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Abstract: Extensions of the minimal supersymmetric standard model (MSSM) gauge group

abound in the literature. Several of these include an additional U(1)X gauge group. Chiral

fermions’ charge assignments under U(1)X are constrained to cancel local anomalies in the

extension and they determine the structure and phenomenology of it. We provide all anomaly-

free charge assignments up to a maximum absolute charge of Qmax = 10, assuming that the

chiral superfield content of the model is that of the MSSM plus up to three Standard Model

(SM) singlet superfields. The fermionic components of these SM singlets may play the rôle

of right-handed neutrinos, whereas one of the scalar components may play the rôle of the

flavon, spontaneously breaking U(1)X . Easily scanned lists of the charge assignments are

made publicly available on Zenodo. For the case where no restriction is placed upon Qmax,

we also provide an analytic parameterisation of the general solution using simple techniques

from algebraic geometry.
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1 Introduction

Quantum field theories of vector bosons are notoriously problematic unless they arise from

gauge symmetries, whence non-renormalisability and non-unitarity can be tamed. It is thus

imperative that the gauge symmetry of the renormalisable ultra-violet completion of any

such model should not contain any quantum field theoretic gauge anomalies, where quantum

corrections spoil the gauge symmetry that was imposed upon the tree-level theory. The
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Standard Model (SM) itself is anomaly-free and can thus remain a self-consistent theory up

to very large renormalisation scales. Despite this, there are good reasons to expect the SM

to be an effective field theory resulting from decoupling other fields. Many reasons have

been invoked to motivate extending the Lie algebra1 sm := su(3) ⊕ su(2) ⊕ u(1)Y of the

Standard Model (SM) by a spontaneously broken gauged u(1)X summand, for example. Such

extensions have been used to explain measurements of the anomalous magnetic moment of

the muon [1], to provide axions [2] or leptogenesis [3], to provide fermion masses through the

Froggatt-Neilsen mechanism [4], or explain measurements of the b→ sl+l− transition which

are currently in tension with SM predictions [5–13]. In general, the X charge assignments of

the models can be family dependent, resulting in family-dependent couplings of a resulting

massive Z ′ vector boson. Indeed, in several applications (the last two in our aforementioned

list) it is a necessary requirement that theX charges are family dependent, since the symmetry

and the Z ′ are respectively used to explain family non-universal effects.

In u(1)X extensions, the phenomenology of the Z ′ is often key and is dictated by the

integer X charges of the other fields in the model (integer X charges results from an implicit

assumption that the extension is compact). The X charges of the chiral fermions in particular

dictate the contribution to perturbative local anomalies of such models. There is therefore a

non-trivial cross-over between the extensions’ phenomenology and anomaly cancellation via

the chiral fermions’ charge assignments. Unfortunately, in general, with a fixed chiral fermion

content, anomaly cancellation conditions (ACCs) are difficult to solve, the number theory

state-of-the art being the solution of a single cubic in three unknown integer parameters [14].

Some recent progress has been made in this direction, however. In Ref. [15], the gravita-

tional and gauge anomalies of a pure U(1) gauge symmetry (i.e. with no SM gauge group but

with charged chiral fermionic fields) were solved analytically for the charges of a priori fixed

numbers of chiral fermions via an ingenious algebraic method2; this was soon understood

from a geometric perspective [17] by using a theorem due to Mordell [14]. Similar geometric

methods were employed to find an analytic solution to the more difficult problem of sm⊕u(1)

anomaly-free charge assignments in the specific case of SM fermion content, plus three right-

handed (RH) neutrinos (i.e. SM-singlet chiral fermion fields which may carry X charge) [18].

The number of solutions is formally infinite,3 unlike the case of semi-simple SM extensions

with identical fermionic field content, where there is a list of 340 [21]. Unfortunately, the ge-

ometric methods employed only solve a small family of similar cases and cannot be deployed

on general chiral fermionic contents. Furthermore, the analytic solution, whilst of intrinsic

interest in and of itself, comes with a significant drawback for model-builders interested in

1We shall refer to the Lie algebra (as opposed to the Lie group) in mathfrak script.
2The algebraic approach was partially extended to U(1)n gauge symmetries in Ref. [16].
3One way of seeing this is to set theX charges of the first family of particles to be equal to their hypercharges,

the second family to be equal to some integer multiplied by baryon number minus lepton number B − L, and

the third family to have zero charge. Any such charge assignment solves the anomaly cancellation conditions.

Since there are an infinite number of constants we can multiply the second family by, each of which leads to

a distinct chiral solution, there are an infinite number of solutions.
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using it: each charge is parameterised in terms of a fourth-order polynomial of integer param-

eters. Whilst it is easy to input these parameters and achieve anomaly-free charges, model

builders often want to fix a function of them to certain values for phenomenological purposes,

but this is a difficult and currently unsolved problem, because it involves solving a system of

coupled fourth-order diophantine equations.

Fortunately, when appropriately employed, computers come to the rescue of the reverse-

engineering model builder. In an sm⊕u(1) ‘anomaly-free atlas’ [22], all solutions of the ACCs

for integer charges between -10 and 10 for 18 chiral fermion gauge representations in the

SM plus three RH neutrinos were found by a scan.4 Cases which are in a sense equivalent

(where the charges differ by a common multiple which can be absorbed into the u(1)X gauge

coupling, or which differ by a permutation of the family indices within a species - fields which

have identical SM representations) were only counted once (and aside from some rare cases,

only scanned over once). Anomaly-free solutions are scarce: only roughly one in 109 was

anomaly-free from the whole sample. The list of anomaly-free fermionic charge assignments

was made publicly available. It is a list of over 21 000 000 solutions that is easy and quick

to search through and filter with the aid of a simple computer program. As such, it is user

friendly for would-be U(1)X gauge extension model builders who can search through the list

and filter for charge assignments with various desired properties. The charges are limited in

height (the maximum absolute value of a charge in any solution), but have the advantage of

being easily useable provided one can adapt or write a simple computer program that reads

the list in and filters it.

Heretofore, there has been no similar list made for supersymmetric (SUSY) models. SUSY

model building has several motivations, the primary one being that it does not suffer from the

technical hierarchy problem, where radiative corrections to the Higgs mass tend to drag it up

to the largest fundamental energy scale (for example the Planck mass ∼ 1019 GeV) divided by

a loop factor. There are other motivations for supersymmetry too, for example, in an N = 1

supersymmetrisation of the SM (the MSSM), the experimental measurements of the gauge

couplings agree with the gauge coupling unification condition predicted by SUSY grand unified

theories. When one includes an extra multiplicative discrete symmetry such as R−parity or

matter parity5 the MSSM possesses a stable particle which, depending upon parameters, has

the correct properties to constitute the universe’s dark matter and potentially dangerous

proton decay processes are suppressed. Particular examples of u(1)X gauge extensions of

the MSSM can combine the aforementioned phenomenological benefits of a Z ′ with those of

SUSY models. Some of these have appeared in the literature, for example see Refs. [24–29].

It is our intention here to extend the original non-SUSY anomaly-free atlas to the SUSY

case and make a new list (a ‘ν SUSY anomaly-free atlas’) available to interested SUSY

u(1)X -extension model builders and others. We shall include the addition of up to three

4This strategy has also recently been used for the case of U(1) gauge theory with different numbers of Weyl

fermions, in a search for scotogenic models [23].
5Matter parity is defined as (−1)3(B−L), where B is baryon number and L is lepton number, whereas

R−parity is defined as (−1)3(B−L)+2s, where s is spin.

– 3 –



MSSM-singlet chiral superfields: the fermionic components of all or some of these can play

the rôle of RH neutrinos, resulting in tiny neutrino masses via the see-saw mechanism (below,

we call this model the νMSSM). The scalar component of one of these MSSM-singlet chiral

superfields is expected to play the rôle of the flavon, which has a necessarily non-zero X

charge and acquires a vacuum expectation value, spontaneously breaking U(1)X . One might

expect that one of the SM-singlet fields must therefore have a non-zero u(1)X charge, unlike

the non-SUSY case, where the charges of the flavon and all SM-singlet fermions were a priori

unconstrained. However, we won’t impose this condition because the field content of the

model can easily be extended in a way that does not change the ACCs but which effectively

removes the condition, as we shall explain below. A functional difference to the original

non-SUSY anomaly-free atlas is the appearance of the Higgsino partners of the two MSSM

Higgs doublets, augmenting the number of Weyl fermion SU(2) gauge representations by two.

This therefore extends the original list of 18 X charges to 20. In case a height larger than

10 is required, we will also provide a general analytic solution to the anomaly cancellation

conditions. This relies on using the same geometric framing in which the SM-plus-3 RH

neutrino case was solved [18]; we take the opportunity to demonstrate a new technique to

solve such problems, although the technique used in Ref. [18] would also have worked.

The paper proceeds as follows: in §2, we describe the anomaly cancellation conditions

relevant for the Lie algebra mssm ⊕ u(1)X , and a chiral superfield content of the νMSSM.

In §3, we describe the computational scan and how the solutions are listed and ordered,

giving the number of solutions found up to a height of 10. We provide an analytic method

of solution in §4, along with a parameterisation of the solution. Various consistency checks

of the solutions are described in §5: some are checks solely of the numerical solutions, some

are of the analytic solution and some are checks of the analytic solution versus the numeric

solutions. Some initial filters of the numerical solutions (chosen for specific phenomenological

reasons) are explored in §6. We provide a summary of the paper and a discussion in §7.

We list chiral fermionic fields in the representations displayed in Table 1. As previously

mentioned, the left-handed fermionic fields contained within the two Higgs chiral superfields

provide a new feature as regards the ACCs. We note here that the fermionic components

of the chiral superfields Hd and Li have identical representations under the SM gauge Lie

algebra, but the fermionic component of Hd may or may not be discriminated by a different

quantum number under an imposed symmetry such as matter parity or R−parity.

We have thus augmented the MSSM, as far as the fermionic X charges go, by 20 param-

eters which we write in a 20-tuple

X := {XQ1 , XQ2 , XQ3 , Xn1 , Xn2 , Xn3 , Xe1 , Xe2 , Xe3 , Xu1 , Xu2 , Xu3 , Xd1 ,

Xd2 , Xd3 , XL1 , XL2 , XL3 , XHd , XHu}. (1.1)

We take it as understood that, for the case where R−parity is not a symmetry of the theory,

we modify (1.1) such that XHd is merged with XLi to form XLα , where α ∈ {1, 2, 3, 4}. For

now though, we shall continue the discussion where Hd is discriminated from Li by a discrete
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symmetry. Since the gauge extension is here assumed to be compact, X is a priori valued in

Z20.

Fermions

su(3) su(2)L u(1)Y u(1)X
LH quark doublets Qi 3 2 1 XQi

RH neutrinos ni 1 1 0 Xni

RH charged leptons ei 1 1 -6 Xei

RH up quarks ui 3 1 4 Xui

RH down quarks di 3 1 -2 Xdi

LH lepton doublets Li 1 2 -3 XLi

LH down-type Higgsino H̃d 1 2 -3 XHd

LH up-type Higgsino H̃d 1 2 3 XHu

Chiral superfields

Q̂i 3 2 1 XQi

N̂ c
i 1 1 0 −Xni

Êci 1 1 6 −Xei

Û ci 3̄ 1 -4 −Xui

D̂c
i 3̄ 1 2 −Xdi

L̂i 1 2 -3 XLi

Ĥd 1 2 -3 XHd

Ĥd 1 2 3 XHu

Table 1. Conventions for field content with representations under the gauge Lie algebra. RH stands

for right-handed and LH stands for left-handed. i ∈ {1, 2, 3} is a family index. Note that we have

re-scaled a more conventional hypercharge assignment by a factor of 6 to make all hypercharges setwise

coprime integers. Such a re-scaling can be absorbed into the hypercharge gauge coupling. c denotes

charge conjugation on the scalar and fermionic components of the chiral superfield.
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2 u(1)X Extension of the MSSM Lie Algebra

2.1 Anomaly cancellation conditions

The MSSM per se is anomaly free. With the addition of u(1)X , local anomalies persist unless

X satisfies the ACCs6

su(3)2 ⊕ u(1)X :
3∑
i=1

(2XQi −Xui −Xdi) = 0, (2.1)

su(2)2 ⊕ u(1)X :
3∑
i=1

(3XQi +XLi) +XHd +XHu = 0, (2.2)

u(1)X -gravity :

3∑
i=1

(6XQi −Xni −Xei − 3Xui − 3Xdi + 2XLi) + 2XHd + 2XHu = 0, (2.3)

u(1)3X :
3∑
i=1

(6X3
Qi −X

3
ni −X

3
ei − 3X3

ui − 3X3
di

+ 2X3
Li) + 2X3

Hd
+ 2X3

Hu = 0, (2.4)

u(1)2X ⊕ u(1)Y :
3∑
i=1

(X2
Qi − 2X2

ui +X2
di

+X2
ei +X2

Li) +X2
Hd
−X2

Hu = 0, (2.5)

u(1)2Y ⊕ u(1)X :
3∑
i=1

(XQi − 6Xei − 8Xui − 2Xdi + 3XLi) + 3XHd + 3XHu = 0. (2.6)

These ACCs inherit some in-practice physical equivalences between u(1)X extensions related

by the following operations:

(i) Permutation of family indices within each species, since this is really just a change of

basis.

(ii) X → aX, where a ∈ Q\{0}, when the gauge coupling only appears in the Lagrangian

multiplied by a U(1)X charge, since the U(1)X gauge coupling may be simultaneously

re-scaled by 1/a resulting in no substantive change. This is displayed by the fact that

the ACCs are homogeneous.

(iii) X→ X+ yY, where Y is the 20-tuple of fermionic field hypercharges (in the same field

ordering as X) and y ∈ Z. Resulting from a group outer automorphism, this change in

fermionic representations can be accounted for by a redefinition of gauge fields [16].

Ideally, we wish to record exactly one entry in a list for each physically inequivalent charge

assignment. Together, (ii) with (iii) imply that we should regard X → xX + yY as an

6Note that where necessary, we discriminate between the gauge Lie algebra, which is equivalent to sm⊕u(1)X
and the MSSM×U(1)X gauge group, which is strictly only determined up to certain quotients, but this does

not affect any of our discussion.
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equivalent theory, where x ∈ Q\{0} and y ∈ Q. Unfortunately, we have not found an easy

enough and fast enough method of incorporating this, implying that there will remain a

few physically equivalent charge assignments in any anomaly-free list that we produce. The

necessary existence of these will end up providing us with a check of our computer program in

§5. In any case, such equivalent charge assignments are rare, and we do not foresee particular

problems resulting from their presence in our list. From now on, we refer to ‘inequivalent’

solutions to implicitly mean inequivalent under conditions (i) and (ii) only.

To incorporate (i), we take the convention that the family indices in X are such that,

for each species S ∈ {Q,n, e, u, d, L}, XS1 ≤ XS2 ≤ XS3 (for the case without additional

discrete symmetries to distinguish Hd and S = L, XS3 ≤ XS4 as well). To take (ii) into

account, all integers in the tuple must be setwise coprime but note that this still does not

implement the equivalence with X′ := {−XQ3 ,−XQ2 ,−XQ1 , . . . ,−XHd ,−XHu}. In order to

only list one instance of X,X′, we must define a condition that unambiguously picks one

of them: here, we use the lexicographically smaller tuple.7 An n−tuple a = {a1, . . . , an} is

lexicographically smaller than another n−tuple b = {b1, . . . , bn} (written as a < b) if and only

if an i ∈ {1, · · · , n} exists such that ai < bi and aj = bj for all j ∈ {1, · · · , i− 1}.

2.2 Symmetry breaking

Since we are not empirically aware of a long-range force that can be attributed to an unbro-

ken U(1)X gauge symmetry, we suppose that it must be spontaneously broken. We further

assume that it is broken by (at least) one of the scalars ν̃Ri contained in the SM-singlet chiral

superfields N c
i , so that it does not break the SM gauge symmetry. In order for a ν̃Ri field to

play this rôle, by Goldstone’s theorem it must possess a non-zero X charge. Typically, such

a field is called a flavon. Let us denote it for the purposes of the current discussion, as θ.

Contrary to the non-SUSY case, we obtain a contribution to the ACCs through its fermionic

superpartner θ̃, the flavino. However, we will still solve the ACCs as given above assuming

three SM-singlet chiral superfields only: N c
i , where i ∈ {1, 2, 3}. The reasons for not explic-

itly adding to this number (for example by adding one more SM singlet chiral superfield)

are twofold: firstly, we find practical barriers with four (or more) SM-singlets; the ν SUSY

anomaly-free atlas would take too long to compute and would take up too much disk space to

store for the desired height of 10. Secondly, by sticking to three SM-singlet chiral superfields,

we are able to find an analytic solution to the ACCs.

In principle, the requirement that at least one Xni 6= 0 would allow us to reduce the

domain of X charges considered in our computational search below, although not by much.

We choose not to restrict the domain of X charges in this way however, since one could

augment our model by two additional scalar singlets θ1 and θ2 such that Xθ1 + Xθ2 = 0.

The contributions from Xθ1 and Xθ2 would cancel in the ACCs, leaving the ACCs above

unmodified. This type of extension is commonly used, for example, in U(1)B−L extensions of

7Lexicographical ordering is a much simpler condition than the one used in the original anomaly-free

atlas [22].
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the MSSM [25]. More generally one can add several SM-singlet chiral superfields which satisfy

the pure u(1) anomaly equations and thus cancel out of the ACCs [15, 17]. We also note that

to set a superfield’s charge to zero has the same effect on the ACCs as would removing the

superfield (or at least its fermionic component) entirely from the model.

With the constraints (or lack thereof) listed above, our inequivalent numerical set of

solutions will have the following subsets:

• The SM plus three RH neutrinos corresponds to the subset with XHu = XHd = 0 (since

this is equivalent to the model obtained by removing the Hu superfield and the Hd

Higgsino from our current set-up).

• The MSSM with up to three U(1)X -charged RH neutrino chiral superfields, where the

U(1)X is broken by (at least) one of the RH sneutrinos, is the subset where at least one

Xni 6= 0.

• The MSSM with three RH neutrinos and two additional scalars θ1 and θ2 charged such

that Xθ1 +Xθ2 = 0. This is a possibility for the subset with Xn1 = Xn2 = Xn3 = 0. In

particular, this option includes U(1)X = U(1)B−L extensions of the MSSM.

3 Numerical Solutions up to a Height of 10

We produce a list of solutions to the ACCs using a modification of the computer program

that was used to produce the original anomaly-free atlas [22]. To search for solutions, we scan

over integer values in the domain |Xi| ≤ Qmax. Each set of solutions can then be classified by

Qmax, its maximum possible height. Note that in this definition, a list of solutions Qmax = N

also contains all solutions with Qmax < N .

There are a priori (2Qmax + 1)20 solutions to be checked as solutions to the ACCs. Time

is the biggest limiting factor in our search for solutions. The original computer program is

described in detail in §3 of Ref. [22], where we direct the curious reader. Here, we find it

expedient to not discriminate a priori between Hd and Li: within the program, we therefore

remove the explicit Hd charge, replacing it by L4, equivalent to considering the theory without

a discrete symmetry to distinguish them. The search for solutions is sped up by removing

some equivalent solutions from the scan, and by using the four linear ACCs to directly fix

the values of four of the charges. This still leaves us with a large solution space to consider,

as compared to the original non-supersymmetric anomaly-free atlas. We further improve the

speed by parallelising the three outer loops (i.e. over XQ1 , XQ2 and XQ3). For Qmax ≤ 4 the

parallelisation improvement is minimal, but for Qmax ≥ 5 we find that this step is necessary

to produce solutions in a reasonable amount of time.

3.1 Binary search algorithm

The output of the computer program for Qmax = 10 is a large lexicographically ordered list

(the ASCII file is around 125 Gb in size) of inequivalent solutions which solve the ACCs, each
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Qmax # νMSSM # RpνMSSM # Non-SUSY # No ACC condition

1 111 267 37 4.5× 106

2 2 321 6 882 357 2.3× 1010

3 44 212 143 707 4 115 8.6× 1012

4 401 129 1367 991 24 551 8.2× 1014

5 2 582 166 9 063 191 111 151 3.3× 1016

6 13 553 325 48 681 027 435 304 7.6× 1017

7 54 699 483 199 275 965 1 358 387 1.1× 1019

8 185 454 955 682 827 818 3 612 733 1.2× 1020

9 598 267 488 2 224 178 673 9 587 084 1.0× 1021

10 1 628 002 737 6 094 894 134 21 546 919 6.8× 1021

Table 2. Number of inequivalent anomaly-free charge assignments found for U(1)X extensions of the

νMSSM where Li and Hd are not discriminated (νMSSM), or where they are (RpνMSSM) or for the

original non-supersymmetric anomaly-free atlas (Non-SUSY). The rightmost column lists the number

of potential inequivalent solutions in the SUSY case before ACCs are applied and where a discrete

symmetry distinguishes Li from Hd.

one comprised of a line made of the 20 integers which form X. We have not assumed a discrete

symmetry that distinguishes Li from Hd in the output and so we have four XLα charges listed.

This file forms one of the two most important outputs of the present paper (the other being

the analytic solution for any height described in §4). As mentioned in §1, we envisage that

our output file may be used by supersymmetric model builders by scanning through it with

a computer program and filtering the results. Since the file is so large though, we have

facilitated the decrease of the complexity of algorithms used to analyse the file in order to

speed them up. The fact that our list of solutions is ordered lexicographically means that one

can take advantage of the binary search algorithm. This reduces the complexity of finding a

solution in the list from O(n) to O(log n). One usually has an intuitive understanding of the

binary search algorithm since it is roughly how one usually finds numbers in a phone book or

words in a dictionary, as follows. Let us say we have a solution we want to find in our list or

show that it does not exist in the list. The binary search algorithm goes half-way down the

list and determines if our solution is less then or equal to the solution at the half-way point.

If it is present in the first half then we throw away the second half and keep the first, and if

it isn’t we discard the first half and keep the second. This is then repeated until a list with

a single item which will (if it exists) match the one we are trying to find.

3.2 Output

We display some basic statistics characterising the number of solutions found in Table 2.

The number of inequivalent solutions increases rapidly as a function of the maximum height

searched over, Qmax. In all, we find over 1.6 billion solutions for Qmax = 10 in the case where
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Figure 1. Fraction of otherwise possible solutions that are anomaly free as a function of Qmax.

Specifically, the fraction is equal to the number of inequivalent solutions divided by the number of

inequivalent possible assignments before the local anomaly cancellation requirements are imposed.

a discrete symmetry does not pick out one of the XLα charges to be XHd , a far larger number

than the original anomaly-free atlas (which counts under 22 million inequivalent solutions).

As expected, this increases almost four-fold for the case where one does pick an XLα to be Hd.

Solutions to the ACCs are scarce; their density decreases with increasing height. For a height

of 10, for example, only approximately 1 in 1012 possible inequivalent charge assignments are

anomaly free. We display this fraction for various different values of Qmax in Fig. 1 for the

case where no symmetry discriminates between Hd and Li (νMSSM) and the case where it

does (RpνMSSM).

In Table 3, we display some solutions that appear in the literature and in our list. All

of the solutions shown were found using the binary search algorithm sketched in §3.1. Their

presence in the list is a check of some expected and found solutions. Two solutions (Y ′3 and

B′3) will be useful for our analytic solution, which we turn to now.

4 Analytic Solution

In this section, we will first frame our problem in a geometric language that will facilitate

our analytic solution of the ACCs. We shall then go on to sketch the geometric method

by which the solution is obtained. Then we shall derive the solution in detail algebraically,

eventually providing an explicit parameterisation of the 20 integer charges of the νMSSM

chiral superfields in terms of some integer parameters. We then provide a right inverse,

which, given a solution to the ACCs, returns parameters which will lead to that solution.
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Model Q Q Q n n n e e e u u u d d d L L L L H̃u

Y ′3 −1 −1 1 0 0 0 −6 6 6 −4 −4 4 −2 2 2 −3 3 3 3 −3
B′3 −1 −1 1 −3 3 3 −3 3 3 −1 −1 1 −1 −1 1 −3 3 3 3 −3

Ref. [24], Table 3 0 0 0 −3 0 0 −1 1 3 −1 −1 −1 1 1 1 −2 0 1 2 −1
Ref. [24], Table 4 −1 −1 −1 −9 0 0 −9 0 0 1 1 1 1 1 1 0 0 0 9 0

Ref. [26] −1 0 0 −1 0 4 −1 0 4 −1 0 0 −1 0 0 −1 0 0 4 0

Ref. [27] −1 0 0 1 1 1 1 1 1 −1 0 0 −1 0 0 0 1 1 1 0

SUSY B−L [25] −1 −1 −1 3 3 3 3 3 3 −1 −1 −1 −1 −1 −1 0 3 3 3 0

TFHM [10] −1 0 0 0 0 0 0 0 6 −4 0 0 0 0 2 0 0 0 3 0

Table 3. Some examples of anomaly-free charge assignments found. Here, we list the u(1)X charges

of the (left-handed or right-handed) chiral fermions of each model. These include the solutions Y ′3 , B′3
used to derive the analytic solution of §4 as well as the non-SUSY Third Family Hypercharge (TFHM)

solution which we expect to be contained within our list. Note that all solutions have been rescaled

and reordered to satisfy the format of our list as detailed in §3.

Such an inverse has the dual purpose of facilitating checks between the numerical and analytic

solutions and of providing an additional proof that our solution is generic.

4.1 Geometric framing of the problem

The ACCs form a set of polynomial equations in the integers - otherwise called diophantine

equations. Suppose we take account of only the physical equivalence defined by scaling (point

(ii) in §2). It then does not matter, from a mathematical point of view, whether we use the

label L4 or Hd for the relevant chiral superfield; here we shall choose the latter. We can

view the unknown charges as corresponding to points in the projective space PQ19. This

is formed by considering the charges as living in the rationals Q20, removing the origin and

providing an equivalence relation between points in Q20 differing by rational multiples. The

points satisfying the ACCs in PQ19 are said to form a projective variety.

One might expect our solution to be parameterised by 14 independent integer-valued

parameters (starting with 20 and subtracting 6 for the ACCs). However, as we shall see, we

shall have to add 9 parameters to cover exceptional cases, making the total number of integer

parameters 23. Our solution will then take the form of a map from Z23 to PQ19 which satisfies

the following properties: its image is completely within the projective variety, it surjects onto

the projective variety and its value depends only on the projection onto a Z14 subspace of

Z23 in all but a few classes of exceptional cases.

Within PQ19, the ACCs (2.4) and (2.5) define a cubic and a quadratic hypersurface,

respectively (we shall below refer to these as ‘the cubic’ and ‘the quadratic’, respectively, for

brevity).

To solve systems of diophantine equations, number theorists often use a small set of

solutions as a tool for finding all solutions. Given our extensive numerical scan we are in
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a position to make an attempt in this manner. For a generic set of equations this is not

guaranteed to be possible, however we are lucky in that for our particular set of ACCs, at

least two distinct methods exist. The first mirrors the method of Ref. [18] which exploits a

special point of PQ19 that is a ‘double point’ of both the cubic and quadratic. A second new

method is presented here.

4.2 Sketch of the method

The linear ACCs are easy to deal with. Their solution defines a projective subspace PL of

PQ19. It is in PL that we must discuss the quadratic and the cubic.

Given a single solution to the quadratic ACC it is possible to find all solutions to the

quadratic ACC by constructing all possible lines through this known solution: along each

line there must be one further solution to the quadratic, since every rational quadratic in one

dimension has either two or zero rational roots. In a similar vein, given a single solution to

the cubic, with the special property that all first order partial derivatives vanish at this point,

it is possible to find all solutions to the cubic ACC by constructing lines through this point.

Such a point is called a double point of the cubic.

To solve both the quadratic and the cubic simultaneously it is sufficient to have a line

on which every point is a solution to the quadratic and every point is a double point of the

cubic (although as noted above, other methods do exist). In fact for us there is only one

such line (up to permutations of charges within the su(2)-doublet, su(3)-singlet sector, and

other species), which is the one between the points Y3 and B3 given in Table 4. These two

points are a reordering of the charges within Y ′3 and B′3, respectively, from Table 2. The first

point, Y3, corresponds to hypercharge except for the third family, which has had its charges

sign changed. The second point, B3, corresponds to B − L where the third family has had

its charge’s sign changed and the charges XHu and XHd are modified from their usual values

of zero. We will denote the line between them Y3B3.

To see how Y3B3 will enable us to find all solutions, let us first define the space PL′,

defined to be the subspace of PL whose points are orthogonal to Y3 and B3 with respect to

the standard scalar product on Q20. Every point in PL lies on a plane Y3B3R formed by Y3B3

and a point R ∈ PL′. Thus, we can restrict our attention to looking at such planes, and the

points within them which satisfy the ACCs.

Generically (we will look at the few exceptions shortly), the intersection of the quadratic

with Y3B3R consists of the union of Y3B3 and another line Lq, as we will see explicitly in the

next subsection. In a similar way, the intersection of the cubic with Y3B3R consists of the

union of Y3B3 and another line Lc. The intersection of the projective variety defined by the

ACCs, and Y3B3R then consists of the line Y3B3 and a single point which is the intersection

of Lq and Lc as shown in the top left-hand panel of Fig. 2. Finding this point, which is a new

solution to the ACCs, is a trivial task, as we shall shortly see.

Let us now look at the exceptional cases, all of which are illustrated in Fig. 2. They

correspond to the following situations: (a) the whole plane lies in the quadratic but not the

cubic; (b) the whole plane lies in both the quadratic and the cubic; (c) the whole line Lq lies in

– 12 –



Q Q Q n n n e e e u u u d d d L L L H̃d H̃u

Y3 1 1 −1 0 0 0 −6 −6 6 4 4 −4 −2 −2 2 −3 −3 3 −3 3

B3 1 1 −1 −3 −3 3 −3 −3 3 1 1 −1 1 1 −1 −3 −3 3 −3 3

Table 4. A new ordering for the anomaly-free charge assignments Y ′3 and B′3 given in Table 2, adapted

for the analytic solution. Each row lists the u(1)X charges of the (left-handed or right-handed) chiral

fermions of a model.

Y3 B3

RP0

PL

(in
cubic) L

c(in
qu

ad
rat

ic)
Lq

Y3 B3

R

a) (in quadratic)

(in
cubic) L

c

Y3 B3

R

b) (in quadratic & cubic)

Y3 B3

R

c)

(in
qu

ad
rat

ic
&

cu
bic

) L
q

Figure 2. A schematic of our method. In the generic case (top left), the plane contains one further

line in the quadratic and one further line in the cubic. These intercept at a point P0, which is our

new solution to all ACCs. The exceptional cases are shown in diagrams (a), (b) and (c). In (a), Lc
is a line of solutions to all ACCs. In (b), the Y3B3R is a whole plane of solutions to all ACCs and in

(c), the line Lq is a line of solutions to all ACCs.

the cubic. The asymmetry between the quadratic and the cubic here is simply a manifestation

of the ordering in which we will do our manipulations in the next subsection, and nothing

more subtle.

We reiterate that since every point in PL lies in a plane Y3B3R, by finding all solutions

in all such planes (considering either the generic case or the exceptional cases) we can find

every point in the projective variety. In §4.4 we will give an explicit parameterisation of the

solution formed by such considerations. In §4.5 a right-inverse to this parametrisation will be

given explicitly demonstrating its full generality.
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4.3 Derivation of the analytic solution

We now give a more detailed description of our solution. To this end we define

q(X,Z) :=
3∑
i=1

(XQiZQi −XLiZLi − 2XuiZui +XdiZdi +XeiZei) +XHuZHu −XHdZHd ,

c(W,X,Z) :=
3∑
i=1

(6WQiXQiZQi + 2WLiXLiZLi − 3WuiXuiZui − 3WdiXdiZdi −WeiXeiZei

−WniXniZni) + 2WHuXHuZHu + 2WHdXHdZHd , (4.1)

which are respectively derived from the quadratic and cubic ACCs with e.g. X3
Q1

replaced

with WQ1XQ1ZQ1 . The maps q and c are the unique trilinear forms which return, respectively,

the quadratic (2.5) ACC and the cubic ACC (2.4), when all inputs coincide.

A point R ∈ PL′ can be parameterised by the 12 charges RS1 for S ∈ {Q,n, e, u, L, d},
RS2 for S ∈ {e, L, d}, Rd3 , RHu and RHd as well as an extra two parameters R1 and R2. The

remaining charges are given by

RQ2 = 3(R1 +RHd +RL1 +RL2 +RQ1) + 4R2 + 2Rd3 +Re1 +Re2 ,

RQ3 = −4(R1 +R2 +RQ1)− 2(Rd3 +Re1 +Re2)− 3(RHd +RL1 +RL2),

Rn2 = 4R1 +R2 + 3(Re1 +Re2)−Rn1 +RQ1 ,

Rn3 = −(2R1 +R2 +Rd1 +Rd2 +Rd3 +Re1 +Re2 +RQ1),

Re3 = (Rd1 +Rd2 +Rd3) + 3(Re1 +Re2) + 4R1,

Ru2 = −(6R1 +R2 +Rd1 +Rd2 + 2Rd3 + 4(Re1 +Re2) +RQ1 +Ru1),

Ru3 = 4R1 +R2 +Rd3 + 2(Re1 +Re2) +RQ1 ,

RL3 = 3(R1 +Re1 +Re2)− (RL1 +RL2)− (RHu +RHd). (4.2)

Substituting the generic point, αY3 +βB3 + γR, on the plane Y3B3R into the quadratic gives

γ(2αq(Y3, R) + 2βq(B3, R) + γq(R,R)) = 0. (4.3)

Putting the exceptional cases to one side for now, this equation generically has two lines of

solutions: one specified by γ = 0, namely Y3B3, and a new line Lq, a general point of which

is given by

P (c)
c1,c2,c3 ={c2q(R,R)− 2c3q(B3, R)}Y3 + {2c3q(Y3, R)− c1q(R,R)}B3+

+ {c1q(B3, R)− c2q(Y3, R)}R, (4.4)

where c1, c2, c3 ∈ Z (over-)parameterise the line.8

8Our use of projective space allows us to use, by clearing denominators, Z for these parameters rather than

Q.
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On making the same substitution into the cubic we would get a similar line. However,

since we are only interested in the intersection of these two lines, it is sufficient to substitute

P
(c)
c1,c2,c3 into the cubic. This yields

4{c1q(B3, R)− c2q(Y3, S)}2
{
{2q(B3, R)c(R,R,R)3q(R,R)c(B3, R,R)}c1+
{3q(R,R)c(Y3, R,R)− 2q(Y3, R)c(R,R,R)}c2+
6{q(Y3, R)c(B3, R,R)− q(B3, R)c(Y3, R,R)}c3

}
= 0. (4.5)

Solving for c1, c2, c3 generically gives the new solution to the ACCs

P0 = {3q(R,R)c(B3, R,R)− 2q(B3, R)c(R,R,R)}Y3+
{2q(Y3, R)c(R,R,R)− 3q(R,R)c(Y3, R,R)}B3+

6{q(B3, R)c(Y3, R,R)− q(Y3, R)c(B3, R,R)}R. (4.6)

Let us now return to the exceptional cases.

(a) The plane lies entirely in the quadratic, but not in the cubic: This occurs when

q(Y3, R) = 0, q(B3, R) = 0 and q(Y3, R) = 0 but at least one of c(Y3, R,R), c(B3, R,R)

and c(R,R,R) is non-zero. In this case, we have a line of solutions (over-)parameterised

by a1, a2, and a3 ∈ Z and given by

P (a)
a1,a2,a3 = {a2c(R,R,R)− 3a3c(B3, R,R)}Y3 + {3a3c(Y3, R,R)− a1c(R,R,R)}B3+

3{a1c(B3, R,R)− a2c(Y3, R,R)}R. (4.7)

(b) The plane lies entirely within the quadratic and the cubic: This occurs when q(Y3, R) =

0, q(B3, R), q(Y3, R) = 0, c(Y3, R,R) = 0, c(B3, R,R) = 0 and c(R,R,R) = 0. In

this case, every point on the plane lies in the variety. We then parameterise the plane

withb1, b2, b3 ∈ Z:

P
(b)
b1,b2,b3

= b1Y3 + b2B3 + b3R (4.8)

(c) The line in the quadratic and the cubic are the same lines: this occurs (excluding the

case where the line is just αY3 + βB3) when

2q(B3, R)c(R,R,R) = 3q(R,R)c(B3, R,R),

2q(Y3, R)c(R,R,R) = 3q(R,R)c(Y3, R,R),

q(B3, R)c(Y3, R,R) = q(Y3, R)c(B3, R,R). (4.9)

In this case our solution is the line P
(c)
c1,c2,c3 .

It is possible to combine these exceptional cases and the generic case into one parame-

terisation of the solution using Kronecker delta functions. This overall parameterisation is
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given by

P =P0 + δq(Y3,R),0δq(B3,R),0δq(R,R),0{P (a)
a1,a2,a3 + δc(Y3,R,R),0δc(B3,R,R),0δc(R,R,R),0P

(b)
b1,b2,b3

}+

δ2q(B3,R)c(R,R,R),3q(R,R)c(B3,R,R)δ2q(Y3,R)c(R,R,R),3q(R,R)c(Y3,R,R)×

δq(B3,R)c(Y3,R,R),q(Y3,R)c(B3,R,R)P
(c)
c1,c2,c3 . (4.10)

This parameterisation is written in terms of the 12 charges and two extra parameters speci-

fying R, as well as the parameters a1, a2, a3, b1, b2, b3, c1, c2 and c3, which are needed in the

exceptional cases. Taking these parameters to be integers returns an integer-valued solution.

4.4 Explicit parameterisation

To write the parameterisation more explicitly, we define

Γ :={3q(R,R)c(B3, R,R)− 2q(B3, R)c(R,R,R)}+
δq(Y3,R),0δq(B3,R),0δq(R,R),0

(a2c(R,R,R)− 3a3c(B3, R,R) + δc(Y3,R,R),0δc(B3,R,R),0δc(R,R,R),0b1)

+ δ2q(B3,R)c(R,R,R),3q(R,R)c(B3,R,R)δ2q(Y3,R)c(R,R,R),3q(R,R)c(Y3,R,R)

δq(B3,R)c(Y3,R,R),q(Y3,R)c(B3,R,R)(c2q(R,R)− 2c3q(B3, R)),

Σ :={2q(Y3, R)c(R,R,R)− 3q(R,R)c(Y3, R,R)}+
δq(Y3,R),0δq(B3,R),0δq(R,R),0×
{3a3c(Y3, R,R)− a1c(R,R,R) + δc(Y3,R,R),0δc(B3,R,R),0δc(R,R,R),0b2}+
δ2q(B3,R)c(R,R,R),3q(R,R)c(B3,R,R)δ2q(Y3,R)c(R,R,R),3q(R,R)c(Y3,R,R)

δq(B3,R)c(Y3,R,R),q(Y3,R)c(B3,R,R){2c3q(Y3, R)− c1q(R,R)},
Λ :=6{q(B3, R)c(Y3, R,R)− q(Y3, R)c(B3, R,R)}+

δq(Y3,R),0δq(B3,R),0δq(R,R),0×
{3{a1c(B3, R,R)− a2c(Y3, R,R)}+ δc(Y3,R,R),0δc(B3,R,R),0δc(R,R,R),0b3}+
δ2q(B3,R)c(R,R,R),3q(R,R)c(B3,R,R)δ2q(Y3,R)c(R,R,R),3q(R,R)c(Y3,R,R)

δq(B3,R)c(Y3,R,R),q(Y3,R)c(B3,R,R){2c1q(B3, R)− 2c2q(Y3, R)}. (4.11)

Then the charges are given explicitly by fourth order polynomials in the coordinates of R:

XQ1 = Γ + Σ + ΛRQ1 , XQ2 = Γ + Σ + ΛRQ2 , XQ3 = −Γ− Σ + ΛRQ3 ,

Xn1 = −3Σ + ΛRn1 , Xn2 = −3Σ + ΛRn2 , Xn3 = 3Σ + ΛRn3 ,

Xe1 = −6Γ− 3Σ + ΛRe1 , Xe2 = −6Γ− 3Σ + ΛRe2 , Xe3 = 6Γ + 3Σ + ΛRe3 ,

Xu1 = 4Γ + Σ + ΛRu1 , Xu2 = 4Γ + Σ + ΛRu2 , Xu3 = −4Γ− Σ + ΛRu3 ,

XL1 = −3Γ− 3Σ + ΛRL1 , XL2 = −3Γ− 3Σ + ΛRL2 , XL3 = 3Γ + 3Σ + ΛRL3 ,

Xd1 = −2Γ + Σ + ΛRd1 , Xd2 = −2Γ + Σ + ΛRd2 , Xd3 = 2Γ− Σ + ΛRd3 ,

XHu = 3Γ + 3Σ + ΛRHu , XHd = −3Γ− 3Σ + ΛRHd . (4.12)
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4.5 Right inverse

As previously mentioned, this analytic solution has a right inverse, demonstrating its complete

generality. Specifically, let T be a known solution and define the point G = 108T − (Y3 · T −
B3 · T )Y3 − (2B3 · T − Y3 · T )B3, where ‘·’ is the usual scalar product. The point G can be

thought of as T with its components in the line αY3 + βB3 projected out. The parameters

RXj = GXj (for Xj as above), and

R1 = −
3∑
i=1

(Gdi +GLi) +Ge3 −GHu −GHd ,

R2 =

3∑
i=1

(Gdi −Gei + 2GLi)−Ge3 + 2GHu + 2GHd −GQ1 −Gn2 ,

a1 = c(B3, T, T ), a2 = −c(Y3, T, T ),

a3 = −c(B3, T, T )(Y3 · T −B3 · T ) + c(Y3, T, T )(2B3 · T − Y3 · T ).

b1 = (Y3 · T −B3 · T ) b2 = (2B3 · T − Y3 · T ) b3 = 1

c1 = q(B3, T ), c2 = −q(Y3, T ),

c3 = −q(B3, T )(Y3 · T −B3 · T ) + q(Y3, T )(2B3 · T − Y3 · T ), (4.13)

return the point T when substituted into the above analytic solution. In fact, they return T

up to a multiplicative constant given by

6× 1084(q(B3, T )c(Y3, T, T )− q(Y3, T )c(B3, T, T ))

+ δq(Y3,T ),0δq(B3,T ),0(3× 1083(c(B3, T, T )2 + c(Y3, T, T )2) + 108δc(Y3,T,T ),0δc(B3,T,T ),0)

+ 2× 1082δq(B3,T )c(Y3,T,T ),q(Y3,T )c(B3,T,T )(q(B3, T )2 + q(Y3, T )2) (4.14)

but given that our discussion above has been implicitly in projective space, such multiplicative

factors are not relevant.

In the Zenodo repository [30] we provide a Mathematica™ script containing the analytic

solution, allowing one to generate solutions at will.

5 Checks of the solutions

The material content of §3 is a list of all inequivalent anomaly-free charge assignments up

to a fixed Qmax. A skeptic could justly ask the question: how does one know this list is

complete without redundancies? The algorithm used does guarantee it, but one wishes to

mitigate potential errors involved in its computer implementation. A similar level of scrutiny

can be applied to the analytic solution of §4. Although here one might hope the correctness of

the solution is mathematically clear-cut, due diligence requires that we should try to ensure

that no fallacies have been committed. Happily, several checks can be carried out to satisfy

all but the most fastidious skeptic. These checks work in three different modes: consistency

checks within the numerical solutions, consistency checks within the analytic solution alone,
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and cross-checks between the two. The ability to do cross-checks between the two is one of

several advantages for providing both. Let us discuss the checks performed for each mode in

turn. We note in passing that all checks were carried out successfully.

For any computer program, one useful check is to make a second structurally different

program but with the same expected outcome. To this end, we produced a second different

program (this one did not use lexicographic ordering, but instead used an ordering similar to

that in Ref. [10]). The two outputs where then compared and found to agree.

The addition of hypercharge to any solution also leads to a solution, as stated in (iii) of

§2.1. This provides a check of the computer program as follows: each solution for a given

Qmax had multiples of hypercharge added or subtracted from it up to three times. If the

resulting charges had a height less than or equal to 10, the binary search method discussed

in §3 was used to confirm that the solution was present in our Qmax = 10 list.

Turning to the analytic solution, the most primitive check is to randomly choose parame-

ters, generate the corresponding charges and confirm that they satisfy the ACCs. This check

was carried out on 105 randomly generated solutions.

The fact that we have a right inverse for our parameterisation means that we can take

a solution, apply the inverse and then the parameterisation to return another solution. If

our analysis is correct this new solution should agree with the one we started with (up to

a scaling). This was carried out on, again, 105 randomly generated solutions. It was also

carried out on all the scanned solutions in our list for Qmax= 10, thereby providing the first

cross check between the numerical and analytic solutions.

The second cross-check between the numerical and analytic solutions was to generate

random solutions using the analytic solution, then to identify those of height less than or

equal to 10 and confirm that these appear in the numerical solution via the binary search

algorithm.

6 Examples of Filters

In this section, we now turn to examples of how our list of solutions to ACCs (2.1)-(2.5)

might be filtered in order to identify sets of charge assignments with various possible desirable

phenomenological properties or uses.9 Note that in what follows, as in §4, we will distinguish

Hd from Li, and the number of solutions satisfying each constraint is therefore to be compared

with the second column of Table 2.

9Computer programs implementing these filters are available on Zenodo [30].
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6.1 The superpotential

In general, interactions between the chiral supermultiplets of the MSSM are given by the

superpotential W = WRp +WLV +WBV , where

WRp = µĤuĤd + (yu)ijÛ
c
i Q̂jĤu + (yd)ijD̂

c
i Q̂jĤd + (ye)ijÊ

c
i L̂jĤd,

WLV =
1

2
λijkL̂iL̂jÊ

c
k + λ′ijkL̂iQ̂jD̂

c
k + µ′iL̂iĤu,

WBV =
1

2
λ′′ijkÛ ci D̂

c
jD̂

c
k.

(6.1)

Û ci , D̂c
i , Q̂i, L̂i, Ê

c
i , Ĥu and Ĥd denote the chiral supermultiplets containing of Table 3, and

we denote flavour indices by i, j, k ∈ {1, 2, 3}. λijk, λ′ijk, λ′′ijk, (yu,d,e)ij are all dimensionless

coupling constants and µ, µ′i each have mass dimension 1. Gauge indices have been sup-

pressed. Note that here we ignore the neutrino chiral supermultiplets N̂ c
i , postponing their

discussion until §6.3. Here WRp denotes terms invariant under R−parity, whereas R−parity

is violated in the L and B-violating terms WLV and WBV respectively.

6.1.1 The µ problem

The MSSM has a fine tuning problem associated with the µĤuĤd term. Given that this term

respects supersymmetry and gauge symmetry, there is no explicitly stated reason for the scale

of µ to be small. The gauge group can be extended by U(1)X to provide a solution to this

so-called µ problem [31]. This is achieved by charging Ĥu and Ĥd under U(1)X such that the

µ term above is forbidden by the U(1)X symmetry. Instead, the flavon θ is charged, allowing

a term of the form (where h is a dimensionless coupling constant)

W ⊃ hθĤuĤd → h〈θ〉ĤuĤd, (6.2)

such that when the U(1)X symmetry is spontaneously broken, the scalar component of θ

acquires a vacuum expectation value 〈θ〉 at the TeV scale i.e. the µ term is dynamically

generated.10 The µνSSM [32–35] also solves the µ problem in precisely this manner. Any

model with such a dynamically generated µ term is often referred to as the next-to-minimal

supersymmetric standard model (NMSSM). The NMSSM has received much attention in the

literature [36–39].

Remembering that we shall pick one of the N̂ c
i chiral superfields with a non-zero charge

to be the flavon chiral superfield θc, which has a non-zero X charge out of necessity, we search

for such solutions in our list of charges by applying the conditions

∃i ∈ {1, 2, 3} : XHu +XHd = Xni 6= 0, (6.3)

where we take θc to be the N̂ c
i superfield which satisfies this condition.11 We find a total of 77

solutions satisfying these constraints with Qmax = 1, constituting ∼ 30% of the full Qmax = 1

10Further detailed model building is required to make sure that 〈θ〉 ∼ O(TeV), but we shall merely assume

here that this is possible.
11The UµνSSM [40] uses (6.3) in a certain U(1)′ extension of the νMSSM (involving additional quark fields)

to solve the µ problem, also.
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list. This percentage reduces to 20% when Qmax = 4, and 11% when Qmax = 10, providing

in this case a total of 649 831 168 options for a dynamically generated µ term.

6.1.2 A renormalisable Yukawa sector

In contrast to the rather weak constraints of (6.3), we may place strong conditions on the

Yukawa sector by requiring that all renormalisable Yukawa couplings of charged fermions are

allowed in the superpotential WRp by being U(1)X gauge invariant, i.e. they must satisfy the

following equations ∀i, j ∈ {1, 2, 3}:

XQi +XHu −Xuj = 0, XQi +XHd −Xdj = 0, XLi +XHd −Xej = 0. (6.4)

(6.4) implies family universality for the species Q, e, u, L and d. For the non-supersymmetric

case, it has been shown that anomaly-free charge assignments exist which allow all of the

renormalisable Yukawa terms [22]. One can show that in the νMSSM, we obtain one solution

for each non-supersymmetric solution of [22], where we must additionally fix Hu and Hd to

satisfy

3XHu = −3XHd = −3
3∑
i=1

XQi −
3∑
i=1

Xni . (6.5)

(6.5) means that there cannot be any overlap with the solutions satisfying (6.3), i.e. none

of these solutions can simultaneously solve the µ problem. By filtering through our list of

charges, we find 2 solutions allowing a fully renormalisable Yukawa sector with Qmax = 1 and

5 with Qmax = 4, as shown in Table 5. The full list of Qmax = 10 solutions comprises 38 such

solutions.

Q Q Q n n n e e e u u u d d d L L L H̃d H̃u

0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 −1 −1 1 1 1 −1 −1 −1 1 1 1 0 0 0 1 −1
−1 −1 −1 3 3 3 3 3 3 −1 −1 −1 −1 −1 −1 3 3 3 0 0

−1 −1 −1 2 2 2 4 4 4 −2 −2 −2 0 0 0 3 3 3 1 −1
−1 −1 −1 4 4 4 2 2 2 0 0 0 −2 −2 −2 3 3 3 −1 1

Table 5. Anomaly-free charge assignments with Qmax = 4 allowing all Yukawa terms at the renor-

malisable level. Each row lists the u(1)X charges of the (left-handed or right-handed) chiral fermions

of a model. Note that all listed solutions satisfy XHu +XHd = 0, reducing the ACCs to those of the

SM after substitution.

We will now relax the assumption that all Yukawa terms must be present in the La-

grangian at the renormalisable level. We will enforce that the top and bottom quark and the

tau lepton tree-level Yukawa terms can be present (since they are closer to order 1 and so

more difficult to explain by non-renormalisable or loop interactions, which imply a suppression
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below order 1) by applying the constraints

∃σ1, σ2, σ3, σ4, σ5 ∈ S3 : XQσ1(3)
+XHu −Xuσ2(3)

= 0,

XQσ1(3)
+XHd −Xdσ3(3)

= 0,

XLσ4(3)
+XHd −Xeσ5(3)

= 0,

(6.6)

where S3 is the group of permutations of 3 objects. We expect Qσ1(3), uσ2(3) and dσ3(3) to be

predominantly third generation quarks, and similarly Lσ4(3) and eσ5(3) to be predominantly

composed of third generation leptons. We will further assume that tree-level renormalisable

Yukawa terms are not present for the first and second generation fermions by forbidding all

other terms in the Yukawa matrices. We can express these constraints by first defining

Pijklmn := (XQi +XHu = Xuj ) ∧ (XQn +XHd = Xdk) ∧ (XLl +XHd = Xem), (6.7)

(where ∧ means logical ‘and’) and then imposing

(∃! i, j, k, l,m, n ∈ {1, 2, 3} : Pijklmn) ∧ (∀i, j, k, l,m, n ∈ {1, 2, 3} Pijklmn ⇒ n = i), (6.8)

where, in standard logic notation, ∃! means ‘there exists a unique’.

This choice is made with the fermion mass problem in mind: it allows larger masses to

be generated for the top, bottom and tau through the standard Yukawa terms, but forbids

them for the light quarks, producing a mass hierarchy between the light and heavy fermions.

In Ref. [24] it was shown that the chiral fermions can obtain their masses at loop level

through the interactions with their superpartners by including non-holomorphic soft terms

in the Lagrangian density. Alternatively, light fermion masses may be acquired through

non-renormalisable operators after the flavon θ breaks U(1)X . Either of these mechanisms

require the Lagrangian density to contain terms which will further constrain the charges.

We shall assume that all first and second generation fermions acquire their masses through

some mechanism such as one of these two, but leave the more model dependent effect of any

additional constraints to future investigations.

We find that when Qmax = 1, the list contains 2 solutions satisfying the constraints of

(6.8). At Qmax = 4 a total of 15 818 solutions pass these constraints, and at Qmax = 10 this

number grows to 34 646 735. This makes clear that by imposing these constraints, not only

do we begin to address the fermion mass problem, but we make way for a larger number of

options for model-building compared to those of a fully allowed renormalisable Yukawa sector.

For example, when Qmax = 2 there are 8 solutions which simultaneously solve the µ problem

and satisfy (6.8). This overlap grows to 2 954 solutions when Qmax = 4 and 4 088 200 solutions

when Qmax = 10. Furthermore, the constraints (6.8) are inherently flavour non-universal, and

thus have the potential to address the B anomalies. This overlap will be discussed in more

detail in §6.2.

6.1.3 R−parity violation

In contrast to the SM, L and B violating terms are allowed by the field content and gauge

symmetries of the MSSM, as shown in (6.1). The simultaneous presence of both B and L
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violating terms will lead to proton decay in contravention to experimental bounds unless one

introduces a large degree of fine tuning. Usually, all terms in WLV and WBV are forbidden

by the imposition of R−parity. In the case that R−parity is not imposed though, we may

ask that our U(1)X symmetry maintains the stability of the proton instead. We can form

three broad sets of solution within this requirement: where all R−parity violating terms are

banned (this will also maintain the stability of the lightest supersymmetric particle, which

may have the properties to constitute cold dark matter), where all terms in WBV are banned

but where at least one term in WLV is allowed, and those where all terms in WLV are banned

but at least one in WBV is allowed. Terms such as those in WLV give a Majorana mass term to

left-handed neutrinos (sometimes through loop diagrams) without the need for right-handed

neutrinos [41]. Terms in WBV , on the other hand, can assist in baryogenesis [42].

We may ban terms in WBV by imposing ∀i, j, k ∈ {1, 2, 3}

Xui +Xdj +Xdk 6= 0 (6.9)

where j 6= k since the antisymmetry of λ′′ijk in j, k forbids the j = k terms from appearing

in the superpotential. Similarly, we may ban all terms in WLV by imposing the conditions

∀i, j, k, l,m, n, p ∈ {1, 2, 3}

XLi +XLj −Xek 6= 0, XLl +XQm −Xdn 6= 0, XLp +XHu 6= 0, (6.10)

where i 6= j because λijk is antisymmetric in i, j. At Qmax = 1 we find 8 solutions which

ban all R−parity violating terms. These solutions are listed in Table 6. We find a total of

51 solutions which ban WBV while allowing terms in WLV . We find no solutions which ban

WLV while allowing terms in WBV , i.e. the only solutions which ban WLV are those which

ban all R−parity violation.

Q Q Q n n n e e e u u u d d d L L L H̃d H̃u

−1 −1 1 1 1 1 1 1 1 −1 −1 1 −1 −1 1 1 1 1 1 1

−1 −1 1 1 1 1 1 1 1 −1 −1 1 −1 −1 1 1 1 1 0 0

−1 −1 1 1 1 1 1 1 1 −1 −1 1 −1 −1 1 1 1 1 1 0

−1 −1 1 1 1 1 1 1 1 −1 −1 1 −1 −1 1 1 1 1 1 −1
0 0 0 −1 −1 −1 1 1 1 −1 −1 −1 1 1 1 0 0 0 −1 1

0 0 0 −1 −1 −1 1 1 1 −1 −1 −1 1 1 1 0 0 1 1 −1
0 0 0 −1 −1 1 −1 1 1 −1 −1 1 −1 1 1 0 0 0 −1 1

0 0 0 −1 0 0 −1 1 1 −1 −1 1 −1 1 1 0 0 0 −1 1

Table 6. At Qmax = 1, we find 8 anomaly-free charge assignments in our list banning all R−parity

violating terms in the MSSM superpotential. Each row lists the u(1)X charges of the (left-handed or

right-handed) chiral fermions of a model.

By increasing the maximum chargeQmax, we find solutions which banWLV while allowing

B-violation. At Qmax = 10, we find 444 357 847 solutions which forbid WLV while allowing
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terms in WBV . We find 2 916 984 840 solutions which forbid WBV while allowing for terms

in WLV at Qmax = 10, and a total of 885 951 137 solutions which ban all R−parity violating

solutions, constituting 14% of the list of charge assignments.

6.2 B anomalies

Family-dependent charges in the quark and lepton sectors are well-motivated by the recent

hints at lepton flavour non-universality associated with b → s`+`− transitions [5–13], also

known as ‘B anomalies’. Global fits incorporating angular distributions and branching frac-

tions point towards new physics contributions to the Wilson coefficients C9, C10 of weak

effective theory Hamiltonian operators O9, O10, respectively, where

O9 = (s̄′Lγµb
′
L)(µ̄′γµµ′) O10 = (s̄′Lγµb

′
L)(µ̄′γµγ5µ′). (6.11)

Here the primes denote that the fermionic fields are in the mass eigenbasis. A vector-like new

physics contribution to C9 with C10 = 0, or a new physics coupling to left-handed muons

through the combination C9 = −C10, are both favoured by global fits [43] in comparison to

the SM.

We will filter through our list in search of solutions potentially capable of explaining

the so-called B anomalies via the mediation of flavour-changing Z ′ interactions, resulting

from the spontaneously broken U(1)X symmetry. We will begin by searching for solutions

for which there exists i, j ∈ {1, 2, 3} with Qi and Lj charged. These will play the role of the

left-handed bottom/top quark doublet and muon respectively, contributing to the effective

operator (b̄Lγ
µbL)(µLγµµL) + . . . once the heavy Z ′ is integrated out of the effective field

theory. We will assume that a rotation to the mass eigenbasis will mix the down-type quarks

such that the necessary b̄′Lγ
µs′L coupling is produced. As well as this, we will require that

the left-handed leptons are not completely flavour universal, i.e. ∃k ∈ {1, 2, 3} such that

XLk 6= XLµ . This will ensure we can have the necessary µ − e flavour non-universality to

explain the b→ s`+`− data.

We find 114 solutions with Qmax = 1 satisfying these conditions, constituting approxi-

mately 43% of the total list. When Qmax = 10 this number grows to 1 567 142 472, roughly

25% of the full list of charge assignments. Such large numbers indicate that these conditions

leave the charges quite unconstrained, and thus we query the list further for interesting so-

lutions. Firstly, there are solutions within this set which can simultaneously address the µ

problem and allow only renormalisable tree-level Yukawa terms for the top, bottom and tau.

The overlap between each set of constraints is depicted in Figure 3. Only 2 solutions can

account for all three conditions when Qmax = 2, and are shown in Table 7. This overlap

grows when Qmax = 4, with 1 556 solutions solving all three conditions.

Secondly, we will filter through the list for solutions that aren’t obviously in danger of

violating experimental constraints. Following the motivation of Refs. [9, 44], we search for

solutions with uniform light quark charges so as to avoid constraints on flavour-violation in

the light quark sector. Additionally, we will search for solutions which feature zero coupling
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Figure 3. We filter through our list to determine the number of solutions capable of solving the µ

problem and the B-anomalies, as well as those allowing only 3rd family Yukawa terms. We find an

overlap between these applications, with 2 solutions at Qmax = 2 satisfying all constraints and 1 556

at Qmax = 4.

Q Q Q n n n e e e u u u d d d L L L H̃d H̃u

−1 0 0 −2 1 2 1 2 2 −2 −1 0 −1 0 2 −1 0 2 1 1

−1 0 0 1 2 2 −2 1 2 −1 0 2 −2 −1 0 −1 0 2 1 1

Table 7. As depicted in Figure 3, at Qmax = 2, only 2 anomaly-free charge assignments satisfy the

constraints required to solve the µ problem and the B-anomalies while allowing 3rd family Yukawa

terms in the Lagrangian. Each row lists the u(1)X charges of the (left-handed or right-handed) chiral

fermions of a model.

of the electron to the associated Z ′ i.e. ∃ i, j ∈ {1, 2, 3} such that XLi = 0 and Xej = 0. This

is motivated by the strong experimental constraints originating from e+e− collisions at LEP.

We find 21 such solutions that also allow only third family Yukawa terms and address the µ

problem in our list with Qmax = 10. A selection of 10 of these solutions are listed in Table 8.

Here, in contrast to other tables, the index on each fermion denotes the family number (since

these are used in the constraints), and we use θ̃ to denote the RH neutrino that plays the

role of the (RH) flavino.

The 10 solutions shown all feature suppressed couplings of the Z ′ to the light quarks,

either because the light RH down-type quarks have zero charge, as in solution (a), or because

the light LH quarks have zero charge as in solutions (b)-(k). In solutions (a) and (b), the

muon has equal RH and LH charge i.e. L2 = e2. This results in a purely vector-like coupling

with C10 = 0. Similarly, solutions (c), (d) and (e) are particularly interesting in that they
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Q1 Q2 Q3 θ̃ n1 n2 e1 e2 e3 u1 u2 u3 d1 d2 d3 L1 L2 L3 H̃d H̃u

(a) −3 −3 3 −6 0 10 0 9 5 −3 −3 −2 0 0 2 0 9 6 −1 −5
(b) 0 0 −2 6 −3 4 0 3 2 0 0 −1 −3 −3 3 0 3 −3 5 1

(c) 0 0 −2 10 −1 10 0 0 −7 3 3 5 −8 −8 1 0 6 −10 3 7

(d) 0 0 −1 8 −9 1 0 0 6 −2 −2 0 −2 −2 6 0 −4 −1 7 1

(e) 0 0 −5 6 8 10 0 −1 7 4 4 −4 −7 −7 0 0 7 2 5 1

(f) 0 0 −3 10 −9 3 0 8 6 −5 −5 2 0 0 2 0 −2 1 5 5

(g) 0 0 −3 2 0 3 0 7 6 −1 −1 −5 0 0 1 0 5 2 4 −2
(h) 0 0 −2 6 −6 −3 0 8 7 −5 −5 −1 2 2 3 0 −2 2 5 1

(i) 0 0 −2 6 −6 3 0 4 5 −3 −3 1 0 0 1 0 −2 2 3 3

(j) 0 0 −1 −4 −6 0 0 7 9 −5 −5 −4 7 7 −2 0 −3 10 −1 −3
(k) 0 0 −1 2 2 8 0 −5 −1 4 4 0 −5 −5 0 0 3 −2 1 1

Table 8. At Qmax = 10 we find 21 solutions which simultaneously solve the µ problem and B

anomalies, allow 3rd family Yukawa terms and are well-suited to avoid strong experimental constraints

from LEP and quark flavour violation between the first two families. A selection of 10 of these are

shown here. Each row lists the u(1)X charges of the (left-handed or right-handed) chiral fermions of

a model.

all produce negative values of the ratio C9/C10, with (c) and (d) giving exactly C9 = −C10

and solution (e) satisfying C9 = −3
4C10. In §3 we queried the full list of charge assignments

in search of known solutions in the literature, listed in Table 3. None of these solutions are

found in the list of 21 solutions passing our constraints: either because they cannot solve the

µ problem and address the 3rd family Yukawa terms simultaneously, or because they do not

satisfy the constraints we impose to facilitate solving the B anomalies.

6.3 Neutrino masses

Finally, we turn to the neutrinos. The inclusion of RH neutrinos has allowed us the flexibility

to solve the ACCs while simultaneously addressing the phenomenological constraints of §6.1

and §6.2, as evidenced by the fact that these solutions often have nonzero charges for the RH

neutrinos. In particular, this can be seen from Table 8 in which all of the solutions feature

nonzero charges for at least one of the RH neutrinos. It is then useful to ask what these

charge assignments imply for the neutrino masses and mixings.

In order to describe neutrino masses and mixings, we extend the superpotential to include

the following terms,

W = WRp + (yν)ijN
c
i LjHu + (MνR)ijN

c
iN

c
j , (6.12)

where (yν)ij is a 3 by 3 matrix of dimensionless Dirac Yukawa coupling constants and (MνR)ij
is a 3 by 3 matrix of Majorana mass terms (of mass dimension 1) for the RH neutrinos.

Neutrino masses are then produced through a Type-1 see-saw mechanism. Many alternative
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mechanisms for producing neutrino masses in the MSSM exist in the literature. Bilinear

R−parity violating models extend the superpotential to include the L-violating µ′iLiHu terms

which produce neutrino masses through mixing with the neutralinos [45, 46]. In [47], a

suppressed Dirac mass term is produced after U(1)X -breaking, through the flavon’s vacuum

expectation value 〈θ〉. The µνSSM extends the MSSM to produce neutrino masses through

the inclusion of the trilinear term κijkN
c
iN

c
jN

c
k in the superpotential [32–35]. While an

investigation into each of these mechanisms and models is beyond the scope of this paper, we

will filter through our list in search of solutions which allow all of the terms of (6.12), allowing

all possible neutrino masses and mixings via the see-saw mechanism. These solutions must

satisfy the following constraints ∀i, j ∈ {1, 2, 3}

XLi +XHu −Xnj = 0, Xni +Xnj = 0, (6.13)

implying Xni = 0 and XLi = −XHu . We find a total of 3 solutions with Qmax = 1 in our list

satisfying these constraints. At Qmax = 4 a total of 118 solutions exist, and at Qmax = 10

the list contains 4 878 of these solutions.

6.4 Summary of constraints

We summarise the phenomenological constraints of this section in Table 9. We emphasise

that the filters used throughout this section provide an initial exploration into the constraints

we expect will be most commonly needed by model builders. We expect that the scope of this

list is much broader than the phenomenological applications dealt with here, and by making

the list of charge assignments publicly available on Zenodo [30] we encourage model builders

to search for charge assignments of more specific interest.

7 Summary

Specific models incorporating the MSSM with an additional U(1)X gauge group can combine

the phenomenological advantages of supersymmetry with potential uses of the additional

gauge factor and they have received quite some attention in the literature, particularly for

the case where the U(1)X charges are family dependent. We have found, for the first time,

all charge assignments of the MSSM plus three SM-singlet chiral superfields which are free

of local anomalies (the SM-singlets can produce neutrino masses as well as spontaneously

break the U(1)X symmetry). Chiral superfields in real representations can be added to any

anomaly-free matter content and result in an anomaly-free solution, since the additional

fermionic content will be in a vector-like representation of the gauge group and so its effects

cancel in the anomalies. The local anomaly cancellation conditions described in §2 constitute

a system of six homogeneous coupled diophantine equations (2.1)-(2.6), the like of which are

notoriously difficult to solve, in general.

Global anomalies are beyond the scope of our work; however, for the case of U(1) exten-

sions of the usual SM gauge group, there are none [48]. One may question whether a quantum

field theory absolutely has to be free from anomalies; after all, in an infra-red effective field
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Proposition # Qmax = 10

µ problem ∃i ∈ {1, 2, 3} : XHu +XHd = Xni ∧ Xni 6= 0 649 831 168

All renormalisable charged

fermion Yukawas

(∀i, j, k, l,m, n ∈ {1, 2, 3}Pijklmn) 38

Only 3rd family renormalis-

able charged fermion Yukawas

(∃! i, j, k, l,m, n ∈ {1, 2, 3} : Pijklmn)∧
(∀i, j, k, l,m, n ∈ {1, 2, 3}Pijklmn ⇒ n = i)

34 646 735

L-conservation & B-violation PL ∧ ¬PB 444 357 847

B-conservation & L-violation PB ∧ ¬PL 2 916 984 840

L & B-conservation PL ∧ PB 885 951 137

B anomalies ∃i, j, k ∈ {1, 2, 3} :XQi 6= 0 ∧ XLj 6= 0 ∧
XLk 6= XLj

1 567 142 472

B anomalies, µ problem, 3rd

family Yukawa terms & exper-

imental constraints

See §6.2 21

See-saw ν masses ∀i, j ∈ {1, 2, 3} XLi + XHu = Xnj ∧ Xni =

−Xnj

4 878

Table 9. Summary of the phenomenological conditions applied in this paper, along with the number

of inequivalent Qmax = 10 solutions which satisfy them. In the above we have used standard logic

notation in which ∀ reads as ‘for all’, ∧ as ‘and’, ∨ as ‘or’, ∃ as ‘there exists’, ∃! as ‘there exists a unique’,

⇒ as ‘implies’, : as ‘such that’, ¬ as ‘not’. For the condition of allowing all renormalisable charged

fermion Yukawa terms, we have used the proposition Pijklm defined as Pijklmn := (XQi + XHu =

Xuj ∧XQn +XHd = Xdk ∧XLl +XHd = Xem). For the R-parity related conditions we have used the

propositions PL := ∀i, j, k, l,m, n, p ∈ {1, 2, 3} i = j ∨ (XLi +XLj −Xek 6= 0∧ XLl +XQm −Xdn 6=
0 ∧ XLp +XHu 6= 0), and PB := ∀i, j, k ∈ {1, 2, 3} i = j ∨Xui +Xdj +Xdk 6= 0.

theory (such as we might expect the MSSM×U(1)X to be) one can in principle add Wess-

Zumino terms to the Lagrangian density in order to cancel them. Such terms can result from

decoupling a heavy state from the effective field theory. In order to contribute to the anomaly

though, the additional heavy state must be a chiral fermion of non-zero U(1)X charge. It is

then not a priori obvious how such a state may acquire a large mass, unless it is linked to

the scale of U(1)X breaking.12 One recent non-supersymmetric U(1) gauge extension of the

SM [13] has achieved this with some additional fermions that under the SM are in vector-like

representations, but which are chiral with respect to U(1)X . However, it is far from obvious

whether this is possible in general model set-ups, particularly when several mixed anomalies

do not cancel. From the model builder’s point of view therefore, it is safer to begin with an

12Integrating the top quark out of the SM yields apparent gauge anomalies, but when one includes effective

operators resulting from integrating it out, gauge symmetry is restored [49]. This is precisely a case where the

heavy mass is linked to the symmetry breaking scale (in this case, of the electroweak symmetry).
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anomaly-free effective field theory rather than having to worry about how such anomalies are

cancelled.

We have provided the general analytic solution for the charges via a new geometric method

(a different geometric method was previously employed to solve the anomaly cancellation

conditions for non-supersymmetric U(1)X extensions of the SM [18]) described in §4. One

inputs 23 integer parameters for each anomaly-free charge assignment. A Mathematica™
program has been made publicly available which, given the input parameters, produces one

such assignment. The general analytic solution passed various internal consistency checks.

Whilst the general analytic solution can be difficult for model builders to use, it is useful for

(among other things) providing non-trivial checks of any list of numerical solutions.

Anomaly-free charge assignments are scarce: for example, for heights up to 10, as Fig. 1

shows, only one out of some 1012 (or so) inequivalent assignments is anomaly free. Despite

their scarcity, the different assignments are still legion (we have identified over 1.6 billion up

to a height of 10). The model builder is therefore faced with an enormous haystack in which

to find the proverbial needle.

An explicit list of all of these 1.6 billion inequivalent charge assignments up to a max-

imum absolute value of 10 has been produced via a computer program described in §3 and

made publicly available [30]. Each entry in the list comprises 20 integers, the U(1)X charge

assignments of 20 chiral superfields of the model. Extensive checks of the list have been made

using the analytic solution as well as those of internal consistency. With the aid of a com-

puter, such a list is easily and quickly searched and filtered, looking for charge assignments

with various desirable properties. For example, if fewer than three SM-singlets are required

for the model, one can filter the list and find all solutions where one of the SM-singlet U(1)X
charges is zero. As far as anomalies go, having a zero charge for the superfield is equivalent to

removing it from the model. We have shown some simple example filters, looking for different

desirable properties of the charge assignments in §6 as a tutorial in their implementation. We

hope that the list will be of use for beyond-the-MSSM builders in terms of inspiration and

phenomenology.

Acknowledgements

We thank other members of the Cambridge Pheno Working Group (and particularly B Gri-

paios) for discussions. This work has been partially supported by STFC HEP consolidated

grants ST/P000681/1 and ST/T000694/1. MM acknowledges support from the Schiff Foun-

dation. JTS is partially supported by STFC consolidated grant ST/S505316/1.

References

[1] J. Heeck and W. Rodejohann, Gauged Lµ − Lτ Symmetry at the Electroweak Scale, Phys. Rev.

D 84 (2011) 075007, [arXiv:1107.5238].

[2] D. Berenstein and E. Perkins, A viable axion from gauged flavor symmetries, Phys. Rev. D 82

(2010) 107701, [arXiv:1003.4233].

– 28 –



[3] M.-C. Chen, J. Huang, and W. Shepherd, Dirac Leptogenesis with a Non-anomalous U(1)′

Family Symmetry, JHEP 11 (2012) 059, [arXiv:1111.5018].

[4] C. D. Froggatt and H. B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP

Violation, Nucl. Phys. B 147 (1979) 277–298.

[5] W. Altmannshofer, S. Gori, M. Pospelov, and I. Yavin, Quark flavor transitions in Lµ − Lτ
models, Phys. Rev. D 89 (2014) 095033, [arXiv:1403.1269].

[6] R. Alonso, P. Cox, C. Han, and T. T. Yanagida, Flavoured B − L local symmetry and

anomalous rare B decays, Phys. Lett. B 774 (2017) 643–648, [arXiv:1705.03858].

[7] C. Bonilla, T. Modak, R. Srivastava, and J. W. F. Valle, U(1)B3−3Lµ gauge symmetry as a

simple description of b→ s anomalies, Phys. Rev. D 98 (2018), no. 9 095002,

[arXiv:1705.00915].

[8] D. Bhatia, S. Chakraborty, and A. Dighe, Neutrino mixing and RK anomaly in U(1)X models:

a bottom-up approach, JHEP 03 (2017) 117, [arXiv:1701.05825].

[9] J. Ellis, M. Fairbairn, and P. Tunney, Anomaly-Free Models for Flavour Anomalies, Eur. Phys.

J. C 78 (2018), no. 3 238, [arXiv:1705.03447].

[10] B. C. Allanach and J. Davighi, Third family hypercharge model for RK(∗) and aspects of the

fermion mass problem, JHEP 12 (2018) 075, [arXiv:1809.01158].

[11] B. C. Allanach and J. Davighi, Naturalising the third family hypercharge model for neutral

current B-anomalies, Eur. Phys. J. C 79 (2019), no. 11 908, [arXiv:1905.10327].

[12] A. Greljo, P. Stangl, and A. E. Thomsen, A Model of Muon Anomalies, arXiv:2103.13991.

[13] J. Davighi, Anomalous Z ′ bosons for anomalous B decays, arXiv:2105.06918.

[14] L. Mordell, Diophantine Equations. Academic Press, 1969.

[15] D. B. Costa, B. A. Dobrescu, and P. J. Fox, General Solution to the U(1) Anomaly Equations,

Phys. Rev. Lett. 123 (2019), no. 15 151601, [arXiv:1905.13729].

[16] D. B. Costa, B. A. Dobrescu, and P. J. Fox, Chiral Abelian gauge theories with few fermions,

Phys. Rev. D 101 (2020), no. 9 095032, [arXiv:2001.11991].

[17] B. C. Allanach, B. Gripaios, and J. Tooby-Smith, Geometric General Solution to the U(1)

Anomaly Equations, JHEP 05 (2020) 065, [arXiv:1912.04804].

[18] B. Allanach, B. Gripaios, and J. Tooby-Smith, Anomaly cancellation with an extra gauge boson,

arXiv:2006.03588.

[19] B. C. Allanach, B. Gripaios, and J. Tooby-Smith, Solving local anomaly equations in gauge-rank

extensions of the Standard Model, Phys. Rev. D 101 (2020), no. 7 075015, [arXiv:1912.10022].

[20] B. A. Dobrescu and P. J. Fox, Diophantine equations with sum of cubes and cube of sum,

arXiv:2012.04139.

[21] B. C. Allanach, B. Gripaios, and J. Tooby-Smith, Floccinaucinihilipilification,

arXiv:2104.14555.

[22] B. Allanach, J. Davighi, and S. Melville, An Anomaly-free Atlas: charting the space of

flavour-dependent gauged U(1) extensions of the Standard Model, JHEP 02 (2019) 082,

[arXiv:1812.04602]. [Erratum: JHEP 08, 064 (2019)].

– 29 –



[23] C.-F. Wong, Anomaly-free chiral U(1)D and its scotogenic implication, Phys. Dark Univ. 32

(2021) 100818, [arXiv:2008.08573].

[24] D. A. Demir, G. L. Kane, and T. T. Wang, The Minimal U(1)’ extension of the MSSM, Phys.

Rev. D 72 (2005) 015012, [hep-ph/0503290].

[25] V. Barger, P. Fileviez Perez, and S. Spinner, Minimal gauged U(1)(B-L) model with

spontaneous R-parity violation, Phys. Rev. Lett. 102 (2009) 181802, [arXiv:0812.3661].

[26] G. H. Duan, X. Fan, M. Frank, C. Han, and J. M. Yang, A minimal U(1)′ extension of MSSM

in light of the B decay anomaly, Phys. Lett. B 789 (2019) 54–58, [arXiv:1808.04116].

[27] A. Bednyakov and A. Mukhaeva, Flavour anomalies in a u(1) susy extension of the sm,

Symmetry 13 (2021), no. 2.

[28] A. Ashmore, S. Dumitru, and B. A. Ovrut, Hidden Sectors from Multiple Line Bundles for the

B − L MSSM, arXiv:2106.09087.
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