(x)) with

RpyA RpiA
kD1(x) = Rl 2

Rp1#Rp2+2Rp1Rps 2 and kpz(x) = Rp1#Rp2+2Rp1Rps 2
when

—2Rp1Rp2A? + Rpy + Rpy + 2Rp1R
QD: D18D2 D1 D2 D1 DZ, (46)

2Rp1 + 2Rp2 + 4Rp1Rp2

which makes V a solution to (9). Thus, given that V is continuously
differentiable on R?, and that (8) and (9) hold thanks to (45) and (46),

from Theorem 3.8, the value function is J* (&1, &2) := —+El Figure
2 displays this behavior. Given that Lp € PD;, (A), and (22)-(27)

a1 | | | | | |
8 0.5} } i 2 : j
0
K
5 of \\*\*\K*\ijr
AQO
0.05
F oon \\\\’\*\*\WK
0 14
. 0.02]
< ok
% 00 //////*/WK
0
5 V((l-,l)z M HoHH
05 ]
O0 é -”l é é 1‘0 1‘2 14

t[s]
Figure 2: Bouncing ball solutions attaining minimum cost

under worst-case up, with A = 0.8, Rp; = 10,Rp, = —20, and
Op = 0.189.

2

2
hold, by setting a1 (s) = min{% (\/ii) %} and ay(s) = %5 +s,

from Corollary 3.15, we have that kp is the saddle-point equilibrium
and renders A uniformly globally asymptotically stable for #.

In Figure 3, we let the players select feedback laws close to the Nash
equilibrium and calculate the cost associated to the new laws. The
variation of the cost along the changes in the feedback laws makes
evident the saddle-point geometry. This example illustrates how
our results apply to Zeno systems. O

S. J. Leudo and R. G. Sanfelice

I J (€, w)
@ J(§u)

Figure 3: Saddle point behavior in the cost of solutions to
bouncing ball from & = (1, 1) when varying the feedback gains
around the optimal value. The cost is evaluated on solutions
(p,u) € 8 (f) with feedback law variations specified by ¢,

and €, in u = (eyk1(9), ewica ().

5 CONCLUSION AND FUTURE WORK

In this paper, we formulate a two-player zero-sum game under
dynamic constraints given in terms of hybrid dynamical systems
as in [15]. Scenarios in which the control action is selected by a
player P; to accomplish an objective and countereffect the damage
of an adversarial player P; are studied. By encoding the objectives
of the players in the optimization of a cost functional, sufficient
conditions in Hamilton-Jacobi-Isaacs form are provided to upper
bound the cost for any disturbance. The main result allows the
optimal strategy of P; to minimize the cost under the worst-case
scenario attack in security applications. Additional conditions are
proposed to allow the saddle-point strategy to render a set of inter-
est asymptotically stable by letting the value function take the role
of a Lyapunov function.

Future work includes the extension of the results to the finite-
horizon optimal control problems under adversarial scenarios by
framing them as zero-sum hybrid games, and to settings where the
uniqueness of solutions assumption can be relaxed, as in Example
3.11. Structural conditions on the system that do not involve V
and guarantee the existence of a solution to Problem (¢) based on
the smoothness and regularity of the data of the system, similar
to those in [13] will also be studied. We expect the results can be
generalized to randomized strategies, in particular, through the
connection between set-valued dynamics and nonuniqueness of
solutions, which captures nondeterminism.
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