
  

  

Abstract— This paper proposes an AR-based real-time 
mobile system for assistive indoor navigation with target 
segmentation (ARMSAINTS) for both sighted and blind or 
low-vision (BLV) users to safely explore and navigate in an 
indoor environment. The solution comprises four major 
components: graph construction, hybrid modeling, real-time 
navigation and target segmentation. The system utilizes an 
automatic graph construction method to generate a graph from 
a 2D floorplan and the Delaunay triangulation-based 
localization method to provide precise localization with 
negligible error. The 3D obstacle detection method integrates 
the existing capability of AR with a 2D object detector and a 
semantic target segmentation model to detect and track 3D 
bounding boxes of obstacles and people to increase BLV safety 
and understanding when traveling in the indoor environment. 
The entire system does not require the installation and 
maintenance of expensive infrastructure, run in real-time on a 
smartphone, and can easily adapt to environmental changes.  

I. INTRODUCTION 

In recent years, the demand for indoor navigation services 
has rapidly increased with the increasing development of 
large-scale infrastructure projects [1]. The complexity and 
crowdies throughout large facilities (e.g., shopping malls, 
transportation centers, and hospitals) bring more challenges 
for people to determine their positions and paths to their 
destinations. People who are blind or have low vision (BLV) 
face more issues in understanding and traveling in such 
complex dynamic environments. BLV can only rely on their 
limited-visual sources, such as people assistance, white canes, 
guide dogs and/or touch objects, to become familiar with their 
surroundings. It is not only time-consuming for them to 
approach their destinations, but also has safety concerns for 
independent travel.  

Indoor positioning and navigation applications have been 
widely studied and developed with the increase in public 
demand and the availability of micro-electromechanical 
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systems (MEMS) sensors and deep learnings techniques. 
These techniques also applied to the service robots to perform 
various tasks [2, 3], such as food delivery and object 
management in warehouses. Most existing indoor position 
systems utilize radio frequency identification tags (RFIDs) [4, 
5], wireless fidelity (WiFi) [6, 7], Bluetooth sensors [8, 9, 10, 
11] and ultra-wideband (UWB) [12]. However, these methods 
do not support precise localization or require high costs for 
pre-installed infrastructures. Additionally, existing systems 
often do not consider the need for BLV or people with other 
disabilities, such as autism spectrum disorder, who might need 
to avoid the crowds and obstacles along the ways [13, 14].    

Instead of using a mobile robot for assisting BLV or even 
sighted people in the navigation of an indoor environment, this 
paper proposes a solution of integrate the mobility of humans 
and the semantic and navigation capability of an intelligent 
mobile app to form a more portable “robotic” solution for a 
greater social impact with more affordable hardware. We 
developed an augmented reality (AR)-based real-time mobile 
system for assistive indoor navigation with target 
segmentation (ARMSAINTS), which utilizes ARKit and 
provides personalized turn-by-turn navigation instructions 
along with obstacle avoidance. The system has a simple 
scanning process minimizing the need for installation and 
maintenance of expensive infrastructure, eliminating the need 
of a mobile robotic platform if carried by a person, but has the 
potential to apply to service robots. This paper is an extension 
of our previous work [15], and the key contributions include: 
(1) A method that automatically constructs graphs from 2D 
floorplans. (2) The Delaunay triangulation-based method 
improves the localization accuracy. (3) A real-time 3D 
obstacle detection method integrates AR-based 3D models 
with 2D detection and segmentation models.  

The remainder of this paper is organized as follows. 
Section II discusses the state-of-the-art indoor navigation 
techniques. Section III provides an overview of the system 
architecture and its main functionalities. Section IV describes 
the system data collection and integration process with graph 
construction and version control method. Section V 
demonstrates how the system using the collected data provides 
real-time assistive navigation service along with obstacle 
detection to enhance the semantic target segmentation from 
the surrounding scene. Section VI presents experimental 
results and discusses the potential applications of our system. 
Finally, we provide conclusions and future research directions 
in Section VII. 

II. RELATED WORK 

A. WiFi-Based Indoor Position Systems 
WiFi positioning techniques are commonly used in indoor 

localization, with WiFi infrastructure available across most 
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indoor areas. Signal strength-based methods use trilateration 
techniques to compute user locations with different algorithms 
using the received signal strength indicator (RSSI) and other 
information (e.g., signal arrival time) from at least three 
wireless access points (APs) [16]. However, localization 
accuracy is highly dependent on the number of APs installed. 
Fingerprint-based methods [17] provide higher localization 
accuracy than signal strength-based methods; however, 
dynamic changes in access points and the environment affect 
the fingerprint values at the corresponding locations, which 
would require an update in the fingerprint database. To adapt 
to the dynamic changes in fingerprints, [6] proposed a 
maximum feature adaptive online sequential extreme learning 
machine that uses transfer learning to preserve previous 
knowledge of individual motions in the incremental learning 
model. Deep neural networks also apply to improve location 
estimation; such that Qin et al. [7] used a convolutional 
denoising autoencoder and convolution neural network to 
extract and train key features of RSSI values. Although many 
studies have improved WiFi-based localization techniques, 
they still have positioning errors between 2 and 4 meters.  

B. Bluetooth-Based Indoor Position Systems 
Bluetooth sensors have lower cost and power consumption 

than WiFi APs. Similar to WiFi APs, Bluetooth sensors also 
emit radio frequency signals that can be used to calculate the 
distances between the sensors and the user device location. 
Bluetooth sensors typically have two approaches for 
positioning. The first is the proximity and RSSI ranging 
techniques, such as the trilateration method [8] and 
log-distance path loss model [9], which are used to determine 
the approximate regions that user or object locations and 
require fewer installed sensors. The second approach uses 
geometric calculations to determine more precise user 
locations. Murata et al. [10] improved the probabilistic 
localization algorithm using a particle filter, motion model and 
observation model to solve the problems of varying RSS 
values due to inflation, signal delays, and continuous 
localization for different walk patterns, etc. The proposed 
method decreased the mean localization error from 3m to 
1.5m through experiments in shopping malls of 21,000 m2.  

C. Marker-Based Indoor Position Systems 
Visual positioning systems also do not require the 

installation of expensive infrastructure. The system estimates 
the device location based on the visual angle from the device 
to predefined markers. NaviLens [18] is a navigation 
application that detects unique QR codes that embed 
navigation information to assist BLV users in traveling. They 
optimized the reading capability of QR codes to allow 
detection from a distance of 15m. Similarly, [19] used QR 
codes to provide localization and navigation services to 
attender robots using contour detection techniques. However, 
light factors affect the QR code decoding process and 
obstacles along the way can lead to collisions.  

Augmented reality markers are more accurate than QR 
codes and are more flexible for marker appearance. Sato [20] 
utilized AR markers with BLE sensors for user localization 
with power-saving mode. Consequently, that localization error 
was within 30 cm. However, this marker-based positioning 
system still requires the installation and maintenance the 
markers and also affected by the light factors.   

Our proposed assistive indoor navigation system 
minimizes the maintenance of pre-installed infrastructure, as it 
models the existing environment visual features with ARKit 
[21] and uses it to determine the initial user localization. 
ARKit’s world tracking functionality, built on top of the 
visual-inertial odometry [22] technique, is used to track user 
locations. Our proposed region segmentation and transition 
methods [15] overcome the limitations of large cumulative 
localization error and memory constraints for long-distance 
tracking in AR-based position methods.  

III. SYSTEM OVERVIEW 

The AR-based assistive indoor navigation system 
ARMSAINTS (Fig. 1) augments users’ understanding of their 
surroundings and provides real-time turn-by-turn guidance 
with highly accurate localization and multimedia interactions. 
The entire system was separated into two stages: data 
collection and integration, and real-time assistive navigation. 
Data collection and integration consists of a graph 
construction service and a hybrid modeling service, whereas 
real-time assistive navigation includes a real-time navigation 
service and a target (obstacle and people) segmentation 
service. 

Graph Construction Service: This service processes 
building floorplans (blueprints) and generates all the walkable 
paths with an automatic graph construction algorithm. It 
integrates the point of interests (PoIs) information provided by 
a modeler (or a facility manager) and other automatically 
collected information (e.g., data connectivity maps) during 
scanning to construct the spatial database of buildings that will 
be used by the real-time navigation service to provide 
guidance for users. The details of the automatic graph 
construction method are described in Section IV. 

Hybrid Modeling Service:  An iOS app is created for the 
modeler to scan spatial features of the environment with 
ARKit and record corresponding coordinate pairs between the 
scanned 3D AR model and floorplans, along with other 
automatically collected information. The scanned AR models 
and their corresponding coordinate pairs are used as bases for 
user localization. The hybrid modeling service utilizes our 
region segmentation and transition methods [15], Delaunay 
triangulation-based localization and version control method to 
achieve highly accurate user localization and easy adaptation 
to environmental changes.  

 

Figure 1.  The ARMSAINTS system overview.  



  

Real-time Navigation Service:  An iOS app is created for 
both sighted and BLV users to explore or navigate scanned 
facilities. It takes user requests for destination information and 
identifies or ranks similar destination landmarks. The 
real-time navigation service utilizes the spatial database and 
3D AR models to determine and track real-time user locations. 
It uses our personalized route planning algorithm [15] to 
determine the best traversable navigation path based on the 
user preferences, real-time building status, and other factors.  

Target Segmentation Service: This service is responsible 
for detecting the obstacles and people appearing in the view of 
the user’s camera and determine their 3D locations and 
bounding boxes. It is mainly used to help BLV users avoid 
obstacles and augment their understanding about and 
interaction with their surroundings. The service also utilizes 
an information filtering module to determine the feedback 
messages based on user preferences.   

IV. SYSTEM DATA COLLECTION AND INTEGRATION 

Accurate user localization and personalized path planning 
are the two essential functionalities of assistive navigation 
services. The system utilizes a region-based modeling method 
[15] for localization that allows for lazy-loading and lowers 
the computational requirement with a small set of geolocation 
features during the localization matching process. This 
method generates a 3D AR model for each region of the 
building, and each AR model has a unique coordinate system 
that needs to be matched individually with the corresponding 
building floorplans. To enable the localization service, the 
system must contain building floorplans, 3D AR models and 
associated transformation matrices to map the coordinate 
system of the models and building floorplans. To improve the 
localization accuracy, the Delaunay triangulation was applied 
to the floorplan traversable regions to compute transformation 
matrices. 

Various environmental variables can influence users’ 
navigation experience in complex environments [23], such as 
floorplan configuration, signage information, architectural 
settings, and users’ physical and cognitive status. Multiple 
environmental information, such as data connectivity maps, 
obstacle information and PoI information, is collected and 
integrated to construct the graph of the building and used by 
our personalized path planning algorithm [15] to obtain the 
most suitable paths for each user. The original graph 
construction method [15] was built on top of the modeler’s 
walking path during scanning process, however, this method 
has many limitations. It required the modeler to travel all the 
walkable paths of the corresponding region during scanning, 
and often require modeler to travel a path segment repeatedly 
to cover all the walkable paths. In addition, there are problems 
with the landmark connections between the nearby regions. 
For example, connecting the first and last landmarks of two 
consecutive model regions can lead to duplicate landmarks in 
the overlapping area and not always provide an optimal path. 
Replacing nearby landmarks might introduce errors in 
creating incorrect connections between landmarks. To 
mitigate this problem, we developed an automatic graph 
construction method to extract walkable paths from 2D 
building floorplans and integrate them with the collected 
information from modeling and user input.    

A. Delaunay Triangulation-based Localization 
The hybrid modeling service collects multiple 

coordinating pairs during the scanning stage with the modeler 
input. To improve localization accuracy and minimize human 
error during the manually indicated coordinate pairs, we 
utilized Delaunay triangulation to divide the scanned region 
into multiple triangular areas based on the collected 
coordinating pairs. Instead of a single alignment 
transformation matrix generated by all the corresponding 
pairs, each triangular area would have its own alignment 
transformation matrix that maps the region model and the 
building floorplans’ coordinate system with the three 
coordinating pairs of vertices using affine transformation.  

The computed transformation matrices and coordinate 
pairs are stored in the database, along with the AR model. To 
determine the location of users in the floorplan from the AR 
camera coordinates, the corresponding coordinate pairs are 
used to find the associated triangular area or the nearest 
triangular area, the corresponding transformation matrix is 
used to convert the camera coordinates into the floorplan 
coordinates. A similar process was used to convert the 
floorplan coordinates back to the AR camera coordinates 
using an inverse transformation matrix.  

B. Automatic Graph Construction 
The system includes an automatic graph construction 

method that takes the 2D building floorplan and returns the 
graph containing a set of nodes and edges, where each edge is 
considered a traversable path between the associated nodes. 
To extract the graph from the floorplan image, the automatic 
graph construction method first removes the text from the 
image using a pre-trained deep learning model, as the text 
does not belong to the building infrastructure and is 
considered as noise. Next, the image is converted into 
grayscale and applied Otsu’s thresholding to minimize 
foreground noise that does not belong to building 
infrastructure. Subsequently, the algorithm will cover the 
small objects (e.g., tables and stairs) by adaptive thresholding 
based on image size and floorplan scale and thicker lines in 
the image to decrease the noise in path extraction, as shown in 
Fig. 2 (b). The resulting image is converted into a binary 
image, and the skeletonization process that utilizes the 
hit-and-mass transformation is applied to extract the central 
path, as shown in Fig. 2 (c).  

The algorithm then extracts the pixel locations of the 
ending points of lines and connected turning points between 
lines, treats them as the nodes in the graph and creates the 
associated edges, as shown in Fig. 2 (d). The resulting graph 
contains noise due to the inconsistent pixel locations of the 
lines, especially for the curve paths; therefore, a graph 
cleaning process will be applied to remove the noise and save 
the final graph (Fig. 2 (e)) to the database.  The extracted 
graph from the image is used as the base and is then integrated 
with the data connectivity maps collected during the scanning 
stage and PoI information from the modeler input to construct 
the complete graph for our personalized path planning 
algorithm. When a new region is added to the floorplan or an 
update in the region boundary, the graph will also be 
processed to update the associated regions for each node in 
the graph. 



  

C. Version Control Method 
Indoor environments are constantly changing, such as 

new decorations, adding new infrastructures, or adjusting 
architecture design. These changes often affect WiFi-based 
and Bluetooth-based localization techniques, as they 
influence the inflation of signal strength. Our AR-based 
localization technique is also impacted by these changes as 
the spatial features are different from the recorded features in 
the previous scanned AR model; thus, it cannot match the 
user location. Moreover, such changes can lead to update in 
floorplan and require new walkable paths. We developed a 
version control method to handle these changes with our 
region-based modeling method. 

In the case of a major change with an update in the 
floorplan, a new graph is generated using the automatic graph 
construction method and PoI information is maintained for 
the part of the unchanged floorplan area. The regions of the 
corresponding floor with changes are removed, and a new 
modeling process is required. However, if it only decoration 
changes or minor updates that do not require floorplan 
updates, then only the associated regions require rescanning. 
Additionally, as our AR-based localization method is based 
on feature matching, the lightning conditions or time-specific 
layout can introduce different spatial environments at 
different times. The system allows multiple AR models for 
same region and uses the corresponding AR model based on 
the condition.  

V. ASSISTIVE NAVIGATION SERVICES 
The system supports both exploration and navigation 

modes. In the exploration mode, users walk around and 
receive information about their surroundings, including PoI 
information and feedback messages from the target 
segmentation service, based on user preferences. In the 
navigation mode, users can enter their desired destination 
information, and the system searches and ranks similar 
destination locations with different constraints or users can 
directly select the destination from the floorplans. With a 
selected destination, the personalized path planning algorithm 
will provide the best route and the navigation app will provide 
turn-by-turn guidance to help users travel to their 
destinations. The obstacle detection service will be performed 
simultaneously if needed to help BLV users to avoid 

obstacles along the route or provide additional semantic 
information such as the presence of people and other targets 
to enhance their understanding of the surroundings. 

A. Obstacle and People Detection 
Target segmentation is not only important for BLV users 

to avoid obstacles along the path but also to help them with 
semantic understanding and even interact with others. Instead 
of creating a new system for obstacle and people detection, it 
is built on top of the ARKit capability. The obstacle and 
people detection method utilizes a 2D object detector (i.e., 
YOLOv3 [24]), semantic segmentation model (i.e., 
DeepLabv3 [25]), 2D object tracking method, 3D ARKit 
point cloud, and depth map generated by LiDAR sensors in 
the recent iPhone versions.  

The method starts by detecting the 2D object bounding 
boxes and associated labels using a 2D object detector with a 
capture camera frame. ARKit contains the point cloud for 
each frame. It is projected onto the corresponding 2D image 
coordinate system to estimate the 3D bounding boxes of each 
detected objects from the 2D detection results using grouping.  

The ARKit point cloud is sparse and requires validation 
across multiple frames to obtain stable 3D bounding boxes of 
the objects using a non-maximum suppression method. 
Nevertheless, it is very time efficient and require low 
computation power. Due to the dynamic nature of people, this 
method is not suitable for determining and tracking their 3D 
locations and bounding boxes overtime. Therefore, the 3D 
bounding box estimation process is different for detected 
people. People location and bounding box estimation applied 
semantic segmentation for each detected 2D people bounding 
box and then matched the segmented region with the depth 
map obtained through the LiDAR sensors embedded in the 
iPhone to determine the people’ 3D bounding boxes. The 
method also uses the plane detection capability of ARKit to 
detect objects with planar surfaces, this covers large objects 
that cannot be detected by the 2D object detector.  

Once the system has detected objects’ bounding boxes 
and labels, it activates the tracking mode to track the 2D 
object bounding boxes over frames and uses the above 
methods to update the objects’ 3D bounding boxes. The 2D 
object detector is reactive when the object is loss tracked in 
the frames. A 3D object matching module is applied to match 

  
(a)          (b)          (c)          (d)         (e)   

Figure 2.  Automatically graph construction process. (a) original floorplan; (b) cleaned binary floorplan; (c) extract path with the floorplan; (d) rough nodes in 
blue dots and edges in red lines extracted from the path; (e) result clean graph of the floorplan path.  



  

the objects between the tracking mode and the detection mode 
to avoid duplicating the same object.  

Finally, the information filtering module handles the 
audio/tactile feedback messages to the user for a massive 
obstacle detected over time based on user preferences. It 
consists of two modes, obstacle avoidance and semantic 
understanding. For obstacle avoidance, it simply provides the 
information about moving directions (e.g., slightly left, 
slightly right, and straight) to avoid obstacles along the way. 
For semantic understanding, it provides information about the 
detected targets (e.g., target labels and sizes, distance away.) 
based on user settings and the angular range for the targets to 
be considered in the feedback. AR visualization of detected 
targets can also be added to provide additional visual aid for 
people with low vision or other impairments based on user 
preferences. 

B. Destination Search and Navigation 
With the region-based modeling method, various 

techniques can be employed to determine the region that user 
is located, as precise accuracy is not required in this case. 
These techniques include but are not limited to QR codes, 
BLE beacons and the WiFi positioning system, based on the 
availability of existing building facilities. With the 
determined region, the corresponding AR model is loaded to 
determine and track the precise user locations using the 
Delaunay triangulation-based localization described 
previously and the region transition method [15].   

Finding the desired destination in an indoor environment 
could be more challenging than outdoors, such that it does not 
have a common address or name. To help users better locate 
their destinations, we developed a search ranking algorithm 
that ranks the destinations based on the string-matching 
scores of the destination name, distance between the 
destination and user location, and accessibility between floor 
transitions based on user physical status. The navigation app 
receives both text and audio inputs from users, and users can 
also directly select the destination from the floorplans. With 
the selected destination, a suitable path is computed using a 
personalized path planning algorithm. The navigation app 
will then provide turn-by-turn guidance to assist users to go to 
their destinations along with the visual aids of AR arrows if 
needed. The information of nearby PoIs will also be either 
visualized with AR or will provide audio feedback based on 
user settings to help users better understand their 
surroundings.  

VI. RESULTS AND DISCUSSIONS 
The proposed assistive indoor navigation system 

ARMSAINTS was tested with several polit projects, 
including a school campus, a food production site, an office 
building, a construction site, among others. Some key 
information is listed in Table I. In one example, it took 
approximately four hours to set up an area of 270 m2 with 
given floorplans, the setup including region segmentation and 
modeling, entering PoI information, uploading pre-collected 
images or videos of the area, and setup region determination 
methods (e.g., place QR codes or BLE beacons). After the 
setup, users can use the navigation app to explore and 
navigate the scanned area as expected by receiving the 
messages about their surroundings.  

A. Experiment Results 
 To evaluate the localization accuracy, a total of 36 

ground truth points were selected in a 60 m2 test area. The test 
area was first scanned with recorded 15 landmarks, and then a 
sighted user stood at the 36 locations and used our app to 
estimate their positions. Fig. 3 shows the experimental 
results, where the Delaunay triangulation-based localization 
method was employed with increasing numbers of control 
points, showing that more accurate results with more 
landmarks used. We also tested at different pilot locations as 
listed in Table 1, where the Delaunay triangulation-based 
localization method minimizes cumulative errors in large area 
regions. 

The obstacle detection method is also being tested, and 
can achieve a time performance of 10-15 fps with an iPhone 
13 Pro Max. The variation in fps is due to the sparsity of the 
AR point cloud of each frame which does not always contain 
sufficient feature points to estimate 3D bounding boxes of the 
detected objects. The vacuum robot in Fig. 4 (a) is not 
included in the object classes in the 2D object detector 
(YOLOv3) but can be detected with ARKit plane detection 
and considered as an obstacle. The person and chair were 
detected using YOLOv3, and 3D bounding boxes were 
successfully obtained using the obstacle detection method. 
Because bottom part of the person is occluded by the chair, its 
3D bounding box can only cover the visible part. However, it 
was sufficient to support the functionalities of our system, 
which is to help BLV users avoid obstacles and provide a 
semantic understanding of their surroundings. 

B. Potential Applications 
With the highly accurate localization, personalized path 

planning and obstacle detection method, the system can also 
be applied to service robots in additional to the current 

TABLE I.  EXPREIMENT SITES DETAILS 

Location Type Area 
(m2) 

Number 
of Regions 

Number of 
Landmarks 

School Campus 270 2 15 

Food Production Site 420 3 12 

Office Building 650 2 18 

Construction Site 2700 6 55 

 

Figure 3.  Comparsion of localization accuracy for 36 test points using single 
transformation and delaunay triangulation-based localization. 



  

assistive navigation application with human-robot 
collaboration. All we need is a plugin slot for a smartphone to 
robot platform and the communication between them can be 
Bluetooth. It can help to accomplish dedicated tasks with 
robots, such as food delivery in restaurants or hotels, 
scheduling floor cleaning with vacuum robots, and objects 
arrangement in warehouses. Moreover, with people detection 
and real-time user localization, it is also possible to allow 
robots to deliver items not only to a desired destination but 
also to a specific person. Furthermore, with a personalized 
path planning algorithm, it could also allow the robot to 
perform floor transition if elevators are available and can 
further integrate with traffic control methods to better manage 
traffic flow.  

VII. CONCLUSION 
This paper proposes an assistive indoor navigation system, 

that can assist both sighted users and BLV users to explore and 
navigate the indoor environment with advanced semantic 
information about the surroundings. The region-based 
modeling method and Delaunay triangulation-based 
localization method provides precise localization with 
low-cost infrastructure. The version control method allows 
easy adaption to environmental changes. Furthermore, the 
obstacle detection service increases the safety of BLV users 
during indoor travels and provides them with additional 
information for them to better understand their surroundings. 
The system has proven its feasibility through experiment with 
multiple polit projects. Additionally, the system has the 
potential to be integrated with service robots to provide 
localization and navigation services that assist with delivery 
tasks to both static locations and dynamic people locations. In 
the future, we intend to improve the automatic graph 
construction method by detecting different elements of the 
floorplan (e.g., doors, stairs, and mechanical equipment) to 
construct a better graph. Furthermore, developing an 
automatic scanning process with robots can minimize 
localization error that cause by the human error in indicating 
coordinate pairs between AR model and floorplan 
coordinates.  
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Figure 4.  3D Obstacle Detection Results. (a) detected vacuum robot as 
obstacle; (b) detected person and chair. 


