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Abstract: Real-time detection of 3D obstacles and recognition of humans and other objects is essential for blind or low-
vision people to travel not only safely and independently but also confidently and interactively, especially in 
a cluttered indoor environment. Most existing 3D obstacle detection techniques that are widely applied in 
robotic applications and outdoor environments often require high-end devices to ensure real-time performance. 
There is a strong need to develop a low-cost and highly efficient technique for 3D obstacle detection and 
object recognition in indoor environments. This paper proposes an integrated 3D obstacle detection system 
implemented on a smartphone, by utilizing deep-learning-based pre-trained 2D object detectors and ARKit-
based point cloud data acquisition to predict and track the 3D positions of multiple objects (obstacles, humans, 
and other objects), and then provide alerts to users in real time. The system consists of four modules: 3D 
obstacle detection, 3D object tracking, 3D object matching, and information filtering. Preliminary tests in a 
small house setting indicated that this application could reliably detect large obstacles and their 3D positions 
and sizes in the real world and small obstacles’ positions, without any expensive devices besides an iPhone.

1 INTRODUCTION 

Visual impairment is the loss of some or all vision 
perception and is not easily fixable with treatments, 
such as glasses, contact lenses, medication, or 
surgery. The blind or low-vision (BLV) population 
has continuously grown over the past three decades 
and is expected to increase significantly as the 
population ages (Bourne et al., 2020). There are an 
estimated 49.1 million people who are blind in 2020 
globally, and 255 million people with moderate or 
severe visual impairment (MSVI), with visual acuity 
worse than 6/12 to 6/18 (Bourne et al., 2020). 

Being able to travel safely in an indoor 
environment is essential for BLVs to be successful in 
their jobs and assist their daily activities for a better 
quality of life. An indoor environment can be 
cluttered and changed more often than an outdoor 
environment. BLVs can easily bump into obstacles 
with limited space for movement in an indoor area. 
White canes (long canes) and guide dogs are the most 
common tools used to detect obstacles and navigate. 

 
a  https://orcid.org/0000-0003-1810-3828 
b  https://orcid.org/0000-0002-9990-1137 

However, these tools cannot provide comprehensive 
information about the surroundings to help them 
avoid dangerous areas. Based on a survey of 300 
legally blind or blind individuals (Manduchi and 
Kurniawan, 2010), over 40% of respondents 
experienced head-level accidents at least once a 
month, even with a white cane or a guide dog. 

Furthermore, indoor environments are subject to 
more changes than outdoor environments, where 
objects and people move around. Many navigation 
applications cannot immediately reflect the 
environmental changes when planning paths. This 
may result in obstacles presenting along the intended 
routes, which increases the risk of BLV users 
bumping into obstacles when following guidance. 
Therefore, a real-time obstacle detection application 
is essential for improving safety while travelling. 

Even though safety is the number one need, 
recognition of humans and other objects would also 
enhance BLVs’ understanding of their surroundings, 
thus significantly improving their quality of life. 
Object detection is a fundamental topic in computer 
vision that has been extensively studied. Numerous 



techniques have been developed and applied for 
multiple applications, particularly in autonomous 
vehicles. 

Real-time 2D object detection techniques are well 
developed; however, 3D object detection helps BLVs 
better understand their surroundings, select a safe 
path, enjoy the environment, and interact with other 
people. However, multiple challenges exist in 
converting the 2D bounding boxes detected by 2D 
object detectors into 3D bounding boxes. Objects in 
the same category (e.g., chairs or tables) can have 
various appearances, shapes, and sizes. Real-time 3D 
object detection and recognition often involves high-
end devices that are too expensive for BLVs to afford 
and/or too heavy to carry. Data show that 89% of 
BLV people live in low- or middle-income countries 
(Ackland et al., 2017). 3D object detection often uses 
deep learning models, which require enormous 
computational power to ensure real-time 
performance. Moreover, most state-of-the-art 3D 
object recognition methods focus on the outdoor 
environment, owing to the high demand for 
autonomous driving. There is a lack of effective real-
time techniques for detecting and tracking 3D objects 
in indoor environments. 

Information filtering is another problem for BLV 
users with multiple detected objects, especially in 
real-time detection, where the detection information 
changes rapidly over time. BLV users may become 
confused and frustrated with the massive amount of 
information provided and may easily miss the 
information they need; thus, only reporting the 
essential information to BLV users is critical. 

This paper proposes a low-cost and efficient real-
time 3D obstacle detection iOS application for BLV 
users to help them overcome these problems and 
increase their accessibility in indoor areas. The main 
contributions of this study are as follows: 

1. A real-time 3D obstacle detection and object 
recognition system integrating ARKit and a 
pre-trained 2D object detection model 
working in the iOS device. 

2. 3D object tracking method utilizing the 2D 
image tracker and AR point cloud to 
improve the time performance and object 
identification. 

3. An information filtering method extracting 
and reporting only essential information for 
BLV users from a set of massive objects 
detected over time. 

The remainder of this paper is organized as 
follows. Section 2 provides a brief overview of the 
state-of-the-art 2D and 3D object detection methods. 
Section 3 describes the proposed 3D obstacle 

detection and object recognition system. The results 
of our method and discussion are provided in Section 
4. Finally, a summary of the proposed system and a 
discussion of future work are presented in Section 5. 

2 RELATED WORK 

2.1 2D Object Detection 

2D object detection predicts the class labels and 
bounding boxes of objects from an image input. There 
are two main types of object detectors: two-stage and 
one-stage. R-CNN families (e.g., Fast R-CNN 
(Girshick, 2015) and Mask R-CNN (He et al., 2017)) 
are two-stage object detectors where detection begins 
by extracting the region of interest (ROI) using a 
regional proposal network (RPN). In the second stage, 
the bounding boxes of the objects are refined using 
regression and classified into different classes. One-
stage object detectors (e.g., YOLO (Redmon and 
Farhadi, 2018), SSD (Liu et al., 2016), RetinaNet 
(Lin et al., 2017)) do not have an ROI extraction stage 
and directly detect the bounding boxes of the objects 
from the image with a dense sampling of areas. Two-
stage detectors usually require a longer process time 
than one-stage detectors but have higher accuracy 
(Soviany and Ionescu, 2018). 

2D object detection techniques are sufficiently 
mature to support real-time performance. However, 
2D bounding boxes with object labels do not provide 
sufficient information for BLVs to obtain a more 
comprehensive understanding of the indoor 
environment they are in to help them avoid obstacles 
along their path and walk around with both 
confidence and interaction with other people. 
Nevertheless, 2D detectors can be used as the basis 
for 3D object detection. 

2.2 3D Object Detection 

3D object detection usually estimates three-
dimensional bounding boxes for objects in a scene. 
Compared with 2D object detection methods that use 
only RGB images, 3D object detection methods 
typically use depth images, stereo images, or point 
cloud data to obtain 3D information. 

Denoising and ground detection are essential steps 
in 3D detection approaches for all the data types. 
(Huang et al., 2015) removed depth map noise with 
morphological closing (dilation and then erosion), 
and then used the standard least-squares method and 
V-disparity method (Soquet et al., 2007) to estimate 
ground curves and a height threshold for obstacles. 



The region growth method was subsequently applied 
to distinguish different objects. (Cheng et al., 2015) 
applied a seeded region growth method with Sobel 
edges to detect the ground and obstacles using depth 
maps generated from an RGB-D camera for obstacle 
detection. Their method had a refreshing frequency of 
10 frames per second (fps). (Sun et al., 2020) applied 
a semantic segmentation method with a deep learning 
model to RGB-D images that could support real-time 
performance at 22Hz using an Nvidia GTX2080Ti 
GPU for obstacle detection. 

The deep stereo geometry network (DSGN) uses 
the 2D image features extracted from stereo images at 
both the pixel and semantic levels to construct the 
plane-sweep volume (PSV) with depth estimation 
(Chen et al., 2020). A 3D geometric volume was 
constructed from the PSV and used to detect objects 
using a 3D neural network. The method has an 
average 0.682s process time per frame and an average 
depth error of 0.55m with NVIDIA Tesla V100. 

Different lighting conditions can affect the 
estimated depth values and decrease the accuracy of 
the object positions in these methods. Furthermore, 
the object class information is missing, and smaller 
objects are not detected well in these methods. 
Therefore, they are not suitable for real-time systems 
combined with navigation purposes, as they consume 
enormous computational power in complex scenes. 

2.2.1 3D Point Cloud Data 

Point cloud obstacle detection is more popular for 
indoor obstacle detection as it contains richer 
information than depth maps. (Pham et al., 2016) 
used RGB-D images with accelerometer data to 
reconstruct the point clouds of a scene. Voxelization 
and pass-through filters were applied to remove noise 
and the random sample consensus (RANSAC) 
algorithm (Fischler and Bolles, 1981) was used to 
segment planes and detect the ground plane of the 
scene. With the ground plane removed, various 
algorithms were applied to detect doors, stairs, and 
other loose obstacles. 

In addition to depth images, LiDAR has been used 
more frequently in recent years as it constructs a more 
accurate point cloud and contains more information, 
such as intensity and angle. (He et al., 2021) used the 
American Velodyne-16 line LiDAR, which can 
generate 300K points per second. A pass-through 
filter and voxel mesh method were used to filter the 
noise data as the sparsity of point cloud increased 
with distance. RANSAC and K-D trees were applied 
for plane segmentation and object clustering with 
thresholding. (Garnett et al., 2017) proposed a unified 

deep convolutional network with a LiDAR point 
cloud to achieve real-time performance (30fps) for 
both categorical-based and general obstacle detection 
in outdoor environments. It uses a column-based 
approach for general obstacle detection and StixelNet 
(Levi et al., 2015) as the base. Nevertheless, these 
solutions are primarily workable for autonomous 
driving but are not readily usable for BLV users in 
indoor environments. 

2.2.2. AR Point Cloud 

Apple's augmented reality (AR) platform, ARKit 
(Apple Inc.), contains an AR point cloud with all 
detected feature point (i.e., distinctive markers) 
positions in the 3D camera coordinates. It generates a 
sparse point cloud for every camera frame that 
contains only features captured in a single frame. 
Despite its sparsity, it can detect horizontal and 
vertical planes in the scene, which is useful for 
detecting large obstacles. The user’s movement and 
the captured 2D video frames can detect and track 
visual feature points to estimate their position in the 
real-world coordinate system. With the capabilities of 
ARKit, our proposed 3D object detection system will 
be built on top of ARKit. 

2.3 3D Object Tracking 

Unlike 2D trackers (Karunasekera et al., 2019; 
Marques, 2020) which track objects across multiple 
frames, 3D trackers use point cloud data that often 
apply 3D Kalman filters to estimate object positions. 

The IMM-UKF-JPDAF-based tracker (Sualeh 
and Kim, 2020) combines the unscented Kalman 
filter and joint probabilistic data association filter 
(Rezatofighi et al., 2015) for the state estimation of 
multiple objects with a Gaussian assumption 
distribution. A clustering technique is applied to 
mitigate potential combinatorial explosions. (Wang 
and Wu, 2021) proposed a switching reference point 
method with both centroid and corner points for a 
LiDAR-based tracking system to handle abrupt 
changes in the position of an object’. In our work, we 
modified the 2D tracking technique (Marques, 2020) 
for 3D tracking for the sake of time efficiency. 

3 METHODS 

The 3D obstacle detection and object recognition 
system consisted of four modules (Fig. 1): (1) 3D 
obstacle detection, (2) 3D object tracking, (3) 3D 
object matching, and (4) information filtering. The 



3D obstacle detection module integrates the 2D 
bounding boxes and labels from the 2D object 
detector (YOLOv3) and point cloud and detected 
plane from ARKit to generate the 3D bounding boxes 
of the objects for each image frame. The 3D object 
tracking module tracks each object’s 2D bounding 
box from the current frame to the next frame and 
augments the AR point cloud data to generate the 
tracked 3D bounding box of each object. Next, in the 
object matching module, newly detected objects in 
the current frame are matched with the detected 
objects in the previous frames to reduce duplications 
of multiple instances of the same objects. Finally, the 
information filtering module determines the essential 
information to guide BLV users to avoid obstacles 
from the set of objects detected over time. 

3.1 3D Obstacle Detection 

The proposed 3D obstacle detection module utilizes 
both the point cloud generated by ARKit and 2D 
bounding boxes estimated by a pre-trained YOLOv3 
object detector3 to obtain a rough estimation of the 3D 
bounding boxes of the detected objects. This module 
comprises three steps: plane segmentation, 2D object 
detection, and 3D bounding box determination. 

An ARKit 3D model constructs a point cloud from 
the feature points collected over the camera frames to 
the current frame, and can estimate vertical and 
horizontal planes with sufficient 3D points collected. 
The floor plane determined based on the sizes and 
positions of all detected planes. The other detected 
planes were considered to be obstacles. The system 
cannot estimate the 3D bounding boxes for the 
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detected vertical planes because of the missing length 
or width information in the captured scene. The 
system aims to guide BLV users to avoid obstacles, 
so it tracks the distance between the device position 
and vertical planes. The 3D bounding box of an object 
with a horizontal plane (Fig. 2) is determined by the 
four endpoints (P1, P2, P3, and P4) of the horizontal 
plane and floor plane y location (Fy). The width and 
length of the object are the distances between P1 to 
P2 and P2 to P3, respectively, ignoring the y values: 
 
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃𝑖, 𝑃𝑗) = /(𝑋𝑖 − 𝑋𝑗)! + (𝑍𝑖 − 𝑍𝑗)!	
 

(1) 

The height of the object is the difference between the 
horizontal plane y-location (Hy) and floor plane y-
location (Fy). The plane segmentation method can 
only detect obstacles with large and flat surfaces. 
Therefore, a pre-trained image object detector was 
applied to handle other objects (e.g., small objects and 
humans). The goal is to determine the 3D positions 
and sizes of obstacles and to provide information to 
users in real time to assist with other applications 
(e.g., navigation). Therefore, one-stage object 
detectors were chosen to minimize the computation 
time. The YOLOv3 model (Redmon and Farhadi, 
2018) was used in this study; however, it can be easily 
altered with other 2D object detectors. 

To convert the 2D bounding boxes detected by 
YOLOv3 into 3D bounding boxes, we use the AR 
point cloud of the corresponding camera frame (Fig. 
3). The app’s frame rate was set at 30 fps because it 
is difficult for the human eye to see differences above 
30fps. We only processed the point cloud with 
number of feature points above a threshold (i.e., 30), 
and the typical range of the feature points detected in 
each frame was between 0 and 200. The 3D bounding 
box estimation method first removes all points 

 

Figure 1: Workflow of the 3D obstacle detection and 
object recognition system. 

 

Figure 2: The 3D bounding box of an object with a 
horizontal plane. 



belonging to the detected planes, and then projects the 
remaining points into the 2D image coordinate system 
and grouped feature points based on the 2D bounding 
boxes of each detected object (Fig. 3 (a) to (b)). If the 
object group contained fewer feature points than 
threshold, its 3D bounding box was not computed. 
For example, one of the flowerpots is ignored from 
the step in Fig. 3 (b) to (c) because of insufficient 
feature points within its 2D bounding box. The 3D 
bounding box of each object was calculated using the 
minimum and maximum values of the feature points 
group x, y, and z (Fig. 3 (c) to (d)). 

After estimating the 3D bounding boxes for all the 
objects detected in the frame, the object matching 
module is activated if previously detected objects 
exist to either update the pre-detected objects’ 3D 
bounding boxes or create new object instances. Each 
detected object is assigned a unique tracking ID (tid). 
Subsequently, the object tracking module tracks the 
2D bounding boxes of objects in the next frame and 
updates the 3D bounding boxes with the AR point 
cloud of the new frame. 

3.2 3D Object Tracking 

AR point cloud is sparse and contains considerable 
noise owing to various circumstances of the context, 
such as low texture or colors, presence of shadows, 
and poor lighting conditions. The sparsity within the 
AR point cloud increases the errors in estimating the 
3D bounding boxes of the objects. Hence, we used the 
non-maximum suppression (NMS) method (Rothe et 
al., 2014) across multiple estimated 3D bounding 
boxes of the same object to obtain a more stable and 
accurate 3D bounding box of the object. 

Tracking 2D bounding boxes of objects across 
frames requires less computational power and is more 
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effective than performing object detection for each 
frame. Moreover, due to the sparsity of AR point 
cloud, 3D trackers are not suitable. By utilizing vision 
algorithms 4 , we can track multiple detected 2D 
objects across frames in real time. 

Each tracking result provides an updated 2D 
bounding box and confidence score of the tracked 
object. If the confidence score of the track object is 
above the threshold (i.e., 70%), a new 3D bounding 
box is estimated with the corresponding frame’s AR 
point cloud using the method described in Section 
3.,1 and recorded. When an object has five or more 
estimated 3D bounding boxes across multiple frames 
(Fig. 4 (a)), the NMS method is applied to obtain the 
final 3D bounding box (i.e., the validated 3D 
bounding box), as shown in Fig. 4 (b). An object track 
is considered to be lost in the new frame if its 
confidence score is below a threshold. If one or more 
objects lose tracks during the tracking mode, the 
system restarts the object detection process (Section 
3.1) to detect new objects. 

3.3 3D Object Matching 

 

Figure 3: From 2D bounding boxes to 3D bounding boxes using YOLOv3 and AR point cloud. 

  

Figure 4: (a) five estimated 3D bounding boxes of a 
flowerpot. (b) validated 3D bounding box of the flowerpot 
after NMS. 



Previously detected/tracked objects may be detected 
again when the system switches between the tracking 
and detection modes. The object matching module is 
applied to avoid creating duplicate object instances 
for the same object, which consists of three major 
steps. First, each object in tracking mode updates its 
3D bounding box with its tracking id (tid). Second, 
the estimated 3D bounding boxes of the newly 
detected objects were compared with 3D bounding 
boxes for previously detected objects with the same 
label. If the 3D bounding boxes overlap, it will not be 
considered a new object; instead, it will update the 3D 
bounding box of the overlapped object. 

As mentioned previously, the estimated 3D 
bounding box of an object from a single frame has 
low accuracy; therefore, there might not always be an 
overlap area for the same object. More importantly, 
objects could be in motion between frames, therefore, 
we also need to compare closely located objects with 
the same label. The distance between the two 3D 
bounding boxes is calculated using the sum of the 
distance between two nearest endpoints in each of the 
three axes where bounding boxes do not overlap. If 
the distance is less than the threshold, it is considered 
to be the same object; otherwise, it is treated as a new 
object. After handling all objects, the system switches 
to the tracking mode for the next frame. 

3.4 Information Filtering 

With massive objects detected over time, information 
filtering is required to extract essential information to 
guide BLV users to avoid obstacles. It filters out all 
detected obstacles that are not within a certain angular 
range (α = 60° in our current experiments) of camera 
orientation. As shown in Fig. 5, the obstacles outside 
the blue region were ignored. Afterward, the 
remaining objects are sorted by alert priority using 
Equation (2), which is calculated based on the 
distance between the user’s camera position (Cp), 
object’s center position (Op), and object size (Os). The 
distance between the object and camera is calculated 
using the closest point in object’s 3D bounding box 
without considering the differences in the y-axis. The 
distance weighs more than the object size (a ≫ b). 
 
𝑃𝑟𝑜𝑟𝑖𝑡𝑦'𝐶!, 𝑂!, 𝑂"+ =

𝑎
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶!, 𝑂!, 𝑂")

+ 𝑏 ∗ 𝑂" (2) 

  
If the object alert priority value exceeds a 

threshold, the distance and direction of an object are 
provided as voice notifications. AR visualizations of 
detected obstacle bounding boxes were added to show 
and verify the detection results. These visualizations 
may provide additional visual aids for people with 

low vision or other disabilities (e.g., autism spectrum 
disorder) during an emergency evacuation. The colors 
and transparency levels of displayed AR assets were 
determined by the object labels and confidence scores 
from the detection or tracking results, respectively. 

4 EXPERIMENTAL RESULTS 

An iOS app was created to test real-time 3D obstacle 
detection results. Hosting image detection on cloud 
consumes more time for image uploading; therefore, 
2D object detection is performed on an iPhone. 

Table 1: Computation time (mean ± std) of four module 
using iPhone 13 Pro Max. 

 Computation Time (ms) 
YOLOv3 YOLOv3 Tiny 

Obstacle Detection 44.69±3.86 26.09±9.62 
Object Tracking 12.13±11.79 12.64±8.37 
Object Matching 0.65±0.77 0.29±0.42 
Information Filtering 0.04±0.06 0.02±0.007 

 
Table 1 shows the breakdown of the times spent 

on the four modules in milliseconds (ms) with 
YOLOv3 and YOLOv3 Tiny models using iPhone 13 
Pro Max in the same environment. The YOLOv3 
model (248.4MB) took approximately 3 to 5 seconds 
to initially load to the app. For each frame, it took an 
average of 44.69ms to detect objects and 12.13ms to 
track objects; both included the time for estimating 
3D bounding boxes. In comparison, the YOLOv3 
Tiny model (35.4MB) contains fewer convolution 
layers, which reduces the computation time. It took 
less than one second to load, and less time for object 
detection. However, YOLOv3 performs better than 
YOLOv3 Tiny for smaller object detection. 
Furthermore, YOLOv3 is more stable with a smaller 
standard deviation in the object detection time. 

The computation time varied based on the number 
of objects detected in the image frames and the 

  

Figure 5: Filtering objects within the angular range (α) with 
respect to the camera orientation (Cθ). 



number of feature points in the AR point cloud. This 
uncertainty contributed to a large standard deviation 
in the computation time of the object tracking and 
object matching modules. From Table 1, most of the 
computation time was spent on the object detection 
module for both models. Alternatively, the system 
can use any 2D object detector based on the purpose 
of the application. On the average, the system can 
achieve a time performance of 10-15 fps using 
YOLOv3 on an iPhone 13 Pro Max. 

Fig. 6 shows three detection results: a table and 
two chairs under a complex background, large 
obstacles under a clean background, and small bottles 
on table. The estimated 3D bounding boxes for large 
obstacles are more accurate than those for small 
obstacles and are determined faster and farther, as 
they have larger 2D image bounding boxes. Due to 
thresholding, smaller objects took more image frames 
to obtain a validated 3D bounding box, as they often 
do not contain sufficient context in the AR point 
cloud. Smaller objects also have low-accuracy 3D 
bounding boxes (Fig. 6 (c)). However, the app can 
solidly obtain the 3D positions of small objects. Our 
work aims to avoid BLV people colliding with 
obstacles. In most cases, small objects are placed on 
top of large objects, such as a table, so helping BLV 
users avoid large obstacles would help them avoid 
these small obstacles. Although the detected 3D 
bounding boxes do not always align with the actual 
object sizes in the real world, they are sufficient to 
warn BLVs to move away from it. The proposed 
algorithm can also work in real time, as shown in the 
demo video: https://youtu.be/L4zloslQ_8c. 

5 CONCLUSION AND 
DISCUSSION 

In the current work, the proposed 3D obstacle 
detection and object recognition system works well 
for detecting large obstacles in the real world with 3D 

positions and 3D bounding boxes. The system does 
not require multiple sensors or trains a new deep 
learning model besides a pre-trained 2D object 
detection model and works efficiently in real time. 
The system can easily adapt to any pre-trained object 
detection model for better performance. With the 
information filtering module, it is feasible to increase 
the safety of BLV users to travel indoors. 

Few areas can be improved in current system. Due 
to the sparsity of the AR point cloud, the matching 
module also considers nearby objects with 3D 
bounding boxes within the distance threshold as the 
same object. It is possible to mistakenly consider two 
distinct objects of the same class to be the same 
object. Several methods have been planned to 
mitigate this issue. The first is to replace the AR point 
cloud with the LiDAR point cloud to obtain a denser 
point cloud and consider only overlapped 3D 
bounding boxes. Object motion can also increase the 
difficulty of the matching process such as people 
walking. To adapt to objects’ motion change, the 
changes in camera positions and orientations, and 
changes in the objects’ bounding boxes across camera 
frames are used to enhance the matching and tracking 
modules and update the object’s position. 

One limitation of the current system is the 
adaptation to object size changes. Usually, a non-
human object has a static shape. However, we would 
also like to develop a method to detect people for 
interactions. The positions and postures of people can 
change over time, such as from sitting to standing, 
leading to a change in the 3D bounding box. Because 
our method uses the non-maximum suppression 
method across multiple estimated 3D bounding boxes 
to determine the final 3D bounding box of an object, 
it is difficult to immediately update the 3D bounding 
box corresponding to the object's size change. 
Another limitation is that the system does not detect 
stairs; therefore, it cannot work for floor transition. 

In the future, we will be working on the discussed 
area of improvement and solve the app's limitations. 

     
(a)     (b)      (c) 

Figure 6: 3D obstacle detection results; (a) table and chair, (b) large obstacles, (c) small objects 



Also, we would like to integrate this system with our 
previous work (Zhu et al., 2020) in indoor navigation 
apps and test with BLV users. 
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