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ABSTRACT: Extensions of the minimal supersymmetric standard model (MSSM) gauge group
abound in the literature. Several of these include an additional U(1)x gauge group. Chiral
fermions’ charge assignments under U(1)x are constrained to cancel local anomalies in the
extension and they determine the structure and phenomenology of it. We provide all anomaly-
free charge assignments up to a maximum absolute charge of Qmax = 10, assuming that the
chiral superfield content of the model is that of the MSSM plus up to three Standard Model
(SM) singlet superfields. The fermionic components of these SM singlets may play the role
of right-handed neutrinos, whereas one of the scalar components may play the role of the
flavon, spontaneously breaking U(1)x. Easily scanned lists of the charge assignments are
made publicly available on Zenodo. For the case where no restriction is placed upon Quax,
we also provide an analytic parameterisation of the general solution using simple techniques
from algebraic geometry.
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1 Introduction

Quantum field theories of vector bosons are notoriously problematic unless they arise from

gauge symmetries, whence non-renormalisability and non-unitarity can be tamed. It is thus

imperative that the gauge symmetry of the renormalisable ultra-violet completion of any

such model should not contain any quantum field theoretic gauge anomalies, where quantum

corrections spoil the gauge symmetry that was imposed upon the tree-level theory. The



Standard Model (SM) itself is anomaly-free and can thus remain a self-consistent theory up
to very large renormalisation scales. Despite this, there are good reasons to expect the SM
to be an effective field theory resulting from decoupling other fields. Many reasons have
been invoked to motivate extending the Lie algebral sm := su(3) ® su(2) ® u(1)y of the
Standard Model (SM) by a spontaneously broken gauged u(1)x summand, for example. Such
extensions have been used to explain measurements of the anomalous magnetic moment of
the muon [1], to provide axions [2] or leptogenesis [3], to provide fermion masses through the
Froggatt-Neilsen mechanism [4], or explain measurements of the b — sl™[~ transition which
are currently in tension with SM predictions [5-13]. In general, the X charge assignments of
the models can be family dependent, resulting in family-dependent couplings of a resulting
massive Z' vector boson. Indeed, in several applications (the last two in our aforementioned
list) it is a necessary requirement that the X charges are family dependent, since the symmetry
and the Z’ are respectively used to explain family non-universal effects.

In u(1)yx extensions, the phenomenology of the Z’ is often key and is dictated by the
integer X charges of the other fields in the model (integer X charges results from an implicit
assumption that the extension is compact). The X charges of the chiral fermions in particular
dictate the contribution to perturbative local anomalies of such models. There is therefore a
non-trivial cross-over between the extensions’ phenomenology and anomaly cancellation via
the chiral fermions’ charge assignments. Unfortunately, in general, with a fixed chiral fermion
content, anomaly cancellation conditions (ACCs) are difficult to solve, the number theory
state-of-the art being the solution of a single cubic in three unknown integer parameters [14].

Some recent progress has been made in this direction, however. In Ref. [15], the gravita-
tional and gauge anomalies of a pure U(1) gauge symmetry (i.e. with no SM gauge group but
with charged chiral fermionic fields) were solved analytically for the charges of a priori fixed
numbers of chiral fermions via an ingenious algebraic method?; this was soon understood
from a geometric perspective [17] by using a theorem due to Mordell [14]. Similar geometric
methods were employed to find an analytic solution to the more difficult problem of sm@u(1)
anomaly-free charge assignments in the specific case of SM fermion content, plus three right-
handed (RH) neutrinos (i.e. SM-singlet chiral fermion fields which may carry X charge) [18].
The number of solutions is formally infinite,> unlike the case of semi-simple SM extensions
with identical fermionic field content, where there is a list of 340 [21]. Unfortunately, the ge-
ometric methods employed only solve a small family of similar cases and cannot be deployed
on general chiral fermionic contents. Furthermore, the analytic solution, whilst of intrinsic
interest in and of itself, comes with a significant drawback for model-builders interested in

1We shall refer to the Lie algebra (as opposed to the Lie group) in mathfrat script.

2The algebraic approach was partially extended to U(1)"™ gauge symmetries in Ref. [16].

30ne way of seeing this is to set the X charges of the first family of particles to be equal to their hypercharges,
the second family to be equal to some integer multiplied by baryon number minus lepton number B — L, and
the third family to have zero charge. Any such charge assignment solves the anomaly cancellation conditions.
Since there are an infinite number of constants we can multiply the second family by, each of which leads to
a distinct chiral solution, there are an infinite number of solutions.



using it: each charge is parameterised in terms of a fourth-order polynomial of integer param-
eters. Whilst it is easy to input these parameters and achieve anomaly-free charges, model
builders often want to fix a function of them to certain values for phenomenological purposes,
but this is a difficult and currently unsolved problem, because it involves solving a system of
coupled fourth-order diophantine equations.

Fortunately, when appropriately employed, computers come to the rescue of the reverse-
engineering model builder. In an sm@u(1) ‘anomaly-free atlas’ [22], all solutions of the ACCs
for integer charges between -10 and 10 for 18 chiral fermion gauge representations in the
SM plus three RH neutrinos were found by a scan. Cases which are in a sense equivalent
(where the charges differ by a common multiple which can be absorbed into the u(1)x gauge
coupling, or which differ by a permutation of the family indices within a species - fields which
have identical SM representations) were only counted once (and aside from some rare cases,
only scanned over once). Anomaly-free solutions are scarce: only roughly one in 10° was
anomaly-free from the whole sample. The list of anomaly-free fermionic charge assignments
was made publicly available. It is a list of over 21 000 000 solutions that is easy and quick
to search through and filter with the aid of a simple computer program. As such, it is user
friendly for would-be U(1)x gauge extension model builders who can search through the list
and filter for charge assignments with various desired properties. The charges are limited in
height (the maximum absolute value of a charge in any solution), but have the advantage of
being easily useable provided one can adapt or write a simple computer program that reads
the list in and filters it.

Heretofore, there has been no similar list made for supersymmetric (SUSY) models. SUSY
model building has several motivations, the primary one being that it does not suffer from the
technical hierarchy problem, where radiative corrections to the Higgs mass tend to drag it up
to the largest fundamental energy scale (for example the Planck mass ~ 1019 GeV) divided by
a loop factor. There are other motivations for supersymmetry too, for example, in an N' =1
supersymmetrisation of the SM (the MSSM), the experimental measurements of the gauge
couplings agree with the gauge coupling unification condition predicted by SUSY grand unified
theories. When one includes an extra multiplicative discrete symmetry such as R—parity or
matter parity® the MSSM possesses a stable particle which, depending upon parameters, has
the correct properties to constitute the universe’s dark matter and potentially dangerous
proton decay processes are suppressed. Particular examples of u(1)x gauge extensions of
the MSSM can combine the aforementioned phenomenological benefits of a Z’ with those of
SUSY models. Some of these have appeared in the literature, for example see Refs. [24-29].

It is our intention here to extend the original non-SUSY anomaly-free atlas to the SUSY
case and make a new list (a ‘v SUSY anomaly-free atlas’) available to interested SUSY
u(1) x-extension model builders and others. We shall include the addition of up to three

4This strategy has also recently been used for the case of U(1) gauge theory with different numbers of Weyl
fermions, in a search for scotogenic models [23].

SMatter parity is defined as (—1)3’(37”7 where B is baryon number and L is lepton number, whereas
R—parity is defined as (—1)3(371‘)*25, where s is spin.



MSSM-singlet chiral superfields: the fermionic components of all or some of these can play
the role of RH neutrinos, resulting in tiny neutrino masses via the see-saw mechanism (below,
we call this model the YMSSM). The scalar component of one of these MSSM-singlet chiral
superfields is expected to play the role of the flavon, which has a necessarily non-zero X
charge and acquires a vacuum expectation value, spontaneously breaking U(1)x. One might
expect that one of the SM-singlet fields must therefore have a non-zero u(1)x charge, unlike
the non-SUSY case, where the charges of the flavon and all SM-singlet fermions were a priori
unconstrained. However, we won’t impose this condition because the field content of the
model can easily be extended in a way that does not change the ACCs but which effectively
removes the condition, as we shall explain below. A functional difference to the original
non-SUSY anomaly-free atlas is the appearance of the Higgsino partners of the two MSSM
Higgs doublets, augmenting the number of Weyl fermion SU(2) gauge representations by two.
This therefore extends the original list of 18 X charges to 20. In case a height larger than
10 is required, we will also provide a general analytic solution to the anomaly cancellation
conditions. This relies on using the same geometric framing in which the SM-plus-3 RH
neutrino case was solved [18]; we take the opportunity to demonstrate a new technique to
solve such problems, although the technique used in Ref. [18] would also have worked.

The paper proceeds as follows: in §2, we describe the anomaly cancellation conditions
relevant for the Lie algebra mssm & u(1)x, and a chiral superfield content of the vMSSM.
In §3, we describe the computational scan and how the solutions are listed and ordered,
giving the number of solutions found up to a height of 10. We provide an analytic method
of solution in §4, along with a parameterisation of the solution. Various consistency checks
of the solutions are described in §5: some are checks solely of the numerical solutions, some
are of the analytic solution and some are checks of the analytic solution versus the numeric
solutions. Some initial filters of the numerical solutions (chosen for specific phenomenological
reasons) are explored in §6. We provide a summary of the paper and a discussion in §7.

We list chiral fermionic fields in the representations displayed in Table 1. As previously
mentioned, the left-handed fermionic fields contained within the two Higgs chiral superfields
provide a new feature as regards the ACCs. We note here that the fermionic components
of the chiral superfields Hy and L; have identical representations under the SM gauge Lie
algebra, but the fermionic component of H; may or may not be discriminated by a different
quantum number under an imposed symmetry such as matter parity or R—parity.

We have thus augmented the MSSM, as far as the fermionic X charges go, by 20 param-
eters which we write in a 20-tuple

X = {XQNXQz?XQ:s? an ) Xn27 X’n37 Xe1 ) X€27X€37Xu1 ) Xu27Xu37Xd17
Xy Xdgs X115 X1y Xigy X1y, Xn, }- (1.1)

We take it as understood that, for the case where R—parity is not a symmetry of the theory,
we modify (1.1) such that X, is merged with Xy, to form Xy, where a € {1,2,3,4}. For
now though, we shall continue the discussion where Hy is discriminated from L; by a discrete



symmetry. Since the gauge extension is here assumed to be compact, X is a prior: valued in
.

Fermions

su(3) su(2)r uw(l)y u(l)x

LH quark doublets @Q; 3 2 1 Xo,

RH neutrinos n; 1 1 0 X,

RH charged leptons e; 1 1 -6 Xe;

RH up quarks wu; 3 1 4 Xu,

RH down quarks d; 3 1 -2 X,

LH lepton doublets L; 1 2 -3 X,

LH down-type Higgsino Hy 1 2 -3 XH,
LH up-type Higgsino Hy 1 2 3 X,

Chiral superfields

Q| 3 2 1 Xo,

Ne| o1 1 —X,,
ES| 1 1 6  —X,
uel| 3 1 4 =Xy,
Ds| 3 1 2 —Xy
Li| 1 2 3 X,

Hy| 1 2 3 Xp,
Hy| 1 2 3 Xy,

Table 1. Conventions for field content with representations under the gauge Lie algebra. RH stands
for right-handed and LH stands for left-handed. i € {1,2,3} is a family index. Note that we have
re-scaled a more conventional hypercharge assignment by a factor of 6 to make all hypercharges setwise
coprime integers. Such a re-scaling can be absorbed into the hypercharge gauge coupling. ¢ denotes
charge conjugation on the scalar and fermionic components of the chiral superfield.



2 u(1l)x Extension of the MISSM Lie Algebra

2.1 Anomaly cancellation conditions

The MSSM per se is anomaly free. With the addition of u(1)x, local anomalies persist unless

X satisfies the ACCs®

3
su3)? ou(l)x : Y (2Xg, — Xy, — Xg,) =0, (2.1)
=1
3
su(2)’ ou(l)x : Y (38X, + X1,) + Xu, + X, =0, (2.2)
=1
3
u(1)x-gravity : » (6Xq, — X, — X, — 83Xy, — 3Xq, +2X1,) + 2Xp, +2Xp, =0, (2.3)
=1
3
u(D¥ Y (6XP, — X3 — X2 —3X] —3X] +2X7) +2XF, +2XE, =0, (24)
=1
3
u(Di @u()y : Y (X3, —2X7 + X3 + X2 + X7) + X5, — Xpr, =0, (2.5)
i=1
3
w(D)f du(l)x : Y (Xq, — 6Xe, — 8Xy, — 2Xq, +3XL,) +3Xp, +3Xu, = 0. (2.6)
=1

These ACCs inherit some in-practice physical equivalences between u(1)x extensions related

by the following operations:

(i) Permutation of family indices within each species, since this is really just a change of

basis.

(i) X — aX, where a € Q\{0}, when the gauge coupling only appears in the Lagrangian

multiplied by a U(1)x charge, since the U(1)x gauge coupling may be simultaneously
re-scaled by 1/a resulting in no substantive change. This is displayed by the fact that

the ACCs are homogeneous.

(iii)

X — X +yY, where Y is the 20-tuple of fermionic field hypercharges (in the same field

ordering as X) and y € Z. Resulting from a group outer automorphism, this change in

fermionic representations can be accounted for by a redefinition of gauge fields [16].

Ideally, we wish to record exactly one entry in a list for each physically inequivalent charge
assignment. Together, (ii) with (iii) imply that we should regard X — zX + yY as an

SNote that where necessary, we discriminate between the gauge Lie algebra, which is equivalent to sm@®u(1) x
and the MSSMxU (1) x gauge group, which is strictly only determined up to certain quotients, but this does

not affect any of our discussion.



equivalent theory, where z € Q\{0} and y € Q. Unfortunately, we have not found an easy
enough and fast enough method of incorporating this, implying that there will remain a
few physically equivalent charge assignments in any anomaly-free list that we produce. The
necessary existence of these will end up providing us with a check of our computer program in
§5. In any case, such equivalent charge assignments are rare, and we do not foresee particular
problems resulting from their presence in our list. From now on, we refer to ‘inequivalent’
solutions to implicitly mean inequivalent under conditions (i) and (ii) only.

To incorporate (i), we take the convention that the family indices in X are such that,
for each species S € {@Q,n,e,u,d,L}, Xg, < Xg, < Xg, (for the case without additional
discrete symmetries to distinguish Hy and S = L, Xg, < Xg, as well). To take (ii) into
account, all integers in the tuple must be setwise coprime but note that this still does not
implement the equivalence with X' := {—X¢,,—-Xo,,—X0,,..., —Xm,, —Xm, }. In order to
only list one instance of X, X', we must define a condition that unambiguously picks one
of them: here, we use the lexicographically smaller tuple.” An n—tuple a = {a1,...,a,} is
lexicographically smaller than another n—tuple b = {by,...,b,} (written as a < b) if and only
if an i € {1,---,n} exists such that a; < b; and a; = b; for all j € {1,--- ,i —1}.

2.2 Symmetry breaking

Since we are not empirically aware of a long-range force that can be attributed to an unbro-
ken U(1)x gauge symmetry, we suppose that it must be spontaneously broken. We further
assume that it is broken by (at least) one of the scalars 7g, contained in the SM-singlet chiral
superfields N{, so that it does not break the SM gauge symmetry. In order for a vg, field to
play this role, by Goldstone’s theorem it must possess a non-zero X charge. Typically, such
a field is called a flavon. Let us denote it for the purposes of the current discussion, as 6.
Contrary to the non-SUSY case, we obtain a contribution to the ACCs through its fermionic
superpartner 6, the flavino. However, we will still solve the ACCs as given above assuming
three SM-singlet chiral superfields only: Nf, where i € {1,2,3}. The reasons for not explic-
itly adding to this number (for example by adding one more SM singlet chiral superfield)
are twofold: firstly, we find practical barriers with four (or more) SM-singlets; the v SUSY
anomaly-free atlas would take too long to compute and would take up too much disk space to
store for the desired height of 10. Secondly, by sticking to three SM-singlet chiral superfields,
we are able to find an analytic solution to the ACCs.

In principle, the requirement that at least one X,, # 0 would allow us to reduce the
domain of X charges considered in our computational search below, although not by much.
We choose not to restrict the domain of X charges in this way however, since one could
augment our model by two additional scalar singlets 6; and 6 such that Xy, + Xy, = 0.
The contributions from Xy, and Xy, would cancel in the ACCs, leaving the ACCs above
unmodified. This type of extension is commonly used, for example, in U(1)p_1, extensions of

"Lexicographical ordering is a much simpler condition than the one used in the original anomaly-free
atlas [22].



the MSSM [25]. More generally one can add several SM-singlet chiral superfields which satisfy
the pure u(1) anomaly equations and thus cancel out of the ACCs [15, 17]. We also note that
to set a superfield’s charge to zero has the same effect on the ACCs as would removing the
superfield (or at least its fermionic component) entirely from the model.

With the constraints (or lack thereof) listed above, our inequivalent numerical set of
solutions will have the following subsets:

e The SM plus three RH neutrinos corresponds to the subset with Xp, = Xp, = 0 (since
this is equivalent to the model obtained by removing the H, superfield and the Hy
Higgsino from our current set-up).

e The MSSM with up to three U(1)x-charged RH neutrino chiral superfields, where the
U(1)x is broken by (at least) one of the RH sneutrinos, is the subset where at least one
Xn, #0.

e The MSSM with three RH neutrinos and two additional scalars #; and 0, charged such
that Xy, + Xy, = 0. This is a possibility for the subset with X,,, = X,,, = X;,;, =0. In
particular, this option includes U(1)x = U(1)p_r, extensions of the MSSM.

3 Numerical Solutions up to a Height of 10

We produce a list of solutions to the ACCs using a modification of the computer program
that was used to produce the original anomaly-free atlas [22]. To search for solutions, we scan
over integer values in the domain | X;| < Qmax. Fach set of solutions can then be classified by
Qmax, its maximum possible height. Note that in this definition, a list of solutions Qmax = N
also contains all solutions with Qmax < N.

There are a priori (2Qmax + 1)20 solutions to be checked as solutions to the ACCs. Time
is the biggest limiting factor in our search for solutions. The original computer program is
described in detail in §3 of Ref. [22], where we direct the curious reader. Here, we find it
expedient to not discriminate a priori between Hy and L;: within the program, we therefore
remove the explicit Hy charge, replacing it by L4, equivalent to considering the theory without
a discrete symmetry to distinguish them. The search for solutions is sped up by removing
some equivalent solutions from the scan, and by using the four linear ACCs to directly fix
the values of four of the charges. This still leaves us with a large solution space to consider,
as compared to the original non-supersymmetric anomaly-free atlas. We further improve the
speed by parallelising the three outer loops (i.e. over X¢,, Xq, and Xq,). For Qmax < 4 the
parallelisation improvement is minimal, but for Qnax > 5 we find that this step is necessary
to produce solutions in a reasonable amount of time.

3.1 Binary search algorithm

The output of the computer program for Qua.x = 10 is a large lexicographically ordered list
(the ASCII file is around 125 Gb in size) of inequivalent solutions which solve the ACCs, each



Qmax # vMSSM  # R,vMSSM # Non-SUSY # No ACC condition
1 111 267 37 4.5 x 106
2 2321 6 882 357 2.3 x 1010
3 44212 143707 4115 8.6 x 1012
4 401129 1367991 24551 8.2 x 1014
5 2582166 9063191 111151 3.3 x 1016
6 13553325 48 681027 435304 7.6 x 1017
7 54699 483 199 275 965 1358 387 1.1 x 10"
8 185454 955 682827818 3612733 1.2 x 1020
9 598267488 2224178673 9587084 1.0 x 102!
10 1628002737 6094894134 21546919 6.8 x 102!

Table 2. Number of inequivalent anomaly-free charge assignments found for U(1)x extensions of the
vMSSM where L; and Hy are not discriminated (vMSSM), or where they are (R,vMSSM) or for the
original non-supersymmetric anomaly-free atlas (Non-SUSY). The rightmost column lists the number
of potential inequivalent solutions in the SUSY case before ACCs are applied and where a discrete
symmetry distinguishes L; from Hy.

one comprised of a line made of the 20 integers which form X. We have not assumed a discrete
symmetry that distinguishes L; from Hy in the output and so we have four X charges listed.
This file forms one of the two most important outputs of the present paper (the other being
the analytic solution for any height described in §4). As mentioned in §1, we envisage that
our output file may be used by supersymmetric model builders by scanning through it with
a computer program and filtering the results. Since the file is so large though, we have
facilitated the decrease of the complexity of algorithms used to analyse the file in order to
speed them up. The fact that our list of solutions is ordered lexicographically means that one
can take advantage of the binary search algorithm. This reduces the complexity of finding a
solution in the list from O(n) to O(logn). One usually has an intuitive understanding of the
binary search algorithm since it is roughly how one usually finds numbers in a phone book or
words in a dictionary, as follows. Let us say we have a solution we want to find in our list or
show that it does not exist in the list. The binary search algorithm goes half-way down the
list and determines if our solution is less then or equal to the solution at the half-way point.
If it is present in the first half then we throw away the second half and keep the first, and if
it isn’t we discard the first half and keep the second. This is then repeated until a list with
a single item which will (if it exists) match the one we are trying to find.

3.2 Output

We display some basic statistics characterising the number of solutions found in Table 2.
The number of inequivalent solutions increases rapidly as a function of the maximum height
searched over, Qmax. In all, we find over 1.6 billion solutions for Qmax = 10 in the case where
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Figure 1. Fraction of otherwise possible solutions that are anomaly free as a function of Qpax.
Specifically, the fraction is equal to the number of inequivalent solutions divided by the number of
inequivalent possible assignments before the local anomaly cancellation requirements are imposed.

a discrete symmetry does not pick out one of the X charges to be X, a far larger number
than the original anomaly-free atlas (which counts under 22 million inequivalent solutions).
As expected, this increases almost four-fold for the case where one does pick an X to be Hy.
Solutions to the ACCs are scarce; their density decreases with increasing height. For a height
of 10, for example, only approximately 1 in 10'? possible inequivalent charge assignments are
anomaly free. We display this fraction for various different values of Quax in Fig. 1 for the
case where no symmetry discriminates between Hy and L; (vMSSM) and the case where it
does (R,vMSSM).

In Table 3, we display some solutions that appear in the literature and in our list. All
of the solutions shown were found using the binary search algorithm sketched in §3.1. Their
presence in the list is a check of some expected and found solutions. Two solutions (Y3 and
Bf) will be useful for our analytic solution, which we turn to now.

4 Analytic Solution

In this section, we will first frame our problem in a geometric language that will facilitate
our analytic solution of the ACCs. We shall then go on to sketch the geometric method
by which the solution is obtained. Then we shall derive the solution in detail algebraically,
eventually providing an explicit parameterisation of the 20 integer charges of the vMSSM
chiral superfields in terms of some integer parameters. We then provide a right inverse,
which, given a solution to the ACCs, returns parameters which will lead to that solution.

,10,



[ voaa[@[0]0 n [w[n]e[e[ew[ulu d]d[d]L]L[L]L]F]
Y3’ -1/-1{1]0|0|0|-6|6|6|-4|-4(4]-2|12]|2|-3[/3|3|3]-3
Bé -1|-1}1/-3{3(3|-3/3|3|-1|-1|1|-1|-1]1|-3|3|3|3]|-3
Ref. [24], Table 3| 0 |0 | 0 [-3]0|0|-1|{1|3|-1|-1|-1 1(-2/0(1]2]| -1
Ref. [24], Table 4 |-1{-1|-1{-9|0|0|-9|0(0| 1|11 170(0]0]9| 0
Ref. [26] -110|0|-1/0{|4|-1{0(4|-1|{0|0|-1]0]0|-1]0|0]|4] O
Ref. [27] -1{o0(o0(1j1j1y14}1j1{-14y0}0(-1y0;0(0O|1 11| O
SUSY B-L [25] |-1|-1|-1/3|3|3|3|3|3|-1|-1|-1|-1|-1(-1]01(3|3|3] 0
TFHM [10] -1{0|0j0|0O|0O|0O|O|6|-4|/0|0]0]0O]2|0]0|0]|3] O

Table 3. Some examples of anomaly-free charge assignments found. Here, we list the u(1)x charges
of the (left-handed or right-handed) chiral fermions of each model. These include the solutions Yy, Bj
used to derive the analytic solution of §4 as well as the non-SUSY Third Family Hypercharge (TFHM)
solution which we expect to be contained within our list. Note that all solutions have been rescaled
and reordered to satisfy the format of our list as detailed in §3.

Such an inverse has the dual purpose of facilitating checks between the numerical and analytic
solutions and of providing an additional proof that our solution is generic.

4.1 Geometric framing of the problem

The ACCs form a set of polynomial equations in the integers - otherwise called diophantine
equations. Suppose we take account of only the physical equivalence defined by scaling (point
(ii) in §2). It then does not matter, from a mathematical point of view, whether we use the
label L4 or Hy for the relevant chiral superfield; here we shall choose the latter. We can
view the unknown charges as corresponding to points in the projective space PQ!. This
is formed by considering the charges as living in the rationals Q?°, removing the origin and
providing an equivalence relation between points in Q% differing by rational multiples. The
points satisfying the ACCs in PQ' are said to form a projective variety.

One might expect our solution to be parameterised by 14 independent integer-valued
parameters (starting with 20 and subtracting 6 for the ACCs). However, as we shall see, we
shall have to add 9 parameters to cover exceptional cases, making the total number of integer
parameters 23. Our solution will then take the form of a map from Z23 to PQ'? which satisfies
the following properties: its image is completely within the projective variety, it surjects onto
the projective variety and its value depends only on the projection onto a Z'* subspace of
723 in all but a few classes of exceptional cases.

Within PQ', the ACCs (2.4) and (2.5) define a cubic and a quadratic hypersurface,
respectively (we shall below refer to these as ‘the cubic’ and ‘the quadratic’, respectively, for
brevity).

To solve systems of diophantine equations, number theorists often use a small set of
solutions as a tool for finding all solutions. Given our extensive numerical scan we are in
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a position to make an attempt in this manner. For a generic set of equations this is not
guaranteed to be possible, however we are lucky in that for our particular set of ACCs, at
least two distinct methods exist. The first mirrors the method of Ref. [18] which exploits a
special point of PQ' that is a ‘double point’ of both the cubic and quadratic. A second new
method is presented here.

4.2 Sketch of the method

The linear ACCs are easy to deal with. Their solution defines a projective subspace PL of
PQ'". It is in PL that we must discuss the quadratic and the cubic.

Given a single solution to the quadratic ACC it is possible to find all solutions to the
quadratic ACC by constructing all possible lines through this known solution: along each
line there must be one further solution to the quadratic, since every rational quadratic in one
dimension has either two or zero rational roots. In a similar vein, given a single solution to
the cubic, with the special property that all first order partial derivatives vanish at this point,
it is possible to find all solutions to the cubic ACC by constructing lines through this point.
Such a point is called a double point of the cubic.

To solve both the quadratic and the cubic simultaneously it is sufficient to have a line
on which every point is a solution to the quadratic and every point is a double point of the
cubic (although as noted above, other methods do exist). In fact for us there is only one
such line (up to permutations of charges within the su(2)-doublet, su(3)-singlet sector, and
other species), which is the one between the points Y3 and Bj given in Table 4. These two
points are a reordering of the charges within Y3 and Bj, respectively, from Table 2. The first
point, Y3, corresponds to hypercharge except for the third family, which has had its charges
sign changed. The second point, Bs, corresponds to B — L where the third family has had
its charge’s sign changed and the charges Xy, and Xp, are modified from their usual values
of zero. We will denote the line between them Y3Bs3.

To see how Y3B3 will enable us to find all solutions, let us first define the space PL’,
defined to be the subspace of PL whose points are orthogonal to Y3 and Bs with respect to
the standard scalar product on Q?°. Every point in PL lies on a plane Y3 B3R formed by Y3B3
and a point R € PL/. Thus, we can restrict our attention to looking at such planes, and the
points within them which satisfy the ACCs.

Generically (we will look at the few exceptions shortly), the intersection of the quadratic
with Y3B3R consists of the union of Y3B3 and another line L, as we will see explicitly in the
next subsection. In a similar way, the intersection of the cubic with Y3BsR consists of the
union of Y3B3 and another line L.. The intersection of the projective variety defined by the
ACCs, and Y3B3R then consists of the line Y3B3 and a single point which is the intersection
of Ly and L. as shown in the top left-hand panel of Fig. 2. Finding this point, which is a new
solution to the ACCs, is a trivial task, as we shall shortly see.

Let us now look at the exceptional cases, all of which are illustrated in Fig. 2. They
correspond to the following situations: (a) the whole plane lies in the quadratic but not the
cubic; (b) the whole plane lies in both the quadratic and the cubic; (c) the whole line L lies in
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Y3/1|1|-1{0|0]|0|-6|-6/6|4(4]-4|-2|-2|2|-3|-3|3]|-3
Bsy|1|1|-1(-3/-3|3|-3|-3|3|1|1|-1|1|1|-1|-3|-3|3]-3

|_[o[el@[n|n|n[elelelufufuld[d][d|L[L|L]Hs]H]
3
3

Table 4. A new ordering for the anomaly-free charge assignments Yy and B given in Table 2, adapted
for the analytic solution. Each row lists the u(1)x charges of the (left-handed or right-handed) chiral
fermions of a model.

PL a) (in quadratic)
(]
R
. - G,
. 0116[0
QO < ? %

YS B 3 Y3 B 3

b) (in quadratic & cubic)

e

Y3

Figure 2. A schematic of our method. In the generic case (top left), the plane contains one further
line in the quadratic and one further line in the cubic. These intercept at a point Py, which is our
new solution to all ACCs. The exceptional cases are shown in diagrams (a), (b) and (¢). In (a), L.
is a line of solutions to all ACCs. In (b), the Y3B3R is a whole plane of solutions to all ACCs and in
(c), the line L, is a line of solutions to all ACCs.

the cubic. The asymmetry between the quadratic and the cubic here is simply a manifestation
of the ordering in which we will do our manipulations in the next subsection, and nothing
more subtle.

We reiterate that since every point in PL lies in a plane Y3BsR, by finding all solutions
in all such planes (considering either the generic case or the exceptional cases) we can find
every point in the projective variety. In §4.4 we will give an explicit parameterisation of the
solution formed by such considerations. In §4.5 a right-inverse to this parametrisation will be
given explicitly demonstrating its full generality.
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4.3 Derivation of the analytic solution

We now give a more detailed description of our solution. To this end we define

3
9(X,Z) = Z(XQ'LZQ'L — X1, Z1; = 2X0, Zu, + Xa,Za, + Xe, Ze,) + Xu,Zn, — Xu,Zn,,
=1
3
(W, X,2) =Y (6Wo,Xq,Zo, + 2Wr, X1, 21, — 3Wu, Xu, Zu, — 3W4,Xa, Za, — We, X, Ze,
=1
_Wan,Zm)"i_QWHuXHuZHu —I—QWHdXHdZHd, (41)

which are respectively derived from the quadratic and cubic ACCs with e.g. X%l replaced
with Wg, X, Zg,. The maps ¢ and c are the unique trilinear forms which return, respectively,
the quadratic (2.5) ACC and the cubic ACC (2.4), when all inputs coincide.

A point R € PL’ can be parameterised by the 12 charges Rg, for S € {Q,n,e,u, L,d},
Rg, for S € {e,L,d}, R4y, Ry, and Ry, as well as an extra two parameters Ry and Ry. The
remaining charges are given by

Rg, = 3(R1 + Ry, + Rp, + R, + Rg,) + 4R + 2Ry, + Re, + R.,,

Qs = —4(R1 + Ro + Rg,) — 2(Ray + Re, + Re,) — 3(Ru, + Ri, + Rp,),

Ry, = 4R 4+ Ry + 3(Re, + Re,) — Rn, + Ro,

R,, = —(2Ry + Ro + Ry, + Ra, + Ry, + Re, + Re, + Ro,),

Rey = (Ray + Ra, + Ray) + 3(Re, + Re,) + 4R,

wo = —(6R1 + Ra + Ry, + R, + 2Rgy + 4(Re, + Re,) + Rg, + Ru,),

us = 4R1 + Ry + Rgy + 2(Re, + Re,) + R,

Rp, = 3(Ry + Re, + Re,) — (R, + Rr,) — (Ru, + Ru,). (4.2)

=

Substituting the generic point, aYs + SBs 4+ vR, on the plane Y3 BsR into the quadratic gives
7(20q(Y3, R) + 2B¢(Bs, R) + vq(R, R)) = 0. (4.3)

Putting the exceptional cases to one side for now, this equation generically has two lines of

solutions: one specified by v = 0, namely Y383, and a new line L,, a general point of which
is given by

P, oy ={c2q(R, R) — 2¢3q(Bs, R)}Ys + {2c3¢(Y3, R) — c1q(R, R)} Bs+
+ {Cl(](B?,, R) - CQ(](YQ,, R)}R7 (44)

where c1, co, c3 € Z (over-)parameterise the line.®

80ur use of projective space allows us to use, by clearing denominators, Z for these parameters rather than

Q.

— 14 —



On making the same substitution into the cubic we would get a similar line. However,
since we are only interested in the intersection of these two lines, it is sufficient to substitute
Pc(f 7)62703 into the cubic. This yields

4{01(1(337 R) - CQ(](}/?)’ S)}2{{2Q(B3a R)C(Rv Rv R)SQ(Rv R)C(BSa R, R)}Cl+
{3¢(R, R)c(Ys, R, R) — 2q(Y3, R)c(R, R, R) }ca+
6{q(Y3, R)e(Bs, R, R) — q(B3, R)c(Ys, R, R)}es} = 0. (4.5)

Solving for ¢q, o, c3 generically gives the new solution to the ACCs

Po = {3¢(R, R)¢(Bs, R, R) — 2q(Bs, R)e(R, R, R)} Y3+
{2¢(Y3,R)¢(R, R, R) — 3q(R, R)c(Y3, R, R)} B3+
6{q(B3, R)c(Ys, R, R) — q(Y3, R)c(Bs, R, R)} R. (4.6)

Let us now return to the exceptional cases.

(a) The plane lies entirely in the quadratic, but not in the cubic: This occurs when
q(Y3,R) =0, q(Bs, R) = 0 and ¢(Y3, R) = 0 but at least one of ¢(Y3, R, R), ¢(B3, R, R)
and c(R, R, R) is non-zero. In this case, we have a line of solutions (over-)parameterised
by a1, as, and as € Z and given by

P\, .. = {asc(R, R, R) — 3azc(Bs, R, R)}Y; + {3asc(Ys, R, R) — a1c(R, R, R)} B3+
3{@16(33, R, R) - aQC(Yg, R, R)}R (4.7)

(b) The plane lies entirely within the quadratic and the cubic: This occurs when ¢(Y3, R) =
0, ¢(Bs,R), q(Y5,R) = 0, ¢(Y5,R,R) = 0, ¢(Bs,R,R) = 0 and ¢(R,R,R) = 0. In
this case, every point on the plane lies in the variety. We then parameterise the plane
withbq, bo, by € Z:

P, . =b1Ys + b2Bs + bsR (4.8)

(¢) The line in the quadratic and the cubic are the same lines: this occurs (excluding the
case where the line is just aY3 + $B3) when

2q(Bs,R)c(R, R, R) = 3q(R, R)c(Bs, R, R),
QQ(YE’H R)C(R7 R, R) - SQ(Ra R)C(Y?n R, R)7
Q(B3aR)C(}/37R’ R) = Q(}/?MR)C(B&R? R) (49)

(c)

. . . . (&
In this case our solution is the line P ¢, c;-

It is possible to combine these exceptional cases and the generic case into one parame-
terisation of the solution using Kronecker delta functions. This overall parameterisation is
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given by

a b
P =P+ 5q(Y3,R),05q(Bg,R),O(sq(R,R),O{Ptgl,)az,ag + 5c(Y3,R,R),050(83,R,R),O(Sc(R,R,R),OPb(l ,)bg,bg}‘*‘
024(Bs,R)e(R,R,R),3q(R,R)c(Bs3,R,R)92q(Ya,R)c(R,R, R),3q(R, R)c(Ys, R,R) X

Sq(BasR)c(Ya RoR)a(Yos R)e( B, B 1) P b (4.10)

This parameterisation is written in terms of the 12 charges and two extra parameters speci-
fying R, as well as the parameters a1, ao, as, b1, ba, b3, c1, co and c3, which are needed in the
exceptional cases. Taking these parameters to be integers returns an integer-valued solution.

4.4 Explicit parameterisation

To write the parameterisation more explicitly, we define

I':={3q(R, R)c(Bs, R,R) — 2q(Bs, R)c(R, R, R) }+
04(Ys,R),004(B3,R),004(R,R).,0
(agc(R, R, R) — 3azc(Bs, R, R) + dc(vy, R R),09¢(Bs,R,R),00¢(R,R,R),001)
+ 02¢(Bs,R)c(R,R.R) 3q(R,R)c(Bs,R,R) 02¢(Ys,R)c(R,R,R) 3¢(R,R)c(Ys,R,R)
6q(33,R)c(Yg,R,R),q(Yg,R)c(Bg,R,R)(CQQ(Ra R) - 20361(33, R))7

Y :={2¢(Y3,R)¢(R, R, R) — 3q(R, R)c(Y3, R, R) }+
0g(Ys,R),004(B3,R),004(R,R),0 X
{3asc(Ys, R, R) — a1c(R, R, R) + 0.(v4, R, R),00¢(Bs3,R, R),00¢(R, R, R),002} +
024(Bs,R)c(R,R,R) 3q(R,R)e(Bs,R,R) 92¢(Y3,R)e(R,R,R) 3q(R,R)c(Y3,R,R)
04(Bs,R)e(Ya,R,R),a(Ys,R)e(Bs,R,R)12¢3q(Y3, R) — c1g(R, R)},

A :=6{q(Bs, R)c(Y3, R, R) — q(Y3, R)c(Bs, R, R) }+
0q(3,R),004(Bs,R),004(R, R),0 X
{3{aic(Bs, R, R) — asc(Y3, R, R)} + Oc(v3,R,R),00¢(Bs,R,R),00c(R, R,R),003 } +
024(Bs,R)c(R,R,R) 3q(R,R)c(Bs,R,R)02q(Y3,R)e(R,R,R) 3q(R,R)c(Y3,R,R)
0q(Bs,R)e(Ys,R,R),q(Ys,R)e(Bs,R,R)12€1q(B3, R) — 2c2q(Y3, R)}. (4.11)

Then the charges are given explicitly by fourth order polynomials in the coordinates of R:

Xo, =T+ X+ ARg,, Xg, =T + X+ ARg,, X, = -T'— S+ ARg,,
X, = —3% + AR, X, = =35 + AR, X, =35 + ARy,

X, = —60 — 3% + AR,,, X, =6 —35+ARe,, X, =60 + 3%+ AR,,,
Xy =AU+ S+ ARy,  Xuy =40+ S+ ARy,, Xy = —4T — S+ AR,,,

XL1:—3F—32+ARL1, XL2:—3F—3E—|—ARL2, XL3:3F+3E+ARL3,
Xy = 20+ S+ ARy, Xgy =20+ S+ ARy, Xg =20 — X+ ARy,
Xy, =30 +35 + ARy, Xpg, = —30 — 35+ ARy, (4.12)

u
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4.5 Right inverse

As previously mentioned, this analytic solution has a right inverse, demonstrating its complete
generality. Specifically, let T' be a known solution and define the point G = 1087 — (Y3 - T —
Bs-T)Ys — (2B3 - T — Y3 - T)Bs, where ‘-’ is the usual scalar product. The point G can be
thought of as T" with its components in the line aY3 + 5B3 projected out. The parameters
Rx; = Gx; (for X; as above), and

3
Rl - - Z(Gdz + GLl) + Geg - GHu - GHda
=1
3
Ry =) (Gq, — Ge, +2G1,) — Gey +2Gp, +2Gp, — G, — Gn,,
i=1

ay = (B3, T,T), ay=—c(Y3,T,T),

as = —c(Bs, T, T)(Ys T — B3 - T) + (Y3, T,T)(2B3 - T — Y3 - T).
bi=Y3-T—Bs-T) bp=(2B3 - T—-Y3-T) b3=1

c1=q(B3,T), ca=—q(¥3T),

c3=—q(B3, T)(Ys- T —B3-T)+q(Y3,T)(2B3 - T — Y3 - T, (4.13)

return the point 7" when substituted into the above analytic solution. In fact, they return 7'
up to a multiplicative constant given by

6 x 108*(q(Bs, T)c(Ys, T, T) — q(Ys, T)e(Bs, T, T))
+ 64(vs1),000(Bs.1),0(3 % 108°(c(Bs, T, T)? + (Y3, T, T)?) 4+ 1080c(v; 7.7),00c( 55, 7.7).0)
+ 2 X 108%6, (B, 1)e(vs 77 q(Ys T)e(Bs 1) (A(Bs, T)? + q(Ys, T)?) (4.14)

but given that our discussion above has been implicitly in projective space, such multiplicative
factors are not relevant.

In the Zenodo repository [30] we provide a Mathematica™ script containing the analytic
solution, allowing one to generate solutions at will.

5 Checks of the solutions

The material content of §3 is a list of all inequivalent anomaly-free charge assignments up
to a fixed Qmax. A skeptic could justly ask the question: how does one know this list is
complete without redundancies? The algorithm used does guarantee it, but one wishes to
mitigate potential errors involved in its computer implementation. A similar level of scrutiny
can be applied to the analytic solution of §4. Although here one might hope the correctness of
the solution is mathematically clear-cut, due diligence requires that we should try to ensure
that no fallacies have been committed. Happily, several checks can be carried out to satisfy
all but the most fastidious skeptic. These checks work in three different modes: consistency
checks within the numerical solutions, consistency checks within the analytic solution alone,
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and cross-checks between the two. The ability to do cross-checks between the two is one of
several advantages for providing both. Let us discuss the checks performed for each mode in
turn. We note in passing that all checks were carried out successfully.

For any computer program, one useful check is to make a second structurally different
program but with the same expected outcome. To this end, we produced a second different
program (this one did not use lexicographic ordering, but instead used an ordering similar to
that in Ref. [10]). The two outputs where then compared and found to agree.

The addition of hypercharge to any solution also leads to a solution, as stated in (iii) of
§2.1. This provides a check of the computer program as follows: each solution for a given
Qmax had multiples of hypercharge added or subtracted from it up to three times. If the
resulting charges had a height less than or equal to 10, the binary search method discussed
in §3 was used to confirm that the solution was present in our Qumax = 10 list.

Turning to the analytic solution, the most primitive check is to randomly choose parame-
ters, generate the corresponding charges and confirm that they satisfy the ACCs. This check
was carried out on 10° randomly generated solutions.

The fact that we have a right inverse for our parameterisation means that we can take
a solution, apply the inverse and then the parameterisation to return another solution. If
our analysis is correct this new solution should agree with the one we started with (up to
a scaling). This was carried out on, again, 10° randomly generated solutions. It was also
carried out on all the scanned solutions in our list for Qumax= 10, thereby providing the first
cross check between the numerical and analytic solutions.

The second cross-check between the numerical and analytic solutions was to generate
random solutions using the analytic solution, then to identify those of height less than or
equal to 10 and confirm that these appear in the numerical solution via the binary search
algorithm.

6 Examples of Filters

In this section, we now turn to examples of how our list of solutions to ACCs (2.1)-(2.5)
might be filtered in order to identify sets of charge assignments with various possible desirable
phenomenological properties or uses.” Note that in what follows, as in §4, we will distinguish
Hg; from L;, and the number of solutions satisfying each constraint is therefore to be compared
with the second column of Table 2.

9Computer programs implementing these filters are available on Zenodo [30].
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6.1 The superpotential

In general, interactions between the chiral supermultiplets of the MSSM are given by the
superpotential W = Wg + Wiy + Wpy, where

Wr, = pHuHg + (12)i;Uf Qi Hy + (Ya) i DEQi Ha + (ye )i EFL; Hy,
1 0 a a A . ..

Wiy = iAUkL,-Lng + NP LQi D 4 W' L Hy, (6.1)
1 pm aa

WBV _ iA/,Z]kaD]CDz

l)’f, ﬁf, Qi, IA/Z-, Ef, H, and ﬁd denote the chiral supermultiplets containing of Table 3, and
we denote flavour indices by i, j, k € {1,2,3}. Ak NGk N\'GE(y, )5 are all dimensionless
coupling constants and g, u'* each have mass dimension 1. Gauge indices have been sup-
pressed. Note that here we ignore the neutrino chiral supermultiplets Nf, postponing their
discussion until §6.3. Here Wg, denotes terms invariant under R—parity, whereas R—parity
is violated in the L and B-violating terms Wy and Wpgy respectively.

6.1.1 The y problem

The MSSM has a fine tuning problem associated with the pH, Hy term. Given that this term
respects supersymmetry and gauge symmetry, there is no explicitly stated reason for the scale
of 1 to be small. The gauge group can be extended by U(1)x to provide a solution to this
so-called p problem [31]. This is achieved by charging H,, and Hy under U(1)x such that the
u term above is forbidden by the U(1)x symmetry. Instead, the flavon 6 is charged, allowing
a term of the form (where h is a dimensionless coupling constant)

W > h0H,Hy; — h{0)H,Hy, (6.2)

such that when the U(1)x symmetry is spontaneously broken, the scalar component of
acquires a vacuum expectation value (f) at the TeV scale i.e. the p term is dynamically
generated.!'Y The puvSSM [32-35] also solves the p problem in precisely this manner. Any
model with such a dynamically generated p term is often referred to as the next-to-minimal
supersymmetric standard model (NMSSM). The NMSSM has received much attention in the
literature [36-39].

Remembering that we shall pick one of the Nf chiral superfields with a non-zero charge
to be the flavon chiral superfield 8¢, which has a non-zero X charge out of necessity, we search
for such solutions in our list of charges by applying the conditions

Jie{1,2,3}: Xp, + Xu, = Xn, #0, (6.3)

where we take 6¢ to be the NZC superfield which satisfies this condition.'! We find a total of 77
solutions satisfying these constraints with Qmax = 1, constituting ~ 30% of the full Qua.x = 1

YFurther detailed model building is required to make sure that (8) ~ O(TeV), but we shall merely assume
here that this is possible.

"The UprSSM [40] uses (6.3) in a certain U (1)’ extension of the vMSSM (involving additional quark fields)
to solve the p problem, also.
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list. This percentage reduces to 20% when Quax = 4, and 11% when Quax = 10, providing
in this case a total of 649 831 168 options for a dynamically generated p term.

6.1.2 A renormalisable Yukawa sector

In contrast to the rather weak constraints of (6.3), we may place strong conditions on the
Yukawa sector by requiring that all renormalisable Yukawa couplings of charged fermions are
allowed in the superpotential Wx, by being U(1)x gauge invariant, i.e. they must satisfy the
following equations Vi, j € {1,2,3}:

XQi+XHu_XUj:07 XQi+XHd_de:07 XLi+XHd_X€j:0' (6.4)

(6.4) implies family universality for the species @, e, u, L and d. For the non-supersymmetric
case, it has been shown that anomaly-free charge assignments exist which allow all of the
renormalisable Yukawa terms [22]. One can show that in the ¥MSSM, we obtain one solution
for each non-supersymmetric solution of [22], where we must additionally fix H, and Hy to
satisfy

3 3
83Xy, = —3Xp,=-3> Xg,— > Xn,. (6.5)
=1 =1

(6.5) means that there cannot be any overlap with the solutions satisfying (6.3), i.e. none
of these solutions can simultaneously solve the p problem. By filtering through our list of
charges, we find 2 solutions allowing a fully renormalisable Yukawa sector with Qmax = 1 and
5 with Qmax = 4, as shown in Table 5. The full list of Quax = 10 solutions comprises 38 such
solutions.

Qlol@n[n[nlelele[ufululd|d[d[L]L[L[Hs|H,]
ofofo[-1]o]1]oJofo]oo o oo o olo]o[ o]0
olo|o|-t|-t|-t|t[t|t]-[-1[-t][1[1]1]ofofo] 1]
11333 [3[3[3[-1[-1]-1][-1[1[-1[3][3]3]0 |0
-1l 2 ]2 2[4fala[2[2]2]0 0|0 [3[3]3]1 -1
A[-afaf4al4al4al2]2[2[0]0]0[2]2[2[3[3]3]-1]1

Table 5. Anomaly-free charge assignments with Q.x = 4 allowing all Yukawa terms at the renor-
malisable level. Each row lists the u(1)x charges of the (left-handed or right-handed) chiral fermions
of a model. Note that all listed solutions satisfy Xy, + X, = 0, reducing the ACCs to those of the
SM after substitution.

We will now relax the assumption that all Yukawa terms must be present in the La-
grangian at the renormalisable level. We will enforce that the top and bottom quark and the
tau lepton tree-level Yukawa terms can be present (since they are closer to order 1 and so
more difficult to explain by non-renormalisable or loop interactions, which imply a suppression
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below order 1) by applying the constraints

do1,09,03,04,05 € S3 : XQ01(3) + X, — X

u62

=0
=0, (6.6)
+ XHd - Xe (3) = Oa

95

XQo'l(B) + X, — Xa,
X1,

4(3)
where S3 is the group of permutations of 3 objects. We expect Qs (3), Ugy(3) and dyy(3) to be
predominantly third generation quarks, and similarly L,,(3) and e, (3) to be predominantly
composed of third generation leptons. We will further assume that tree-level renormalisable
Yukawa terms are not present for the first and second generation fermions by forbidding all
other terms in the Yukawa matrices. We can express these constraints by first defining

Bijkimn = (Xq; + Xu, = Xuj) N (Xq, + Xy = Xa) AN (X, + Xu, = Xe,), (6.7)
(where A means logical ‘and’) and then imposing
(3, 4,k Lmyn € {1,2,3} ¢ Pijgimn) A (V4,5 k, 1,m,n € {1,2,3} Pijkimn = n=1), (6.8)

where, in standard logic notation, 3! means ‘there exists a unique’.

This choice is made with the fermion mass problem in mind: it allows larger masses to
be generated for the top, bottom and tau through the standard Yukawa terms, but forbids
them for the light quarks, producing a mass hierarchy between the light and heavy fermions.
In Ref. [24] it was shown that the chiral fermions can obtain their masses at loop level
through the interactions with their superpartners by including non-holomorphic soft terms
in the Lagrangian density. Alternatively, light fermion masses may be acquired through
non-renormalisable operators after the flavon 6 breaks U(1)x. Either of these mechanisms
require the Lagrangian density to contain terms which will further constrain the charges.
We shall assume that all first and second generation fermions acquire their masses through
some mechanism such as one of these two, but leave the more model dependent effect of any
additional constraints to future investigations.

We find that when Qumax = 1, the list contains 2 solutions satisfying the constraints of
(6.8). At Qmax = 4 a total of 15818 solutions pass these constraints, and at Qmax = 10 this
number grows to 34646 735. This makes clear that by imposing these constraints, not only
do we begin to address the fermion mass problem, but we make way for a larger number of
options for model-building compared to those of a fully allowed renormalisable Yukawa sector.
For example, when Qmax = 2 there are 8 solutions which simultaneously solve the p problem
and satisfy (6.8). This overlap grows to 2 954 solutions when Qnax = 4 and 4 088 200 solutions
when Qmax = 10. Furthermore, the constraints (6.8) are inherently flavour non-universal, and
thus have the potential to address the B anomalies. This overlap will be discussed in more
detail in §6.2.

6.1.3 R-—parity violation

In contrast to the SM, L and B violating terms are allowed by the field content and gauge
symmetries of the MSSM, as shown in (6.1). The simultaneous presence of both B and L
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violating terms will lead to proton decay in contravention to experimental bounds unless one
introduces a large degree of fine tuning. Usually, all terms in Wy and Wpy are forbidden
by the imposition of R—parity. In the case that R—parity is not imposed though, we may
ask that our U(1)x symmetry maintains the stability of the proton instead. We can form
three broad sets of solution within this requirement: where all R—parity violating terms are
banned (this will also maintain the stability of the lightest supersymmetric particle, which
may have the properties to constitute cold dark matter), where all terms in Wpy are banned
but where at least one term in Wy is allowed, and those where all terms in Wy, are banned
but at least one in Wy is allowed. Terms such as those in Wpy give a Majorana mass term to
left-handed neutrinos (sometimes through loop diagrams) without the need for right-handed
neutrinos [41]. Terms in Wpy, on the other hand, can assist in baryogenesis [42].
We may ban terms in Wy by imposing Vi, j, k € {1,2,3}

X, + Xa; + Xg, #0 (6.9)

where j # k since the antisymmetry of X% in j, k forbids the j = k terms from appearing
in the superpotential. Similarly, we may ban all terms in Wpy by imposing the conditions
Vi, 4, k,l,m,n,p € {1,2,3}

XLi—i-XLj—Xek#O, XL1+XQm_an7£Oa XL,,+XHu7é07 (6.10)

where i # j because A% is antisymmetric in 7,j. At Qmae = 1 we find 8 solutions which
ban all R—parity violating terms. These solutions are listed in Table 6. We find a total of
51 solutions which ban Wpgy while allowing terms in Wpry. We find no solutions which ban
Wiy while allowing terms in Wpgy, i.e. the only solutions which ban Wy are those which
ban all R—parity violation.

QlolQ|n|n|nlelele|lu|lul|luld|d|dL|L|L|H,;|H,
-1j-1{1j1j1 (11 j1y1|-1|-1y1|-1}-1{1{1(1|1] 1 1

-1j-1j1j1j1(1(1j1y1|-1|-1y1-1}-1j1{1j141{ 010

S1f-1j1j1y1|1}j1f1j1r|-1}-1f1|-1j-1f1rj1f{1{ry 1|0

o I T A e T A O T T T e A O A Y |
ojo|joj|-1f-1}-1y1j1rj1y-1f-1j-1{1r{1y1j{0{0(0|-11]1

ojojoj|-1f-1}{-1y1rj1rj1y-1y-1j-1{1rjry1jojof1|1]-1
00O |-1|-1}1|-1]1}1|-1|-1 -1{1(1(0(0|0|-11]1

0[]0|0|-1{0|O0O|-1|1|1|-1|-1 -1 1]1]0|0(0] -1

Table 6. At Qe = 1, we find 8 anomaly-free charge assignments in our list banning all R—parity
violating terms in the MSSM superpotential. Each row lists the u(1)x charges of the (left-handed or
right-handed) chiral fermions of a model.

By increasing the maximum charge (4., we find solutions which ban Wpy while allowing
B-violation. At Qma: = 10, we find 444 357 847 solutions which forbid Wy while allowing
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terms in Wpgy. We find 2916 984 840 solutions which forbid Wpgy while allowing for terms
in Wiy at Qe = 10, and a total of 885951 137 solutions which ban all R—parity violating
solutions, constituting 14% of the list of charge assignments.

6.2 B anomalies

Family-dependent charges in the quark and lepton sectors are well-motivated by the recent
hints at lepton flavour non-universality associated with b — s¢T¢~ transitions [5-13], also
known as ‘B anomalies’. Global fits incorporating angular distributions and branching frac-
tions point towards new physics contributions to the Wilson coefficients Cg, C1o of weak
effective theory Hamiltonian operators Og, O1g, respectively, where

Oy = (Sp7ub1) (A 1) Oro = (87ub) (A1), (6.11)

Here the primes denote that the fermionic fields are in the mass eigenbasis. A vector-like new
physics contribution to Cg9 with C19 = 0, or a new physics coupling to left-handed muons
through the combination Cy = —Cg, are both favoured by global fits [43] in comparison to
the SM.

We will filter through our list in search of solutions potentially capable of explaining
the so-called B anomalies via the mediation of flavour-changing Z’ interactions, resulting
from the spontaneously broken U(1)x symmetry. We will begin by searching for solutions
for which there exists i, j € {1,2,3} with @; and L; charged. These will play the role of the
left-handed bottom/top quark doublet and muon respectively, contributing to the effective
operator (bpy"br)(pryufr) + ... once the heavy Z' is integrated out of the effective field
theory. We will assume that a rotation to the mass eigenbasis will mix the down-type quarks
such that the necessary l_)’Lv"s’L coupling is produced. As well as this, we will require that
the left-handed leptons are not completely flavour universal, i.e. 3k € {1,2,3} such that
X, # Xz, This will ensure we can have the necessary p — e flavour non-universality to
explain the b — s¢T¢~ data.

We find 114 solutions with Quax = 1 satisfying these conditions, constituting approxi-
mately 43% of the total list. When Quax = 10 this number grows to 1567142472, roughly
25% of the full list of charge assignments. Such large numbers indicate that these conditions
leave the charges quite unconstrained, and thus we query the list further for interesting so-
lutions. Firstly, there are solutions within this set which can simultaneously address the u
problem and allow only renormalisable tree-level Yukawa terms for the top, bottom and tau.
The overlap between each set of constraints is depicted in Figure 3. Only 2 solutions can
account for all three conditions when Qnax = 2, and are shown in Table 7. This overlap
grows when Qmax = 4, with 1556 solutions solving all three conditions.

Secondly, we will filter through the list for solutions that aren’t obviously in danger of
violating experimental constraints. Following the motivation of Refs. [9, 44], we search for
solutions with uniform light quark charges so as to avoid constraints on flavour-violation in
the light quark sector. Additionally, we will search for solutions which feature zero coupling
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Figure 3. We filter through our list to determine the number of solutions capable of solving the p
problem and the B-anomalies, as well as those allowing only 3rd family Yukawa terms. We find an
overlap between these applications, with 2 solutions at Q. = 2 satisfying all constraints and 1556

at Qmax = 4.

RQIQ|IQ|n|n|in|elele|lu|u|uld|d|d| L|L|L|Hy
-110(01-2 112(2(-2|-1]0|-1|0|2]|-1 1
-110(0111(2|2|-2{1(2(-1|/0|2|-2(-1|0|-1{0|2

—_
[\
o
[\

H,_;Sz

Table 7. As depicted in Figure 3, at Quax = 2, only 2 anomaly-free charge assignments satisfy the
constraints required to solve the p problem and the B-anomalies while allowing 3rd family Yukawa
terms in the Lagrangian. Each row lists the u(1)x charges of the (left-handed or right-handed) chiral
fermions of a model.

of the electron to the associated Z" i.e. 34,5 € {1,2,3} such that X, = 0 and X, = 0. This
is motivated by the strong experimental constraints originating from e*e™ collisions at LEP.
We find 21 such solutions that also allow only third family Yukawa terms and address the p
problem in our list with Quax = 10. A selection of 10 of these solutions are listed in Table 8.
Here, in contrast to other tables, the index on each fermion denotes the family number (since
these are used in the constraints), and we use 6 to denote the RH neutrino that plays the
role of the (RH) flavino.

The 10 solutions shown all feature suppressed couplings of the Z’ to the light quarks,
either because the light RH down-type quarks have zero charge, as in solution (a), or because
the light LH quarks have zero charge as in solutions (b)-(k). In solutions (a) and (b), the
muon has equal RH and LH charge i.e. Lo = e3. This results in a purely vector-like coupling
with Cio = 0. Similarly, solutions (c), (d) and (e) are particularly interesting in that they
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(a)[-3]-3]3[6lof10]o]9o][5]-3][3]2]0fo[2]0]9]6[-1]5
mlolol-=2[6[3[4]0]3 olo[-1]-3[3]3]0]3]-3]5]1
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Glolol-1]4al6]olo|[7]o]l5]5[a[7]|7[2[0]-3]10]-1]-3
®lolol[-1]2]2]8lo[5]-1]4a]4a]0[5]5]0][0][3]2]1]1

Table 8. At Quax = 10 we find 21 solutions which simultaneously solve the p problem and B
anomalies, allow 3rd family Yukawa terms and are well-suited to avoid strong experimental constraints
from LEP and quark flavour violation between the first two families. A selection of 10 of these are
shown here. Each row lists the u(1)x charges of the (left-handed or right-handed) chiral fermions of
a model.

all produce negative values of the ratio Cy/C1p, with (c) and (d) giving exactly Co = —Cig
and solution (e) satisfying Cy = —%Clo. In §3 we queried the full list of charge assignments
in search of known solutions in the literature, listed in Table 3. None of these solutions are
found in the list of 21 solutions passing our constraints: either because they cannot solve the
1 problem and address the 3rd family Yukawa terms simultaneously, or because they do not
satisfy the constraints we impose to facilitate solving the B anomalies.

6.3 Neutrino masses

Finally, we turn to the neutrinos. The inclusion of RH neutrinos has allowed us the flexibility
to solve the ACCs while simultaneously addressing the phenomenological constraints of §6.1
and §6.2, as evidenced by the fact that these solutions often have nonzero charges for the RH
neutrinos. In particular, this can be seen from Table 8 in which all of the solutions feature
nonzero charges for at least one of the RH neutrinos. It is then useful to ask what these
charge assignments imply for the neutrino masses and mixings.

In order to describe neutrino masses and mixings, we extend the superpotential to include
the following terms,

W = WRp + (yV)Z]NZCL]Hu + (M,,R)UNZCN;, (612)

where (y,,)i; is a 3 by 3 matrix of dimensionless Dirac Yukawa coupling constants and (M, )i;
is a 3 by 3 matrix of Majorana mass terms (of mass dimension 1) for the RH neutrinos.
Neutrino masses are then produced through a Type-1 see-saw mechanism. Many alternative
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mechanisms for producing neutrino masses in the MSSM exist in the literature. Bilinear
R—parity violating models extend the superpotential to include the L-violating i L; H,, terms
which produce neutrino masses through mixing with the neutralinos [45, 46]. In [47], a
suppressed Dirac mass term is produced after U(1) x-breaking, through the flavon’s vacuum
expectation value (f). The prSSM extends the MSSM to produce neutrino masses through
the inclusion of the trilinear term r;;, NSN7Ng in the superpotential [32-35]. While an
investigation into each of these mechanisms and models is beyond the scope of this paper, we
will filter through our list in search of solutions which allow all of the terms of (6.12), allowing
all possible neutrino masses and mixings via the see-saw mechanism. These solutions must
satisfy the following constraints Vi, j € {1, 2, 3}

Xpo+ Xy — Xn; =0, Xy + X, =0, (6.13)

implying X,,, = 0 and X, = —Xp,. We find a total of 3 solutions with Qmax = 1 in our list
satisfying these constraints. At Qmax = 4 a total of 118 solutions exist, and at Qmax = 10
the list contains 4 878 of these solutions.

6.4 Summary of constraints

We summarise the phenomenological constraints of this section in Table 9. We emphasise
that the filters used throughout this section provide an initial exploration into the constraints
we expect will be most commonly needed by model builders. We expect that the scope of this
list is much broader than the phenomenological applications dealt with here, and by making
the list of charge assignments publicly available on Zenodo [30] we encourage model builders
to search for charge assignments of more specific interest.

7  Summary

Specific models incorporating the MSSM with an additional U(1)x gauge group can combine
the phenomenological advantages of supersymmetry with potential uses of the additional
gauge factor and they have received quite some attention in the literature, particularly for
the case where the U(1)x charges are family dependent. We have found, for the first time,
all charge assignments of the MSSM plus three SM-singlet chiral superfields which are free
of local anomalies (the SM-singlets can produce neutrino masses as well as spontaneously
break the U(1)x symmetry). Chiral superfields in real representations can be added to any
anomaly-free matter content and result in an anomaly-free solution, since the additional
fermionic content will be in a vector-like representation of the gauge group and so its effects
cancel in the anomalies. The local anomaly cancellation conditions described in §2 constitute
a system of six homogeneous coupled diophantine equations (2.1)-(2.6), the like of which are
notoriously difficult to solve, in general.

Global anomalies are beyond the scope of our work; however, for the case of U(1) exten-
sions of the usual SM gauge group, there are none [48]. One may question whether a quantum
field theory absolutely has to be free from anomalies; after all, in an infra-red effective field
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Proposition # Qmax = 10
{1 problem 3 e{1,2,3} : Xp, + Xpu, = Xn, N Xpn, #0| 649831168
All  renormalisable charged | (Vi, j, k,l,m,n € {1,2,3} Pijkimn) 38
fermion Yukawas
Only 3rd family renormalis- | (34,7, k,l,m,n € {1,2,3} : Pyjgimn)A 34646 735
able charged fermion Yukawas | (i, j, k,l,m,n € {1,2,3}P;jkimn = n = 1)
L-conservation & B-violation | P;, A —Pg 444 357 847
B-conservation & L-violation | Pg A —FP, 2916 984 840
L & B-conservation P, N Pg 885951137
B anomalies Ji, 5,k € {1,2,3} : X, # 0 A Xp; # 0 A| 1567142472
X, # X1,
B anomalies, p problem, 3rd |See §6.2 21
family Yukawa terms & exper-
imental constraints
See-saw v masses Vi,j € {1,2,3} Xp, + Xp, = Xn; A Xy, = 4878
— X,

Table 9. Summary of the phenomenological conditions applied in this paper, along with the number
of inequivalent Quax = 10 solutions which satisfy them. In the above we have used standard logic
notation in which V reads as ‘for all’, A as ‘and’, V as ‘or’, 3 as ‘there exists’, 3! as ‘there exists a unique’,
= as ‘implies’, : as ‘such that’, — as ‘not’. For the condition of allowing all renormalisable charged
fermion Yukawa terms, we have used the proposition P;jr, defined as Pjjgimn = (Xq, + Xn, =
Xu; NXq, + X, = Xa, NXp, + Xu, = Xe,,). For the R-parity related conditions we have used the
propositions Pr, := Vi, j,k,l,m,n,p € {1,2,3} i=jV (X, + X1, — X, #0N X, +Xq,, — X4, #
0A XLp + X, 7’50)7 and Pp :=Vi,j,k € {1,2,3} 1=7V Xy +de + Xa, #0.

theory (such as we might expect the MSSMxU(1)x to be) one can in principle add Wess-
Zumino terms to the Lagrangian density in order to cancel them. Such terms can result from
decoupling a heavy state from the effective field theory. In order to contribute to the anomaly
though, the additional heavy state must be a chiral fermion of non-zero U(1)x charge. It is
then not a priori obvious how such a state may acquire a large mass, unless it is linked to
the scale of U(1)x breaking.'? One recent non-supersymmetric U(1) gauge extension of the
SM [13] has achieved this with some additional fermions that under the SM are in vector-like
representations, but which are chiral with respect to U(1)x. However, it is far from obvious
whether this is possible in general model set-ups, particularly when several mixed anomalies
do not cancel. From the model builder’s point of view therefore, it is safer to begin with an

12Integrating the top quark out of the SM yields apparent gauge anomalies, but when one includes effective
operators resulting from integrating it out, gauge symmetry is restored [49]. This is precisely a case where the
heavy mass is linked to the symmetry breaking scale (in this case, of the electroweak symmetry).
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anomaly-free effective field theory rather than having to worry about how such anomalies are
cancelled.

We have provided the general analytic solution for the charges via a new geometric method
(a different geometric method was previously employed to solve the anomaly cancellation
conditions for non-supersymmetric U(1)y extensions of the SM [18]) described in §4. One
inputs 23 integer parameters for each anomaly-free charge assignment. A Mathematica'™
program has been made publicly available which, given the input parameters, produces one
such assignment. The general analytic solution passed various internal consistency checks.
Whilst the general analytic solution can be difficult for model builders to use, it is useful for
(among other things) providing non-trivial checks of any list of numerical solutions.

Anomaly-free charge assignments are scarce: for example, for heights up to 10, as Fig. 1
shows, only one out of some 102 (or so) inequivalent assignments is anomaly free. Despite
their scarcity, the different assignments are still legion (we have identified over 1.6 billion up
to a height of 10). The model builder is therefore faced with an enormous haystack in which
to find the proverbial needle.

An explicit list of all of these 1.6 billion inequivalent charge assignments up to a max-
imum absolute value of 10 has been produced via a computer program described in §3 and
made publicly available [30]. Each entry in the list comprises 20 integers, the U(1)x charge
assignments of 20 chiral superfields of the model. Extensive checks of the list have been made
using the analytic solution as well as those of internal consistency. With the aid of a com-
puter, such a list is easily and quickly searched and filtered, looking for charge assignments
with various desirable properties. For example, if fewer than three SM-singlets are required
for the model, one can filter the list and find all solutions where one of the SM-singlet U (1) x
charges is zero. As far as anomalies go, having a zero charge for the superfield is equivalent to
removing it from the model. We have shown some simple example filters, looking for different
desirable properties of the charge assignments in §6 as a tutorial in their implementation. We
hope that the list will be of use for beyond-the-MSSM builders in terms of inspiration and
phenomenology.
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