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Abstract. We consider a countable system of interacting (possibly non-Markovian) stochastic
differential equations driven by independent Brownian motions and indexed by the vertices of
a locally finite graph G = (V,E). The drift of the process at each vertex is influenced by the
states of that vertex and its neighbors, and the diffusion coefficient depends on the state of
only that vertex. Such processes arise in a variety of applications including statistical physics,
neuroscience, engineering and math finance. Under general conditions on the coefficients, we
show that if the initial conditions form a second-order Markov random field on d-dimensional
Euclidean space, then at any positive time, the collection of histories of the processes at different
vertices forms a second-order Markov random field on path space. We also establish a bijection
between (second-order) Gibbs measures on (Rd)V (with finite second moments) and a set of
(second-order) Gibbs measures on path space, corresponding respectively to the initial law and
the law of the solution to the stochastic differential equation. As a corollary, we establish a
Gibbs uniqueness property that shows that for infinite graphs the joint distribution of the paths
is completely determined by the initial condition and the specifications, namely the family of
conditional distributions on finite vertex sets given the configuration on the complement. Along
the way, we establish approximation and projection results for Markov random fields on locally
finite graphs that may be of independent interest.
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1. Introduction

1.1. Discussion of results. Given a finite or locally finite infinite graph G with vertex set V
and edge set E, and a positive integer d, consider interacting diffusions that satisfy the following
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stochastic differential equation (SDE) system:

dXv(t) = bv(t,Xv(t), XNv(G)(t)) dt+ σv(t,Xv(t)) dWv(t), v ∈ V, t ≥ 0,

where the initial condition X(0) = (Xv(0))v∈V is distributed according to some given probability
measure on (Rd)V . Here, Nv(G) ⊂ V denotes the neighborhood of v in the graph G, (bv, σv)v∈V
are given drift and diffusion coefficients, and (Wv)v∈V are independent standard d-dimensional
Brownian motions. Diffusions indexed by vertices of a large graph arise in a variety of con-
texts, including statistical physics [5, 24], as well as recent extensions of models stemming from
neuroscience [19, 20] and systemic risk [22]. Under suitable conditions on the coefficients that
guarantee the existence of a unique weak solution to the SDE, for any t > 0, we study the ran-
dom field on the space CVt generated by the collection of trajectories (Xv[t] := (Xv(s))s≤t)v∈V ,
where Ct (resp. C) denotes the space of Rd-valued continuous functions on [0, t] (resp. [0,∞)).

Our first set of results (Theorems 2.4 and 2.7) show that, under modest conditions on the
drift and diffusion coefficients that guarantee a unique weak solution to the SDE system on any
locally finite graph, if (Xv(0))v∈V is a second-order Markov random field on (Rd)V (as specified
in Definition 1.1) then for each t > 0, (Xv[t])v∈V is a second-order Markov random field on CVt .
In fact, we establish this result for a more general class of SDEs, defined at the beginning of
Section 2, with possibly non-Markovian dynamics (and potentially infinite memory).

Our next set of results relate to an interpretation of the law of the SDE as a Gibbs measure
on path space (see Section 2.3 for precise definitions). Specifically, Theorem 2.9 establishes a
bijection between (second-order) Gibbs measures on (Rd)V (with finite second moments) and a
set of (second-order) Gibbs measures on CV , corresponding respectively to the initial law and the
law of the solution to the SDE. As a consequence, we deduce a Gibbs uniqueness property, which
shows that the law of the SDE system is completely determined by its initial condition and its
specifications, namely the family of conditional distributions on finite sets given the configuration
on the complement. In particular, together these show (see Corollary 2.10) that when the initial
distribution is the unique second-order Gibbs measure associated with some specifications on
(Rd)V , then for each t > 0, the law of the SDE system is the unique second-order Gibbs measure
associated with corresponding specifications on path space CVt .

A key motivation for our study stems from recent results in [17] that show how a second-
order Markov property is useful for obtaining an autonomous description of the marginal (local)
dynamics of a particle and its neighborhood when the underlying graph G is a tree. For this
purpose, a stronger global Markov property is derived in [17, Proposition 3.15] in the setting of an
infinite regular tree G (or, more generally, a unimodular Galton-Watson tree) and homogeneous
coefficients, (bv, σv) = (b, σ) for all v ∈ V . Notably, the characterization of the local dynamics in
[17] relies on the precise order of the Markov random field (equivalently, range of interaction of
the Gibbs state), and not merely the Gibbs property. Such an autonomous description, together
with the local convergence result [16, Theorem 3.7] provides a complete and tractable law of
large number result for interacting diffusions on certain growing sparse networks.

In addition, such characterizations of SDEs in terms of Markov random fields are also of
broader interest, although past work has mainly focused on the case of interacting diffusions on
Zm, and often with an additional gradient structure imposed on the drift. The earliest work in
this direction appears to be that of Deuschel [10], who considered smooth, uniformly bounded
drifts of finite range that are locally of gradient type. The approach in [10] is based on estimates
of Dobrushin’s contraction coefficient, and crucially relies on the uniform boundedness and
gradient structure of the drift (see [10, Remark (3.5)i)]). This result was later generalized to the
case of unbounded drifts, though still of locally gradient form, by Cattiaux, Roelly and Zessin [3].
They used Malliavin calculus, a variational characterization and an integration-by-parts formula
(see also [21,26]), all of which exploit the gradient structure of the drift. In [21], an alternative
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cluster expansion method was also used when the gradient system can be viewed as a small
perturbation of a free field. Space-time cluster expansion techniques have also been applied to
non-gradient systems (although to address the slightly different question of the Gibbsian nature
of marginals; see also Remark 3.6), but these only apply for sufficiently small time horizons
[24] or sufficiently small memory and interaction strengths, measured in terms of the norm of
the drift functional [25]. An important work that goes beyond the gradient setting is that of
Dereudre and Roelly [8], which considers a system of interacting one-dimensional SDEs on Zm
with an adapted (possibly history-dependent) drift that is homogeneous (i.e., the same at all
vertices of Zm) and satisfies a linear growth condition, and with a constant diffusion coefficient
equal to the identity matrix. In order to circumvent the restrictive bounds on the the uniform
norm of the drift b or the time duration that arise in cluster expansion approaches, the work
[8] employs another technique, referred to as the so-called entropy method. However, the latter
work imposes the restriction that the initial condition is stationary (i.e., shift-invariant on Zm),
and has finite specific entropy and second moment, and the drift has sublinear growth, and show
that the trajectories of the SDE system form a Gibbs or Markov random field on CZmt , though
in a somewhat different sense that involves conditioning on all initial positions (Xv(0))v∈V , not
just those outside a given finite collection of vertices.

As mentioned above, we consider the much more general setting of (possibly non-Markovian
and time-inhomogeneous) interacting diffusions on arbitrary locally finite graphs G = (V,E),
with vertex-dependent, adapted, finite-range drift coefficients, and diffusion coefficients that may
depend both on the vertex and state (although we do impose continuity of the drift coefficients
since we want uniqueness of weak solutions). Moreover, we do not assume that the initial
conditions are shift-invariant (or, more generally, invariant under automorphisms of the graph).
Thus, we have to develop new techniques to prove our results. First, to establish the Markov
random field property for SDEs on finite graphs (Theorem 2.4), we apply a version of the
Hammersley-Clifford characterization of Markov random fields on finite graphs. The result
for the infinite graph (Theorem 2.7) is then obtained by a delicate approximation by finite-
dimensional systems in a way that preserves the Markov random field property, along with
careful relative entropy estimates. Along the way, we establish approximation results for Markov
random fields on locally finite graphs (see Section 5) that may be of independent interest. Thus,
our methods are quite different from those of the prior works described above. They do not
require any gradient structure of the drift, and are not restricted to small perturbations of
a free field. Like [8], we allow for unbounded drifts and non-Markovian dynamics involving
path-dependent coefficients. However, in constrast to [8] we consider arbitrary locally finite
graphs and more general initial conditions. Indeed, although the work of [8] also uses finite-
volume approximations, the pervasive stationarity assumptions they impose allow them to rely
on specific entropy, which cannot be used in our setting, and they also use a growth bound
on Zm (e.g., in deriving equation (30) in the proof of Proposition 3.4 therein), which does not
hold for arbitary locally finite graphs. In addition, while the main goal in [8] is to construct
shift-invariant solutions of their SDE, with the Gibbsian (or Markov random field) description of
their process coming as a by-product, our objective is to identify the extent to which the second-
order Markov random field property holds, for which no shift-invariance is required. Lastly, the
correspondence between Gibbs measures on initial configurations on (Rd)V and Gibbs measures
on the whole path space CV that we establish in Theorem 2.9 and Corollary 2.10 does not appear
in [8], although in the gradient seetting, the idea of such a correspondence appears in in [3] (see
Theorems 3.7 and 4.9 therein).

Finally, we also provide examples (see Section 3.3) that demonstrate that the Markov random
field property we establish cannot in general be significantly strengthened. Precisely, even on
a finite graph with gradient drift, in general the collection of histories (Xv[t])v∈V do not form
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a first-order Markov random field, nor do the time-t marginals (Xv(t))v∈V exhibit any non-
trivial conditional independence structure. This highlights the natural problem of identifying
special classes of systems for which simpler Markov random field properties are preserved, a
problem which we do not address but which has attracted considerable attention in certain
contexts. Specifically, in the context of diffusions, the papers [6,7,15,24,25,32,33] have studied
the phenomenon of Gibbs-non-Gibbs transitions and the propagation (or lack thereof) of the
Gibbs property at the level of the time-t marginals, specifically whether the initial law of X(0)
being a Gibbs state on (Rd)V implies that the marginal law of X(t) is also a Gibbs state on
(Rd)V . See Remark 3.6 for a more detailed description of these works.

The next section introduces some common notation and basic definitions used throughout
the paper. The main results of the paper are stated in Section 2, with their proofs relegated to
Sections 3–6.

1.2. Notation and basic definitions. For any vectors a, b ∈ Rd, we use a ·b or 〈a, b〉 to denote
the inner product. In this paper, unless explicitly stated otherwise, a graph G = (V,E) always
has a finite or countably infinite vertex set, is simple (no self-edges or multi-edges), and is locally
finite (i.e., the degree of each vertex is finite). We abuse notation by writing v ∈ G to mean
v ∈ V . For a graph G = (V,E) and a vertex v ∈ V , we write Nv(G) = {u ∈ V : (u, v) ∈ E} for
the set of neighbors of v in G, noting that this set is empty if v is an isolated vertex. A rooted
graph G = (V,E, ø) is a graph equipped with a distinguished vertex ø ∈ V , called the root.
For two vertices u, v ∈ V , let d(u, v) denote the graph distance, i.e., the length of the shortest
path from u to v (with d(u, u) := 0). Also, let diam(A) denote the diameter of a set A ⊂ V ;
precisely, diam(A) = sup{d(u, v) : u, v ∈ A}. For a subset A ⊂ V , we define the first and second
boundaries

∂GA = {u ∈ V \A : (u, v) ∈ E for some v ∈ A},
∂2
GA = ∂GA ∪ ∂G(A ∪ ∂GA).

(1.1)

We will often omit the subscript, writing simply ∂2A in place of ∂2
GA, when the underlying

graph G is clear. A clique in a graph G is a complete subgraph of G, i.e., a set A ⊂ V such that
(u, v) ∈ E for every u, v ∈ A. Equivalently, a clique is a set A ⊂ V of diameter at most 1. Define
cl1(G) to be the set of all cliques of the graph G. Similarly, we will say that any subset A ⊂ V
with diameter at most 2 is a 2-clique of the graph G and let cl2(G) denote the set of 2-cliques
of G. Moreover, given a graph G = (V,E), H = (VH , EH) is said to be an induced subgraph of
G if VH ⊂ V and EH = E ∩ {(u, v) : u, v ∈ VH}.

For a set X and a graph G = (V,E), we may write either X V or XG for the configuration
space {(xv)v∈V : xv ∈ X for every v ∈ V }. We make use of a standard notation for configura-
tions on subsets of vertices: For x = (xv)v∈V ∈ X V and A ⊂ V , we write xA for the element
xA = (xv)v∈A of XA. When X is a Polish space, we write B(X ) for the Borel σ-field, and
write P(X ) for the set of Borel probability measures on X , endowed always with the topology
of weak convergence. Given any measurable space X , A ⊂ V , and measure ν ∈ P(X V ), ν[A]
represents the restriction of ν to the set XA, that is, the image measure under the restriction
map X V 3 (xv)v∈V 7→ (xv)v∈A ∈ XA.

Fixing d ∈ N, we let C = C(R+;Rd) denote the path space of Rd-valued continuous functions
on R+ = [0,∞), endowed with the topology of uniform convergence on compacts. For t > 0,
let Ct = C([0, t];Rd) denote its restriction to the time interval [0, t], endowed with the uniform
topology. For x ∈ C and t > 0 we define ‖x‖∗,t := sups∈[0,t] |x(s)|, and let x[t] = (x(s))s≤t ∈ Ct
denote the restriction of the path x to the time interval [0, t]. We assume that C and Ct are
endowed with their respective Borel σ-algebras. Also, for any countable set A and probability
measure Q on CA, we write Qt for the image under Q of the map CA 3 (xv)v∈A 7→ (xv[t])v∈A ∈
CAt . The σ-algebra on a product space will always be the product σ-algebra, unless explicitly
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stated otherwise. Given J,m ∈ N, a measurable function f : [0,∞) × CJ 7→ Rm, is said to
be progressively measurable if for each t ≥ 0, f(t, (xu)u=1,...,J) = f(t, (yu)u=1,...,J) whenever
xu[t] = yu[t] for all u = 1, . . . , J .

We end this section by recalling the notion of a (first-order or second-order) Markov random
field, which plays a central role in the paper.

Definition 1.1. Given a measurable space X , and a (possibly infinite) locally finite graph
G = (V,E), let (Yv)v∈V be a random element of X V with some distribution ν ∈ P(X V ). We
say that (Yv)v∈V , or equivalently its law ν, is a first-order Markov random field (abbreviated
as 1MRF) on X V if YA is conditionally independent of Y(A∪∂A)c given Y∂A, for every finite
set A ⊂ V . On the other hand, we say that (Yv)v∈V , or equivalently its law ν, is a second-
order Markov random field (abbreviated as 2MRF) on X V if YA is conditionally independent of
Y(A∪∂2A)c given Y∂2A, for every finite set A ⊂ V . When the space X V is clear from the context,
we will simply say that (Yv)v∈V , or equivalently its law ν, is a 1MRF or 2MRF.

Remark 1.2. In Definition 1.1, it is important to stress that the sets A are required to be finite
even when the graph G is infinite. Allowing infinite sets A results in the stronger global Markov
property, which we do not study in this paper.

2. Main results

Given a locally finite graph G = (V,E) with a finite or countably infinite vertex set, we are
interested in a system of (possibly non-Markovian) interacting stochastic processes, indexed by
the vertices of the graph, that satisfy a (functional) SDE of the form

dXv(t) = bv(t,Xv, XNv(G)) dt+ σv(t,Xv) dWv(t), v ∈ V, (2.1)

where (Wv)v∈V are independent Brownian motions, and the initial law µ0 ∈ P((Rd)V ), of
(Xv(0))v∈V and the coefficients (bv, σv)v∈V satisfy the conditions stated in Assumption A or
Assumption B below, depending on whether the graph is finite or infinite. As mentioned in the
introduction, our main results concern the characterization of the law of the solution to the SDE
(2.1) as a 2MRF on the path space CV (see Definition 1.1).

2.1. The finite graph case. We first consider the case when G is finite, and the conditions
stated in Assumption A below are satisfied. Recall, from Section 1.2, the definition of 2-cliques,
the notation for trajectories, x[t] = (x(s))s≤t ∈ Ct for x ∈ C, and the notion of a progressively
measurable functional.

Assumption A. We say that (G, b, σ, µ0) satisfy Assumption A if G = (V,E) is a finite graph
and if b = (bv)v∈V , σ = (σv)v∈V , and µ0 ∈ P((Rd)V ) satisfy the following:

(A.1) There exist λv ∈ P(Rd), v ∈ V , such that the probability measure µ0 is absolutely
continuous with respect to the product measure µ∗0 =

∏
v∈V λv ∈ P((Rd)V ) and the

density satisfies

dµ0

dµ∗0
(x) =

∏
K∈cl2(G)

fK(xK), x ∈ (Rd)V , (2.2)

for some measurable functions fK : (Rd)K → R+, K ∈ cl2(G), where cl2(G) is the set of
2-cliques of G. In addition, µ0 has a finite second moment.

(A.2) For each v ∈ V , the drift bv : R+ × C × CNv(G) 7→ Rd is progressively measurable.
Moreover, for each T ∈ (0,∞) there exists CT <∞ such that

|bv(t, x, yNv(G))| ≤ CT

(
1 + ‖x‖∗,t +

∑
u∈Nv

‖yu‖∗,t

)
,
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for all v ∈ V , t ∈ [0, T ], x ∈ C, and yNv(G) = (yu)u∈Nv(G) ∈ CNv(G).

(A.3) The diffusion matrices σv : R+ × C → Rd×d, v ∈ V , satisfy the following:
(A.3a) For each v ∈ V , σv is bounded, progressively measurable and invertible, with

bounded inverse.
(A.3b) For each v ∈ V , the following driftless SDE system admits a unique in law weak

solution starting from any initial position x ∈ Rd:

dXv(t) = σv(t,Xv) dWv(t), Xv(0) = x. (2.3)

Remark 2.1. A necessary condition for Assumption (A.1) is that µ0 is a 2MRF and is absolutely
continuous with respect to the product measure µ∗0; this follows from a form of the Hammersley-
Clifford theorem stated in Proposition 3.2 below. If the density dµ0/dµ

∗
0 is strictly positive, then

it factorizes as in (2.2) if and only if µ0 is a 2MRF.

Remark 2.2. If σv(t, x) = σ̃v(t, x(t)) depends only on the current state, not the history, and
satisfies the additional continuity condition limy→x sup0≤s≤T |σ̃v(s, y) − σ̃v(s, x)| = 0 for all
v ∈ V , then Assumption (A.3b) holds as a consequence of Assumption (A.3a) and [29, Chapter
7].

The following proposition shows that, as a simple consequence of Girsanov’s theorem, As-
sumption A guarantees weak existence and uniqueness in law of the SDE system (2.1). Its proof
is given in Section 3.2, along the way to proving Theorem 2.4 below.

Proposition 2.3. When (G, b, σ, µ0) satisfy Assumption A, the SDE system (2.1) has a weak
solution that is unique in law.

We now state our main result for the SDE system on finite graphs.

Theorem 2.4. Suppose (G = (V,E), b, σ, µ0) satisfy Assumption A, and let (Xv)v∈V be the
unique (in law) solution of the SDE system (2.1) with initial law µ0. Then, for each t > 0,
(Xv[t])v∈V is a 2MRF on CVt . Moreover, (Xv)v∈V is a 2MRF on CV .

The proof of Theorem 2.4, given in Section 3.2, relies on a certain factorization property
(stated in Proposition 3.2) of the density of the law of the SDE on finite graphs with respect to
a reference measure. Notice that in Assumption A, and throughout the paper, we assume there
is no interaction in the diffusion coefficients (i.e., no dependence of σv on XNv(G)), a restriction
made also in the prior works [3, 10,21,26]; the general case seems out of reach of our approach,
because the reference measure in the factorization property must crucially be a product measure.
This factorization property is also used in Sections 3.3.1 and 3.3.2 to show that, even when the
initial states (Xv(0))v∈V are i.i.d., for t > 0, in general (Xv[t])v∈V fails to be a 1MRF, and
the time-t marginals (Xv(t))v∈V can fail to be a Markov random field of either first or second
order. In fact, the counterexamples show that this does not hold even on a finite graph when σ
is the identity covariance matrix, and the drift is of gradient type. This shows that, in a sense,
Theorem 2.4 cannot be strengthened.

2.2. The infinite graph case. We now consider the SDE system (2.1) in the case when G is
an infinite, though still locally finite, graph. The well-posedness of the SDE system is no longer
obvious and in particular does not follow from Girsanov’s theorem as it did when the graph
was finite. Indeed, on an infinite graph, when bv ≡ 1 and σv ≡ Id, v ∈ V , for instance, it is
straightforward to argue, using the law of large numbers, that the law of a weak solution of
(2.1) up to some time t > 0 and the law of the corresponding drift-free equation are mutually
singular. This necessitates the following additional assumptions compared to Assumption A.
Recall from Section 1.2 that given a measure ν on X V for some Polish space X , and A ⊂ V ,
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ν[A] denotes the restriction of ν to A. Also, we use the notation π1 ∼ π2 to denote that the
measures π1 and π2 are equivalent, that is, mutually absolutely continuous.

Assumption B. We say that (G, b, σ, µ0) satisfy Assumption B if G = (V,E) is a countable
locally finite connected graph and if b = (bv)v∈V , σ = (σv)v∈V and µ0 ∈ P((Rd)V ) satisfy the
following:

(B.1) The initial law µ0 is a 2MRF on (Rd)V . Moreover, there exists a product measure
µ∗0 =

∏
v∈V λv ∈ P((Rd)V ) such that µ0[A] ∼ µ∗0[A] for each finite set A ⊂ V . Further,

the initial law µ0 satisfies

sup
v∈V

∫
(Rd)V

|xv|2 µ0(dxV ) <∞. (2.4)

(B.2) The drift coefficients (bv)v∈V satisfy Assumption (A.2), for some constants (CT )T>0.
(B.3) The diffusion matrices (σv)v∈V satisfy Assumption (A.3).
(B.4) The SDE system (2.1) is unique in law, and this law is denoted by P = Pµ0 ∈ P(CV ).

Remark 2.5. Using Assumption (A.3b) if the graph is finite or Assumption (B.3) if the graph
is infinite, we may define for any initial law ν ∈ P((Rd)V ) the measure P ∗,ν ∈ P(CV ) to be the
law of the unique weak solution of the SDE system

dXv(t) = σv(t,Xv) dWv(t), v ∈ V, (Xv(0))v∈V ∼ ν. (2.5)

Note in particular that if we take ν = µ∗0, where µ∗0 is a product measure as in Assumption (A.1)
or (B.1), then P ∗,µ

∗
0 too is a product measure.

We show in Lemma 5.2 that existence of a solution to (2.1) follows automatically from
Assumptions (B.1–3). However, it is worth commenting on the uniqueness condition in As-
sumption (B.4). The following proposition shows that a suitable Lipschitz condition is enough
to guarantee uniqueness; its proof is standard and hence relegated to Appendix A. Recall in the
following that ‖x‖∗,t = sups∈[0,t] |x(s)| for x ∈ C.

Proposition 2.6. Suppose Assumptions (B.1–3) hold, and (bv)v∈V and (σv)v∈V are uniformly
Lipschitz in the sense that for each T > 0 there exist KT , K̄T <∞ such that

|bv(t, x, yNv(G))− bv(t, x′, y′Nv(G))| ≤ KT

‖x− x′‖∗,t +
1

|Nv(G)|
∑

u∈Nv(G)

‖yu − y′u‖∗,t

 ,

|σv(t, x)− σv(t, x′)| ≤ K̄T ‖x− x′‖∗,t,

for all v ∈ V , t ∈ [0, T ], x, x′ ∈ C, and yNv(G), y
′
Nv(G) ∈ C

Nv(G). Then pathwise uniqueness holds

for the SDE system (2.1). In particular, Assumption (B.4) holds.

We now state our second main result.

Theorem 2.7. Suppose (G = (V,E), b, σ, µ0) satisfy Assumption B, and let (Xv)v∈V be the
unique in law solution of the SDE system (2.1) with initial law µ0. Then, for each t > 0,
(Xv[t])v∈V is a 2MRF on CVt . Moreover, (Xv)v∈V is a 2MRF on CV .

The proof of Theorem 2.7 is given in Section 5.2, with preparatory results established in
Sections 4 and 5.1. The factorization result used in the finite graph case is no longer applicable
in the infinite graph case, and thus the proof employs a completely different approach, involving
a rather subtle approximation argument, which is outlined in Section 4.1.
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2.3. Gibbs measures on path space. Our final results interpret our SDE system in the spirit
of Gibbs measures, for which we introduce the following notation. Given a Polish space X , a
graph G = (V,E), a random X V -valued element (Yv)v∈V with law ν ∈ P(X V ), and two disjoint
sets A,B ⊂ V , we write ν[A |B] to denote a version of the regular conditional law of YA given
YB. Precisely, we view ν[A |B] as a measurable map (kernel) from XB to P(XA). Note that ν
is a 2MRF if and only if ν[A |V \A](xV \A) = ν[A | ∂2A](x∂2A) for ν-almost every x ∈ X V and
every finite set A. We make use of the following terminology of Gibbs measures (see [11] or [23]
for further discussion of this classical framework).

Definition 2.8. Given a Polish space X , graph G = (V,E), and γ ∈ P(X V ), define G2(γ) as
the set of 2MRFs ν ∈ P(X V ) such that, for each finite set A ⊂ V , we have ν[A] ∼ γ[A] and also
ν[A | ∂2A] = γ[A | ∂2A], almost everywhere with respect to γ[∂2A].

In other words, G2(γ) is the set of (second-order, infinite volume) Gibbs measures corre-
sponding to the specification {γ[A | ∂2A] : A ⊂ V finite}. Note that if γ is itself a 2MRF then
G2(γ) is nonempty, as it contains γ itself. Moreover, it is straightforward to check that, if γ and
ν are 2MRFs, then ν ∈ G2(γ) if and only if γ ∈ G2(ν).

Recall that, by Assumption (B.4), the SDE system (2.1) is well-posed starting from any
initial distribution. Recall also from Section 1.2 that for P,Q ∈ P(CV ) we write Pt and Qt for
their projections onto CVt . The following bijection result is proved in Section 6.

Theorem 2.9. Suppose (G, b, σ, µ0) satisfy Assumption B. Let Pµ0 ∈ P(CV ) be the law of the
solution of the SDE system (2.1) with initial law µ0 and define

Minit(µ0) :=
{
ν0 ∈ G2(µ0) : sup

v∈V

∫
Rd
|xv|2 ν0(dx) <∞

}
,

and

Mpath(µ0) :=

{
Q ∈ P(CV ) : Qt ∈ G2(Pµ0

t ) ∀t ≥ 0, sup
v∈V

∫
CV
|xv(0)|2Q(dx) <∞

}
.

Then it holds that

Minit(µ0) =
{
Q ◦ (XV (0))−1 : Q ∈Mpath(µ0)}. (2.6)

Moreover, the map Q 7→ Q ◦ (XV (0))−1 defines a bijection between Mpath(µ0) and Minit(µ0).

In particular, if Q ∈ P(CV ) satisfies Qt ∈ G2(Pµ0
t ) for all t ≥ 0 and also Q ◦ (XV (0))−1 = µ0,

then Q = Pµ0.

In fact, we will show in the proof of Theorem 2.9 that the bijection Q 7→ Q ◦ (XV (0))−1

between the sets Mpath(µ0) and Minit(µ0) has inverse given by ν0 7→ P ν0 , where P ν0 denotes
the law of the solution of the SDE (2.1) with initial law ν0, and we note that this SDE is unique
in law by Assumption (B.4). Additionally, if µ0(KV ) = 1 for some compact set K ⊂ Rd, then
(recalling that membership in G2(·) requires absolute continuity) (2.6) can be rewritten as

G2(µ0) =
{
Q ◦ (XV (0))−1 : Q ∈ P(CV ), Qt ∈ G2(Pµ0

t ) ∀t ≥ 0
}
.

We conclude this section with the following simple corollary of Theorems 2.7 and 2.9.

Corollary 2.10. Suppose (G, b, σ, µ0) satisfy Assumption B and Pµ0 represents the unique law
of the SDE (2.1). If G2(µ0) is a singleton, then the set Mpath(µ0) defined in Theorem 2.9 is
equal to the singleton {Pµ0}, and hence, Pµ0 is completely characterized by its specifications
Pµ0
t [A|∂2A], t ≥ 0, for finite A ⊂ V .
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Proof. Since Assumption (B.1) ensures that µ0 is a 2MRF with finite second moment, the set
on the left-hand side of (2.6) always contains µ0. Thus, if G2(µ0) is a singleton, then by Theorem
2.9 the set Mpath(µ0) is also a singleton. On the other hand, by Theorem 2.7, for each t ≥ 0 it
holds that Pµ0

t is a 2MRF and thus Pµ0
t ∈ G2(Pµ0

t ). Hence, Pµ0 ∈Mpath(µ0). �

3. Interacting diffusions on a finite graph

In Section 3.1 (specifically Proposition 3.2) a useful characterization of a (positive) 2MRF
is derived in an abstract setting. This is then used in Section 3.2 to prove Theorem 2.4; along
the way Proposition 2.3 is also established. In Sections 3.3.1 and 3.3.2 this characterization is
applied to demonstrate via explicit examples that the path-space 2MRF property established in
Theorem 2.4 (and hence, Theorem 2.7) is sharp, in the sense that it cannot be improved to a
1MRF property, and in the sense that there is in general no 1MRF or 2MRF property for the
time-t marginal laws.

3.1. Clique factorizations. We start by studying the relationship between random fields and
factorization properties of their joint density with respect to a given reference measure. Through-
out this section, we work with a fixed finite graph G = (V,E), as well as a fixed Polish space
X , the state space. Recall the definition of the diameter diam(A) of a set A ⊂ V , 1-cliques and
2-cliques of a graph, and 1st-order and 2nd-order MRFs given in Section 1.2.

First, we recall a well-known theorem often attributed to Hammersley-Clifford, which can
be found in various forms in [11, Theorem 2.30] and [18, Proposition 3.8 and Theorem 3.9], the
latter covering our precise setting.

Proposition 3.1 (Hammersley-Clifford). Assume the graph G = (V,E) is finite. Assume
ν ∈ P(X V ) is absolutely continuous with respect to a product measure ν∗ =

∏
v∈V θv ∈ P(X V )

for some θv ∈ P(X ), v ∈ V . Consider the following statements:

(1) ν is a 1MRF.
(2) The density of ν with respect to ν∗ factorizes in the form

dν

dν∗
(x) =

∏
K∈cl1(G)

fK(xK), x ∈ X V ,

for some measurable functions fK : XK → R+, for K ∈ cl1(G).

Then (2) implies (1). If also dν/dν∗ is strictly positive, then (1) implies (2).

We next formulate an analogue for a 2MRF.

Proposition 3.2 (Second-order Hammersley-Clifford). Assume the graph G = (V,E) is finite.
Assume ν ∈ P(X V ) is absolutely continuous with respect to a product measure ν∗ =

∏
v∈V θv ∈

P(X V ) for some θv ∈ P(X ), v ∈ V . Consider the following statements:

(1) ν is a 2MRF.
(2) The density of ν with respect to ν∗ factorizes in the form

dν

dν∗
(x) =

∏
K∈cl2(G)

fK(xK), x ∈ X V , (3.1)

for some measurable functions fK : XK → R+, for K ∈ cl2(G).

Then (2) implies (1). If also dν/dν∗ is strictly positive, then (1) implies (2).

Proof. Define the square graph G2 = (V,E′) by connecting any two vertices of distance 2. That
is, let

E′ := {(u, v) ∈ V 2 : 1 ≤ d(u, v) ≤ 2},
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where d is the graph distance on G. It is straightforward to check the following properties:

(i) The 1-cliques of G2 are precisely the 2-cliques of G. That is, cl2(G) = cl1(G2).
(ii) We have ∂G2A = ∂2

GA for any set A ⊂ V .

It follows from (ii) that the statement (1) is equivalent to

(1’) ν is a 1MRF relative to the graph G2.

On the other hand, it follows from (i) that (2) is equivalent to

(2’) The density of ν with respect to ν∗ factorizes in the form

dν

dν∗
(x) =

∏
K∈cl1(G2)

fK(xK), x ∈ X V ,

for some measurable functions fK : XK → R+, K ∈ cl1(G2).

The equivalence of (1’) and (2’) follows from Proposition 3.1. �

The 2MRF property is the more intuitive, but the second property of Proposition 3.2 will
be quite useful in the analysis as well. Hence, we give it a name.

Definition 3.3. We say that ν ∈ P(X V ) has a 2-clique factorization with respect to ν∗ if the
density dν/dν∗ can be written in the form (3.1).

Remark 3.4. For a finite graph G = (V,E) and Polish space X , the following cutset charac-
terization of 1MRF’s on X V is well known: An X V -valued random element (Yv)v∈V is a 1MRF
if and only if YA is conditionally independent of YB given YS for any disjoint sets A,B, S ⊂ V
with the property that every path starting in A and ending in B contains at least one vertex
of S. Given the correspondence between a 2MRF on a graph and a 1MRF on the square graph
(established in the proof of Proposition 3.2), this is easily seen to imply the following cutset
characterization of 2MRFs: An X V -valued random element (Yv)v∈V is a 2MRF if and only if YA
is conditionally independent of YB given YS for any disjoint sets A,B, S ⊂ V with the property
that every path starting in A and ending in B contains at least two adjacent vertices of S.

3.2. Proof of the second-order Markov random field property for a finite graph.
We now present the proofs of Proposition 2.3 and Theorem 2.4. Throughout this section, we
work with a fixed finite graph G = (V,E) and consider the canonical measurable space CV =
(CV ,B(CV )), and let (Xv)v∈V : CV → CV denote the canonical processes, that is, Xv((xu)u∈V ) =
xv for x = (xu)u∈V ∈ CV , for v ∈ V . Let µ0, µ

∗
0 ∈ P((Rd)V ) be as in Assumption (A.1), and

let P ∗ = P ∗,µ
∗
0 ∈ P(CV ) denote the law of the unique solution of the driftless SDE system (2.5)

starting from initial law µ∗0 (the well-posedness of which is given by Assumption (A.3b)). Recall
that µ∗0 and thus P ∗ are both product measures. Then, recalling that dXv(t) = σv(t,Xv) dWv(t)
for v ∈ V , define the following local martingale (under P ∗):

Mv(t) :=

∫ t

0
(σvσ

>
v )−1bv(s,Xv, XNv(G)) · dXv(s), t ≥ 0, (3.2)

where we use the shorthand notation (σvσ
>
v )−1bv(s, xv, xNv(G)) to denote the map

R+ × CV 3 (s, x) 7→ (σv(s, xv)σ
>
v (s, xv))

−1bv(s, xv, xNv(G)) ∈ Rd. (3.3)

Also, given any continuous local martingale M , we let E(M) denote the stochastic exponential

Et(M) := exp

(
M(t)− 1

2
[M ](t)

)
, t ≥ 0, (3.4)

where [M ] denotes the (optional) quadratic variation process of M .
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Let (fK)K∈cl2(G) be as in Assumption (A.1). For each t > 0, define the measure Pt ∈ P(CVt )
by

dPt
dP ∗t

:=
dµ0

dµ∗0
(XV (0))Et

(∑
v∈V

Mv

)
,

=
∏

K∈cl2(G)

fK(XK(0))
∏
v∈V
Et(Mv), (3.5)

with E(M) and P ∗ as defined in the previous paragraph. Note that Wv :=
∫ ·

0 σ
−1
v (s,Xv) dXv(s),

v ∈ V, are independent d-dimensional Brownian motions under P ∗ by Remark 2.5. Therefore
the stochastic exponentials appearing in (3.5) are true P ∗-martingales due to the form of Mv

in (3.2), the linear growth assumption (A.2) on the drifts and the non-degeneracy of σv; see
Lemma B.1 with Q = P ∗, X = (Xv)v∈V and fv(t, x) = σ−1

v bv(t, xv, xNv(G)), v ∈ V . Further,
observe that (Mv)v∈V are orthogonal under P ∗. So Girsanov’s theorem [13, Corollary 3.5.2]

implies that under Pt, W̃v := Wv −
∫ ·

0 σ
−1
v (s,Xv)bv(s,Xv, XNv(G)) ds, v ∈ V , are independent

d-dimensional standard Brownian motions on [0, t]. From this it follows that under Pt, X solves
the SDE (2.1) on [0, t], and the same argument also shows that the restriction to [0, t] of any
solution to (2.1) must have law Pt on CVt . Thus, we have uniqueness in law. Weak existence
follows from Kolmogorov’s extension theorem [12, Theorem 6.16] on observing that {Pt, t ≥ 0}
form a consistent family in the sense that Ps is the restriction of Pt to CVs for each t > s > 0
(due to the martingale property of dPt

dP ∗t
). This completes the proof of Proposition 2.3.

On the other hand, the fact that for each t > 0, (Xv[t])v∈V is a 2MRF on CVt follows
from (3.5) on applying Proposition 3.2 with X = Ct and µ∗ = P ∗t , noting that P ∗t is a prod-
uct measure on CVt and that, for each v ∈ V , {v} ∪ Nv(G) is a 2-clique and Mv of (3.2) is
X{v}∪Nv(G)-measurable. This proves the first assertion of Theorem 2.4. For the second assertion

of Theorem 2.4, denote by P = Pµ0 ∈ P(CV ) the law of the unique solution of the SDE system
(2.1) with initial law µ0. Fix a finite set A ⊂ V and bounded continuous functions f, g, h on

CA, C∂2A, CV \(A∪∂2A), respectively. Fix t > 0 and let Ft := σ{X∂2A[t]} and F∞ := σ{X∂2A}.
Below, with some abuse of notation, for any B ⊂ V , we will also interpret elements y ∈ CBt as
elements of CB by simply setting y(s) = y(t) for s ≥ t. Note that with this identification, for
any x ∈ CV and B ⊂ V , xB[t] → xB in CB as t → ∞. Then, noting that σ(∪t>0Ft) = F∞,
invoking the martingale convergence theorem (in the third equality below), and using the fact
that Pt = P ◦ (XV [t])−1 is a 2MRF on CVt for each t (in the second equality below), we have

EP
[
f(XA)g(X∂2A)h(XV \(A∪∂2A))

]
= lim

s→∞
lim
t→∞

EP
[
f(XA[s])g(X∂2A[t])h(XV \(A∪∂2A)[s])

]
= lim

s→∞
lim
t→∞

EP
[
EP [f(XA[s]) | Ft] g(X∂2A[t])EP

[
h(XV \(A∪∂2A)[s]) | Ft

]]
= lim

s→∞
EP
[
EP [f(XA[s]) | F∞] g(X∂2A)EP

[
h(XV \(A∪∂2A)[s]) | F∞

]]
= EP

[
EP [f(XA) | F∞] g(X∂2A)EP

[
h(XV \(A∪∂2A)) | F∞

]]
, (3.6)

where we have also made repeated use of the boundedness and continuity of f, g, h and the
bounded convergence theorem. This shows that XA and XV \(A∪∂2A) are conditionally indepen-

dent given X∂2A under P , that is, P is a 2MRF on CV . This completes the proof. �

3.3. Illustrative examples. We now provide examples to show that the 2MRF property cannot
in general be strengthened.



12 LACKER, RAMANAN, AND WU

3.3.1. The failure of the first-order MRF property for trajectories. In general, Pt fails to be a
first-order Markov random field on CVt for any t > 0, even if the initial states are i.i.d. To
see why, notice that the density dPt/dP

∗
t given by (3.5) does not in general admit a clique

factorization. Indeed, for v ∈ V and t > 0, we recall the definition of Mv from (3.2) and Et(Mv)
from (3.4), which we write in full as

Et(Mv) = exp

(∫ t

0
(σvσ

>
v )−1bv(s,Xv, XNv(G)) · dXv(s)

− 1

2

∫ t

0

〈
bv(s,Xv, XNv(G)), (σvσ

>
v )−1bv(s,Xv, XNv(G))

〉
ds

)
.

Noting that {v} ∪ Nv(G) is a 2-clique but not a 1-clique, this reveals why one cannot hope
for a factorization over 1-cliques. For example, consider the “nice” case where σv ≡ I and
bv(s, xv, xNv(G)) =

∑
u∈Nv(G)(xu(s) − xv(s)). (Equivalently, bv(s, xv, xNv(G)) = ∇xvh(x) is of

gradient-type with potential h(x) = −1
2

∑
(u,v)∈E |xu − xv|2, where E is the edge set of G.)

Then the first term in the above exponential splits nicely into a sum of pairwise interactions∑
u∈Nv(G)

∫ t
0 (Xu(s)−Xv(s)) · dXv(s), but the second term becomes

−1

2

∑
u,w∈Nv(G)

∫ t

0
〈Xu(s)−Xv(s), Xw(s)−Xv(s)〉 ds.

It is this term which fails to factorize further over 1-cliques as opposed to 2-cliques and thus pre-
cludes the first-order Markov property whenever dµ0/dµ

∗
0 is strictly positive due to Proposition

3.1.
To informally provide a different (but arguably more intuitive) perspective on why the first-

order Markov property for past histories fails, consider the case when G is a line segment of
length ` = 3, labelling the vertices −1, 0, 1. Then, although the driving Brownian motions are
all independent and the dynamics of each of the two extreme vertices only depend on its own
state and the state of the center vertex, at any time t, conditioning on the past history of the
states of the center vertex, does not make X−1(t) independent of X1(t) because the conditioning
correlates the Brownian motions W−1 and W1 on the interval [0, t]. This happens because the
past history of X0 is influenced by both W−1 and W1 via X−1 and X1. On the other hand,
to see why the 2MRF property nevertheless does hold, note that if G were a line segment of
length 4, labeling the vertices {−2,−1, 1, 2}, then conditioning on the history of the states of the
two center vertices −1 and 1 no longer correlates the Brownian motions W−2 and W2 since the
dynamics of each of the conditioned vertices depends on a different driving Brownian motion.
Thus, although the conditioning changes the distribution of W−2 and W2 (for instance, they need
no longer be Brownian motions), they remain independent, and hence X−2(t) is conditionally
independent of X2(t) in this case.

Remark 3.5. There are certain situations in which Pt is, in fact, a 1MRF for each t > 0 (even
though we know from the above examples that this is not in general the case). For example,
suppose that for every v ∈ V , there exists a clique Kv of G with v ∈ Kv ⊂ Nv(G) such that

bv(t, xv, xNv(G)) = b̃v(t, xv, xKv) depends on xNv(G) only through xKv . Suppose also that dµ0/dµ
∗
0

admits a 1-clique factorization. Then, recalling (3.5), note that for each v the martingale Mv is
measurable with respect to XKv , and deduce from Proposition 3.1 that Pt is a first-order Markov
random field. For a concrete example that has the above form, consider the case when G is a
triangular lattice with V = {ø, 0, 1, . . . ,m}, for some m ∈ N, with the central vertex ø having the
neighborhood Nø(G) = {0, . . . ,m} and for each v ∈ V \{ø}, Nv(G) := {ø, v+1, v−1}, where the
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vertices are to be interpreted mod m+ 1. Further, suppose the initial conditions are i.i.d. and
that for some c ∈ R, bv(t, xv, xNv(G)) = c(xø + xv+1) for v ∈ V \ {ø} and bø(t, xø, xNø(G)) = cxø.
Then this provides a specific example with Kv = {ø, v+1} ⊂ Nv(G) for v ∈ V \{ø} and Kø = ∅.
In a similar spirit, the directed cycle graph model of [9] provides another example.

3.3.2. The failure of MRF properties for time-t marginals. It is natural to wonder if and when
the time-t marginals Pt ◦ X(t)−1 ∈ P((Rd)V ) remain a first- or second-order Markov random
field, given that this property is true at time 0, or even given i.i.d. initial conditions. This
question is related to propagation of Gibbsianness and Gibbs-non-Gibbs transitions that have
been studied in the literature, which is discussed in greater detail in Remark 3.6.

Here, we provide a simple example where both the first-order and second-order Markov
property fail for time-t marginals. In fact, in this simple model we will see that there is no non-
trivial conditional independence structure. Consider the segment with 5 vertices: G = (V,E)
given by V = {1, 2, 3, 4, 5} and E = {(i, i+ 1) : i = 1, 2, 3, 4}, and consider the SDE system

dX1(t) = (X2(t)− 2X1(t)) dt+ dW1(t),

dXi(t) = (Xi−1(t) +Xi+1(t)− 2Xi(t)) dt+ dWi(t), i = 2, 3, 4,

dX5(t) = (X4(t)− 2X5(t)) dt+ dW5(t),

(3.7)

with Xi(0) = 0 for each i. Once again, note that the drift here is of gradient type with potential

h(x) =
∑4

i=1 xixi+1 −
∑5

i=1 x
2
i . Letting X(t) denote the column vector (X1(t), . . . , X5(t)) and

similarly for W (t), we may write this in vector form as

dX(t) = LX(t) dt+ dW (t), (3.8)

where L = A− 2I is the adjacency matrix A of the graph minus twice the identity I:

L =


−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2

 .

The solution of the SDE (3.8) is given by

X(t) = eLt
∫ t

0
e−Ls dW (s), t > 0.

Noting that L is symmetric and invertible, we deduce that X(t) is jointly Gaussian with mean
zero and covariance matrix

E[X(t)X(t)>] =

∫ t

0
e2Ls ds =

1

2
L−1(e2Lt − I). (3.9)

This covariance matrix can easily be computed explicitly by noting that the tridiagonal Toeplitz
matrix A is explicitly diagonalizable. To spare the reader any tedium, we provide only some
pertinent snapshots. At time t = 2 the covariance matrix is

E[X(2)X(2)>] =


0.3611 0.2388 0.1435 0.0767 0.0324
0.2388 0.5046 0.3156 0.1759 0.0767
0.1435 0.3156 0.5370 0.3156 0.1435
0.0767 0.1759 0.3156 0.5046 0.2388
0.0324 0.0767 0.1435 0.2388 0.3611

 . (3.10)



14 LACKER, RAMANAN, AND WU

Using the well known formula for conditional measures of joint Gaussians, we compute from this
that

Cov(X1(t), X3(t)|X2(t)) =

(
0.2481 −0.0058
−0.0058 0.3397

)
,

which reveals that X1(t) and X3(t) are not conditionally independent given X2(t). Hence,
(Xi(t))i∈G is not a first-order Markov random field. Similarly, by computing

Cov(X1(t), X4(t)|X2(t), X3(t)) =

(
0.2480 −0.0030
−0.0030 0.3189

)
,

we see that X1(t) and X4(t) are not conditionally independent given (X2(t), X3(t)). Hence,
(Xi(t))i∈G is not a second-order Markov random field.

In fact, in this example, there is no non-trivial conditional independence structure, in the
sense that there are no two vertices i, j such that Xi(t) and Xj(t) are conditionally independent
given {Xk(t) : k ∈ G\{i, j}} for some t > 0. This can be read off from the the so-called precision
matrix, which is simply the inverse of the covariance matrix, Q(t) := (E[X(t)X(t)>])−1. As
is well known and can easily be seen from the form of the multivariate Gaussian density, the
precision matrix reveals the conditional independence structure (see, e.g., [18, Proposition 5.2]),

in the following sense: For t > 0 define the graph G̃(t) = (V, Ẽ(t)) with the same vertex set V

but with (i, j) ∈ Ẽ(t) if and only if Qi,j(t) 6= 0. Then X(t) is a (first-order) Markov random

field with respect to the graph G̃(t). In our example, G̃(t) is the complete graph for each t > 0,
and this Markov property is vacuous. (Note, however, that Q(t) → 2L as t → ∞ because L
is negative definite, and the unique invariant measure of this diffusion is a first-order Markov
random field with respect to the original graph G.)

A variation on this example gives rise to another interesting phenomenon. Suppose we
modify the example by replacing the diagonal entries of L with zeros, i.e., remove all the −2X
terms from the drifts in (3.7). Then the covariance matrix is again invertible, and now Q1,4(t) =
Q2,5(t) = 0 for all t > 0, where we continue with the notation of the previous paragraph. That

is, G̃(t) is not the complete graph, but rather the complete graph with the edges (1, 4) and (2, 5)
removed, for each t > 0. In particular, X1(t) and X4(t) are conditionally independent given
(X2(t), X3(t), X5(t)), for each t > 0.

Remark 3.6. As mentioned in the introduction, one motivation for studying such conditional
independence questions is that (a stronger version of) the MRF structure of interacting SDEs can
lead to an autonomous “local characterization” of the dynamics at a vertex and its neighborhood,
as developed in the quite different setting of unimodular Galton-Watson trees in [17]. From this
perspective, it would be of interest to investigate if there are non-trivial special cases when
the first-order or second-order MRF property for time-t marginals propagates. A different but
related question that has been studied in the literature is propagation of Gibbsianness for an
infinite system of interacting real-valued diffusions indexed by Zd. Specifically, the work [7]
considers a collection of interacting diffusions, indexed by Zd, with identity covariance and a
drift that is the gradient of a Hamiltonian function associated with a certain interaction potential
Φ, and with an initial distribution that is also a Gibbs measure (as in Section 2.3) with respect
to a Gibbsian specification (in the sense of [11, Chapter 2]) associated with another interaction
potential Φ0, where both interaction potentials Φ and Φ0 are assumed to be of finite range and
satisfy certain smoothness conditions. It is shown in [7] that when either t or the interaction
strength is sufficiently small, the time-t marginals are strongly Gibbsian, that is, associated with
Gibbsian specifications that have an absolutely summable, though not necessarily finite range,
interaction potential. Extensions of these results to the case of interacting real-valued diffusions
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on Zd with non-Markovian drifts with finite memory (again with finite range interactions and
identity covariance) were later obtained in [24] and [25]. The restrictions on the time and
interaction strength in these works arise from the fact that perturbative arguments are used.
However, in general for moderate interaction strengths and moderate times, the time-t marginals
can fail to be Gibbsian (see, e.g., [33], as well as the survey [32], which also discusses related
results for spin systems).

4. Finite-graph approximations for Markov random fields

In this section we establish some important preparatory results that are used in the proof of
Theorem 2.7, which extends the finite graph results of Theorem 2.4 to the infinite graph setting.
Fix (G, b, σ, µ0) that satisfy Assumption B and suppose G = (V,E) is countably infinite. Recall
that P = Pµ0 ∈ P(CV ) and P ∗,µ0 ∈ P(CV ) denote the unique law of the SDE systems (2.1)
and (2.5), respectively, both with initial laws µ0, which are well-posed by Assumptions (B.4)
and (B.3). To show that Pt = Pµ0

t forms a 2MRF on CVt , we can no longer apply the clique
factorization arguments used for finite graphs because the formula (3.5) does not extend to
infinite graphs. Even worse, the density dPt/dP

∗
t therein does not exist, and it seems impossible

to establish directly that by projecting to a finite set A ⊂ V we have a density dPt[A]/dP ∗t [A]
that admits a 2-clique factorization. Instead, we approximate the measure on the infinite graph
by 2MRFs on a growing sequence of finite graphs, arguing that the desired 2MRF property
passes to the limit. To highlight some of the subtleties that arise in such an approximation
argument, and to better motivate the other results established in this section, we first desribe
the approximating sequence of measures in Section 4.1. Then in the subsequent two sections we
establish some general properties of finite-graph 2MRFs to be used in the proof of Theorem 2.7
in Section 5.2, which are also of independent interest.

4.1. Construction of the approximating sequence of SDEs. We fix (G, b, σ, µ0) that sat-
isfy Assumption B. As in Section 3.2, we will work with the canonical measure space CV =
(CV ,B(CV ), P ∗,µ0), and let (Xv)v∈V : CV → CV again denote the canonical processes. Also,
recall from Section 1.2 that given any measurable space X , measure µ ∈ P(X V ) and subset
U ⊂ V , µ[U ] ∈ P(XU ) denotes the restriction of µ to the set XU .

Let (Vn)n∈N be an arbitrary sequence of subsets of V such that
⋃
n Vn = V , and let Gn =

(Vn, En), for some edge set En to be specified later. Also, for each n ∈ N and v ∈ Vn, let

bnv : R+ × C × CNv(Gn) 7→ Rd be any progressively measurable map that satisfies the same
conditions as bv in Assumption (B.2). Fix t > 0 and for each n, define Pnt = Pµ0,n

t ∈ P(CVt ) by

dPnt
dP ∗,µ0

t

=
dPµ0,n

t

dP ∗,µ0
t

=
∏
v∈Vn

Et
(∫ ·

0
(σvσ

>
v )−1bnv (s,Xv, XNv(Gn)) · dXv(s)

)
, (4.1)

where, as before, (σvσ
>
v )−1bnv (s, x, xNv(Gn)) denotes the map (3.3). We can apply Lemma B.1

with Q = P ∗,µ0 , X = (Xv)v∈Vn and f(t, x) = (σ−1
v bnv (t, xv, xNv(Gn)))v∈Vn , to conclude that

the stochastic exponential in (4.1) is a true P ∗,µ0-martingale, due to the linear growth, non-
degeneracy and boundedness properties of bnv and σv in Assumptions (B.2) and (B.3). Hence,
the family (Pnt )t>0 is consistent in the sense that the restriction of Pnt to CVs is precisely Pns for
each t > s > 0. Thus, by the Kolmogorov extension theorem, (Pnt )t>0 uniquely determines a
probability measure Pn on CV . Now, from (4.1), (2.5) and Girsanov’s theorem [13, Corollary
3.5.2], it follows that under Pn the canonical process solves the SDE system

dXv(t) = bnv (t,Xv, XNv(Gn)) dt+ σv(t,Xv) dWv(t), v ∈ Vn,
dXv(t) = σv(t,Xv) dWv(t), v ∈ V \ Vn,

(4.2)
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with (Xv(0))v∈V ∼ µ0, where (Wv)v∈V are independent Brownian motions under Pn. Note that
for v ∈ Vn, the third argument of bnv looks only at the states in Nv(Gn), and thus bnv depends
only on the states of vertices in Gn. Thus, Pn[Vn] is precisely the law of the finite-graph SDE
system (2.1) with inputs (G, (bnv )v∈V , (σv)v∈V , µ0[Vn]).

In order to implement our approximation argument we would like to choose Gn and (bnv )v∈V
such that both Pn → P and each Pnt [Vn] is a 2MRF. In order to have Pn → P we should
naturally choose Vn increasing to V and bnv to behave like bv for most v. But the 2MRF
property is more delicate. It would follow from the finite-graph result of Theorem 2.4 that
Pnt [Vn] is a 2MRF on CVn only if µ0[Vn] were a 2MRF on (Rd)Vn . But µ0[Vn] is not necessarily
a 2MRF for arbitrary Vn (e.g., with Gn the induced subgraph), even though µ0 is a 2MRF on
the full graph G by assumption; in other words, the 2MRF property is not in general preserved
under projections, as illustrated in Example 4.1 below. However, in Section 4.2 we show that
for any Markov random field on an infinite graph G = (V,E), it is possible to identify a suitable
increasing sequence of vertices (Vn)n∈N and associated graph Gn = (Vn, En) for each n ∈ N that
is a slight modification of the induced subgraph on Vn, such that the desired projection property
holds. Then, in Section 4.3 we prove some results on preservation of a class of conditional
distributions of 2MRFs under restriction to induced subgraphs. The above results are combined
with tightness and convergence estimates for the approximating sequence {Pn}n∈N obtained in
Section 5.1 to complete the proof of Theorem 2.7 in Section 5.2.

4.2. Projections of Markov random fields. We first provide a simple example to illustrate
that the restriction of an MRF to an induced subgraph need not remain an MRF.

Example 4.1. Suppose G is a finite two-dimensional lattice, with vertex set V identified with
{−n, . . . , n}2 and the usual nearest-neighbor edge set, and let (Yv)v∈G be a 1MRF on RV .
Consider the line subgraph H = {(i, 0) : i = −n, . . . , n} in G, and consider the restriction
(Yv)v∈H of the 1MRF to H. Note that every path in H that starts in A := {(0, 0)} and
ends in B = {(2, 0)} must traverse through the vertex of S := {(1, 0)}. Thus, by the cutset
characterization of 1MRF’s given in Remark 3.4, for (Yv)v∈H to be an 1MRF on H, Y(0,0) must
be conditionally independent of Y(2,0) given Y(1,0). However, by the same cutset characterization,
it is clear that this conditional independence cannot be deduced from the 1MRF property of
(Yv)v∈G on G since there are paths in G that start in A and end in B that are disjoint from S.
Similarly, if we assume (Yv)v∈G is a 2MRF, the configuration (Yv)v∈H can fail to be a 2MRF.

This example does suggest, however, that we can restore the MRF property by enlarging
the edge set of the induced subgraph to reflect the lost connectivity. The following lemma gives
one way to do this which is certainly not the only way, but it serves our purpose. For a random
element (Yv)v∈V of X V with law ν ∈ P(X V ), and for a set A ⊂ V , recall that we write ν[A] to
denote the law of YA, the coordinates in A.

Lemma 4.2. Fix a rooted graph G = (V,E, ø) and n ≥ 4. Define Vn := {v ∈ V : d(v, ø) ≤ n}
and Un := Vn \ Vn−2, where d denotes the graph distance. Define a graph Gn = (Vn, En), where

En := {(u, v) ∈ Vn × Vn : (u, v) ∈ E} ∪ {(u, v) ∈ Un × Un, u 6= v}.

(i) For any A ⊂ Vn−3, it holds that ∂2
GA = ∂2

Gn
A. Also, for any A′ ⊂ Vn−2, ∂2

GA
′ ⊂ ∂2

Gn
A′.

(ii) If K ∈ cl2(G) satisfies K ⊂ Vn, then K ∈ cl2(Gn).
(iii) If a X V -valued random variable (Yv)v∈V is a 2MRF with respect to G, then (Yv)v∈Vn is a

2MRF with respect to Gn.
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(iv) Suppose V is finite and the law ν of YV admits the following 2-clique factorization with
respect to a product measure ν∗ =

∏
v∈V θv ∈ P(X V ) for some θv ∈ P(X ),

dν

dν∗
(xV ) =

∏
K∈cl2(G)

fK(xK),

for some measurable functions fK : XK → R+, for K ∈ cl2(G). Then ν[Vn] admits a
2-clique factorization

dν[Vn]

dν∗[Vn]
(xVn) =

∏
K∈cl2(Gn)

f0
K(xK),

for some measurable functions f0
K : XK → R+, for K ∈ cl2(Gn), which additionally satisfy

the consistency condition f0
K ≡ fK for K ∈ cl2(G) such that K ⊂ Vn−3.

Proof.

(i) From the definition of En it follows quickly that (a) for A′ ⊂ Vn−2, ∂GA
′ = ∂GnA

′, and (b)
for A′′ ⊂ Vn−1, ∂GA

′′ ⊂ ∂GnA′′. Iterate these observations to prove the claims.
(ii) Let dG and dGn denote the graph distance in G and Gn, repsectively. From the definition

of En, it is straightforward to argue that dGn ≤ dG on Vn × Vn. Indeed, for any u, v ∈ Vn
and any path from u to v in G, there is a path from u to v in Gn which is not longer. This
implies for every u, v ∈ Vn, dG(u, v) ≤ 2 implies dGn(u, v) ≤ 2, which proves property (ii).

(iii) Let (Yv)v∈V be a 2MRF with respect to G. Let A ⊂ Vn, B = Vn \ (A ∪ ∂2
Gn
A), and

S := ∂2
Gn
A. Assuming without loss of generality that A and B are nonempty, we must

prove that YA and YB are conditionally independent given YS . First notice that one cannot
have both A ∩ Un 6= ∅ and B ∩ Un 6= ∅, as this would imply dGn(A,B) ≤ 1, contradicting
the definition of B. Therefore we must have either A ∩ Un = ∅, B ∩ Un = ∅, or both.

Case 1: Suppose A ∩ Un = ∅. This means A ⊂ Vn−2 and hence ∂2
GA ⊂ S by (i).

Since YA and YV \(A∪∂2
GA) are conditionally independent given Y∂2

GA
, we then have condi-

tional independence of YA and YB given YS . Indeed, this uses the elementary fact that if
(Z1, Z2, Z3, Z4) are random variables with Z1 conditionally independent of (Z2, Z3) given
Z4, then Z1 is conditionally independent of Z2 given (Z3, Z4).

Case 2: Suppose B ∩ Un = ∅. This means B ⊂ Vn−2 and hence, again by (i), ∂2
GB ⊂

∂2
Gn
B. Also note that ∂2

Gn
B ⊂ S (since otherwise A ∩ ∂2

Gn
B 6= ∅, which contradicts the

definition of B). Since the 2MRF property with respect to G implies YB and YV \(B∪∂2
GB)

are independent conditioned on Y∂2
GB

, we then have conditional independence of YB and

YA given YS . Since A ⊂ Vn was arbitrary, this proves that (Yv)v∈Vn is a 2MRF with respect
to Gn.

(iv) Let Kn denote the set of K ∈ cl2(G) such that K ⊂ Vn. Recalling that ν∗ is a product
measure, using the assumed clique factorization of ν, we can then write

dν[Vn]

dν∗[Vn]
(xVn) =

∫
XV \Vn

∏
K∈cl2(G)

fK(xK) ν∗[V \Vn](dxV \Vn)

=
∏
K∈Kn

fK(xK)

∫
XV \Vn

∏
K∈cl2(G)\Kn

fK(xK) ν∗[V \Vn](dxV \Vn).

Now note that any K ∈ cl2(G)\Kn is not contained in Vn, and as a 2-clique it can have
no neighbors in Vn−2. Recalling that Un = Vn\Vn−2, we see that the integral expression is
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xUn-measurable; that is, there is a measurable function gn : XUn → R+ such that

gn(xUn) =

∫
XV \Vn

∏
K∈cl2(G)\Kn

fK(xK) ν∗[V \Vn](dxV \Vn).

Note that Un ∈ cl2(Gn) by definition of Gn. Since clearly Kn ⊂ cl2(Gn), we find that the
expression

dν[Vn]

dν∗[Vn]
(xVn) =

∏
K∈Kn

fK(xK)gn(xUn)

exhibits a 2-clique factorization of ν[Vn] over the graph Gn satisfying the desired consistency
condition.

�

4.3. Conditional distributions of second-order Markov random fields. First, in Lemma
4.3, given a 2MRF with respect to a graph, and another 2MRF on a subgraph, or more generally
given MRFs on two overlapping graphs, we identify conditions under which the conditional
distributions of a subset in the intersection (given its complement) coincide for both 2MRFs.
This will be used to establish, for a suitable choice of bn, a certain consistency condition for the
sequence of approximating measures {Pn}n∈N used in the proof of Theorem 2.7. Let us briefly
recall a notation we introduced more carefully just before Theorem 2.9: For ν ∈ P(X V ) and
A,B ⊂ V we write ν[A |B] for the conditional law of the A-coordinates given the B-coordinates.

Lemma 4.3. Let G = (VG, EG) and H = (VH , EH) be finite graphs, and assume V ∗ ⊂ VG ∩ VH
satisfies

EG ∩ (V ∗ × V ∗) = EH ∩ (V ∗ × V ∗). (4.3)

Moreover, let A ⊂ V ∗ satisfy ∂2
GA ⊂ V ∗ and ∂2

HA ⊂ V ∗. Then ∂2
HA = ∂2

GA =: ∂2A, and it
holds that

{K ∈ cl2(G) : K ∩A 6= ∅} = {K ∈ cl2(H) : K ∩A 6= ∅} =: KA. (4.4)

Next, let νH ∈ P(X VH ) and νG ∈ P(X VG), and suppose there exists a product measure ν∗ =∏
v∈VG∪VH θv ∈ P(X VG∪VH ) for some θv ∈ P(X ), v ∈ VG ∪ VH , such that the densities factorize

as

dνH

dν∗[VH ]
(xVH ) =

∏
K∈cl2(H)

fHK (xK),
dνG

dν∗[VG]
(xVG) =

∏
K∈cl2(G)

fGK(xK),

for measurable functions (fHK : XK 7→ R+)K∈cl2(H) and (fGK : XK 7→ R+)K∈cl2(G) satisfying

fHK ≡ fGK for all K ∈ KA. Then νH [A | ∂2A] = νG[A | ∂2A], almost surely with respect to
ν∗[∂2A].

Note that Lemma 4.3 is vacuously true if V ∗ is empty.

Proof of Lemma 4.3. Let A ⊂ V ∗ satisfy ∂2
GA ⊂ V ∗ and ∂2

HA ⊂ V ∗. It is immediate from (4.3)
that ∂2

HA = ∂2
GA, and we write simply ∂2A for this set. To check (4.4), note that if K ∈ cl2(G)

intersects A, then K ⊂ A∪ ∂2A ⊂ V ∗. By (4.3) the edge sets of G and H agree when restricted
to V ∗, and we deduce that K ∈ cl2(H); this proves ⊂ in (4.4), but the reverse inclusion follows
by the same argument. Note that, with KA as defined in (4.4), we have also shown that

K ∈ KA ⇒ K ⊂ V ∗. (4.5)

Let us work in the rest of the proof on the canonical probability space (X VG∪VH ,B(X VG∪VH ), ν∗),
with E denoting expectation on this space, and all equations are understood to hold ν∗-almost
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surely. Let I = (Iv)v∈VG∪VH denote the identity map on X VG∪VH . By Proposition 3.2, νH is a
2MRF, and so νH [A | ∂2A](I∂2A) = νH [A |VH\A](IVH\A) a.s. Hence,

dνH [A | ∂2A](I∂2A)

dν∗[A]
(IA) =

dνH

dν∗[VH ](IVH )

E
[

dνH

dν∗[VH ](IVH ) | IVH\A
]

=

∏
K∈cl2(H) f

H
K (IK)

E[
∏
K∈cl2(H) f

H
K (IK) | IVH\A]

,

where we emphasize that the expectation in the denominator is with respect to independent
random variables (Iv)v∈VG∪VH .

The key observation is that if K ∈ cl2(H) does not intersect A, then the term fHK (IK) factors
out of the conditional expectation and cancels. Hence, with KA as in (4.4), we see that

dνH [A | ∂2A](I∂2A)

dν∗[A]
(IA) =

∏
K∈KA f

H
K (IK)

E[
∏
K∈KA f

H
K (IK) | IVH\A]

. (4.6)

Since IVH\V ∗ is independent of IV ∗ , in view of (4.5), we may equivalently condition on IV ∗\A in
the denominator of the term on the right-hand side of (4.6) to obtain

dνH [A | ∂2A](I∂2A)

dν∗[A]
(IA) =

∏
K∈KA f

H
K (IK)

E[
∏
K∈KA f

H
K (IK) | IV ∗\A]

.

Repeating the same arguments that led us to this point, we also find that

dνG[A | ∂2A](I∂2A)

dν∗[A]
(IA) =

∏
K∈KA f

G
K(IK)

E[
∏
K∈KA f

G
K(IK) | IV ∗\A]

.

Recalling that fHK ≡ fGK for K ∈ KA by assumption, the proof is complete. �

The last lemma allows us to deduce the following insensitivity result that shows that given a
finite graph G = (V,E) and associated SDE (2.1), the conditional law of trajectories of particles
in a set A ⊂ V given the trajectories of particles at the double-boundary ∂2A of the set does
not depend on the graph structure outside of A ∪ ∂2A.

Proposition 4.4. Let G = (VG, EG) and H = (VH , EH) be finite graphs, and assume V ∗ ⊂
VG∩VH satisfies (4.3). Let A ⊂ V ∗ satisfy ∂2

GA ⊂ V ∗ and ∂2
HA ⊂ V ∗, so that Lemma 4.3 ensures

that ∂2
HA = ∂2

GA =: ∂2A and that (4.4) holds (defining KA as therein). Suppose (G, bG, σG, µG0 )
and (H, bH , σH , µH0 ) both satisfy Assumption A, and let PG ∈ P(CVG) and PH ∈ P(CVH ) be
the corresponding unique laws of the SDE described in (2.1). Further, suppose the following
consistency conditions hold:

(i) We have

bHv ≡ bGv , for v ∈ A ∪ ∂2A, (4.7)

σHv ≡ σGv , for v ∈ VG ∩ VH . (4.8)

(ii) There is a product measure µ∗0 =
∏
v∈VG∪VH λv ∈ P((Rd)VG∪VH ) for some λv ∈ P(Rd), v ∈

VG ∪ VH , such that µG0 and µH0 admit 2-clique factorizations:

dµG0
dµ∗0[VG]

(xVG) =
∏

K∈cl2(G)

fGK(xK),
dµH0

dµ∗0[VH ]
(xVH ) =

∏
K∈cl2(H)

fHK (xK), (4.9)

for some measurable functions (fGK : (Rd)K 7→ R+)K∈cl2(G) and (fHK : (Rd)K 7→ R+)K∈cl2(H)

that satisfy the consistency condition fGK ≡ fHK for every K ∈ KA.
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Then PGt [A | ∂2A] = PHt [A | ∂2A] for each t > 0, both in the sense of PHt [∂2A]-almost sure and
PGt [∂2A]-almost sure equality.

Proof. As in (2.5), let P ∗ ∈ P(CVG∪VH ) be the unique law of the solution X = (Xv)v∈VG∪VH of
the driftless SDE

dXv(t) = σGv (t,Xv) dWv(t), v ∈ VG, dXv(t) = σHv (t,Xv) dWv(t), v ∈ VH \ VG,

initialized withX(0) ∼ µ∗0. Again working on the canonical probability space (CVG∪VH ,B(CVG∪VH ), P ∗),
define the martingales MH = (MH

v )v∈H :

MH
v (t) :=

∫ t

0
(σHv (σHv )>)−1bHv (s,Xv, XNv(H)) · dXv(s), v ∈ VH ,

with MG = (MG
v )v∈VG , defined analogously, as in (3.2). Using (3.5) and (4.9) we can write

dPHt
dP ∗t [VH ]

=
∏

K∈cl2(H)

fHK (XK(0))
∏
v∈VH

Et(MH
v ),

dPGt
dP ∗t [VG]

=
∏

K∈cl2(G)

fGK(XK(0))
∏
v∈VG

Et(MG
v ).

with Et defined as in (3.4). Note that if v ∈ A∪ ∂A, then we have Nv(H) = Nv(G); indeed, this
is due to (4.3) and the inclusions ∂GA ⊂ V ∗ and ∂HA ⊂ V ∗. Thus, by the consistency conditions
(4.7) and (4.8) along with the expressions above for MH and MG, we have Et(MH

v ) = Et(MG
v )

for v ∈ A∪ ∂A. Applying Lemma 4.3 with X = Ct, ν∗ = P ∗, νH = PHt and νG = PGt , it follows
from the consistency conditions (i) and (ii) that PGt [A | ∂2A] = PHt [A | ∂2A] holds in the sense
of P ∗t [∂2A]-almost sure equality. Since both PHt [∂2A] and PGt [∂2A] are absolutely continuous
with respect to P ∗t [∂2A], the claim follows. �

5. Markov random field property for infinite-dimensional diffusions

Fix a countably infinite connected graph G = (V,E), and let (G, b, σ, µ0) be as in Assumption
B. As usual, let P = Pµ0 and Pt = Pµ0

t denote the unique law of the SDE (2.1) and its projection,
and let P ∗,µ0 be the law of the canonical SDE system (2.5) started from initial law µ0. In this
section we will prove Theorem 2.7, that is, the 2MRF property for Pt and P . We will also use
the same canonical space (CV ,B(CV ), P ∗,µ0) and canonical processes (Xv)v∈V as in Section 4.1.

Throughout, choose an arbitrary vertex ø in V to be the root, and let Gn = (Vn, En) and
Un = Vn \ Vn−2 be as defined in Lemma 4.2. Also, set

bnv = bv, v ∈ Vn−2, bnv = 0, v ∈ Un, (5.1)

(The family {bnv : n ≥ 3, v ∈ Un} is arbitrary and set to zero for convenience, but more generally
must merely be measurable and uniformly bounded.) Let {Pn}n∈N and {Pnt }n∈N be the corre-
sponding approximating sequence of measures and its projections, as defined in Section 4.1. We
first establish tightness and convergence results for {Pnt }n∈N in Section 5.1 and finally present
the proof of Theorem 2.7 in Section 5.2.

5.1. Tightness and convergence results. In the following, let H(· | ·) denote relative entropy,
defined for ν � µ by

H(ν|µ) =

∫
dν

dµ
log

dν

dµ
dµ,

and H(ν|µ) = ∞ for ν 6� µ. Recall also our notation ‖x‖∗,t := sup0≤s≤t |xs| for the truncated
supremum norm.
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Lemma 5.1. Suppose Assumption B holds. For each t > 0 and each finite set A ⊂ V , we have

sup
n

sup
v∈Vn

EP
n [‖Xv‖2∗,t

]
<∞, (5.2)

sup
n
H
(
Pnt [A] | P ∗,µ0

t [A]
)
<∞, (5.3)

sup
n
H
(
P ∗,µ0
t [A]

∣∣ Pnt [A]
)
<∞. (5.4)

Proof. Fix t > 0. We begin with a standard estimate. Recall the definition of bnv from (5.1),
apply Itô’s formula to the SDE (4.2), and use the linear growth of bv from Assumption (B.2)
along with the uniform boundedness of σv from Assumption (B.3) to conclude that, for each
n ∈ N and v ∈ Vn,

EP
n [‖Xv‖2∗,t

]
≤ CEPn

[
|Xv(0)|2 +

∫ t

0
|bnv (s,Xv, XNv(G))|2 ds+

∫ t

0
|σv(s,Xv(s))|2 ds

]

≤ CEPn
1 + |Xv(0)|2 +

∫ t

0

‖Xv‖2∗,s +
1

|Nv(G)|
∑

u∈Nv(G)

‖Xu‖2∗,s

 ds

 ,
where C ∈ (0,∞) is a constant that can change from line to line but does not depend on n or
v. This implies that

sup
v∈Vn

EP
n [‖Xv‖2∗,t

]
≤ C

(
1 + sup

v∈V
EP

n [|Xv(0)|2
]

+

∫ t

0
sup
v∈Vn

EP
n [‖Xv‖2∗,s

]
ds

)
,

where we have used the inclusion Vn ⊂ V . Apply Gronwall’s inequality to find

sup
v∈Vn

EP
n [‖Xv‖2∗,t

]
≤ C

(
1 + sup

v∈V

∫
(Rd)V

|xv|2 µ0(dxV )

)
. (5.5)

The right-hand side is finite by Assumption (B.1), and so (5.2) follows.
Given a finite subset A ⊂ V , define Qnt ∈ P(CVt ) by

dQnt
dP ∗,µ0

t

=
∏

v∈Vn\A

Et(Mn
v ), where Mn

v :=

∫ ·
0

(σvσ
>
v )−1bnv (s,Xv, XNv(Gn)) · dXv(s), v ∈ V.

Due to Assumptions (B.2) and (B.3), and the definition of P ∗,µ0 from Remark 2.5, we can apply
Lemma B.1 with Q = P ∗,µ0 , X = (Xv)v∈Vn and f(t, x) = (1{v∈Vn\A}σ

−1
v bnv (t, xv, xNv(Gn)))v∈Vn ,

to conclude that
dQnt
dP
∗,µ0
t

is a true P ∗,µ0-martingale. It then follows from Girsanov’s theorem

[13, Corollary 3.5.2] and the uniqueness in law of the driftless SDE (2.3) that Qnt [A] = P ∗,µ0
t [A].

By a similar argument,

dPnt
dP ∗,µ0

t

=
∏
v∈Vn

Et(Mn
v ), and thus

dPnt
dQnt

=
∏

v∈A∩Vn

Et(Mn
v ),

where, in case A ∩ Vn = ∅, we interpret the empty product as 1. Once again invoking the
linear growth of b, the boundedness of σv, (5.5), the fact that Qnt [A] = P ∗,µ[A] and Remark 2.5,
note that Girsanov’s theorem also shows that for every v ∈ A ∩ Vn, under Pn, Mn

v − [Mn
v ] is a

martingale and [Mn
v ](t) =

∫ t
0 |σ

−1
v bnv (s,Xv, XNv(Gn))|2 ds.

Recall the well known data processing inequality of relative entropy, which states that H(ν ◦
f−1 | ν ′ ◦ f−1) ≤ H(ν | ν ′) for any two probability measures ν and ν ′ on a Polish space E, and
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any measurable function f : E → E′ to another Polish space E′; for a proof see, for instance,
[1, Section 4.2] or [28, Appendix E]. Using this data processing inequality, we obtain

H(Pnt [A] |P ∗,µ0
t [A]) = H(Pnt [A] |Qnt [A])

≤ H(Pnt |Qnt )

=
∑

v∈A∩Vn

EP
n

[
Mn
v (t)− 1

2
[Mn

v ](t)

]

=
1

2

∑
v∈A∩Vn

EP
n

[∫ t

0
|σ−1
v bnv (s,Xv, XNv(Gn))|2 ds

]

≤ C
∑

v∈A∩Vn

EP
n

1 + ‖Xv‖2∗,t +
1

|Nv(Gn)|
∑

u∈Nv(Gn)

‖Xu‖2∗,t


≤ C|A|

(
1 + 2 sup

v∈Vn
EP

n [‖Xv‖2∗,t
])

.

Therefore (5.3) follows from (5.2).
Noting that due to the identity Qnt [A] = P ∗,µ[A] and Remark 2.5, under Qn, (Xv)v∈A is

driftless and Mn
v is a martingale. Therefore, noting that

dQnt
dPnt

=
∏

v∈A∩Vn

exp

(
−Mn

v (t) +
1

2

∫ t

0
|σ−1
v bnv (s,Xv, XNv(Gn))|2 ds

)
,

another application of the the data processing inequality of relative entropy yields

H(P ∗,µ0
t [A] |Pnt [A]) = H(Qnt [A] |Pnt [A])

≤ H(Qnt |Pnt )

=
1

2

∑
v∈A∩Vn

EQ
n

[∫ t

0
|σ−1
v bnv (s,Xv, XNv(Gn))|2 ds

]

≤ C
∑

v∈A∩Vn

EQ
n

1 + ‖Xv‖2∗,t +
1

|Nv(Gn)|
∑

u∈Nv(Gn)

‖Xu‖2∗,t


≤ C|A|

(
1 + 2 sup

v∈Vn
EQ

n [‖Xv‖2∗,t
])

.

The same argument that was used to obtain (5.5) can also be used to show that (5.5) holds
with Pn replaced by Qn. Therefore supn supv∈Vn E

Qn
[
‖Xv‖2∗,t

]
<∞ by Assumption (B.1), and

hence the last display implies (5.4). �

The next lemma will be used to show both that the existence of a weak solution to the
infinite SDE system (2.1) holds automatically under Assumption B, and also that it arises as
the limit of finite-graph systems. Recall that P ∈ P(CV ) denotes the law of the solution of
(2.1). Recall also, as discussed at the beginning of this section, that we work throughout with a
sequence Gn = (Vn, En) as in Lemma 4.2, with bn and Pn defined as in (5.1) and the sentences
thereafter.

Lemma 5.2. Suppose Assumption B holds. Then Pn → P weakly on CV . Moreover, for any
finite set A′ ⊂ V , any t > 0, and any bounded measurable function ψ : CA′t → R, we have

lim
n→∞

EP
n
[ψ(XA′ [t])] = EP [ψ(XA′ [t])].
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Proof. Fix t > 0. The entropy bound of (5.3) shows that {Pnt [A′]}n∈N are precompact in the

weak∗ topology induced on P(CA′t ) by the bounded measurable functions on CA′t [4, Lemma
6.2.16]. In particular, this sequence is tight, and since this holds for every finite set A′ and every
t > 0 we deduce that the entire sequence {Pn}n∈N is tight in CV . Note also that for sufficiently
large n it holds under Pn that the processes∫ s

0
σ−1
v (r,Xv) dXv(r)−

∫ s

0
σ−1
v (r,Xv)bv(r,Xv, XNv(G)) dr, s ≥ 0, v ∈ Vn−2, (5.6)

are independent standard Wiener processes, due to the consistency condition for the bnv ’s and
the identity Nv(Gn) = Nv(G) valid for v ∈ Vn−2.

Now let Q ∈ P(CV ) be any weak (in the usual sense) subsequential limit of {Pn}n∈N. That
is, let {nk}k∈N be a subsequence such that nk → ∞ and Pnk → Q weakly as k → ∞. The
aforementioned precompactness in the weak∗ topology implies that

lim
k→∞

EP
nk [ψ(XA′ [t])] = EQ[ψ(XA′ [t])],

for any finite set A′ ⊂ V , any t > 0, and any bounded measurable function ψ on CA′t . We
conclude that, under Q, the processes in (5.6) are independent Wiener processes, for v ∈ V .
This shows that Q is the law of a weak solution of the SDE system (2.1), which we know to be
unique by assumption (B.5). Hence, Q = P . �

5.2. Proof of the second-order Markov random field property on the infinite graph.

Proof of Theorem 2.7. Fix (G = (V,E), b, σ, µ0) and X = (Xv)v∈V as in the statement of the
theorem. For n ≥ 4, consider the sequence of graphs Gn = (Vn, En), n ∈ N constructed from G
as in Lemma 4.2. We first note that due to the fact that µ0 is a 2MRF by Assumption (B.1), part
(iii) of Lemma 4.2, with X = Rd, ν = µ0, ν

∗ = µ∗0, ensures that µ0[Vn] is a 2MRF with respect
to the graph Gn. Moreover, since dµ0[Vn]/dµ∗0[Vn] is strictly positive by Assumption (B.1),
Proposition 3.2 shows that µ0[Vn] admits a 2-clique factorization with respect to the product
measure µ∗0[Vn] for each n. Hence, µ0[Vn] satisfies Assumption (A.1), which when combined
with the definition of bn = (bnv )v∈Vn in (5.1) and the fact that b, σ satisfy Assumptions (B.2)
and (B.3), shows that (Gn, b

n, (σv)v∈Vn , µ0[Vn]) satisfy Assumption A. Since Pn[Vn] is the law
of the SDE (4.2) on the finite graph Gn, it is a 2MRF by Theorem 2.4.

Now, fix two finite sets A,B ⊂ V with B disjoint of A ∪ ∂2A, where throughout, we use
∂2 to denote ∂2

G. Let n0 denote the smallest integer greater than or equal to 4 for which

A ∪ ∂2A ∪ B ⊂ Vn0−3, and let n ≥ n0. Then, part (iv) of Lemma 4.2, again with X = Rd,
ν = µ0, and ν∗ = µ∗0, ensures that µ0[Vn] and µ0[Vn0 ] admit 2-clique factorizations which are

consistent in the sense that the corresponding measurable functions fGnK and f
Gn0
K agree for

every K ∈ cl2(Gn0) that intersects A (equivalently, for every K ∈ cl2(G) that intersects A).
Since bnv = bn0

v = bv for all v ∈ A ∪ ∂2A by (5.1), and since A ∪ ∂2
GA ⊂ Vn0−3, we may apply

Proposition 4.4, with G = Gn, H = Gn0 , V ∗ = Vn0−3, µGk0 = µ0[Vk], and (bGkv , σGkv ) = (bkv , σv)
for v ∈ Gk and k ∈ {n0, n}, to deduce that Pnt [A | ∂2A] = Pn0

t [A | ∂2A] for all n ≥ n0. In
other words, this implies that given a bounded continuous function f : CAt → R, there exists a

measurable function ϕ : C∂2A
t → R (that does not depend on n) such that

ϕ(X∂2A[t]) = EP
n
[f(XA[t]) |X∂2A[t]], Pn − a.s., for n ≥ n0. (5.7)

Now, fix additional bounded continuous functions g : C∂2A
t → R and h : CBt → R. For

t > 0, taking the conditional expectation with respect to XVn\A[t] inside the expectation on the
left-hand side below and using the 2MRF property of Pn we have

EP
n
[f(XA[t])g(X∂2A[t])h(XB[t])] = EP

n
[EP

n
[f(XA[t]) |X∂2A]g(X∂2A[t])h(XB[t])].
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When combined with (5.7), this implies

EP
n
[f(XA[t])g(X∂2A[t])h(XB[t])] = EP

n
[ϕ(X∂2A[t])g(X∂2A[t])h(XB[t])].

Using the second part of Lemma 5.2 for the finite set A′ = A∪ ∂2A∪B, and for both ψ(yA′) :=

f(yA)g(y∂2A)h(yB), and ψ(yA′) = ϕ(y∂2A)g(y∂2A)h(yB) for yA′ ∈ CA
′

t , we may pass to the limit
n→∞ and denote P = Pµ0 to get

EP [f(XA[t])g(X∂2A[t])h(XB[t])] = EP [ϕ(X∂2A[t])g(X∂2A[t])h(XB[t])].

This at once shows both that

EP [f(XA[t]) |X∂2A[t]] = ϕ(X∂2A[t]) = EP
n
[f(XA[t]) |X∂2A[t]],

for all bounded continuous f and n ≥ n0, which proves Proposition 5.4 below, and also that
XA[t] and XB[t] are conditionally independent given X∂2A[t] under P . The latter proves the
first statement in Theorem 2.7, except for the fact that we have only proven this conditional
independence when A and B are finite. Because B ⊂ V \ (A ∪ ∂2A) was an arbitrary finite set
and {XB[t] : B ⊂ A ∪ ∂2A} generates the same σ-field as XA∪∂2A[t], we deduce that that Pt
is a 2MRF. The second statement follows from the same argument as in (3.6) using the 2MRF
property of Pt = Pµ0

t . This completes the proof. �

We recapitulate two results that were established in the course of the proof, which may be
of independent interest, and which are used in the proof of Theorem 2.9 in the next section.

Remark 5.3. Note that the first paragraph of the proof above shows that if (G, b, σ, µ0) satisfy
Assumption B and for Gn = (Vn, En), n ∈ N, is as in Lemma 4.2, and bn, Pn, Pnt , n ∈ N, t > 0,
are as defined at the beginning of Section 5, then Pnt [Vn] is a 2MRF for each n ∈ N and t > 0.

Proposition 5.4. Suppose (G, b, σ, µ0) satisfy Assumption B, and let Gn = (Vn, En), n ∈ N, be
the sequence of graphs constructed from G as in Lemma 4.2. Fix t > 0, and let Pt = Pµ0

t be
the law of the unique weak solution to the SDE (2.1) with initial law µ0. Then, for n ≥ 3, and
A ⊂ Vn−3, ∂2

GA ⊂ Vn and, Pt-almost surely,

Pt[A | ∂2
GA] = Pnt [A | ∂2

GA].

6. Proof of Gibbs measure properties

In this section we prove Theorem 2.9. Recall the definition of P ∗,µ0 as the law of the solution
of (2.5) initialized at µ0.
Proof of Theorem 2.9. Let (G, b, σ, µ0) satisfy Assumption B, and let Pµ0 be the unique so-
lution of the SDE system (2.1) with initial law µ0. We work again on the canonical space
(CV ,B(CV ), P ∗,µ0), with XV = (Xv)v∈V denoting the canonical process. Define the setsMinit =
Minit(µ0) and Mpath =Mpath(µ0) as in the statement of the theorem. For any ν0 ∈Minit, the

SDE system (2.1) is well-posed starting from ν0, and we let P ν0 ∈ P(CV ) denote the law of this
solution. The proof of the theorem is broken down into five claims.

Claim 1. Suppose (G, b, σ, µ0) satisfies Assumption B. If ν0 ∈ Minit, then (G, b, σ, ν0) also
satisfies Assumption B, and for every finite set A ⊂ V and t > 0 we have P ν0

t [A] ∼ Pµ0
t [A].

Proof of Claim 1. First, suppose ν0 ∈ Minit. By the definition of Minit, ν0 has a finite second
moment. Moreover, for each finite set A ⊂ V , we have ν0[A] ∼ µ∗0[A] since ν0 ∈ G2(µ0) implies
(by Definition 2.8) that ν0[A] ∼ µ0[A], and Assumption (B.1) ensures that µ0[A] ∼ µ∗0[A]. Thus
ν0 satisfies Assumption (B.1).

Now let t > 0, and let A ⊂ V be finite. From Lemma 5.2 it follows that Pn,µ0 → Pµ0 weakly.
It then follows from (5.3), (5.4) and the lower semicontinuity of relative entropy that Pµ0

t [A]�
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P ∗,µ0
t [A] and P ∗,µ0

t [A]� Pµ0
t [A]. Therefore Pµ0

t [A] ∼ P ∗,µ0
t [A], and similarly P ν0

t [A] ∼ P ∗,ν0
t [A].

Finally, note that P ∗,µ0 [A] (resp. P ∗,ν0 [A]) is the law of the solution of the SDE system

dXv(t) = σv(t,Xv) dWv(t), v ∈ A,

with initial law µ0[A] (resp. ν0[A]), and it follows from ν0[A] ∼ µ0[A] that P ∗,µ0
t [A] ∼ P ∗,ν0

t [A].
Putting it together, we have P ν0

t [A] ∼ P ∗,ν0
t [A] ∼ P ∗,µ0

t [A] ∼ Pµ0
t [A]. �

Claim 2. For any Q ∈Mpath, we have Q0 := Q ◦ (XV (0))−1 ∈Minit.

Proof of Claim 2. The proof of this claim is straightforward: fix Q ∈ Mpath, and set Q0 :=
Q ◦ (XV (0))−1. Then by the definition of Mpath, we have Qt ∈ G2(Pµ0

t ) for all t ≥ 0 and
supv∈V

∫
Rd |xv|

2Q0(dx) <∞. Taking t = 0 gives Q0 ∈ G2(µ0), where we have used the elemen-

tary fact that Pµ0
0 = Pµ0 ◦ (XV (0))−1 = µ0. Thus Q0 belongs to Minit. �

Claim 3. If ν0 ∈Minit then P ν0 ∈Mpath.

Proof of Claim 3. Fix ν0 ∈ Minit. Then by the first assertion of Claim 1, for every finite set
A ⊂ V and t ≥ 0, P ν0

t [A] ∼ Pµ0
t [A]. So it only remains to show that for every t > 0,

P ν0
t [A | ∂2A] = Pµ0

t [A | ∂2A], for finite A ⊂ V. (6.1)

First, recall that Claim 1 also shows that (G, b, σ, ν0) satisfies Assumption B. Next, let Gn =
(Vn, En) be the increasing sequence of finite graphs defined in Lemma 4.2, and let Pµ0,n, P ν0,n ∈
P(CV ) denote the law of the solution of the corresponding SDE system (4.2) with initial laws
µ0[Vn] and ν0[Vn], respectively. Throughout this proof, the boundary operator ∂ is always with
respect to the infinite graph G. Fix A ⊂ V finite, and fix n large enough that A ⊂ Vn−3,
recalling that Vn was defined in Section 4.1. By Proposition 5.4, we have both

Pµ0
t [A|∂2A] = Pµ0,n

t [A|∂2A],

P ν0
t [A|∂2A] = P ν0,n

t [A|∂2A].
(6.2)

By Lemma 4.2(iii), ν0[Vn] is a 2MRF. Also since ν0[Vn] ∼ µ∗0[Vn] implies dν0[Vn]/dµ∗0[Vn] > 0,
by Proposition 3.2 there is a 2-clique factorization

dν0[Vn]

dµ∗0[Vn]
(xVn) =

∏
K∈cl2(Gn)

gnK(xK), (6.3)

for some measurable functions gnK : (Rd)K → R+. Similarly µ0[Vn] admits a 2-clique factoriza-
tion,

dµ0[Vn]

dµ∗0[Vn]
(xVn) =

∏
K∈cl2(Gn)

fnK(xK), (6.4)

for some measurable functions fnK : (Rd)K → R+. Note that these 2-clique factorizations are
not unique. We claim (and justify below) that fnK and gnK can be chosen to be consistent, i.e.,
so that

fnK ≡ gnK , for all K ∈ cl2(Gn) with K ∩A 6= ∅. (6.5)

This will ultimately allow us to apply Proposition 4.4. To see this, let IVn = (Iv)v∈Vn denote the
canonical random variable on the probability space (Rd)Vn . That is, Iv : (Rd)Vn → Rd is defined
by Iv((xu)u∈Vn) := xv for each v ∈ Vn. Define

f̂n(IUn) = Eµ
∗
0

[
dµ0[Vn]

dµ∗0[Vn]

∣∣∣∣ IUn] , ĝn(IUn) = Eµ
∗
0

[
dν0[Vn]

dµ∗0[Vn]

∣∣∣∣ IUn] .
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Recalling that Un = Vn \ Vn−2, and using (6.3), we have

dν0[Vn−2 |Un]

dµ∗0[Vn−2 |Un]
=

dν0[Vn]
dµ∗0[Vn]

ĝn(IUn)
=

1

ĝn(IUn)

∏
K∈cl2(Gn)

gnK(IK).

Applying the same argument to µ0 rather than ν0 and using (6.4), we also obtain

dµ0[Vn−2 |Un]

dµ∗0[Vn−2 |Un]
=

dµ0[Vn]
dµ∗0[Vn]

f̂n(IUn)
. (6.6)

Further, recognizing that Un = ∂2Vn−2, since ν0 ∈ G2(µ0) we see that

ν0[Vn−2|Un] = µ0[Vn−2|Un].

Combining the last three displays, we find

dµ0[Vn]

dµ∗0[Vn]
(IVn) =

dν0[Vn−2 |Un]

dµ∗0[Vn−2 |Un]
f̂n(IUn) =

f̂n(IUn)

ĝn(IUn)

∏
K∈cl2(Gn)

gnK(IK).

Comparing this and (6.6) with (6.3) and (6.4) and noting that Un ∈ cl2(Gn), we can thus take

fnK ≡ gnK in (6.4) for K ∈ cl2(Gn) \ {Un} and fnUn ≡ gnUn f̂
n/ĝn. This proves the consistency

claim in (6.5); indeed, since A ⊂ Vn−3, we know that Un does not intersect A ∪ ∂A.
Let K = {K ∈ cl2(Gn) : K ∩ A 6= ∅}. Using the consistency property (6.5), we can finally

conclude from Proposition 4.4 (with VG = VH = Vn, bHv = bGv = bv, σ
H
v = σHv = σv, µ

H
0 = µ0

and µG0 = ν0) that P ν0,n
t [A | ∂2A] = Pµ0,n

t [A | ∂2A]. Recalling (6.2), this completes the proof of
(6.1). �

Together, Claims 2 and 3 prove (2.6). We now prove the last assertion of the theorem.
For this we will frequently apply the martingale representation theorem; for completeness, we
provide a full justification of its repeated application in Remark 6.1, but defer it to the end of
the proof so as not to interrupt the flow of the main arguments.

Claim 4. If Q ∈ P(CV ) satisfies Qt ∈ G2(Pµ0
t ) for all t ≥ 0 and also Q ◦ (XV (0))−1 = µ0, then

Q = Pµ0 .

Proof of Claim 4. As in the proof of Claim 3, we let Gn = (Vn, En) be the increasing sequence
of finite graphs defined in Lemma 4.2 and let the boundary operator ∂ always be with respect
to the infinite graph G. Also, let Pn = Pµ0,n ∈ P(CV ) denote the law of the solution of
the corresponding SDE system (4.2) with initial law µ0[Vn]. Now, fix a finite set A ⊂ V and
T ∈ (0,∞). Let n0 denote the smallest integer such that A∪∂2A ⊂ Vn0−3. Define the martingales

Mn
v (t) =

∫ t

0
(σvσ

>
v )−1bnv (s,Xv, XNv(Gn)) · dXv(s), n ∈ N, v ∈ Vn.

Due to Assumptions (B.2) and (B.3), it follows from Lemma B.1 (with Q = P ∗,µ0 , X = (Xv)v∈Vn
and f(t, x) = (σ−1

v bnv (t, xv, xNv(Gn)))v∈Vn) that E(Mn
v ) is a P ∗,µ0-martingale. Thus, by Girsanov’s

theorem [13, Corollary 3.5.2], we may write

dPnt [Vn]

dP ∗,µ0
t [Vn]

=
∏
v∈Vn

Et(Mn
v ). (6.7)
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Now, by applying Remark 5.3 to (G, b, σ, µ0) and (G, 0, σ, µ0), respectively, it follows that the
measures Pnt [Vn] and P ∗,µ0

t [Vn] are 2MRFs with respect to Gn. Hence, for n ≥ n0,

dPnt [A | ∂2A]

dP ∗,µ0
t [A | ∂2A]

=
dPnt [A |Vn\A]

dP ∗,µ0
t [A |Vn\A]

=
dPnt [Vn]

dP ∗,µ0
t [Vn]

/
EP
∗,µ0

[
dPnt [Vn]

dP ∗,µ0
t [Vn]

∣∣∣∣XVn\A[t]

]
=
∏
v∈Vn

Et(Mn
v )

/
EP
∗,µ0

[ ∏
v∈Vn

Et(Mn
v )

∣∣∣∣∣XVn\A[t]

]
.

For v ∈ Vn\(A∪∂A), Et(Mn
v ) is measurable with respect to XVn\A[t] and thus factors out of the

conditional expectation and cancels. Thus,

dPnt [A | ∂2A]

dP ∗,µ0
t [A | ∂2A]

=
∏

v∈A∪∂A
Et(Mn

v )

/
EP
∗,µ0

[ ∏
v∈A∪∂A

Et(Mn
v )

∣∣∣∣∣XVn\A[t]

]
. (6.8)

Because Qt ∈ G2(Pµ0
t ) by assumption, we have Qt[A | ∂2A] = Pµ0

t [A | ∂2A]. By Proposition 5.4,
we have Pµ0

t [A | ∂2A] = Pµ0,n
t [A | ∂2A], and it follows that the density dQt[A | ∂2A]/dP ∗,µ0

t [A | ∂2A]
is given by the same expression (6.8).

Now take A = Vn−2, and note that Un := Vn \ Vn−2 = ∂2Vn−2. Because Qt[Un] ∼ P ∗,µ0
t [Un]

by assumption, and because both Q and P ∗,µ0 start from the same initial state distribution µ0,
we may use the martingale representation theorem (specifically, apply Remark 6.1 below with
ξ = dQT [Un]/dP ∗,µ0

T [Un], which clearly satisfies EP ∗,µ0 [ξ] = 1) to find progressively measurable

functions rnv : [0, T ] × CUn → Rd, v ∈ Un, which are dt ⊗ dP ∗,µ0-square-integrable such that in

terms of the associated XUn-adapted continuous martingales Rnv (t) =
∫ t

0 r
n
v (s,XUn) · dXv(s),

t ∈ [0, T ], v ∈ Un, we can write for t ∈ [0, T ],

dQt[Un]

dP ∗,µ0
t [Un]

=
∏
v∈Un

Et(Rnv ).

Noting that (Xv)v∈Un are orthogonal martingales, it follows that the martingales (Rnv )v∈Un are
also orthogonal; that is, the covariation process [Rnv , R

n
u] is identically zero for v 6= u. Thus,

since Un ∩ Vn−2 = ∅, Un ∪ Vn−2 = Vn and Vn−1 = Vn−2 ∪ ∂Vn−2, applying (6.8) with A = Vn−2

we have

dQt[Vn]

dP ∗,µ0
t [Vn]

=
dQt[Vn−2 |Un]

dP ∗,µ0
t [Vn−2 |Un]

dQt[Un]

dP ∗,µ0
t [Un]

=
∏
v∈Un

Et(Rnv )
∏

v∈Vn−1

Et(Mn
v )

/
EP
∗,µ0

 ∏
v∈Vn−1

Et(Mn
v )

∣∣∣∣∣∣ XUn [t]

 .
The process in the denominator is a positive martingale (being the optional projection of a
martingale) adapted to the filtration of XUn and thus, again using the martingale representation

theorem (this time applying Remark 6.1 below with ξ = EP ∗,µ0
[∏

v∈Vn−1
ET (Mn

v )
∣∣∣ XUn [T ]

]
and

invoking (6.7) to conclude that EP∗,µ0 [ξ] = EP∗,µ0 [dPnt [Vn−1]/dP ∗,µ0
t [Vn−1]] = 1), there exist

dt⊗dP ∗,µ0-square-integrable, progressively measurable functions r̃nv : [0, T ]×CUn → Rd, v ∈ Un,
and associated XUn-adapted continuous martingales R̃nv (t) =

∫ t
0 r̃

n
v (s,XUn) · dXv(s), v ∈ Un,
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such that

EP
∗,µ0

 ∏
v∈Vn−1

Et(Mn
v )

∣∣∣∣∣∣ XUn [t]

 =
∏
v∈Un

Et(R̃nv ),

Now note that, for any continuous martingales Z and (Zi)i∈I , with I a finite index set, we have

the identities 1/E(Z) = E(−Z)e[Z] and∏
i∈I
E(Zi) = exp

(∑
i∈I

Zi −
1

2

∑
i∈I

[Zi]

)

= exp

∑
i∈I

Zi −
1

2

[∑
i∈I

Zi

]
+

1

2

∑
i,j∈I, i 6=j

[Zi, Zj ]


= E

(∑
i∈I

Zi

)
exp

1

2

∑
i,j∈I, i 6=j

[Zi, Zj ]

 ,

where [Zi, Zj ] denotes the covariation process. Hence,

dQt[Vn]

dP ∗,µ0
t [Vn]

=
∏
v∈Un

Et(Rnv )Et(−R̃nv ) exp([R̃nv ](t))
∏

v∈Vn−1

Et(Mn
v )

=
∏

v∈Vn−2

Et(Mn
v )

∏
v∈Vn−1\Vn−2

Et(Mn
v +Rnv − R̃nv ) exp

(
[Mn

v − R̃nv , Rnv − R̃nv ](t)
)

·
∏

v∈Vn\Vn−1

Et(Rnv − R̃nv ) exp
(

[R̃nv , R̃
n
v −Rnv ](t)

)
.

Recalling the orthogonality properties of Rnv and R̃nv mentioned above, we see that we can
write Zt := dQt[Vn]/dP ∗,µ0

t [Vn] in the form Z(t) = Et(N)eA(t), where N is a continuous square-

integrable martingale and A :=
∑

v∈Vn−1\Vn−2
[Mn

v − R̃nv , Rnv − R̃nv ] +
∑

v∈Vn\Vn−1
[R̃nv , R̃

n
v − Rnv ]

is a square-integrable and a.s. absolutely continuous with A(0) = 0. Since Z is a martingale, we
necessarily have A ≡ 0; indeed, Itô’s formula gives dZ(t) = Z(t)(dN(t) + dA(t)), and for Z to
be a martingale we must have dA(t) = 0. It follows that

dQt[Vn]

dP ∗,µ0
t [Vn]

=
∏

v∈Vn−2

Et(Mn
v )

∏
v∈Vn−1\Vn−2

Et(Mn
v +Rnv − R̃nv )

∏
v∈Vn\Vn−1

Et(Rnv − R̃nv ).

Since Z is a P ∗,µ0-martingale, Girsanov’s theorem [13, Corollary 3.5.2] can be applied, using the
definition of (Mn

v )v∈Vn , to deduce that Qt[Vn] is the law of a solution (Xn
v [t])v∈Vn of the SDE

system (perhaps on an auxiliary probability space)

dXn
v (s) = bv(s,X

n
v , X

n
Nv(G)) ds+ σ(s,Xn

v ) dBv(s), for v ∈ Vn−2,

dXn
v (s) =

(
(rnv − r̃nv )(s,Xn

Un) + bnv (s,Xn
v , X

n
Nv(Gn))

)
ds+ σ(s,Xn

v ) dBv(s), for v ∈ Vn−1\Vn−2,

dXn
v (s) = (rnv − r̃nv )(s,Xn

Un) ds+ σ(s,Xn
v ) dBv(s), for v ∈ Vn\Vn−1,

where (Bv)v∈Vn are independent Brownian motions.
Define Xn

v ≡ 0 for v /∈ Vn. Since the sets Vn increase to V , it is easily shown as in Lemma 5.2
that, as n→∞, (Xn

v [T ])v∈V converges in law in CVT to a solution of the infinite SDE system (2.1)
with initial distribution µ0, restricted to the interval [0, T ]. Recalling that (Xn

v (0))v∈V ∼ µ0 and
that the solution to the infinite SDE system is unique in law by Assumption (B.4), we conclude
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that (Xn
v [T ])v∈V converges in law to Pµ0

T . But Xn
Vn

[T ] has law QT [Vn] by construction, which

implies Xn
V [T ] converges in law to QT . Therefore QT = Pµ0

T . Since T ∈ (0,∞) was arbitrary,
Q = Pµ0 , which completes the proof of Claim 4. �

To complete the proof of the theorem, it only remains to establish the bijection between the
two sets in (2.6). However, we now show that this is a simple consequence of the last claim.

Claim 5. The map Q 7→ Q ◦ (XV (0))−1 defines a bijection between the sets Mpath and Minit.

Proof of Claim 5. Let Q ∈ Mpath, and set ν0 := Q ◦ (XV (0))−1. By Claim 2, ν0 belongs to
Minit, and by Claim 3, P ν0 lies in Mpath. Since trivially P ν0 ◦ (XV (0))−1 = ν0, to prove the
claim it suffices to prove that Q = P ν0 . By Claim 1, (G, b, σ, ν0) satisfies Assumption B, and
thus Claim 4 applies with ν0 in place of µ0. That is, by applying Claim 4 to ν0 instead of µ0, we
deduce that if Q ∈ P(CV ) satisfies Qt ∈ G2(P ν0

t ) for all t ≥ 0 and also Q ◦ (XV (0))−1 = ν0, then
Q = P ν0 . By definition of Mpath we have Qt ∈ G2(Pµ0

t ) for all t ≥ 0, and it follows from (6.1),
which was established in the proof of Claim 3, that G2(P ν0

t ) = G2(Pµ0
t ). This proves Claim 5,

which completes the proof of Theorem 2.9. �

Remark 6.1. We sketch here the argument behind the use of the martingale representation
theorem in the proof of Theorem 2.9 above. Recall that by Assumption (A.3b) the SDE system
dXv(t) = σv(t,Xv) dWv(t), v ∈ Un, with initial law µ0 is unique in law, with the law of the
solution X = (Xv)v∈Un given by P ∗,µ0 [Un]. This implies uniqueness of the associated martingale
problem (cf. [13, Corollary 5.4.9]), which is known to imply that the solution has the predictable
representation property (cf. [27, Theorem V.25.1] or [30, Theorem 2.7]), in the following sense:
with FXt := σ(X(s) : s ≤ t), t ≥ 0, for T < ∞ and an FXT -measurable random variable
ξ > 0 with E[ξ] = 1, the martingale Z(t) = E[ξ | FXt ] > 0, t ∈ [0, T ], can be represented

as Z(t) = 1 +
∫ t

0 ϕ(s,X) · dX(s) for some predictable process ϕ : [0, T ] × CT → R satisfying∫ T
0 |ϕ(t,X)|2 dt < ∞ a.s., recalling that σv is uniformly bounded and nondegenerate. Then,

for t ∈ [0, T ], setting ψ(t,X) = ϕ(t,X)/Z(t), by Itô’s formula, we have d logZ(t) = ψ(t,X) ·
dX(t)− 1

2ψ(t,X)>d[X](t)ψ(t,X). Hence, Z(t) = Et(
∫ ·

0 ψ(s,X) · dX(s)), t ∈ [0, T ].

Appendix A. Proof of pathwise uniqueness under Lipschitz assumptions

Proof of Proposition 2.6. Let (Xv)v∈V and (X̃v)v∈V denote two solutions driven by the same
Wiener processes and starting from the same initial states.

Fix T < ∞. For each v ∈ V and t ∈ [0, T ], by Itô’s formula, the boundedness of σ (see
Assumption (B.3)), the assumed Lipschitz condition on the drift and diffusion coefficients we
have

E
[
‖Xv − X̃v‖2∗,t

]
≤ 2tE

[∫ t

0

∣∣∣bv(s,Xv(s), XNv(G)(s))− bv(s, X̃v(s), X̃Nv(G)(s))
∣∣∣2 ds]

+ 8E
[∫ t

0

∣∣∣σv(s,Xv(s))− σv(s, X̃v(s))
∣∣∣2 ds]

≤ 4tK2
TE

∫ t

0

‖Xv − X̃v‖2∗,s +
1

|Nv(G)|
∑

u∈Nv(G)

‖Xu − X̃u‖2∗,s

 ds


+ 8K̄2

TE
[∫ t

0
‖Xv − X̃v‖2∗,s ds

]
.
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Hence, using the constants KT and K̄T from the statement of the proposition,

sup
v∈V

E
[
‖Xv − X̃v‖2∗,t

]
≤ 8(tK2

T + K̄2
T )

∫ t

0
sup
v∈V

E
[
‖Xv − X̃v‖2∗,s

]
ds.

Complete the proof using Gronwall’s inequality. �

Appendix B. Justification for applying Girsanov’s theorem

In this section we state a result that justifies our repeated application of Girsanov’s theorem
under the condition that the drift is progressively measurable and has linear growth. Lemma
B.1 below is in fact a path-dependent multi-dimensional version of [14, Theorems 5.1 and 8.1].
A simpler proof is provided here for completeness.

Let (Ω,F ,F,Q) be a filtered probability space supporting a F-Brownian motion W of di-
mension m as well as an F-adapted process X of dimension d such that X satisfies the SDE

dX(t) = σ(t,X) dW (t), X(0) ∼ µ, (B.1)

where µ ∈ P(Rd) and σ : R+ × C → Rd×m is bounded and progressively measurable. Also, let
E denote expectation with respect to Q. Fix a progressively measurable f : R+ × C 7→ Rm, and
define the stochastic integral

Mt :=

∫ t

0
f(s,X) · dWs, t ∈ [0,∞),

which is well defined (and a local martingale) due to the linear growth condition (B.2) imposed
on f in the lemma below. Recall in what follows that ‖x‖∗,t = sups∈[0,t] |x(s)|.

Lemma B.1. Under the above setting, suppose for each T ∈ (0,∞) there exists CT < ∞ such
that

|f(t, x)| ≤ CT (1 + ‖x(s)‖∗,t) , (B.2)

for all t ∈ [0, T ] and x ∈ C. Then the stochastic exponential {Et(M)}t≥0 defined in (3.4) is a
true Q-martingale.

Proof. Since {Et(M)}t≥0 is always a Q-supermartingale, it suffices to show that E[ET (M)|X(0) =
x] = 1 for each x ∈ Rd and T ∈ (0,∞). So fix T ∈ (0,∞) and assume without loss of generality
that X(0) = x ∈ Rd in (B.1). Since σ is bounded, X is a martingale and, from standard
concentration inequalities for martingales (see, e.g., [31, Lemma 2.1]), we can find some C > 0
such that Q(‖X − x‖∗,T ≥ a) ≤ exp(−Ca2) for each a > 0. It then follows from the equivalence
between sub-Gaussian tails and finite square-exponential moments (see, e.g., [2, Section 2.3]) that
there exists c > 0 such that E[exp(c‖X‖2∗,T )] < ∞. Now taking 0 = t0 < t1 < · · · < tn(T ) = T

with tn − tn−1 ≤ c/C2
T , and using the linear growth condition (B.2) on f , we have

E

[
exp

(
1

2

∫ tn

tn−1

|f(s,X)|2 ds

)]
≤ E

[
exp

(
(tn − tn−1)C2

T (1 + ‖X‖2∗,T )
)]
<∞.

It then follows from [13, Corollary 3.5.14] that {Et(M)}t≥0 is a true Q-martingale. �

References

[1] S.M. Ali and S.D. Silvey, A general class of coefficients of divergence of one distribution from another, Journal
of the Royal Statistical Society. Series B. Methodological 28 (1966), 131–142.

[2] S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities: A nonasymptotic theory of independence,
Oxford university press, 2013.

[3] P. Cattiaux, S. Roelly, and H. Zessin, Une approche Gibbsienne des diffusions Browniennes infini-
dimensionnelles, Probability Theory and Related Fields 104 (1996), 147–179.



LOCALLY INTERACTING DIFFUSIONS AS MARKOV RANDOM FIELDS ON PATH SPACE 31

[4] A. Dembo and O. Zeitouni, Large deviations techniques and applications, Vol. 38, Springer Science & Business
Media, 2009.

[5] D. Dereudre, Interacting Brownian particles and Gibbs fields on pathspaces, ESAIM:Probability and Statistics
7 (2003), 251–277.

[6] D. Dereudre and S. Roelly, On Gibbsianness of infinite-dimensional diffusions, Markov Processes and Related
Fields 10 (2004), 395–410.

[7] , Propagation of Gibbsianness for infinite-dimensional gradient Brownian diffusions, Journal of Sta-
tistical Physics 121 (2005), no. 3-4, 511–551.

[8] , Path-dependent infinite-dimensional SDE with non-regular drift: An existence result, Ann. Inst. H.
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