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ABSTRACT. We consider a countable system of interacting (possibly non-Markovian) stochastic
differential equations driven by independent Brownian motions and indexed by the vertices of
a locally finite graph G = (V, E). The drift of the process at each vertex is influenced by the
states of that vertex and its neighbors, and the diffusion coefficient depends on the state of
only that vertex. Such processes arise in a variety of applications including statistical physics,
neuroscience, engineering and math finance. Under general conditions on the coefficients, we
show that if the initial conditions form a second-order Markov random field on d-dimensional
Euclidean space, then at any positive time, the collection of histories of the processes at different
vertices forms a second-order Markov random field on path space. We also establish a bijection
between (second-order) Gibbs measures on (R%)Y (with finite second moments) and a set of
(second-order) Gibbs measures on path space, corresponding respectively to the initial law and
the law of the solution to the stochastic differential equation. As a corollary, we establish a
Gibbs uniqueness property that shows that for infinite graphs the joint distribution of the paths
is completely determined by the initial condition and the specifications, namely the family of
conditional distributions on finite vertex sets given the configuration on the complement. Along
the way, we establish approximation and projection results for Markov random fields on locally
finite graphs that may be of independent interest.
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1.1. Discussion of results. Given a finite or locally finite infinite graph G with vertex set V'
and edge set F, and a positive integer d, consider interacting diffusions that satisfy the following
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stochastic differential equation (SDE) system:
dXy(t) = by(t, Xo(t), Xy, () (1)) dt + ou(t, Xo(t)) dW,(t), veV, t>0,

where the initial condition X (0) = (X,(0))yev is distributed according to some given probability
measure on (RY)V. Here, N,(G) C V denotes the neighborhood of v in the graph G, (by, 0y)vev
are given drift and diffusion coefficients, and (W,),cy are independent standard d-dimensional
Brownian motions. Diffusions indexed by vertices of a large graph arise in a variety of con-
texts, including statistical physics [5,24], as well as recent extensions of models stemming from
neuroscience [19,20] and systemic risk [22]. Under suitable conditions on the coefficients that
guarantee the existence of a unique weak solution to the SDE, for any ¢ > 0, we study the ran-
dom field on the space C}” generated by the collection of trajectories (X,[t] := (Xy(5))s<t)vev,
where C; (resp. C) denotes the space of R?-valued continuous functions on [0, ] (resp. [0,00)).

Our first set of results (Theorems 2.4 and 2.7) show that, under modest conditions on the
drift and diffusion coefficients that guarantee a unique weak solution to the SDE system on any
locally finite graph, if (X,(0))ycv is a second-order Markov random field on (R%)Y (as specified
in Definition 1.1) then for each t > 0, (X,[t])yev is a second-order Markov random field on C)' .
In fact, we establish this result for a more general class of SDEs, defined at the beginning of
Section 2, with possibly non-Markovian dynamics (and potentially infinite memory).

Our next set of results relate to an interpretation of the law of the SDE as a Gibbs measure
on path space (see Section 2.3 for precise definitions). Specifically, Theorem 2.9 establishes a
bijection between (second-order) Gibbs measures on (R%)" (with finite second moments) and a
set of (second-order) Gibbs measures on CV, corresponding respectively to the initial law and the
law of the solution to the SDE. As a consequence, we deduce a Gibbs uniqueness property, which
shows that the law of the SDE system is completely determined by its initial condition and its
specifications, namely the family of conditional distributions on finite sets given the configuration
on the complement. In particular, together these show (see Corollary 2.10) that when the initial
distribution is the unique second-order Gibbs measure associated with some specifications on
(RHV, then for each t > 0, the law of the SDE system is the unique second-order Gibbs measure
associated with corresponding specifications on path space C/ .

A key motivation for our study stems from recent results in [17] that show how a second-
order Markov property is useful for obtaining an autonomous description of the marginal (local)
dynamics of a particle and its neighborhood when the underlying graph G is a tree. For this
purpose, a stronger global Markov property is derived in [17, Proposition 3.15] in the setting of an
infinite regular tree G (or, more generally, a unimodular Galton-Watson tree) and homogeneous
coefficients, (by, 0,) = (b,0) for all v € V. Notably, the characterization of the local dynamics in
[17] relies on the precise order of the Markov random field (equivalently, range of interaction of
the Gibbs state), and not merely the Gibbs property. Such an autonomous description, together
with the local convergence result [16, Theorem 3.7] provides a complete and tractable law of
large number result for interacting diffusions on certain growing sparse networks.

In addition, such characterizations of SDEs in terms of Markov random fields are also of
broader interest, although past work has mainly focused on the case of interacting diffusions on
Z™, and often with an additional gradient structure imposed on the drift. The earliest work in
this direction appears to be that of Deuschel [10], who considered smooth, uniformly bounded
drifts of finite range that are locally of gradient type. The approach in [10] is based on estimates
of Dobrushin’s contraction coefficient, and crucially relies on the uniform boundedness and
gradient structure of the drift (see [10, Remark (3.5)i)]). This result was later generalized to the
case of unbounded drifts, though still of locally gradient form, by Cattiaux, Roelly and Zessin [3].
They used Malliavin calculus, a variational characterization and an integration-by-parts formula
(see also [21,26]), all of which exploit the gradient structure of the drift. In [21], an alternative
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cluster expansion method was also used when the gradient system can be viewed as a small
perturbation of a free field. Space-time cluster expansion techniques have also been applied to
non-gradient systems (although to address the slightly different question of the Gibbsian nature
of marginals; see also Remark 3.6), but these only apply for sufficiently small time horizons
[24] or sufficiently small memory and interaction strengths, measured in terms of the norm of
the drift functional [25]. An important work that goes beyond the gradient setting is that of
Dereudre and Roelly [8], which considers a system of interacting one-dimensional SDEs on Z™
with an adapted (possibly history-dependent) drift that is homogeneous (i.e., the same at all
vertices of Z™) and satisfies a linear growth condition, and with a constant diffusion coefficient
equal to the identity matrix. In order to circumvent the restrictive bounds on the the uniform
norm of the drift b or the time duration that arise in cluster expansion approaches, the work
[8] employs another technique, referred to as the so-called entropy method. However, the latter
work imposes the restriction that the initial condition is stationary (i.e., shift-invariant on Z™),
and has finite specific entropy and second moment, and the drift has sublinear growth, and show
that the trajectories of the SDE system form a Gibbs or Markov random field on CZ™, though
in a somewhat different sense that involves conditioning on all initial positions (X,(0))yecy, not
just those outside a given finite collection of vertices.

As mentioned above, we consider the much more general setting of (possibly non-Markovian
and time-inhomogeneous) interacting diffusions on arbitrary locally finite graphs G = (V, E),
with vertex-dependent, adapted, finite-range drift coefficients, and diffusion coefficients that may
depend both on the vertex and state (although we do impose continuity of the drift coefficients
since we want uniqueness of weak solutions). Moreover, we do not assume that the initial
conditions are shift-invariant (or, more generally, invariant under automorphisms of the graph).
Thus, we have to develop new techniques to prove our results. First, to establish the Markov
random field property for SDEs on finite graphs (Theorem 2.4), we apply a version of the
Hammersley-Clifford characterization of Markov random fields on finite graphs. The result
for the infinite graph (Theorem 2.7) is then obtained by a delicate approximation by finite-
dimensional systems in a way that preserves the Markov random field property, along with
careful relative entropy estimates. Along the way, we establish approximation results for Markov
random fields on locally finite graphs (see Section 5) that may be of independent interest. Thus,
our methods are quite different from those of the prior works described above. They do not
require any gradient structure of the drift, and are not restricted to small perturbations of
a free field. Like [8], we allow for unbounded drifts and non-Markovian dynamics involving
path-dependent coefficients. However, in constrast to [8] we consider arbitrary locally finite
graphs and more general initial conditions. Indeed, although the work of [8] also uses finite-
volume approximations, the pervasive stationarity assumptions they impose allow them to rely
on specific entropy, which cannot be used in our setting, and they also use a growth bound
on Z™ (e.g., in deriving equation (30) in the proof of Proposition 3.4 therein), which does not
hold for arbitary locally finite graphs. In addition, while the main goal in [8] is to construct
shift-invariant solutions of their SDE, with the Gibbsian (or Markov random field) description of
their process coming as a by-product, our objective is to identify the extent to which the second-
order Markov random field property holds, for which no shift-invariance is required. Lastly, the
correspondence between Gibbs measures on initial configurations on (R%)Y and Gibbs measures
on the whole path space C that we establish in Theorem 2.9 and Corollary 2.10 does not appear
in [8], although in the gradient seetting, the idea of such a correspondence appears in in [3] (see
Theorems 3.7 and 4.9 therein).

Finally, we also provide examples (see Section 3.3) that demonstrate that the Markov random
field property we establish cannot in general be significantly strengthened. Precisely, even on
a finite graph with gradient drift, in general the collection of histories (X, [t])yey do not form



4 LACKER, RAMANAN, AND WU

a first-order Markov random field, nor do the time-t marginals (X, (t))yev exhibit any non-
trivial conditional independence structure. This highlights the natural problem of identifying
special classes of systems for which simpler Markov random field properties are preserved, a
problem which we do not address but which has attracted considerable attention in certain
contexts. Specifically, in the context of diffusions, the papers [6,7,15,24,25,32, 33| have studied
the phenomenon of Gibbs-non-Gibbs transitions and the propagation (or lack thereof) of the
Gibbs property at the level of the time-¢ marginals, specifically whether the initial law of X (0)
being a Gibbs state on (R?)Y implies that the marginal law of X (t) is also a Gibbs state on
(R4)Y. See Remark 3.6 for a more detailed description of these works.

The next section introduces some common notation and basic definitions used throughout
the paper. The main results of the paper are stated in Section 2, with their proofs relegated to
Sections 3-6.

1.2. Notation and basic definitions. For any vectors a,b € R?, we use a-b or (a,b) to denote
the inner product. In this paper, unless explicitly stated otherwise, a graph G = (V, E) always
has a finite or countably infinite vertex set, is simple (no self-edges or multi-edges), and is locally
finite (i.e., the degree of each vertex is finite). We abuse notation by writing v € G to mean
v € V. For a graph G = (V, E) and a vertex v € V, we write N,(G) ={u €V : (u,v) € E} for
the set of neighbors of v in G, noting that this set is empty if v is an isolated vertex. A rooted
graph G = (V, E,0) is a graph equipped with a distinguished vertex ¢ € V, called the root.
For two vertices u,v € V, let d(u,v) denote the graph distance, i.e., the length of the shortest
path from u to v (with d(u,u) := 0). Also, let diam(A) denote the diameter of a set A C V;
precisely, diam(A) = sup{d(u,v) : u,v € A}. For a subset A C V, we define the first and second

boundaries
O0cA = {ueV\A: (u,v) € E for some v € A},
é%A = 0gAUIz(AUIGA).

We will often omit the subscript, writing simply 9?4 in place of 8%/1, when the underlying
graph G is clear. A cligue in a graph G is a complete subgraph of G, i.e., a set A C V such that
(u,v) € E for every u,v € A. Equivalently, a clique is a set A C V of diameter at most 1. Define
cli(G) to be the set of all cliques of the graph G. Similarly, we will say that any subset A C V
with diameter at most 2 is a 2-clique of the graph G and let cly(G) denote the set of 2-cliques
of G. Moreover, given a graph G = (V, E), H = (Vy, Ep) is said to be an induced subgraph of
Git Vg cVand Eg = EN{(u,v) : u,v € Vg }.

For a set X and a graph G = (V, E), we may write either XV or X for the configuration
space {(Ty)vey : Ty € X for every v € V}. We make use of a standard notation for configura-
tions on subsets of vertices: For = (2,)yey € XY and A C V, we write x4 for the element
4 = (2y)vea of X4 When X is a Polish space, we write B(X) for the Borel o-field, and
write P(X') for the set of Borel probability measures on X', endowed always with the topology
of weak convergence. Given any measurable space X, A C V, and measure v € P(X"), v[A]
represents the restriction of v to the set X, that is, the image measure under the restriction
map XV > (xv)veV = (xv)veA € XA-

Fixing d € N, we let C = C(R,;R?) denote the path space of R%-valued continuous functions
on Ry = [0,00), endowed with the topology of uniform convergence on compacts. For ¢ > 0,
let C; = C([0,t]; R?) denote its restriction to the time interval [0,¢], endowed with the uniform
topology. For x € C and ¢t > 0 we define ||z« 1= sup,cpoq |2(s)], and let z[t] = (2(s))s<t € C;
denote the restriction of the path z to the time interval [0,¢]. We assume that C and C; are
endowed with their respective Borel g-algebras. Also, for any countable set A and probability
measure @ on C4, we write Q; for the image under @Q of the map C* 3 (2,)pen — (24[t])ven €
C{‘. The o-algebra on a product space will always be the product o-algebra, unless explicitly

(1.1)
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stated otherwise. Given .J,m € N, a measurable function f : [0,00) x C/ — R™, is said to
be progressively measurable if for each t > 0, f(t, (zy)u=1,....7) = f(t,(Yu)u=1,..,s) Whenever
Tyt = yult] for allu =1,...,J.

We end this section by recalling the notion of a (first-order or second-order) Markov random
field, which plays a central role in the paper.

Definition 1.1. Given a measurable space X, and a (possibly infinite) locally finite graph
G = (V,E), let (Y,)pey be a random element of XV with some distribution v € P(xV). We
say that (Y,)yev, or equivalently its law v, is a first-order Markov random field (abbreviated
as IMRF) on XV if Y, is conditionally independent of Y(auaa)e given Yya, for every finite
set A C V. On the other hand, we say that (Y,),cv, or equivalently its law v, is a second-
order Markov random field (abbreviated as 2MRF) on X'V if Y, is conditionally independent of
Y(aua2a)e given Yyz 4, for every finite set A C V. When the space X V' is clear from the context,
we will simply say that (Y, )yev, or equivalently its law v, is a IMRF or 2MRF.

Remark 1.2. In Definition 1.1, it is important to stress that the sets A are required to be finite
even when the graph G is infinite. Allowing infinite sets A results in the stronger global Markov
property, which we do not study in this paper.

2. MAIN RESULTS

Given a locally finite graph G = (V, E) with a finite or countably infinite vertex set, we are
interested in a system of (possibly non-Markovian) interacting stochastic processes, indexed by
the vertices of the graph, that satisfy a (functional) SDE of the form

X, (1) = by(t, Xo, X, () dE+ 00(t, X)) AW, (1), v €V, (2.1)

where (W,)ycv are independent Brownian motions, and the initial law po € P((R%)Y), of
(X4(0))yev and the coefficients (b,,0,),cr satisfy the conditions stated in Assumption A or
Assumption B below, depending on whether the graph is finite or infinite. As mentioned in the
introduction, our main results concern the characterization of the law of the solution to the SDE
(2.1) as a 2MRF on the path space C (see Definition 1.1).

2.1. The finite graph case. We first consider the case when G is finite, and the conditions
stated in Assumption A below are satisfied. Recall, from Section 1.2, the definition of 2-cliques,
the notation for trajectories, z[t] = (z(s))s<t € C; for x € C, and the notion of a progressively
measurable functional.

Assumption A. We say that (G, b, o, uo) satisfy Assumption A if G = (V, E) is a finite graph
and if b = (by)vev, 0 = (04)vey, and pg € P((R)V) satisfy the following:
(A.1) There exist A\, € P(R?),v € V, such that the probability measure pg is absolutely

continuous with respect to the product measure uf = [[,cy Av € P((R?)Y) and the
density satisfies

T = 1 fuler),  se®), (2
0 Kecy(G)
for some measurable functions fx : (RY)X — Ry, K € cla(G), where cly(G) is the set of
2-cliques of G. In addition, pg has a finite second moment.
(A.2) For each v € V, the drift b, : Ry x C x CN*(©) — R? is progressively measurable.
Moreover, for each T' € (0, 00) there exists Cr < oo such that

6o (t, 2, Y, ()| < Cr (1 e+ D ||yuH*7t> :

UEN’U
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forallv e V,t € [0,T], x € C, and yn, (@) = (Yu)uen, (@) € (G,
(A.3) The diffusion matrices o, : Ry x C — R4 v € V| satisfy the following:
(A.3a) For each v € V, o, is bounded, progressively measurable and invertible, with
bounded inverse.
(A.3b) For each v € V| the following driftless SDE system admits a unique in law weak
solution starting from any initial position z € R%:

dX (1) = ou(t, Xo) dW,(t), X,(0) = . (2.3)

Remark 2.1. A necessary condition for Assumption (A.1) is that ug is a 2MRF and is absolutely
continuous with respect to the product measure f; this follows from a form of the Hammersley-
Clifford theorem stated in Proposition 3.2 below. If the density dug/dug is strictly positive, then
it factorizes as in (2.2) if and only if pg is a 2MRF.

Remark 2.2. If 0,(t,z) = 0,(t,2z(t)) depends only on the current state, not the history, and
satisfies the additional continuity condition limy ,; supy<s<r [0v(s,¥) — du(s,z)| = 0 for all
v € V, then Assumption (A.3b) holds as a consequence of Assumption (A.3a) and [29, Chapter
7].

The following proposition shows that, as a simple consequence of Girsanov’s theorem, As-
sumption A guarantees weak existence and uniqueness in law of the SDE system (2.1). Its proof
is given in Section 3.2, along the way to proving Theorem 2.4 below.

Proposition 2.3. When (G, b, 0, o) satisfy Assumption A, the SDE system (2.1) has a weak
solution that is unique in law.

We now state our main result for the SDE system on finite graphs.

Theorem 2.4. Suppose (G = (V,E),b,0, o) satisfy Assumption A, and let (X,),cv be the
unique (in law) solution of the SDE system (2.1) with initial law po. Then, for each t > 0,
(Xo[t])vev is a 2MRF on C). Moreover, (X,)pev is a 2MRF on CV.

The proof of Theorem 2.4, given in Section 3.2, relies on a certain factorization property
(stated in Proposition 3.2) of the density of the law of the SDE on finite graphs with respect to
a reference measure. Notice that in Assumption A, and throughout the paper, we assume there
is no interaction in the diffusion coefficients (i.e., no dependence of o, on X Nv(g)), a restriction
made also in the prior works [3,10,21,26]; the general case seems out of reach of our approach,
because the reference measure in the factorization property must crucially be a product measure.
This factorization property is also used in Sections 3.3.1 and 3.3.2 to show that, even when the
initial states (X,(0)),ey are ii.d., for ¢ > 0, in general (X,[t]),ey fails to be a IMRF, and
the time-t marginals (X,(t))yev can fail to be a Markov random field of either first or second
order. In fact, the counterexamples show that this does not hold even on a finite graph when o
is the identity covariance matrix, and the drift is of gradient type. This shows that, in a sense,
Theorem 2.4 cannot be strengthened.

2.2. The infinite graph case. We now consider the SDE system (2.1) in the case when G is
an infinite, though still locally finite, graph. The well-posedness of the SDE system is no longer
obvious and in particular does not follow from Girsanov’s theorem as it did when the graph
was finite. Indeed, on an infinite graph, when b, = 1 and o, = I3, v € V, for instance, it is
straightforward to argue, using the law of large numbers, that the law of a weak solution of
(2.1) up to some time t > 0 and the law of the corresponding drift-free equation are mutually
singular. This necessitates the following additional assumptions compared to Assumption A.
Recall from Section 1.2 that given a measure v on XV for some Polish space X, and A C V,
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v[A] denotes the restriction of v to A. Also, we use the notation m; ~ w2 to denote that the
measures w1 and my are equivalent, that is, mutually absolutely continuous.

Assumption B. We say that (G, b, 0, uo) satisfy Assumption B if G = (V, E) is a countable
locally finite connected graph and if b = (by)vey, 0 = (04)vev and pg € P((R?)Y) satisfy the
following:

(B.1) The initial law pg is a 2MRF on (R?)Y. Moreover, there exists a product measure
15 = [Tyey Ao € P((RHY) such that po[A] ~ pi[A] for each finite set A C V. Further,
the initial law ug satisfies

sup/ |20|% po(day) < oo. (2.4)
veV J(RA)V
(B.2) The drift coefficients (by,)yev satisfy Assumption (A.2), for some constants (C7)7s0.
(B.3) The diffusion matrices (o,)yev satisfy Assumption (A.3).

(B.4) The SDE system (2.1) is unique in law, and this law is denoted by P = P#o ¢ P(CV).

Remark 2.5. Using Assumption (A.3b) if the graph is finite or Assumption (B.3) if the graph
is infinite, we may define for any initial law v € P((R%)"") the measure P* € P(CY) to be the
law of the unique weak solution of the SDE system

dXo(t) = au(t, Xo) dWo(t), v eV, (Xo(0))ver ~ v. (2.5)

Note in particular that if we take v = p, where 4 is a product measure as in Assumption (A.1)
or (B.1), then P*#* too is a product measure.

We show in Lemma 5.2 that existence of a solution to (2.1) follows automatically from
Assumptions (B.1-3). However, it is worth commenting on the uniqueness condition in As-
sumption (B.4). The following proposition shows that a suitable Lipschitz condition is enough
to guarantee uniqueness; its proof is standard and hence relegated to Appendix A. Recall in the
following that ||z« = supsep g |2(s)| for z € C.

Proposition 2.6. Suppose Assumptions (B.1-3) hold, and (by)vev and (ov)vey are uniformly
Lipschitz in the sense that for each T > 0 there exist K1, Kp < 0o such that

1
bo(ts 2y, (@) = bu(t 2 Yy )] < B (o= a'llee + iy Do Iw—waller |
[N )|u€Nv(G)

lou(t, ) — ou(t,2')| < Kpllz — ||,

forallveV,tel0,T], z,2' €C, and va(G),yEVU(G) e CN (@) Then pathwise uniqueness holds
for the SDE system (2.1). In particular, Assumption (B.4) holds.

We now state our second main result.

Theorem 2.7. Suppose (G = (V,E),b,0,uo) satisfy Assumption B, and let (X,),cv be the
unique in law solution of the SDE system (2.1) with initial law pg. Then, for each t > 0,
(Xu[t])vev is a 2MRF on CY. Moreover, (X,)vey is a 2MRF on CV.

The proof of Theorem 2.7 is given in Section 5.2, with preparatory results established in
Sections 4 and 5.1. The factorization result used in the finite graph case is no longer applicable
in the infinite graph case, and thus the proof employs a completely different approach, involving
a rather subtle approximation argument, which is outlined in Section 4.1.
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2.3. Gibbs measures on path space. Our final results interpret our SDE system in the spirit
of Gibbs measures, for which we introduce the following notation. Given a Polish space X, a
graph G = (V, E), a random X"-valued element (Y,) ey with law v € P(x"), and two disjoint
sets A, B C V, we write v[A| B] to denote a version of the regular conditional law of Y, given
Y. Precisely, we view v[A | B] as a measurable map (kernel) from XZ to P(X4). Note that v
is a 2MRF if and only if v[A|V\A](zy\4) = v[A|0*A](zg24) for v-almost every z € XV and
every finite set A. We make use of the following terminology of Gibbs measures (see [11] or [23]
for further discussion of this classical framework).

Definition 2.8. Given a Polish space X, graph G = (V,E), and v € P(X"), define Ga(7) as
the set of 2MRFs v € P(X") such that, for each finite set A C V, we have v[A] ~ v[A] and also
v[A|0?A] = y[A| 9*A], almost everywhere with respect to v[0?A].

In other words, Ga(7y) is the set of (second-order, infinite volume) Gibbs measures corre-
sponding to the specification {y[A|0?A] : A C V finite}. Note that if v is itself a 2MRF then
Ga(7y) is nonempty, as it contains ~ itself. Moreover, it is straightforward to check that, if v and
v are 2MRF's, then v € Go(7) if and only if v € Go(v).

Recall that, by Assumption (B.4), the SDE system (2.1) is well-posed starting from any
initial distribution. Recall also from Section 1.2 that for P,Q € P(CY) we write P; and Q; for
their projections onto C}. The following bijection result is proved in Section 6.

Theorem 2.9. Suppose (G, b, 0, o) satisfy Assumption B. Let P € P(CY) be the law of the
solution of the SDE system (2.1) with initial law pg and define

Misie(p10) = {0 € Ga(puo) s sup [z, [Pwp(de) < oo},
veV JRA

and

Mopatn (o) == {Q eP(CY):Q; € Go(P") VYt > 0, sup /CV 12,(0)?Q(dx) < oo} )

veV
Then it holds that

Mini(10) = {@ 0 (X (0)) ™" : Q € Mpaan(u0)}- (2:6)

Moreover, the map Q — Q o (Xv(0))™! defines a bijection between Mopaen(p0) and Minit(po)-
In particular, if Q € P(CV) satisfies Q; € Go(P}'°) for all t > 0 and also Q o (Xv(0))~! = o,
then Q = PHo,

In fact, we will show in the proof of Theorem 2.9 that the bijection Q — Q o (Xy/(0))~*
between the sets Mpaeh(tt0) and Mini¢ (o) has inverse given by vy — P, where P*° denotes
the law of the solution of the SDE (2.1) with initial law 1, and we note that this SDE is unique
in law by Assumption (B.4). Additionally, if jo(K") = 1 for some compact set K C R, then
(recalling that membership in Ga(-) requires absolute continuity) (2.6) can be rewritten as

Galpo) = {Q o (Xv(0)) ' : Q € P(CY). Qu € Ga(PL") ¥t 2 0},
We conclude this section with the following simple corollary of Theorems 2.7 and 2.9.

Corollary 2.10. Suppose (G, b, 0, ug) satisfy Assumption B and PHO represents the unique law
of the SDE (2.1). If Go(po) is a singleton, then the set Mpaen (o) defined in Theorem 2.9 is
equal to the singleton {PH°}, and hence, P"0 is completely characterized by its specifications
PI[A|0%A],t > 0, for finite AC V.
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Proof. Since Assumption (B.1) ensures that pg is a 2MRF with finite second moment, the set
on the left-hand side of (2.6) always contains pg. Thus, if Ga(po) is a singleton, then by Theorem
2.9 the set Mpaen(£0) is also a singleton. On the other hand, by Theorem 2.7, for each ¢t > 0 it
holds that P/ is a 2MRF and thus P/ € Go(P}*). Hence, P* € M puen(po)- O

3. INTERACTING DIFFUSIONS ON A FINITE GRAPH

In Section 3.1 (specifically Proposition 3.2) a useful characterization of a (positive) 2MRF
is derived in an abstract setting. This is then used in Section 3.2 to prove Theorem 2.4; along
the way Proposition 2.3 is also established. In Sections 3.3.1 and 3.3.2 this characterization is
applied to demonstrate via explicit examples that the path-space 2MRF property established in
Theorem 2.4 (and hence, Theorem 2.7) is sharp, in the sense that it cannot be improved to a
1IMRF property, and in the sense that there is in general no IMRF or 2MRF property for the
time-t marginal laws.

3.1. Clique factorizations. We start by studying the relationship between random fields and
factorization properties of their joint density with respect to a given reference measure. Through-
out this section, we work with a fixed finite graph G = (V| E), as well as a fixed Polish space
X, the state space. Recall the definition of the diameter diam(A) of a set A C V, 1-cliques and
2-cliques of a graph, and lst-order and 2nd-order MRFs given in Section 1.2.

First, we recall a well-known theorem often attributed to Hammersley-Clifford, which can
be found in various forms in [11, Theorem 2.30] and [18, Proposition 3.8 and Theorem 3.9], the
latter covering our precise setting.

Proposition 3.1 (Hammersley-Clifford). Assume the graph G = (V,E) is finite. Assume
v € P(XY) is absolutely continuous with respect to a product measure v* =[],y 0y € P(XV)
for some 0, € P(X), v e V. Consider the following statements:

(1) v is a IMRF.

(2) The density of v with respect to v* factorizes in the form

dv
o (2) = Il fxx), =zexV,
KEC]l(G)

for some measurable functions fr : XX — Ry, for K € cli(G).
Then (2) implies (1). If also dv/dv* is strictly positive, then (1) implies (2).

We next formulate an analogue for a 2MRF.

Proposition 3.2 (Second-order Hammersley-Clifford). Assume the graph G = (V, E) is finite.
Assume v € P(XV) is absolutely continuous with respect to a product measure v* = [Loev 00 €
P(XY) for some 0, € P(X), v € V. Consider the following statements:

(1) vis a 2MRF.
(2) The density of v with respect to v* factorizes in the form

dv
Kecly(G)

for some measurable functions fx : X5 = R, for K € cly(Q).
Then (2) implies (1). If also dv/dv* is strictly positive, then (1) implies (2).
Proof. Define the square graph G* = (V, E') by connecting any two vertices of distance 2. That

is, let
E = {(u,v) € VZ:1<d(u,v) <2},
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where d is the graph distance on G. It is straightforward to check the following properties:

(i) The 1-cliques of G? are precisely the 2-cliques of G. That is, clo(G) = cl; (G?).
(ii) We have 952 A = 04 A for any set A C V.

It follows from (ii) that the statement (1) is equivalent to
(1) v is a IMRF relative to the graph G2.
On the other hand, it follows from (i) that (2) is equivalent to

(2’) The density of v with respect to v* factorizes in the form

dv
(@) = Il rx@x), =zeaV,
Kecli (G2)

for some measurable functions fr : X% — R, , K € cl;(G?).
The equivalence of (1’) and (2’) follows from Proposition 3.1. O

The 2MRF property is the more intuitive, but the second property of Proposition 3.2 will
be quite useful in the analysis as well. Hence, we give it a name.

Definition 3.3. We say that v € P(XV) has a 2-clique factorization with respect to v* if the
density dv/dv* can be written in the form (3.1).

Remark 3.4. For a finite graph G = (V, E) and Polish space X, the following cutset charac-
terization of IMRF’s on XV is well known: An XV-valued random element (Yy)vev is a IMRF
if and only if Y4 is conditionally independent of Yg given Yg for any disjoint sets A,B,S C V
with the property that every path starting in A and ending in B contains at least one vertex
of S. Given the correspondence between a 2MRF on a graph and a IMRF on the square graph
(established in the proof of Proposition 3.2), this is easily seen to imply the following cutset
characterization of 2MRFs: An XV-valued random element (Yy)vev is a 2MRF if and only if Yy
is conditionally independent of Y given Yg for any disjoint sets A, B, S C V with the property
that every path starting in A and ending in B contains at least two adjacent vertices of S.

3.2. Proof of the second-order Markov random field property for a finite graph.
We now present the proofs of Proposition 2.3 and Theorem 2.4. Throughout this section, we
work with a fixed finite graph G' = (V, E) and consider the canonical measurable space CV' =
(CV,B(C")), and let (X,)yev : CV — CV denote the canonical processes, that is, X, ((7y)uey) =
zy for @ = (zy)uev € CV, for v € V. Let po, i € P((Rq)") be as in Assumption (A.1), and
let P* = P*#o € P(CY) denote the law of the unique solution of the driftless SDE system (2.5)
starting from initial law p; (the well-posedness of which is given by Assumption (A.3b)). Recall
that pf and thus P* are both product measures. Then, recalling that dX,(t) = o,(t, X,,) dW,(t)
for v € V, define the following local martingale (under P*):

My (1) = /Ot(a,,ajrlbv(s,X,,,XNU(G)) CdXy(s), >0, (3.2)

where we use the shorthand notation (o0, )~ by(s, 2y, = N,(@)) to denote the map
R, xC" 3 (s,2) — (av(s,xv)avT(s,xv))*lbv(s,mv,xm(g)) € R% (3.3)
Also, given any continuous local martingale M, we let £(M) denote the stochastic exponential
£,(M) := exp <M(t) _ ;[M](t)) L t>0, (3.4)

where [M] denotes the (optional) quadratic variation process of M.
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Let (fK)Kec,(a) be as in Assumption (A.1). For each t > 0, define the measure P; € P(C)

by
Py d o
;= 5 (Xv(0)& M, |,
L ) (z )

= I ko) I] &), (3.5)

Kecla(G) veV

with £(M) and P* as defined in the previous paragraph. Note that W, := [ o, (s, X,) dXy(s),
v € V, are independent d-dimensional Brownian motions under P* by Remark 2.5. Therefore
the stochastic exponentials appearing in (3.5) are true P*-martingales due to the form of M,
n (3.2), the linear growth assumption (A.2) on the drifts and the non-degeneracy of o,; see
Lemma B.1 with Q = P*, X = (X,)vev and fy(t,2) = 0, by(t, 20, Ty, (), v € V. Further,
observe that (M,),cy are orthogonal under P*. So Girsanov’s theorem [13, Corollary 3.5.2]
implies that under P;, W, := W, — fo (s, X, )by (s, Xo, X, (@) ds, v € V, are independent
d-dimensional standard Brownian motions on [0, ¢]. From this it follows that under P;, X solves
the SDE (2.1) on [0,¢], and the same argument also shows that the restriction to [0,¢] of any
solution to (2.1) must have law P, on C/. Thus, we have uniqueness in law. Weak existence
follows from Kolmogorov’s extension theorem [12, Theorem 6.16] on observing that {P;,t > 0}
form a consistent family in the sense that Py is the restriction of P; to C;/ for eacht > s > 0

(due to the martingale property of glfi) This completes the proof of Proposition 2.3.

On the other hand, the fact that for each ¢t > 0, (X,[t])vey is a 2MRF on C) follows
from (3.5) on applying Proposition 3.2 with X = C; and p* = P, noting that P/ is a prod-
uct measure on C/ and that, for each v € V, {v} U N,(G) is a 2-clique and M, of (3.2) is
X{v}un, (q)-measurable. This proves the first assertion of Theorem 2.4. For the second assertion
of Theorem 2.4, denote by P = P*0 € P(C") the law of the unique solution of the SDE system
(2.1) with initial law pg. Fix a finite set A C V' and bounded continuous functions f, g,h on
CA,CO*A cVNAUPA) regpectively. Fix ¢ > 0 and let Fy := 0{Xp24[t]} and Foo := o{Xs24}.
Below, with some abuse of notation, for any B C V, we will also interpret elements y € CZ as
elements of C® by simply setting y(s) = y(t) for s > t. Note that with this identification, for
any € C¥ and B C V, 2p[t] = xp in CP as t — oo. Then, noting that o(Ui>0F;) = Foo,
invoking the martingale convergence theorem (in the third equality below), and using the fact
that P, = P o (Xy[t])~! is a 2MRF on C) for each ¢ (in the second equality below), we have

E” [f(X4)9(Xp2.4)h( Xy (au52.4))]
= lim lim E” [f(Xa[s])g(Xp2[t])R(Xi\(aua24)[5])]

§—00 t—00

= lim lim E” [E” [f(Xals]) | F&] 9(Xozalt)E" [h(Xv\(aus24)[s]) | Fe]]

§—00 t—00

= lim E” [E” [f(Xals]) | Foc] 9(Xa24)E" [M( X1\ (au024)[5]) | Fos]]

§—00

=E" [E7 [f(Xa) | Foo] 9(Xo2)E” [A(X v\ (au02)) | Foo]] 5 (3.6)

where we have also made repeated use of the boundedness and continuity of f,g,h and the
bounded convergence theorem. This shows that X4 and Xy (4us24) are conditionally indepen-

dent given Xy24 under P, that is, P is a 2MRF on CY. This completes the proof. O

3.3. Illustrative examples. We now provide examples to show that the 2MRF property cannot
in general be strengthened.
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3.3.1. The failure of the first-order MRF property for trajectories. In general, P, fails to be a
first-order Markov random field on C} for any ¢t > 0, even if the initial states are i.i.d. To
see why, notice that the density dP,/dP; given by (3.5) does not in general admit a clique
factorization. Indeed, for v € V and ¢ > 0, we recall the definition of M, from (3.2) and &(M,)
from (3.4), which we write in full as

t
&(M,) = exp (/ (000 ) " bu(s, Xo, Xny(c)) - dXu(s)
0

1

t
— 2/(; <b1)(87XU7XNv(G))7 (O-'Uo—q—)r)_lbv(s, XU’XNu(G))> dS) .

Noting that {v} U N,(G) is a 2-clique but not a 1-clique, this reveals why one cannot hope
for a factorization over 1-cliques. For example, consider the “nice” case where o, = I and
bo(8; Tv, Tn,(@) = Dueny, (@) (@ul(s) — zo(s)). (Equivalently, by(s,zv, 2n,(q)) = Va,h(z) is of
gradient-type with potential h(z) = _%E(U,U)EE |z — x|, where E is the edge set of G.)
Then the first term in the above exponential splits nicely into a sum of pairwise interactions

2 ueN, () fOt(Xu(s) — Xy(s)) - dX,(s), but the second term becomes

It is this term which fails to factorize further over 1-cliques as opposed to 2-cliques and thus pre-
cludes the first-order Markov property whenever dug/duf is strictly positive due to Proposition
3.1.

To informally provide a different (but arguably more intuitive) perspective on why the first-
order Markov property for past histories fails, consider the case when G is a line segment of
length ¢ = 3, labelling the vertices —1,0,1. Then, although the driving Brownian motions are
all independent and the dynamics of each of the two extreme vertices only depend on its own
state and the state of the center vertex, at any time ¢, conditioning on the past history of the
states of the center vertex, does not make X_1(¢) independent of X (t) because the conditioning
correlates the Brownian motions W_; and Wj on the interval [0,¢]. This happens because the
past history of Xy is influenced by both W_; and Wy via X_; and X;. On the other hand,
to see why the 2MRF property nevertheless does hold, note that if G were a line segment of
length 4, labeling the vertices {—2,—1, 1,2}, then conditioning on the history of the states of the
two center vertices —1 and 1 no longer correlates the Brownian motions W_o and W5 since the
dynamics of each of the conditioned vertices depends on a different driving Brownian motion.
Thus, although the conditioning changes the distribution of W_g5 and Ws (for instance, they need
no longer be Brownian motions), they remain independent, and hence X_5(t) is conditionally
independent of Xo(t) in this case.

Remark 3.5. There are certain situations in which P, is, in fact, a IMRF for each ¢ > 0 (even
though we know from the above examples that this is not in general the case). For example,
suppose that for every v € V, there exists a clique K, of G with v € K, C N,(G) such that
by (t, Ty, a:NU(G)) = Zv (t,zy,xK,) depends on T, (g) only through k. Suppose also that dpo/dug
admits a 1-clique factorization. Then, recalling (3.5), note that for each v the martingale M, is
measurable with respect to X, , and deduce from Proposition 3.1 that P; is a first-order Markov
random field. For a concrete example that has the above form, consider the case when G is a
triangular lattice with V' = {0,0,1,...,m}, for some m € N, with the central vertex ¢ having the
neighborhood N4(G) = {0,...,m} and for each v € V\ {0}, N,(G) := {g,v+1,v—1}, where the
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vertices are to be interpreted mod m + 1. Further, suppose the initial conditions are i.i.d. and
that for some ¢ € R, by(t, 7y, T, (@) = c(Tp + To11) for v € V '\ {0} and by(t, 74, Tn,(q)) = T
Then this provides a specific example with K, = {g,v+1} C N,(G) for v € V'\ {g} and K, = 0.
In a similar spirit, the directed cycle graph model of [9] provides another example.

3.3.2. The failure of MRF properties for time-t marginals. It is natural to wonder if and when
the time-t marginals P; o X(t)~! € P((R?)Y) remain a first- or second-order Markov random
field, given that this property is true at time 0, or even given i.i.d. initial conditions. This
question is related to propagation of Gibbsianness and Gibbs-non-Gibbs transitions that have
been studied in the literature, which is discussed in greater detail in Remark 3.6.

Here, we provide a simple example where both the first-order and second-order Markov
property fail for time-¢ marginals. In fact, in this simple model we will see that there is no non-
trivial conditional independence structure. Consider the segment with 5 vertices: G = (V, E)
given by V. ={1,2,3,4,5} and E = {(i, + 1) : i = 1,2,3,4}, and consider the SDE system

dX1(8) = (Xa(t) — 2X1 (1)) dit + dWA (1),
dXZ(t) = (Xi_l(t) + Xi+1(t) — ZXZ‘(t)) dt + dWi(t), 1=2,3,4, (37)
dXs5(t) = (Xa(t) — 2X5(t)) dt + dWs(2),

with X;(0) = 0 for each i. Once again, note that the drift here is of gradient type with potential
h(z) = Z?Zl TiTiy1 — Z?Zl z7. Letting X (¢) denote the column vector (Xi(t),..., X5(t)) and
similarly for W (t), we may write this in vector form as

dX (t) = LX (t) dt + dW (t), (3.8)

where L = A — 21 is the adjacency matrix A of the graph minus twice the identity I:

L=]10 1 -2 1 0
0o 0 1 -2 1
o o o0 1 =2

The solution of the SDE (3.8) is given by
t
X(t) = eLt/ e L dW (s), t>0.
0

Noting that L is symmetric and invertible, we deduce that X () is jointly Gaussian with mean
zero and covariance matrix

t

1

E[X ()X ()] = / el ds = QL*1(62“ —1). (3.9)
0

This covariance matrix can easily be computed explicitly by noting that the tridiagonal Toeplitz

matrix A is explicitly diagonalizable. To spare the reader any tedium, we provide only some

pertinent snapshots. At time ¢ = 2 the covariance matrix is

0.3611 0.2388 0.1435 0.0767 0.0324

0.2388 0.5046 0.3156 0.1759 0.0767
E[X(2)X(2)"] = | 0.1435 0.3156 0.5370 0.3156 0.1435 | . (3.10)

0.0767 0.1759 0.3156 0.5046 0.2388

0.0324 0.0767 0.1435 0.2388 0.3611
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Using the well known formula for conditional measures of joint Gaussians, we compute from this
that

0.2481 —0.0058

which reveals that X;(t) and X3(t) are not conditionally independent given Xs(¢). Hence,
(Xi(t))icc is not a first-order Markov random field. Similarly, by computing

0.2480 —0.0030)

COV(XI (t)> X4(t) |X2(t)7 X3<t)) = (_00030 0.3189

we see that Xj(t) and X4(t) are not conditionally independent given (X2(t), X3(t)). Hence,
(X;(t))ieq is not a second-order Markov random field.

In fact, in this example, there is no non-trivial conditional independence structure, in the
sense that there are no two vertices 4, j such that X;(¢) and X,(t) are conditionally independent
given { X (t) : k € G\{4, j}} for some ¢t > 0. This can be read off from the the so-called precision
matriz, which is simply the inverse of the covariance matrix, Q(t) := (E[X ()X (t)"])~". As
is well known and can easily be seen from the form of the multivariate Gaussian density, the
precision matrix reveals the conditional independence structure (see, e.g., [18, Proposition 5.2]),
in the following sense: For ¢ > 0 define the graph G(t) = (V, E(t)) with the same vertex set V
but with (i,j) € E(t) if and only if Q;;(t) # 0. Then X(t) is a (first-order) Markov random
field with respect to the graph G (t). In our example, é(t) is the complete graph for each ¢ > 0,
and this Markov property is vacuous. (Note, however, that Q(t) — 2L as t — oo because L
is negative definite, and the unique invariant measure of this diffusion is a first-order Markov
random field with respect to the original graph G.)

A variation on this example gives rise to another interesting phenomenon. Suppose we
modify the example by replacing the diagonal entries of L with zeros, i.e., remove all the —2X
terms from the drifts in (3.7). Then the covariance matrix is again invertible, and now Q1 4(t) =
Q2,5(t) = 0 for all ¢ > 0, where we continue with the notation of the previous paragraph. That

is, G(t) is not the complete graph, but rather the complete graph with the edges (1,4) and (2, 5)
removed, for each ¢ > 0. In particular, X;(¢) and X4(¢) are conditionally independent given
(Xa(t), X3(t), X5(t)), for each t > 0.

Remark 3.6. As mentioned in the introduction, one motivation for studying such conditional
independence questions is that (a stronger version of) the MRF structure of interacting SDEs can
lead to an autonomous “local characterization” of the dynamics at a vertex and its neighborhood,
as developed in the quite different setting of unimodular Galton-Watson trees in [17]. From this
perspective, it would be of interest to investigate if there are non-trivial special cases when
the first-order or second-order MRF property for time-t marginals propagates. A different but
related question that has been studied in the literature is propagation of Gibbsianness for an
infinite system of interacting real-valued diffusions indexed by Z¢. Specifically, the work [7]
considers a collection of interacting diffusions, indexed by Z¢, with identity covariance and a,
drift that is the gradient of a Hamiltonian function associated with a certain interaction potential
®, and with an initial distribution that is also a Gibbs measure (as in Section 2.3) with respect
to a Gibbsian specification (in the sense of [11, Chapter 2]) associated with another interaction
potential ®g, where both interaction potentials ® and ®¢ are assumed to be of finite range and
satisfy certain smoothness conditions. It is shown in [7] that when either ¢ or the interaction
strength is sufficiently small, the time-t marginals are strongly Gibbsian, that is, associated with
Gibbsian specifications that have an absolutely summable, though not necessarily finite range,
interaction potential. Extensions of these results to the case of interacting real-valued diffusions
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on Z% with non-Markovian drifts with finite memory (again with finite range interactions and
identity covariance) were later obtained in [24] and [25]. The restrictions on the time and
interaction strength in these works arise from the fact that perturbative arguments are used.
However, in general for moderate interaction strengths and moderate times, the time-t marginals
can fail to be Gibbsian (see, e.g., [33], as well as the survey [32], which also discusses related
results for spin systems).

4. FINITE-GRAPH APPROXIMATIONS FOR MARKOV RANDOM FIELDS

In this section we establish some important preparatory results that are used in the proof of
Theorem 2.7, which extends the finite graph results of Theorem 2.4 to the infinite graph setting.
Fix (G, b, 0, ug) that satisfy Assumption B and suppose G = (V, E) is countably infinite. Recall
that P = P* ¢ P(CY) and P** ¢ P(CY) denote the unique law of the SDE systems (2.1)
and (2.5), respectively, both with initial laws g, which are well-posed by Assumptions (B.4)
and (B.3). To show that P, = P/ forms a 2MRF on C}, we can no longer apply the clique
factorization arguments used for finite graphs because the formula (3.5) does not extend to
infinite graphs. Even worse, the density dP;/dP;* therein does not exist, and it seems impossible
to establish directly that by projecting to a finite set A C V' we have a density dP;[A]/dP;[A]
that admits a 2-clique factorization. Instead, we approximate the measure on the infinite graph
by 2MRFs on a growing sequence of finite graphs, arguing that the desired 2MRF property
passes to the limit. To highlight some of the subtleties that arise in such an approximation
argument, and to better motivate the other results established in this section, we first desribe
the approximating sequence of measures in Section 4.1. Then in the subsequent two sections we
establish some general properties of finite-graph 2MRF's to be used in the proof of Theorem 2.7
in Section 5.2, which are also of independent interest.

4.1. Construction of the approximating sequence of SDEs. We fix (G, b, 0, 119) that sat-
isfy Assumption B. As in Section 3.2, we will work with the canonical measure space CV =
(CV,B(CY), P*H0), and let (X,)pev : C¥ — CV again denote the canonical processes. Also,
recall from Section 1.2 that given any measurable space X', measure u € P(X") and subset
U CV,u[U] € P(XY) denotes the restriction of u to the set XU.

Let (Vp)nen be an arbitrary sequence of subsets of V' such that |J, V,, =V, and let G,, =
(Vp, Ey), for some edge set E, to be specified later. Also, for each n € N and v € V,,, let
b : Ry x C x CcNe(Gn) 5 RY be any progressively measurable map that satisfies the same
conditions as b, in Assumption (B.2). Fix ¢ > 0 and for each n, define P/* = P'*" € P(C}) by

dpr  dpton : .
dP*?uo = d.Pt*”uO - H &t </0 (O—”UUI) 1bv (SaXmXNv(Gn)) ) dXU(8)> ) (41)
t t ’UEVn

where, as before, (UUJJ)_lbﬁ(s,x,xNv(Gn)) denotes the map (3.3). We can apply Lemma B.1
with Q = P""0, X = (X,)pey, and f(t,x) = (a;lbﬁ(t,xv,xNv(Gn)))vevn, to conclude that
the stochastic exponential in (4.1) is a true P**°-martingale, due to the linear growth, non-
degeneracy and boundedness properties of b)' and o, in Assumptions (B.2) and (B.3). Hence,
the family (P}*)¢~0 is consistent in the sense that the restriction of P/* to CY is precisely P for
each t > s > 0. Thus, by the Kolmogorov extension theorem, (P/*);~¢ uniquely determines a
probability measure P" on CV. Now, from (4.1), (2.5) and Girsanov’s theorem [13, Corollary
3.5.2], it follows that under P™ the canonical process solves the SDE system

dX,(t) = 02t Xo, Xy () dE + 0u(t, X,) AW, (1), v € Vi,

dX,(t) = ou(t,X,)dW,(t), veEV\V,, (4.2)
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with (X, (0))yev ~ o, where (W,)yev are independent Brownian motions under P™. Note that
for v € V,,, the third argument of b] looks only at the states in N,(Gy), and thus b} depends
only on the states of vertices in G,. Thus, P"[V,] is precisely the law of the finite-graph SDE
system (2.1) with inputs (G, (b)})vev, (00)vev, to[Va))-

In order to implement our approximation argument we would like to choose G,, and (b})yev
such that both P" — P and each P['[V,] is a 2MRF. In order to have P" — P we should
naturally choose V;, increasing to V' and b] to behave like b, for most v. But the 2MRF
property is more delicate. It would follow from the finite-graph result of Theorem 2.4 that
Pl[V,] is a 2MRF on C"» only if pg[V;,] were a 2MRF on (R%)Y". But puo[V;,] is not necessarily
a 2MRF for arbitrary V,, (e.g., with G,, the induced subgraph), even though ug is a 2MRF on
the full graph G by assumption; in other words, the 2MRF property is not in general preserved
under projections, as illustrated in Example 4.1 below. However, in Section 4.2 we show that
for any Markov random field on an infinite graph G = (V, E), it is possible to identify a suitable
increasing sequence of vertices (V,),en and associated graph G,, = (V,,, E,) for each n € N that
is a slight modification of the induced subgraph on V;,, such that the desired projection property
holds. Then, in Section 4.3 we prove some results on preservation of a class of conditional
distributions of 2MRF's under restriction to induced subgraphs. The above results are combined
with tightness and convergence estimates for the approximating sequence {P™},cn obtained in
Section 5.1 to complete the proof of Theorem 2.7 in Section 5.2.

4.2. Projections of Markov random fields. We first provide a simple example to illustrate
that the restriction of an MRF to an induced subgraph need not remain an MRF.

Example 4.1. Suppose G is a finite two-dimensional lattice, with vertex set V identified with
{—n,...,n}? and the usual nearest-neighbor edge set, and let (Y,),eq be a IMRF on RY.
Consider the line subgraph H = {(i,0) : i = —n,...,n} in G, and consider the restriction
(Yy)ver of the IMRF to H. Note that every path in H that starts in A := {(0,0)} and
ends in B = {(2,0)} must traverse through the vertex of S := {(1,0)}. Thus, by the cutset
characterization of IMRF’s given in Remark 3.4, for (Y;)yen to be an IMRF on H, Y ) must
be conditionally independent of Y5 o) given Y(; o). However, by the same cutset characterization,
it is clear that this conditional independence cannot be deduced from the IMRF property of
(Yy)veg on G since there are paths in G that start in A and end in B that are disjoint from S.
Similarly, if we assume (Y}, )yeq is a 2MRF, the configuration (Y3 ),cpm can fail to be a 2MRF.

This example does suggest, however, that we can restore the MRF property by enlarging
the edge set of the induced subgraph to reflect the lost connectivity. The following lemma gives
one way to do this which is certainly not the only way, but it serves our purpose. For a random
element (Y,),er of XY with law v € P(XV), and for a set A C V, recall that we write v[A] to
denote the law of Y4, the coordinates in A.

Lemma 4.2. Fiz a rooted graph G = (V,E,¢) and n > 4. Define V,, :={v € V : d(v,0) < n}
and U, .=V, \ V,—2, where d denotes the graph distance. Define a graph G,, = (Vp, E,,), where

E, = {(u,v) € V; x Vj : (u,v) € E} U{(u,v) € Up X Up,u # v}.

(i) For any A C V,,_3, it holds that 03,A = 8énA. Also, for any A’ C Vo, OLA' C 8énA’.
(i) If K € cla(G) satisfies K C V,,, then K € cla(Gy,).
(iii) If a XV -valued random variable (Yy)yev 45 a 2MRF with respect to G, then (Yy)vev, 15 a
2MRF with respect to G,,.
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(iv) Suppose V is finite and the law v of Yy admits the following 2-clique factorization with
respect to a product measure v* =[],y 0, € P(XY) for some 6, € P(X),

L= T i),

Kecla(G)

for some measurable functions frr : X5 — Ry, for K € clo(G). Then v[V,] admits a
2-clique factorization
dv|Vy)
dv*[V,]

@)= [ Fkl=x),

K6C12 (Gn)

for some measurable functions f% : XX — Ry, for K € cla(G,,), which additionally satisfy
the consistency condition f% = fx for K € cla(G) such that K C Vj,_3.

Proof.

(i) From the definition of E,, it follows quickly that (a) for A’ C V,,_3, g A’ = 0g, A’, and (b)
for A" C V1, 0gA” C ¢, A”. Tterate these observations to prove the claims.

(ii) Let dg and dg, denote the graph distance in G and G, repsectively. From the definition
of E,, it is straightforward to argue that dg, < dg on V,, x V,,. Indeed, for any u,v € V,
and any path from u to v in G, there is a path from u to v in G,, which is not longer. This
implies for every u,v € V,,, dg(u,v) < 2 implies dg, (u,v) < 2, which proves property (ii).

(ili) Let (Yy)verv be a 2MRF with respect to G. Let A C V,,, B = V,, \ (AU 83 A), and

= 8%7114. Assuming without loss of generality that A and B are nonempty, we must
prove that Y4 and Yp are conditionally independent given Ys. First notice that one cannot
have both ANU, # () and BN U, # 0, as this would imply dg, (4, B) < 1, contradicting
the definition of B. Therefore we must have either AN U, =0, BNU, = 0, or both.

Case 1: Suppose AN U, = (. This means A C V,_ and hence 624 C S by (i).
Since Y4 and Yy ( AUBZA) are conditionally independent given Yoz 4, we then have condi-
tional independence of Y4 and Yg given Ys. Indeed, this uses the elementary fact that if
(Z1, Zo, Zs, Zy) are random variables with Z; conditionally independent of (Z2, Z3) given
Zy, then Zj is conditionally independent of Zs given (Z3, Zy).

Case 2: Suppose BN U, = 0. This means B C V,,_» and hence, again by (i), 03B C
9% B. Also note that 83, B C S (since otherwise AN dg B # 0, which contradicts the
definition of B). Since the 2MRF property with respect to G implies Yz and YV\( BUO2B)
are independent conditioned on YE% p, we then have conditional independence of Yp and

Y4 given Ys. Since A C V,, was arbitrary, this proves that (Y3 )yey;, is a 2MRF with respect
to G,.

(iv) Let IC,, denote the set of K € cly(G) such that K C V,. Recalling that v* is a product
measure, using the assumed clique factorization of v, we can then write

dv[V,,] B B )
dv*[V;,)] (zv,) = /;(V\vn KGEQI(G) Jr (@) vIIV\Va](dayy,)
-l K(f”K)/ [I ey V\Vilday,).
Kekn, AV\Vn (G

Now note that any K € clo(G)\K, is not contained in V,,, and as a 2-clique it can have
no neighbors in V,,_o. Recalling that U,, = V,,\V,,_2, we see that the integral expression is
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xy,-measurable; that is, there is a measurable function g, : X Un — R, such that

gn(zu,) = I fexlx) v V\Vil(dany,).
XV\Vn

Keca(G)\Kn
Note that U, € cla(G,,) by definition of G,,. Since clearly K,, C cla(Gy,), we find that the
expression
dv[V,,]
dv*[Vy]

(@v,) = [I fx@K)gn(zv,)

Kek,

exhibits a 2-clique factorization of v[V},] over the graph G,, satisfying the desired consistency
condition.

O

4.3. Conditional distributions of second-order Markov random fields. First, in Lemma
4.3, given a 2MRF with respect to a graph, and another 2MRF on a subgraph, or more generally
given MRFs on two overlapping graphs, we identify conditions under which the conditional
distributions of a subset in the intersection (given its complement) coincide for both 2MRFs.
This will be used to establish, for a suitable choice of b”, a certain consistency condition for the
sequence of approximating measures {P"},cn used in the proof of Theorem 2.7. Let us briefly
recall a notation we introduced more carefully just before Theorem 2.9: For v € P(X") and
A, B C V we write v[A| B] for the conditional law of the A-coordinates given the B-coordinates.

Lemma 4.3. Let G = (Vg, Eq) and H = (Vi, Ex) be finite graphs, and assume V* C Vo N Vg
satisfies

EcnN(V*xV*)=Egn (V' x V). (4.3)

Moreover, let A C V* satisfy 04 A C V* and 04,A C V*. Then 05A = 0%A =: §?A, and it
holds that

(Kech(G): KNA£D} ={K €cly(H): KNA#0} = Ka. (4.4)

Neat, let v € P(XVH) and v¥ € P(XVe), and suppose there exists a product measure v* =
[Toeviovy, O € P(XVeYVE) for some 0, € P(X), v € Vg UV, such that the densities factorize
as

v’ B a
m(fﬁ\/@)— H fE(@K),

Kecly (G)

dvt?
dv* [VH]

(wVH): H fllg($K)7
Kecly(H)

for measurable functions (f : XK Ry ) kecl, () and (f¢ . xk — Ry )kecs(q) satisfying

i = f¢ for all K € Ka. Then v[A|0?A] = vC[A|0%A], almost surely with respect to

v*[0? A.

Note that Lemma 4.3 is vacuously true if V* is empty.

Proof of Lemma 4.3. Let A C V* satisfy (B%A C V* and 04 A C V*. It is immediate from (4.3)
that 0% A = 0% A, and we write simply §%A for this set. To check (4.4), note that if K € clo(G)
intersects A, then K C AUG*A C V*. By (4.3) the edge sets of G and H agree when restricted
to V*, and we deduce that K € cly(H); this proves C in (4.4), but the reverse inclusion follows
by the same argument. Note that, with 4 as defined in (4.4), we have also shown that

KeKys=KcV* (4.5)

Let us work in the rest of the proof on the canonical probability space (XVeWVa  B(xValVi) 1),
with E denoting expectation on this space, and all equations are understood to hold v*-almost
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surely. Let I = (I)yev uvy denote the identity map on xVelVe By Proposition 3.2, vH s a
2MRF, and so v7[A]8?A](Ip24) = v [A| Vi \A](Iy,\ 4) a.s. Hence,

dv
dvH[A|02A)(Ig2 4) (1) = B tva] vir)
dvrlA] E [dud*y[\};ﬂ (Lvy ) |1 VH\A]
ke & (Ix)

 Ellkeayumn [ k) [ Tynal’
where we emphasize that the expectation in the denominator is with respect to independent
random variables (Iy,)yeviuvy -
The key observation is that if K € cly(H) does not intersect A, then the term f# (Ix) factors
out of the conditional expectation and cancels. Hence, with K4 as in (4.4), we see that
dyH[Am?A](IazA)( ) = [kex, [i2 k)
dv*[A] EllTxex, fHEUIx) [ Ty al
Since Iy, \y~ is independent of Iy«, in view of (4.5), we may equivalently condition on Iy 4 in
the denominator of the term on the right-hand side of (4.6) to obtain
dyH[A|82A](IazA)( L) = ke, fiE k)
dv*[A] Elllxerc, f# Ix) [ Ty=\a]
Repeating the same arguments that led us to this point, we also find that
AO1A| 9 AUpen) ) Tlicer, SRUI)
dv*[A] EllTxex, fEUIK) | Ty al

Recalling that fZ = g for K € K4 by assumption, the proof is complete. O

(4.6)

The last lemma allows us to deduce the following insensitivity result that shows that given a
finite graph G = (V, F) and associated SDE (2.1), the conditional law of trajectories of particles
in a set A C V given the trajectories of particles at the double-boundary 9%A of the set does
not depend on the graph structure outside of A U 9?A.

Proposition 4.4. Let G = (Vg,Eq) and H = (Vy, Eg) be finite graphs, and assume V* C
VanVy satisfies (4.3). Let A C V* satisfy 04 A C V* and 03 A C V*, so that Lemma 4.3 ensures
that 03 A = 0% A =: 9>A and that (4.4) holds (defining K as therein). Suppose (G,b%, 0%, u§)
and (H, b o ull) both satisfy Assumption A, and let P¢ € P(CV¢) and PH € P(CVH) be
the corresponding unique laws of the SDE described in (2.1). Further, suppose the following
consistency conditions hold:

(i) We have

b =08, forve AUS?A, (4.7)

ol =6C¢  forveVognVy.

(i1) There is a product measure ug = [[,cy oy, o € P((RHVeVUVE) for some N, € P(RY), v €
Vo U Vy, such that ,uOG and ugf admit 2-clique factorizations:

dMOG G dﬂg H
* (I'VG) = H fK(xK)v ¥ (:UVH) = H fK (:EK)a (49)
dpg V] Kech(G) Ay [V} Kecly(H)

for some measurable functions (fg D (RHE Ry ) kecy (@) and (fH: (RHE Ry) kecly(m)
that satisfy the consistency condition fS& = f}? for every K € K4.
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Then PE[A|0%A] = PH[A|0?A] for each t > 0, both in the sense of PH[0%A]-almost sure and
PE[0?A]-almost sure equality.

Proof. As in (2.5), let P* € P(CV5YV#) be the unique law of the solution X = (Xy)vevguvy of
the driftless SDE

dX,(t) = UE(t,X»U) dW,(t), v e Vg, dX,(t) = Jf(t, Xp) dWy(t), v e Vg \ Vg,
initialized with X (0) ~ u. Again working on the canonical probability space (CVeVVr B(CVeWVir)| p*),
define the martingales M7 = (MH),cp:

v v

t
M (1) :_/ (o (o) T) 6 (5, X Xy, 1)) - dXo(5), v € Vi,
0

with M¢ = (M$),ev,, defined analogously, as in (3.2). Using (3.5) and (4.9) we can write

_dR? H(X (0 & (MM
dPt*[VH] KGE[(H)fK( K( )) vl_V[H t( v )7
¢
=TT k) TT &g
el Kecl (@) veVe

with & defined as in (3.4). Note that if v € AUOA, then we have N,(H) = N,(G); indeed, this
is due to (4.3) and the inclusions g A C V* and 9y A C V*. Thus, by the consistency conditions
(4.7) and (4.8) along with the expressions above for M and MY, we have & (M) = &(ME)
for v € AUOA. Applying Lemma 4.3 with X = C;, v* = P*, v# = P and v% = PF, it follows
from the consistency conditions (i) and (ii) that PZ[A|9?A] = PH[A|9%A] holds in the sense
of P;[0%A]-almost sure equality. Since both PH[9%A] and PF[0%A] are absolutely continuous
with respect to P;[0?A], the claim follows. O

5. MARKOV RANDOM FIELD PROPERTY FOR INFINITE-DIMENSIONAL DIFFUSIONS

Fix a countably infinite connected graph G = (V, E), and let (G, b, 0, 19) be as in Assumption
B. As usual, let P = PH0 and P, = P}'° denote the unique law of the SDE (2.1) and its projection,
and let P*"° be the law of the canonical SDE system (2.5) started from initial law po. In this
section we will prove Theorem 2.7, that is, the 2MRF property for P; and P. We will also use
the same canonical space (CV', B(C"), P*"0) and canonical processes (X, )y as in Section 4.1.

Throughout, choose an arbitrary vertex ¢ in V to be the root, and let G,, = (V,,, E,,) and
Up, = Vi \ Vii—2 be as defined in Lemma 4.2. Also, set

b =by,, ve€EV, o, by =0, veU,, (5.1)

v

(The family {b}) : n > 3,v € U,} is arbitrary and set to zero for convenience, but more generally
must merely be measurable and uniformly bounded.) Let {P"},cn and {P/'},en be the corre-
sponding approximating sequence of measures and its projections, as defined in Section 4.1. We
first establish tightness and convergence results for { P} en in Section 5.1 and finally present
the proof of Theorem 2.7 in Section 5.2.

5.1. Tightness and convergence results. In the following, let H(-|-) denote relative entropy,
defined for v < p by
dv dv
H = | —log—d
(o) = [ 5108 5 d
and H(v|p) = oo for v & p. Recall also our notation [|x[|.; := supg<s<; || for the truncated
supremum norm.
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Lemma 5.1. Suppose Assumption B holds. For each t > 0 and each finite set A C V', we have

sup sup EF” [HXUHzt] < 00, (5.2)
n wveVy
sup H (P{[4)| F{#[4]) < o, 53)
supH (PHO[A]| PA]) < oo (5.4)

Proof. Fix t > 0. We begin with a standard estimate. Recall the definition of b} from (5.1),
apply Ito’s formula to the SDE (4.2), and use the linear growth of b, from Assumption (B.2)
along with the uniform boundedness of o, from Assumption (B.3) to conclude that, for each
n€Nand v €V,

t t
EP [I1Xo]I2,] < CE™ [IXU(0)|2+/ |bZ(s>vaXNv(G’))|2d8+/ Iffv(&Xv(S))IQdS]
0 0

t
n 1
<CE™ |1+ 5O + [ IR+ g X Il ds).
: RGP

where C € (0,00) is a constant that can change from line to line but does not depend on n or
v. This implies that

t
sup BF” [, 2,] < € (1 +supBE” [IX,OF] + [ sup B (X)) ds) ,
vEV), veV 0 veV,

where we have used the inclusion V,, C V. Apply Gronwall’s inequality to find

sup 7 [||X,|2,] < © <1 +sup | |f'3v|2uo(dl‘v)> . (5.5)
RV

vEV, veV

The right-hand side is finite by Assumption (B.1), and so (5.2) follows.
Given a finite subset A C V, define Q7 € P(C}) by

dQy

P = H E(M), where M 2:/(O'v (s, Xy, Xy, (Gn)) - dXy(s), vEV.
t 0

veVp\A

Due to Assumptions (B.2) and (B.3), and the definition of P*#0 from Remark 2.5, we can apply
Lemma B.1 with Q = P*#0 X = (X,,)yey, and f(t,x) = (l{vevn\A}Uv_lb;}(t,xv,:ENv(Gn)))vevn,

dQy
dP:’“O

[13, Corollary 3.5.2] and the uniqueness in law of the driftless SDE (2.3) that Q}[A] = P;""°[A].
By a similar argument,

to conclude that is a true P*o-martingale. It then follows from Girsanov’s theorem

dP}
dP*f“O = H E(M]'), and thus
t

H E (MM,

vEANV,

th

UEVn

where, in case ANV, = 0, we interpret the empty product as 1. Once again invoking the
linear growth of b, the boundedness of oy, (5.5), the fact that Q}[A] = P*#[A] and Remark 2.5,
note that Girsanov’s theorem also shows that for every v € ANV, under P", M — [M]'] is a
martingale and [M]"](¢ fo oy 101 (5, Xy XN, ()| ds.

Recall the well known data processing znequality of relative entropy, which states that H(v o
YV o f~Y) < H(v|V') for any two probability measures v and ©/ on a Polish space E, and
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any measurable function f : E — E’ to another Polish space E’; for a proof see, for instance,
[1, Section 4.2] or [28, Appendix E|. Using this data processing inequality, we obtain

H(P][A]| PA]) = H(PPA] QY[A])
< H(P'|QY)

_ Yy ® [Mm)—;[Mm(t)]

veEANV,
1 W
= S OEP [/0 los lbg(S,XvaXNv(Gn))|2d5:|
vEANV,
n 1
<C Z EF" |14 ”Xfu”it + m Z ”XuHit
veEANV, v n UGNU(GH)

< 04| (1 +2 sup B [!Xva,t]> :

’l)EVn

Therefore (5.3) follows from (5.2).
Noting that due to the identity Q}[A] = P*#[A] and Remark 2.5, under Q", (X,)yeca is
driftless and M’ is a martingale. Therefore, noting that

dQp n I L.
=TI ew (a0 5 [ o0, Xu @) ds).
t peAnv, 0

another application of the the data processing inequality of relative entropy yields
H(PPO[A]| PP [A]) = H(Q[A] | Py'[A])
< H(Q{ | P)

1 Y L.
=3 S E@ [/0 |0v1bv(S,Xv,XNU(Gn))|2dS]

vEANV,
n 1
<c Y E° 1+||XU||3,,5+m S,
vEANV, VAT eN, (Gr)

< C|A| (1 +2 sup B¢ [||Xv|ri,t]) :
vEVR

The same argument that was used to obtain (5.5) can also be used to show that (5.5) holds

with P" replaced by Q™. Therefore sup,, sup,cy, E¢” [[IXu][2;] < oo by Assumption (B.1), and

hence the last display implies (5.4). O

The next lemma will be used to show both that the ezistence of a weak solution to the
infinite SDE system (2.1) holds automatically under Assumption B, and also that it arises as
the limit of finite-graph systems. Recall that P € P(CY) denotes the law of the solution of
(2.1). Recall also, as discussed at the beginning of this section, that we work throughout with a
sequence G,, = (V,,, E,,) as in Lemma 4.2, with b and P"™ defined as in (5.1) and the sentences
thereafter.

Lemma 5.2. Suppose Assumption B holds. Then P™ — P weakly on CV. Moreover, for any
finite set A’ CV, any t > 0, and any bounded measurable function 1) : C{V — R, we have

Tim EP (X p[t])] = E (X (1)
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Proof. Fix t > 0. The entropy bound of (5.3) shows that {P;*[A']},en are precompact in the
weak* topology induced on P(C{‘/) by the bounded measurable functions on C{V [4, Lemma
6.2.16]. In particular, this sequence is tight, and since this holds for every finite set A" and every
t > 0 we deduce that the entire sequence {P"},¢n is tight in CV'. Note also that for sufficiently
large n it holds under P" that the processes

/ avl(r,Xv)dXU(r)—/ oy (r, Xo)bo(r, Xo, Xy, (@) dr, s>0, v € Vy_g, (5.6)
0 0

are independent standard Wiener processes, due to the consistency condition for the b]'’s and
the identity N,(G,) = N,(G) valid for v € V;,_s.

Now let Q € P(CY) be any weak (in the usual sense) subsequential limit of {P"},cy. That
is, let {ng}ren be a subsequence such that np — oo and P™ — @ weakly as k — oo. The
aforementioned precompactness in the weak* topology implies that

lim EP [(X a0 [8)] = EQ[ (X))

for any finite set A’ C V, any t > 0, and any bounded measurable function 1 on CgA/. We
conclude that, under @, the processes in (5.6) are independent Wiener processes, for v € V.
This shows that @ is the law of a weak solution of the SDE system (2.1), which we know to be
unique by assumption (B.5). Hence, Q = P. O

5.2. Proof of the second-order Markov random field property on the infinite graph.

Proof of Theorem 2.7. Fix (G = (V,E),b,0,up) and X = (X,)pey as in the statement of the
theorem. For n > 4, consider the sequence of graphs G,, = (V,,, E,),n € N constructed from G
as in Lemma 4.2. We first note that due to the fact that o is a 2MRF by Assumption (B.1), part
(iii) of Lemma 4.2, with X = R v = o, v* = 1, ensures that pg[V,] is a 2MRF with respect
to the graph G,. Moreover, since dug[V,]/dus[Vy] is strictly positive by Assumption (B.1),
Proposition 3.2 shows that uo[V;,] admits a 2-clique factorization with respect to the product
measure pui[V,] for each n. Hence, po[V;,] satisfies Assumption (A.1), which when combined
with the definition of v = (b)})yev, in (5.1) and the fact that b, o satisfy Assumptions (B.2)
and (B.3), shows that (G, 0", (0y)vev;,, po[Va]) satisfy Assumption A. Since P"[V,] is the law
of the SDE (4.2) on the finite graph G,, it is a 2MRF by Theorem 2.4.

Now, fix two finite sets A, B C V with B disjoint of A U 9?4, where throughout, we use
0% to denote 8%. Let ng denote the smallest integer greater than or equal to 4 for which
AUO?AUB C Vpy_3, and let n > ng. Then, part (iv) of Lemma 4.2, again with X = RY,
v = pp, and v* = puf, ensures that po[V,] and pg[Vy,] admit 2-clique factorizations which are
consistent in the sense that the corresponding measurable functions fg” and fg"o agree for
every K € clao(Gy,) that intersects A (equivalently, for every K € cla(G) that intersects A).
Since b = b0 = b, for all v € AU J?A by (5.1), and since A U ('%A C Vpo—3, we may apply
Proposition 4.4, with G = Gy, H = Gy, V* = V3, ug’“ = po[Vi], and (bG%,0Gr) = (bF, 5,)
for v € Gy and k € {ng,n}, to deduce that PI[A|9*A] = P°[A|d?A] for all n > ng. In
other words, this implies that given a bounded continuous function f : C{‘ — R, there exists a
measurable function ¢ : C{?ZA — R (that does not depend on n) such that

o(Xpoall]) = B [(Xalt]) | Xooaltll, P"— a.s., for n > np. (5.7)
Now, fix additional bounded continuous functions g : C?QA — R and h : CP — R. For

t > 0, taking the conditional expectation with respect to Xy, \ o [t] inside the expectation on the
left-hand side below and using the 2MRF property of P™ we have

E” [£(Xalt)g(Xo2 altDR(XB(t])] = BT [ET" [f(Xalt]) | Xo2a)9(Xo At (X 5[1])].
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When combined with (5.7), this implies
EP[f(Xalt)g(XozaltDA(XB[1])] = BT [p(Xo2a[t]) g (X2 Al h(X[1])].
Using the second part of Lemma 5.2 for the finite set A’ = AUO?AU B, and for both ¢(y4/) :=

F(ya)g(yo2a)h(ys), and ¥(yar) = ©(ys24)9(yora)h(ys) for yar € C{¥', we may pass to the limit
n — oo and denote P = PH0 to get

E"[F(Xalt)g(Xooalt) (X B[H])] = EX[0(Xo24[t]) g(Xo2 [t (X B[t])].
This at once shows both that

E”[f(Xalt]) | Xo2altl] = ¢(Xo2alt]) = E [£(Xalt]) | X2 alt]],
for all bounded continuous f and n > ng, which proves Proposition 5.4 below, and also that
Xalt] and Xp[t] are conditionally independent given Xg24[t] under P. The latter proves the
first statement in Theorem 2.7, except for the fact that we have only proven this conditional
independence when A and B are finite. Because B C V \ (A U 9?A) was an arbitrary finite set
and {Xg[t] : B C AU %A} generates the same o-field as X 4 924[t], we deduce that that P,
is a 2MRF. The second statement follows from the same argument as in (3.6) using the 2MRF
property of P, = P/". This completes the proof. O

We recapitulate two results that were established in the course of the proof, which may be
of independent interest, and which are used in the proof of Theorem 2.9 in the next section.

Remark 5.3. Note that the first paragraph of the proof above shows that if (G, b, o, ug) satisfy
Assumption B and for G,, = (V,,, E,,), n € N, is as in Lemma 4.2, and ", P", P*, n € N, t > 0,
are as defined at the beginning of Section 5, then P[*[V,] is a 2MRF for each n € N and ¢ > 0.

Proposition 5.4. Suppose (G,b, 0, po) satisfy Assumption B, and let G,, = (Vy,, Ep,),n € N, be
the sequence of graphs constructed from G as in Lemma 4.2. Fiz t > 0, and let P, = P!" be
the law of the unique weak solution to the SDE (2.1) with initial law po. Then, for n > 3, and
ACV,_s3, E%A C Vi, and, Pi-almost surely,

P[A| 9% A] = PA|53A)
6. PROOF OF GIBBS MEASURE PROPERTIES

In this section we prove Theorem 2.9. Recall the definition of P*#0 as the law of the solution
of (2.5) initialized at .
Proof of Theorem 2.9. Let (G,b,0,po) satisfy Assumption B, and let P#0 be the unique so-
lution of the SDE system (2.1) with initial law ug. We work again on the canonical space
(cV,B(C"), P*#0), with Xy, = (X, )ver denoting the canonical process. Define the sets My, =
Minit (10) and Mopagh = Mpaeh(f0) as in the statement of the theorem. For any vy € Miy, the
SDE system (2.1) is well-posed starting from v, and we let P*0 € P(C") denote the law of this
solution. The proof of the theorem is broken down into five claims.

Claim 1. Suppose (G,b, o, up) satisfies Assumption B. If vy € Mipi, then (G,b,0,1p) also
satisfies Assumption B, and for every finite set A C V and t > 0 we have P;°[A] ~ P/[A].

Proof of Claim 1. First, suppose vy € Minit- By the definition of Mjpit, 1o has a finite second
moment. Moreover, for each finite set A C V, we have vy[A] ~ uj[A] since vy € Ga(pp) implies
(by Definition 2.8) that vg[A] ~ po[A], and Assumption (B.1) ensures that pg[A] ~ pg[A]. Thus
v satisfies Assumption (B.1).

Now let ¢ > 0, and let A C V be finite. From Lemma 5.2 it follows that P™"0 — PHO weakly.
It then follows from (5.3), (5.4) and the lower semicontinuity of relative entropy that P/"°[A] <
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P M0 [A] and P/M°[A] < P}[°[A]. Therefore P/°[A] ~ P/""°[A], and similarly P/°[A] ~ P/""°[A].
Finally, note that P*#0[A] (resp. P**0[A]) is the law of the solution of the SDE system

dX,(t) = oy(t, Xy) dW, (1), veEA,
with initial law po[A] (resp. vo[4]), and it follows from vo[A] ~ uo[A] that P H°[A] ~ P"°[A].
Putting it together, we have Py°[A] ~ P;""°[A] ~ P/"M°[A] ~ PI[A]. O
Claim 2. For any @ € Mpan, we have Qg := Qo (Xv(0))~! € Minis-

Proof of Claim 2. The proof of this claim is straightforward: fix Q € Mypan, and set Qo =
Q o (Xy(0))~!. Then by the definition of Mpatn, we have Q; € Go(P[) for all ¢ > 0 and
SUpyey fpa |To|* Qo(dz) < oo. Taking ¢ = 0 gives Qo € G2(o), where we have used the elemen-
tary fact that Pj° = PHo o (Xv(0))™! = po. Thus Qg belongs to Mipis. O

Claim 3. If vg € Mipiy then P € Mpaen.

Proof of Claim 3. Fix vy € Mipni. Then by the first assertion of Claim 1, for every finite set
ACVandt>0, P/°[A] ~ P[°[A]. So it only remains to show that for every ¢ > 0,

P/O[A|0?A] = P/°[A|9*4], for finite A C V. (6.1)

First, recall that Claim 1 also shows that (G, b, o, 1) satisfies Assumption B. Next, let G,, =
(Vy, Ey) be the increasing sequence of finite graphs defined in Lemma 4.2, and let PHo:" PYo:" ¢
P(C) denote the law of the solution of the corresponding SDE system (4.2) with initial laws
to[Vn] and 19[V,,], respectively. Throughout this proof, the boundary operator 0 is always with
respect to the infinite graph G. Fix A C V finite, and fix n large enough that A C V,_3,
recalling that V,, was defined in Section 4.1. By Proposition 5.4, we have both

P°[A|0*A] = P/ [A9°A],
PO[A|0?A] = PO [A|9 Al
By Lemma 4.2(iii), vo[V},] is a 2MRF. Also since vy[V;] ~ p§[Ve] implies dvg[Vy,]/dus[Va] > 0,

by Proposition 3.2 there is a 2-clique factorization

dvg[V,,] B " (o
dﬂa[vn] (an) = Kecl]:[(Gn) gK( K)? (63)

(6.2)

for some measurable functions g% : (RY)® — R . Similarly jo[V;] admits a 2-clique factoriza-
tion,

.
=

=
=

]
dp [Vl

)= [I fi@o. (6.4)

Kecla(Gr)

for some measurable functions f% : (RY)X — R,. Note that these 2-clique factorizations are
not unique. We claim (and justify below) that f7 and g% can be chosen to be consistent, i.e.,
so that

fr=gn, forall K € cly(Gy) with K N A # 0. (6.5)

This will ultimately allow us to apply Proposition 4.4. To see this, let Iy, = (I,)yey, denote the
canonical random variable on the probability space (R%)V». That is, I, : (R?)"» — R? is defined
by I,((zu)uev, ) := x, for each v € V,,. Define

Y N A
P =2 [ ] g =[Gy |




26 LACKER, RAMANAN, AND WU

Recalling that U,, = V,, \ V,,_2, and using (6.3), we have

dl/() [Vn}
dl/(][Vn72 ‘ Un] g V] 1 .
= — I )
A Vo—2 | U, 9"(Iu,)  9"(Iu,) I gkt

Keclz(Gr)

Applying the same argument to o rather than vy and using (6.4), we also obtain

dpo[Vi]
dpo[Va—2 | Un] _ dug[Va]

d,LLa[anQ ‘ Un] a fn(IUn) ‘

(6.6)

Further, recognizing that U,, = 9?V},_s, since vy € Go (10) we see that
VO[Vn72‘Un] = ,U/O[Vn72|Un]-

Combining the last three displays, we find

DolVos |Unl gy S ,)
- dug[vn_Q\Un]f (o) = J"(Iy,) 11

Comparing this and (6.6) with (6.3) and (6.4) and noting that U,, € cla(Gy,), we can thus take
& = g in (6.4) for K € cla(Gyp) \ {Un} and f; = gﬂnfn/ﬁn This proves the consistency
claim in (6.5); indeed, since A C V;,_3, we know that U,, does not intersect A U 0A.

Let K = {K € cly(Gy,) : KN A # 0}. Using the consistency property (6.5), we can finally
conclude from Proposition 4.4 (with Vg = Vi =V, bf = bf = by, af = 05{ = Oy, Mé{ = Lo
and u§ = 1p) that P/O"[A|9%A] = P/"*"[A|9?A]. Recalling (6.2), this completes the proof of
(6.1). O

9k (k).
KECIQ(Gn)

Together, Claims 2 and 3 prove (2.6). We now prove the last assertion of the theorem.
For this we will frequently apply the martingale representation theorem; for completeness, we
provide a full justification of its repeated application in Remark 6.1, but defer it to the end of
the proof so as not to interrupt the flow of the main arguments.

Claim 4. If Q € P(CY) satisfies Q; € Go(P/*°) for all t > 0 and also Q o (Xy(0))~ = pg, then
Q — PHO,

Proof of Claim 4. As in the proof of Claim 3, we let G,, = (Vj,, E,) be the increasing sequence
of finite graphs defined in Lemma 4.2 and let the boundary operator 9 always be with respect
to the infinite graph G. Also, let P" = PHo™ ¢ P(CV) denote the law of the solution of
the corresponding SDE system (4.2) with initial law po[V;,]. Now, fix a finite set A C V and
T € (0,00). Let ng denote the smallest integer such that AUG?A C Vio—3. Define the martingales

t
M (t) :/ (0o ) 00(s, Xo, Xny(G)) - dXu(s),  nENvEV,.
0
Due to Assumptions (B.2) and (B.3), it follows from Lemma B.1 (with Q = P**0, X = (X,)yev,

and f(t,z) = (o, 100 (t, Ty, TN, (G,)) Jvev, ) that E(M]) is a P*#0-martingale. Thus, by Girsanov’s
theorem [13, Corollary 3.5.2], we may write

dP M =[] &G, (6.7)
veEV)
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Now, by applying Remark 5.3 to (G,b,0, o) and (G, 0,0, ug), respectively, it follows that the
measures P'[V,,] and P/""°[V,] are 2MRFs with respect to G,,. Hence, for n > ng,

dPPIA]9%A]  dPPA|V,\A]
dP/M[A024]  dPPM[A| Vi \A]

— W/EP*’“O [(m‘ Vn\A[t]]

AP0V,
= H 5t(M5°)/ EP"" H E(My))| Xy, \A[t]] :
’l)eVn ’UEVn

For v € V,\(AUOA), &(M,}) is measurable with respect to Xy;\ 4[t] and thus factors out of the
conditional expectation and cancels. Thus,

dPMA | 0%A] / P
B s [[ e/ E
%, /10 2 i
dP [A ‘ 0 A vEAUOA

[ &

vEAUOA

)| Xvaalt }] . (6.8)

Because Q; € Go(P/°) by assumption, we have Q:[A|5%A] = P/'°[A|9*A]. By Proposition 5.4,
we have P['°[A|9?A] = P/'*"[A| 92 A], and it follows that the density dQ:[A| 8% A]/dP]°[A | 9? A]
is given by the same expression (6.8).

Now take A = V;,_o, and note that U, := V,, \ V;,_2 = 9*V,_a. Because Q:[U,] ~ P,""°[U,]
by assumption, and because both @Q and P*#0 start from the same initial state distribution uy,
we may use the martingale representation theorem (specifically, apply Remark 6.1 below with
¢ = dQr[U,)/dP;"°[U,], which clearly satisfies EX""*[¢] = 1) to find progressively measurable
functions r? : [0,7] x CY» — R% v € U, which are dt @ dP**o- square—integrable such that in
terms of the associated Xy, -adapted continuous martingales R (t fo (s, Xu,) - dXy(s),
t €[0,T], v e U,, we can write for t € [0, T,

th H gt Rn

P uu'O
d veUn,

Noting that (X, )yer, are orthogonal martingales, it follows that the martingales (R} ),cr,, are
also orthogonal; that is, the covariation process [Rj, R;] is identically zero for v # w. Thus,
since U, NV, =0, U, UV,,_o =V, and V,,_1 = V,,_o U 9V,,_2, applying (6.8) with A = V},_»

we have

alPt*’“O V2] alPt*’“0 [Vi—2 | Uy) clPt*’“O [Un]

=1 «x&» 11 Et(M{})/IEP*’”O [T &) | Xu, [

velUn vEVL_1 vEVR -1

The process in the denominator is a positive martingale (being the optional projection of a
martingale) adapted to the filtration of X7, and thus, again using the martingale representation

theorem (this time applying Remark 6.1 below with & = B {HveVn,1 Er(M)) | Xu, [T]} and
invoking (6.7) to conclude that EF*#0[¢] = EP*Ho[dPP([V;,— 1]/dP* MOV, _1]] = 1), there exist
dt ® dP*"o-square-integrable, progressively measurable functlons [0 T)xCYn — R v € Uy,
and associated Xy, -adapted continuous martingales R” fo (s, Xu,) - dXy(s), v € U,
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such that

PO T &) | xudt| = ] €&,

VEVH 1 veUn

Now note that, for any continuous martingales Z and (Z;);cr, with I a finite index set, we have
the identities 1/£(Z) = £(—Z)el4! and

HE(Z —exp<ZZ— )
el iel el
1
— exp Zz—f[ }+§ 2, Zj]
iel iel JEL,i#]
1
—£ (Z Z,) exp | 5 Z ‘[Zi,zj] ,
i€l i,J€I1,i#]
where [Z;, Z;] denotes the covariation process. Hence,
—vtlinl E(RME(—R™) exp([RM(t E (M)
dpt " [Vn] vgn ve]‘;n[
[T s I &on+ Ry - Resp (M - B2 B2 - R2)))
vEVh_2 ’UEVn71\Vn72
[T &rr—Rexp (1R2 R - REND)).
'Ue‘/n\vnfl

Recalling the orthogonality properties of R} and ﬁf} mentioned above, we see that we can
write Z; := dQy[Vy]/dP;*"°[V;] in the form Z(t) = &(N)eA®) where N is a continuous square-
integrable martingale and A := 37 oy, v [M] — R, R" — R + D veVa\Vi 1[R R" — R"]
is a square-integrable and a.s. absolutely continuous with A(0) = 0. Since Z is a martingale, we
necessarily have A = 0; indeed, It0’s formula gives dZ(t) = Z(t)(dN(t) + dA(t)), and for Z to
be a martingale we must have dA(t) = 0. It follows that

d ~ ~
o= I aom T aomem-R) [T am-R)
vEVh_2 vGanl\Vn72 vGVn\Vn,1

Since Z is a P*M°-martingale, Girsanov’s theorem [13, Corollary 3.5.2] can be applied, using the
definition of (M')yev,, to deduce that Q¢[V;] is the law of a solution (X'[t])yev, of the SDE
system (perhaps on an auxiliary probability space)

dXy(s) = bu(s, Xy, XY, () ds + 0 (s, X)) dBy(s), for v € V,,_o,
ax(s) = ((rf = 7) (s, Xp,) + 02 (5, X0 XFy () ) s + 0, X7 dBy (), for v € Vit \Vas,

dXy/(s) = (ry —75)(s, Xp, ) ds + o (s, X;) dBy(s), for v € Vo \Vy—1,

where (B,)yey;, are independent Brownian motions.

Define X' = 0 for v ¢ V;,. Since the sets V,, increase to V/, it is easily shown as in Lemma 5.2
that, as n — oo, (X?[T])yey converges in law in C¥ to a solution of the infinite SDE system (2.1)
with initial distribution pg, restricted to the interval [0,7]. Recalling that (X'(0))yev ~ po and
that the solution to the infinite SDE system is unique in law by Assumption (B.4), we conclude
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that (X}'[T])vev converges in law to Pp°. But Xi} [T] has law Qr[V;] by construction, which
implies X{}[T] converges in law to Q7. Therefore Q7 = P°. Since T € (0,00) was arbitrary,
@ = P*0, which completes the proof of Claim 4. g

To complete the proof of the theorem, it only remains to establish the bijection between the
two sets in (2.6). However, we now show that this is a simple consequence of the last claim.

Claim 5. The map Q — Q o (Xy(0))~! defines a bijection between the sets Mpath and Mipig.

Proof of Claim 5. Let @ € Mopaen, and set 1y := Q o (Xv(0))~L. By Claim 2, vg belongs to
Minit, and by Claim 3, P lies in Ma,. Since trivially P o (Xv(0))~! = v, to prove the
claim it suffices to prove that @ = P*. By Claim 1, (G,b,0,1y) satisfies Assumption B, and
thus Claim 4 applies with v in place of pg. That is, by applying Claim 4 to vq instead of ug, we
deduce that if Q € P(CV) satisfies Q; € Go(P}?) for all t > 0 and also Q o (Xy/(0))~! = 1, then
Q = P". By definition of Myt we have Q; € Go(Pf*) for all t > 0, and it follows from (6.1),
which was established in the proof of Claim 3, that Go(P;°) = Go(P}*). This proves Claim 5,
which completes the proof of Theorem 2.9. O

Remark 6.1. We sketch here the argument behind the use of the martingale representation
theorem in the proof of Theorem 2.9 above. Recall that by Assumption (A.3b) the SDE system
dX,(t) = ou(t, Xy) dWy(t), v € Uy, with initial law pg is unique in law, with the law of the
solution X = (X,)yev, given by P*H0[U,]. This implies uniqueness of the associated martingale
problem (cf. [13, Corollary 5.4.9]), which is known to imply that the solution has the predictable
representation property (cf. [27, Theorem V.25.1] or [30, Theorem 2.7]), in the following sense:
with FX == o(X(s) : s < t),t > 0, for T < oo and an F;-measurable random variable
¢ > 0 with E[¢] = 1, the martingale Z(t) = E[¢|FX] > 0,t € [0,T], can be represented
as Z(t) = 1+ fg (s, X) - dX(s) for some predictable process ¢: [0,7] x Cr — R satisfying
fOT lo(t, X)|?dt < oo a.s., recalling that o, is uniformly bounded and nondegenerate. Then,
for t € [0,T], setting ¥(t, X) = ¢(t,X)/Z(t), by 1td’s formula, we have dlog Z(t) = (t,X) -
dX (t) — 39(t, X) Td[X](t)y(t, X). Hence, Z(t) = &( [y ¥ (s, X) - dX(s)), t € [0,T].

APPENDIX A. PROOF OF PATHWISE UNIQUENESS UNDER LIPSCHITZ ASSUMPTIONS

Proof of Proposition 2.6. Let (X,)yey and ()?u)vev denote two solutions driven by the same
Wiener processes and starting from the same initial states.

Fix T < co. For each v € V and ¢ € [0,T], by Itd’s formula, the boundedness of o (see
Assumption (B.3)), the assumed Lipschitz condition on the drift and diffusion coefficients we
have

" t
E[Ix, - .)2,] < 2E [ /
0

+8E[/Ot

t o~
< 4#K2E / 1 Xy — Xol2, +
0

b (5.9, X 0)9) = s Kol K )t

~ 2
To(s, Xo(5)) — av(s,XU(s))‘ ds]

t ~
+ 8K2E [ [ - %z, ds] .
0
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Hence, using the constants K7 and K7 from the statement of the proposition,

t
supE [, — X, |2, | < 8(tKF + K%)/ supE [|1X, — %, 2, ds.
veV 0 veV

Complete the proof using Gronwall’s inequality. O

APPENDIX B. JUSTIFICATION FOR APPLYING (GIRSANOV’S THEOREM

In this section we state a result that justifies our repeated application of Girsanov’s theorem
under the condition that the drift is progressively measurable and has linear growth. Lemma
B.1 below is in fact a path-dependent multi-dimensional version of [14, Theorems 5.1 and 8.1].
A simpler proof is provided here for completeness.

Let (Q,F,F,Q) be a filtered probability space supporting a F-Brownian motion W of di-
mension m as well as an F-adapted process X of dimension d such that X satisfies the SDE

dX(t) = o(t, X)dW (1), X(0) ~ u, (B.1)

where 1 € P(R?) and o : Ry x C — R¥™ is bounded and progressively measurable. Also, let
E denote expectation with respect to Q. Fix a progressively measurable f : R, x C — R™, and
define the stochastic integral

t
M, ::/0 f(s,X) - dWs, t €[0,00),

which is well defined (and a local martingale) due to the linear growth condition (B.2) imposed
on f in the lemma below. Recall in what follows that ||z« = sup,cp g [2(5)]-

Lemma B.1. Under the above setting, suppose for each T' € (0,00) there exists Cp < 0o such
that

[f ()] < Or (14 [[2(s)lx0) (B.2)
for all't € [0,T] and x € C. Then the stochastic exponential {E:(M)}i>0 defined in (3.4) is a
true Q-martingale.

Proof. Since {&(M)}+>0 is always a Q-supermartingale, it suffices to show that E[E7(M)| X (0) =
x] =1 for each z € R% and T € (0,00). So fix T € (0, 00) and assume without loss of generality
that X(0) = z € R? in (B.1). Since o is bounded, X is a martingale and, from standard
concentration inequalities for martingales (see, e.g., [31, Lemma 2.1]), we can find some C' > 0
such that Q(||X — 2«1 > a) < exp(—Ca?) for each a > 0. It then follows from the equivalence
between sub-Gaussian tails and finite square-exponential moments (see, e.g., [2, Section 2.3]) that
there exists ¢ > 0 such that E[exp(cHXHiT)] < oo. Now taking 0 =ty <t <+ <ty =T

with t, — t,—1 < ¢/C%, and using the linear growth condition (B.2) on f, we have

tn
E [exp (;/t |f(s,X)|2ds>

It then follows from [13, Corollary 3.5.14] that {&:(M)}>o is a true Q-martingale. O

< E [exp ((ta — ta1)C3(1+ | XIP )] < .
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