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ABSTRACT

Using a design thinking approach, we surveyed and interviewed
grade 6-9 teachers on their experience with Scratch and Parsons
Programming Puzzles (PPP). The results lead us to extend Scratch
with gameful PPP functionality focused on individual computa-
tional thinking (CT) concepts. In this paper, we vary elements of
PPPs presented to 624 adult learners to identify those yielding
manageable cognitive load (CL), and maximum CT motivation and
learning efficiency, for a general populace. Findings indicate PPPs
with feedback and without distractors limit CL, those with feed-
back produce highest CT motivation, and those with an isolated
block palette and without distractors produce highest CT learning
efficiency. We analyze study data across nine conditions to offer
insight to those developing PPP systems with the aim to advance
equitable CT education for all.
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1 INTRODUCTION

Computational thinking (CT) is becoming a necessary literacy
alongside reading, writing, and arithmetic [1]. However, negative
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perceptions and poor understanding of computing remains preva-
lent among the general population across ages [2, 3]. The depen-
dency on CT competencies has emerged in an era of standardized
testing that limits curricula flexibility in formal education, leading
administrators toward zero-sum requirements choices [4]. When
schools do integrate CT, they often operate with teachers with lim-
ited subject or pedagogical content knowledge who are unlikely to
have learned CT in K-12 [5, 6].

The CSforAll initiative in the U.S. used a commitment-making
model to engage the community and distribute effort to local lead-
ers in both formal and informal education [7]. The scale of the
needed transformation, though, introduces risk to lasting equitable
CT uptake for all. Since different demographic groups’ communal
values vary, and computing is not perceived to fulfill those values
equally across groups, the opportunity to learn CT and develop a
sense of belonging in computing is important to afford both to kids
and the adults who shape those values to reduce inequity [8]. A CS
career orientation for female students is strongly correlated with
self-efficacy in computing [9], and computing exposure and encour-
agement most influence women to study the field [10], yet only 33%
of the 2018 enrolments in the Australian National Computer Science
School challenge were female [11], and 20% of 2018 Information and
Communications Technologies OECD tertiary education students
were women [12].

Since motivation and previous programming experience can
be highly correlated with self-efficacy and CS career orientation
across genders [9], and computing experiences impact computing
self-image and habits [2], increasing the general populace’s com-
puting motivation and self-perception of CT skill are key objectives.
For middle school students, previous experience with block-based
programming has correlated with computer use and confidence,
as well as interest in future CS courses [13]. Like early efforts to
use block programming to introduce constructs and logic prior to
syntax for adult university students [14], our study explores the
motivation changes and CT learning efficiency associated with in-
troducing to an adult population modified versions of a popular
block-based environment, Scratch [15].

Previous work integrated with Scratch Parsons Programming
Puzzles (PPPs) [16], which are program completion tasks that enable
learners to practice CT by assembling into correct order sets of
mixed-up blocks that comprise samples of well-written code, often
focused on a single concept [17]. The findings aligned with others
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indicating this structured approach can lead to more efficient CT
learning than alternatives such as via tutorial, or writing/fixing code
[18-20]. In this study, we seek further evidence of PPP learning
efficiency and impact on CT motivation.

We first further augment Scratch, which is used by K-8 teachers
more than any other coding language internationally and is the
most studied in CS literature for K-12 [21-23]. Despite its success,
Scratchers do not consistently demonstrate skill increases over time
[24], often misconceive CT concepts, and can adopt programming
habits misaligned with CS norms, such as bricolage [25], which can
involve bottom-up tinkering without meaningful learning [26]. To
address these weaknesses, researchers have designed external cur-
ricula [27, 28], advocated for the Use->Modify->Create pedagogy
to scaffold instruction [29], and created introductory Scratch Mi-
croworlds with fewer features [30]. Our integration of PPPs within
Scratch internalizes this trend by challenging learners with explicit
goals, gameful scoring targets, and per-block feedback that dis-
courages trial-and-error behavior and focuses CT concept learning.
We reason that if learners can master CT concepts efficiently via
PPPs in Scratch, they can more effectively deepen understanding in
less restrictive open-ended projects that embrace Scratch’s roots in
learning via the creation of personally meaningful artifacts [31, 32].

To test this reasoning, we ran an online international study tar-
geting adults in which each participant was randomly selected into
1 of 9 conditions to learn the CT concept conditionals via 4 puzzles
each limited to 8 minutes. Between conditions, we varied the pre-
sentation of programming constructs, the inclusion of distractors,
feedback activation, and for the control condition, the CT concept.
Here, we investigate 3 research questions: after at most 32 minutes
(m) of puzzle solving, what are the effects of PPP variation on adult
learner R1) cognitive load (CL)?; R2) CT motivation?; R3) learn-
ing efficiency? Findings from 624 participants indicate: F1) PPPs
with feedback and without distractors produce the lowest CL; F2)
PPPs with feedback produce highest CT motivation; F3) PPPs with
an isolated block palette and without distractors produce highest
CT learning efficiency. We first review related work and the soft-
ware developed, then the study purpose, formative and summative
evaluations, and results, before previewing future work. We detail
measurements for efficiency in section 2.3 and motivation in 6.1.

2 RELATED WORK

PPPs first emerged as a new form of program completion problem
in 2006. [16] documents their strengths and weaknesses, [33] con-
solidates results from empirical studies, and [34] reviews the many
variants in the research literature. Summarily, the scaffolded sup-
port of syntax and semantics learning can lead to shorter training
time compared to code writing without reducing performance on
transfer tasks, resulting in meaningful learning efficiency gains.
Here we review work related to three axes of variation introduced
in our study to identify optimal conditions for efficient CT learning:
1) presentation; 2) distractors; 3) feedback.
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2.1 Presentation

The form of content presentation can significantly influence the
learning experience [35]. Block-based languages offer visual, nat-
ural language, browsability, drag-and-drop composition, and dy-
namic rendering affordances beyond those typically available in
text-based languages [36]. Open-ended environments like Scratch,
however, traditionally offer no clear objectives nor direct instruc-
tion. Most PPPs provide learners with a precise challenge to solve
via a prompt and focus the learner on arranging a small set of
selected programming constructs. In this study, we replace short
prompts with step-by-step instructions like those used in tutorials
and vary the presentation of constructs across conditions.

[37] studied PPPs in comparison to tutorials by offering students
choice in modality for each task and found that learners sought a
challenge for 57% of PPPs compared to 32% when selecting tutorials,
while aiming to avoid challenge in 39% of the tutorials compared
to 12% of PPPs. PPP solvers also completed tasks in 23% less time
and performed 26% better on transfer tasks than tutorial followers
while reporting higher mental effort. The tutorial tasks, however,
attempted to teach both the interface mechanics and the program-
ming concepts, while the PPPs directed learner attention only to
the latter. While providing all participants tutorial-like instructions
in PPPs, we vary the focus on interface mechanics by providing
conditions either with blocks scrambled in an isolated palette, or
with blocks scattered across palettes in categories native to Scratch
(e.g. Motion, Events).

To investigate the effects on CT learning, we measure learner
time-on-task, number of block moves, performance, and self-
reported CL. Per CL theory, the brain provides limited short-term
memory and processing capability along with infinite long-term
memory, and learning occurs via schema construction and elabora-
tion that leads to automation [38]. For learning to occur effectively,
the CL of complex tasks should be reduced. Three dimensions com-
prise CL, however, and the reduction need not occur in all three. The
total number of interacting elements perceived by the learner deter-
mines intrinsic load (IL); the sometimes-impeding presentation of
the content determines extraneous load (EL); and the instructional
features necessary for schema construction determine germane load
(GL). Our study conditions with an isolated palette aim to reduce
EL introduced via interface navigation to free learners’ capacity
to contend with GL. We also attempt to induce GL by requiring
self-explanations after PPP play, like [39], since findings indicate
self-explanation positively influences near and far transfer [40].

2.2 Distractors

Earlier research also has aimed to induce additional GL in PPPs
by providing access to constructs not needed in solutions, called
distractors. Example distractor types include: random constructs;
unrelated control flow constructs; tangentially related constructs
(TRCs); and partial suboptimal path distractors that might tempt a
learner toward faulty progress without enabling her to solve the
problem fully, thereby triggering misconception recognition and
productive backtracking toward the correct solution [41]. Results in-
dicate PPPs without distractors are the easiest to solve [42], and that
more time and higher CL result when distractors are included, lead-
ing to lower learning efficiency [41]. To reduce distractor difficulty,
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Figure 1: PPP with selectively included palettes & blocks

some have tried pairing them with correct constructs to increase
GL by focusing learner attention on misconception-revealing differ-
ences between two solutions while reducing EL by eliminating the
need to search for the relevant options amidst a jumble [43]. In our
study we vary across conditions the inclusion of TRCs intended to
help learners address misconceptions, and pair them close to cor-
rect constructs, with a goal of contributing insight into whether the
efficiency lost by including distractors might be counterbalanced
by the learning outcomes gained.

2.3 Feedback

Previous work has also explored increasing GL by including feed-
back mechanisms intended to guide learners to fix errors with-
out providing the correct answer. These include line-based and
execution-based feedback, as well as incremental progress indica-
tors that introduce ambiguity to discourage trial-and-error behavior
[41, 44]. These studies analyze usage patterns without conclusions
about which feedback type is the better option, and without eval-
uating feedback’s impact on learning efficiency independent of
confounding variables. In our study, we provide feedback through
a progress bar reflecting points scored, a count of block-moves
made next to the minimum count needed to solve the puzzle, and
correctness feedback on the position of each block placed, as shown
in Figure 1. According to the feedback classification in [45], this
feedback is constructivist since it is problem- and instance-oriented,
which has been correlated with significantly lower student failure
rates than alternative types such as those solution- and theory-
oriented. We intend this feedback to be part of the landscape of
interactions through which the learner constructs their understand-
ing. For each variation of presentation and distractor disposition, we
either activate or deactivate feedback, and then compare learning
efficiency across conditions.

Previous research found that participants encountering distrac-
tors performed similarly on transfer tasks and exhibited decreased
learning efficiency compared to those who did not [41]. When PPPs
are evaluated in comparison to writing equivalent programs, they
have been shown to take half as much time to complete without
reducing performance on subsequent assignments [20]. To account
for learners who compensate for an increase in mental load by

68

ACE 22, February 14-18, 2022, Virtual Event, Australia

committing more mental effort, thereby maintaining constant per-
formance while load varies, researchers calculate instructional and
performance efficiency [46]. The data recorded often include empir-
ical estimates of mental effort during instruction (EI) and transfer
(ET) tasks and the performance (P) on transfer tasks. The EI and
P calculation measures the instructional efficiency of the learning
process, while the ET and P calculation measures the performance
efficiency of the learning outcome. For example, one study found
that PPPs result in increased instructional efficiency compared to
writing block-based code [16]; another indicated PPPs with ran-
domly distributed distractors decrease performance efficiency [41].
Since we vary presentation, distractors, and feedback in ways that
might modulate CL, and potentially performance on transfer tasks,
these efficiency measurements operate as equalizers in our analysis.

3 SOFTWARE DEVELOPMENT

To investigate R1-R3, we modified Scratch to enable the design,
play, and assessment of PPPs. Since user behavior can be affected by
the programming environment [47], we aimed to preserve Scratch’s
strengths while integrating gameful elements like those in SQL-
Tutor [48] and feedback systems similar to iSnap integrations which
provide progress panels and adaptive messages [20, 49]. PPP gami-
fication development and architecture are reported in [16, 50]. Here
we document development that facilitates presentation, distractor,
and feedback variation.

Having previously introduced an isolated palette to Scratch that
enables the assembly of blocks from native Scratch palettes [16], we
further modified the palette selector to allow the selective inclusion
of palettes displayed during puzzle play as shown in Figure 2a.
Similarly, within each palette, we afforded the selective inclusion
of each block during puzzle design (Figure 2b), resulting in a play
experience in which the learner might encounter a subset of Scratch
palettes and blocks enabled for use. This functionality allows us
to construct matching PPPs with and without an isolated palette
(Figure 2c). For example, in a condition without an isolated palette
and without distractors (Figure 1), we enable only the palettes and
blocks that are included within the original PPP isolated palette.
Consequently, the learner must explore the enabled palettes to
identify block options, instead of choosing each block from one
jumbled assortment. While this exploration might induce EL, it
could bridge learning from PPPs to open-ended Scratch assignments
since it encourages familiarization with the conceptually driven
block organization. This approach relates historically to SP/k [51],
which offered a sequence of language subsets (e.g. SP/1, SP/2) that
introduced constructs incrementally; our learning system enables
the design of palette and block subsets that learners encounter as
they advance.

The selective inclusion of palettes and blocks also allows for
distractors to be included or not. To provide an additional axis of
variation, we configured a play mode with feedback systems dis-
abled; the score-based progress bar, score value, number of moves,
and correctness feedback, which includes alerts when distractors
are used, are removed. We also remove the display of the minimum
target moves needed to solve the puzzle, though this value remains
discernable, since we also disable the puzzle submit button until
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Figure 2: Palette & block selective inclusion systems

twice the number of minimum moves is made to encourage engage-
ment but also to provide relief if a learner is flailing and ready to
move to the next puzzle, similar to [52].

4 STUDY PURPOSE

This positioned us to study the effects of presentation, distractor,
and feedback variation across conditions in a short intervention
with a general adult population. One study purpose was to repli-
cate findings of previous PPP studies that have typically targeted
narrower populations, such as university or middle/high school
students [18, 33]. If CT is a crucial competency for all as Wing evan-
gelized in 2006 [1], it is important for the community to confirm
pathways toward motivated and efficient learning for the general
populace. In an era of remote schooling acceleration, children with
parents who know CT themselves likely are advantaged over their
peers [53]. Furthermore, given the crisis in quantity of CS teachers
equipped to teach CT in schools [5, 54, 55], there remains a need
to identify scalable professional development tactics for existing
teachers so that they can help students engage in creative comput-
ing [56, 57]. Our study aims to provide insight into the applicability
of the block-based PPP paradigm for adults with the implications
for children deliberately considered.

A second study purpose was to identify PPP elements that max-
imize learning efficiency. Previous PPP studies have varied grad-
ing leniency and distractor positioning [58], variable naming con-
ventions [59], distractor inclusion [41], execution and line-based
feedback [44], and intra-problem and inter-problem difficulty adap-
tiveness [33]. Like the approach used in [60] in which the type of
instructional support is varied in a programming game, we varied
the instructional support provided to learners across PPP conditions.
We include 8 conditions focused on the CT concept conditionals,
plus one control on sequences, and analyze the effects of variation
of presentation, distractors, and feedback, in the context of a se-
ries of 4 puzzles, each time-boxed for 8 minutes of solving, that
are connected by a story line with explicit goals related to playful
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animations. Based on results discussed in section 2, our hypotheses
associated with R1-R3 were: H1) training with an isolated palette
and without distractors yields lowest CL; H2) training with feed-
back yields highest CT motivation; H3) training with an isolated
palette with feedback and without distractors yields the highest
learning efficiency.

5 FORMATIVE EVALUATION
5.1 Design Thinking & Participants

To guide software development and reinforce construct validity,
we conducted with middle-school teachers a formative evaluation
in which we reviewed Scratch PPPs via a prototype using a de-
sign thinking approach. Design thinking is useful for investigating
solutions to ill-defined problems framed in human-centric ways,
often executed via a five-stage cycle: empathize, define, ideate, pro-
totype, and test [61]. To empathize, we distributed a survey on the
experience of teaching and learning with Scratch. To define, we
conducted 1:1 semi-structured interviews in the style of [62]. To
ideate, we facilitated sessions that iterated among open-ended idea
elicitation, prototype demonstration, and discussion.

The participants included 21 teachers from informal learning
venues such as codeHER and Girls Who Code, and 17 from U.S.
schools. 11% had taught with Scratch for at least 2-4 years, 63% for
6-18 months, and 26% for less than 6 months. Our survey, data, and
interview scripts are available at https://bit.ly/3rhdvzt.

5.2 Survey & Interview Results

A concerning survey result is the frequency with which students
ask for help when starting in Scratch (66% often or always). To
assist learners, 58% often or always provide direct instruction using
several techniques: concept explanations (used by 58%); 1:1 tutor-
ing (53%); demonstrations (47%). One way to reduce help-seeking
would involve the incremental introduction of blocks; 92% would
be willing or very willing to utilize such functionality.

We also explored teachers’ interest in PPPs and found that 84%
had never assigned them. After reviewing PPP descriptions, how-
ever, they were willing or very willing to assign PPPs (66%) and
author PPPs (71%). Although this indicates enthusiasm for CT teach-
ing through puzzle gameplay, in the semi-structured interviews,
several expressed skepticisms about the educational efficacy of CT
games they’ve assigned to students. One teacher raised concern
about the lack of provision for student reflection: "A lot of the games
hit algorithmic approaches, but they don’t give them [students] the
critical thinking moment, where they are like, why are we doing
this, the real question, why, and what is my problem?". Although
articulating the importance of reflection is non-trivial in the CS con-
text as reported in [63], this teacher’s approach entails designing
small assignments prior to gameplay that introduce one block at a
time and require students to explain their solutions. This feedback
influenced the design of the selective palette and block inclusion
system described in section 3 and led us to add a self-explanation
pop-up at the conclusion of each puzzle in the spirit of the reflec-
tive learning journals reported in [64] to provoke reflection that
strengthens learning.
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Table 1: Study protocol and data collected

# Activity

Content

Data Collected

Registration
Background info

Credentials creation & condition assignment
Demographics

Username & password
Age, gender, education, country,
programming experience & attitude, CT

perceptions

3 Tutorial 8-minute video on the learning system & N/A
conditionals

4 Pretest (isomorphic) 10 multiple-choice conditionals questions Pretest responses & score

5 CS CLCS 10 CL questions with 0-10 scaled responses  Pretest CL & IL/EL/GL components

6 Puzzles 4 puzzles on conditionals in 8 of 9 conditions; Per-puzzle time spent, time-stamped block
learning system behavior varies by condition; moves & score, correctness, generated
4 puzzles on sequences in control condition feedback, participant self-explanations

7 CS CLCS 10 CL questions with 0-10 scaled responses ~ Puzzle CL & IL/EL/GL components

8 Posttest (isomorphic) 10 multiple-choice conditionals questions Posttest responses & score

9 CS CLCS 10 CL questions with 0-10 scaled responses ~ Posttest CL & IL/EL/GL components

10 Concluding measurements Motivation, programming attitude, learning ~ TEQ & programming attitude, learning
system feedback, CT perceptions system viewpoints, CT perceptions

Table 2: Variation & participation across 9 study conditions

Cond. CT Concept Presentation Distractors Feedback

C1 Conditionals 1 palette N Y

C2 Conditionals 1 palette Y Y

C3 Conditionals Multi-palette N Y

C4 Conditionals Multi-palette Y Y

C5 Conditionals 1 palette N N

Cé Conditionals 1 palette Y N

C7 Conditionals Multi-palette N N

C8 Conditionals Multi-palette Y N

C9 Sequences 1 palette N Y

6 SUMMATIVE EVALUATION
6.1 Study Design

The formative study helped prioritize development, refine learning
materials, and organize a summative evaluation via a quantita-
tive experiment between-subjects across conditions, with some
within-subject measurements. As outlined in Table 1, participants:
1) created credentials in the learning system, which randomly as-
signed them to 1 of the 9 conditions documented in Table 2; 2)
provided demographic detail; 3) reviewed an 8-minute introductory
tutorial on the learning system and the CT concept of conditionals;
4, 8) took isomorphic pre/posttests; 5, 7, 9) self-reported CL after
tests/training through a validated CS CL component survey (CS
CLCS) [65]; 6) trained via 4 puzzles time-boxed for 8 minutes each;
2, 10) recorded CT perceptions and programming attitude via a
Likert scale derived from categorized text responses by adults in [3]
at study start/end; 10) responded to a validated intrinsic motivation
Task Evaluation Questionnaire (TEQ) [66]. Materials are available
at https://bit.ly/3pXjO9o.

70

6.2 Materials & Participants

We developed 4 conditionals puzzles and reused 4 on sequences from
a previous study [16]. Following guidance in [18], we aimed to
design motivating scenarios with memorable segments while pro-
viding a challenge without being tricky and leaving the participants
with a positive impression. To familiarize them, we included in the
instructions for the first puzzle the solution and block-use descrip-
tions. When including distractors, we targeted misconceptions to
introduce cognitive conflict and reinforce learning as in [67]. For
example, an if-else block operates as a distractor in a puzzle in
which only two if blocks are needed.

To create the pre/posttests, we followed the 7-step approach
to developing and validating CS knowledge assessments in [68].
To test and refine our materials, we collaborated with 8 under-
graduates with diverse majors and previous exposure to CS. Tests
included trials of the survey content, pre/posttests, and puzzles, and
think-alouds in which the tester would interact with the puzzles
while verbalizing her thoughts. Although we did not further for-
mally assess validity and reliability, these results led to refinements
such as reduced ambiguity in puzzle instructions and eliminated
pre/posttest questions deemed too easy or difficult.
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Using Amazon Mechanical Turk and Prolific [69, 70], we re-
cruited 624 participants with varying degrees (43% high school, 35%
undergraduate, 17% graduate), and a variety of self-reported pro-
gramming experience (low: 52%; medium: 34%; high: 14%). 396 men,
221 women, and 2 non-binaries comprise the population sourced
from 34 countries led by the U.S. (22%), Poland (21%), and the UK.
(13%). While practical, this recruitment introduces risk to external
validity, as there could be an element of self-selection in the sample,
since those participating in online studies might be more adept at
computing than the general populace.

6.3 Data Collection & Processing

We measured CL, performance, learning efficiency, and motivation
by creating 7 surveys and instrumenting the learning system to:
1) record puzzle play duration; 2) trace each block moved; 3) cal-
culate score using an algorithm inspired by the longest common
subsequence approach described in [67] and documented in [16]
that results in higher scores when nearest to the solution. We calcu-
lated instructional and performance efficiency using time-on-task
and CL for the EI and ET values during training and transfer tasks
as described in section 2. Since the data did not exhibit Shapiro-
Wilk normality (p<0.05), we used non-parametric statistics, like
Kruskal-Wallis H and Mann-Whitney U tests between-subjects, and
Wilcoxon signed-rank test within-subjects. For effect sizes, we used
guidelines in [71].

7 ANALYSIS & RESULTS
7.1 Cognitive Load

As expected, given random condition assignment, we did not find
significant differences between conditions in self-reported CL dur-
ing the pretest. Kruskal-Wallis tests did reveal significant differences
between training conditions with moderate effect for IL (H(8)=26.24,
p<.001, €2=.04), EL (H(8)=24.15 p=.002, €2=.04), and overall CL
(H(8)=29.10 p<.001, €2=.05). Using a Bonferroni-adjusted alpha of
.006 (.05/9), we found significant differences between conditions C6
(M=5.6) vs. C9 (M=3.95) p=.037, C8 (M=5.76) vs. C9 p=0.20, and C1
(M=4.22) vs. C8 p=0.31 for IL, C1 (M=3.03) vs. C6 (M=4.19) p=.015
for EL, and C1 (M=4.32) vs. C6 (M=5.50) p=.002, C1 vs. C8 (M=5.36)
p=-016, and C3 (M=4.45) vs C6 (M=5.40) p=0.22 for overall CL. The
comparatively low mean IL value for C9, the control condition,
suggests that participants accurately perceived fewer interacting
elements in the puzzles focused on the CT concept sequences com-
pared to those on conditionals. The IL C1 vs. C8 result corresponds
with the conditions that provide the most and least scaffolding (C1:
1 palette, no distractors, feedback; C8: multi-palette, distractors, no
feedback). The overall CL result for C1 vs. C8 further reveals the
impact of these supports and provides evidence partially support-
ive of H1, indicating PPP learning systems can induce significantly
lower IL and CL by activating maximum rather than minimum
scaffolding.

Since the remaining noted differences varied on two axes
of support each, we ran Mann-Whitney tests on condition
sets for each axis and for all conditions compared to the
control. We discovered significant differences with small ef-
fect related to distractors and feedback, as well as further
evidence of the lower IL induced in the control compared
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to the treatment (U(Ncontrol=60, Nireatment=564)=19,990.5,
2=2.32, p=.021, r=.09, Meontrol=3.95, Mircatment=4.92). Par-
ticipants who experienced distractors reported significantly
higher IL  (U(Ngistractors=301,  Nno-distractors=263)=46,408.0,
z=3.54, p<.001, r=.15, Mdistractors=5-34, Mno-distractors=4.43), EL
(U(Ndistractors =301, Nno-distractors=263)=93,820.5, z=4.56, p<.001,
r=.19, Myistractors=3-95> Mpo-distractors=3-13), and overall CL
(U(Nistractors=301, Nno-distractors=263)=47,873.5, z=4.30, p<.001,
r=.18, Mistractors=5-16, Mpo-distractors=4-52), then those who did
not. This suggests distractors may have been perceived sometimes
as interwoven into the challenge, and sometimes as hampering
focus.

Additionally,  participants =~ who  experienced feed-
back reported with small effect significantly lower IL
(U(Nfeedback=298, Npo-feedback=266)=34,771.0, z2=-2.52,
p=0.012, r=.11, Mfeedback=4-60, Mo feedback=5-27), GL

(U(Nfeedback =298, Npo-feedback=266)=35,511.5, z=-2.14, p=0.033,
r=.09, Mfeedback=5-91, Mpo-feedback=6-30), and overall CL
(U(Nfeedback=298, Npo-feedback=266)=33,663.5, z=-3.09, p=.002,
r=.13, Mfeedback=4-62, Mpo-feedback=5-12) than those who did not.
The lower IL value indicates correctness feedback might reduce
the number of interacting elements perceived, due to the focus
driven by prompt feedback on each block move. The lower GL
value, while attractive, could represent risk that learners lean
on feedback without sufficiently learning conditionals to use
them in feedback’s absence. We did not, however, find the lower
GL negatively affected efficiency in the analysis for section 7.3.
Combined, these training CL results provide only partial support
for H1, as evidence suggests training without distractors and with
feedback produces the lowest CL (F1); we found no significant
difference from varying presentation (1-palette vs. multi-palettes).
During the posttest, there were no significant differences
between individual conditions, but participants who trained
with distractors reported with small effect significantly higher
IL  (U(Ngistractors=301,  Nno-distractors=263)=43,811.5, z=2.19,
p=.028, 1=.09, Mistractors=4-30, Mno-distractors=3-80), and EL
(U(Nistractors =301, Npo-distractors=263)=44,431.0, z=2.52, p=.012,
r=.11, Mgjstractors=2-57, Mno-distractors=2-26) than those who did
not. These results could indicate less schema construction occurred
during training for distractor than no-distractor participants.

7.2 Performance

Though we did not find significant training performance differ-
ences across all conditions when measuring the number of puzzles
solved correctly, the time needed to solve them was significantly
different with moderate effect (H(8)=87.94, p<.001, €2=.14). After
the Bonferroni adjustment, we found participants in the control on
sequences completed training significantly faster than those in each
conditionals condition while solving nearly the same number of
puzzles correctly (Mcontrol=2-0, Mireatment=1.9). Since solving the 4
sequences puzzles requires a minimum of 41 block moves compared
to 33 for the conditionals puzzles, this result suggests the complexity
of the CT concept and puzzle, rather than the length of the solution,
affect time spent solving.

Other condition pairs with significant differences in time spent
are: C1 vs. C4 (p=.000), C1 vs. C7 (p=.040), C4 vs. C5 (p=.000),
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and C5 vs. C7 (p=.012). Participants in C1 and C5, both with
an isolated palette and without distractors, needed less time
than participants in C4 with multiple palettes and distractors,
and C7, with multiple palettes (Mc1-time=16.6m, Mc5-time=16.1m,
Mc4-time=20.8m, M¢7-time=22.9m). However, C4 and C7 partici-
pants solved more puzzles correctly than those in C5, and C7 partic-
ipants outperformed those in C1 (Mc1-correct=1.9, MC5-correct=1.5,
Mca-correct=1.8, MC7-correct=2.7). To further investigate these cor-
rectness differences, we removed the control from the between-
conditions calculations, and found a significant difference with mod-
erate effect across just treatment conditions (H(7)=91.70, p=.000,
€2=.16). The condition-pair result remaining significant after Bon-
ferroni adjustment is C5 vs. C7 (p=.020). This finding suggests that
when the presentation varies while distractors and feedback varia-
tion are held constant (deactivated), multi-palette participants solve
more puzzles correctly than those with an isolated palette. However,
we note that despite the random condition assignment, substantially
fewer completed the experiment in C7 compared to the mean across
conditions (Mc7=37, Mc1-9=69). This discrepancy represents a risk
to internal validity, as it is possible some participants found the lack
of support in C7 too challenging, and dropped their participation,
leaving in the condition population a more CT-adept assembly.

We further pursued this finding via Mann-Whitney tests on
the group of conditions with an isolated palette vs. the group
with multiple palettes, but did not quite find a significant cor-
rectness difference (U(N1-palette =317, Nulti-palette=247)=35,609.0,
2=-1.89, p=.059, 1=.08, M1_palette =1.8, Munulti-palette=2.0). We did,
though, see significant differences with small effect in the
time solving between these two groups, with those with mul-
tiple palettes spending 13% more time than those with an iso-
lated palette (U(Np-palette=317, Nmulti-palette=247)=31,545.0, z=-
3.96, p<.001, r=.17, My palette=17.4m, Mmulti-palette:19~7m)- A sim-
ilar time-spent difference exists between the groups of condi-
tions with distractors vs. those without, with distractor partic-
ipants spending 7% more time than those without distractors
(U(Ndistractors=301, Nno-distractors=263)=45,798.0, z=3.22, p=.001,
r=.14, Mgistractors=19-0m, My _distractors=17.8m), but differences in
correctness are limited between these groups, with participants
without distractors solving marginally more puzzles correctly on
average in less time.

During the transfer phase, participants in each treatment con-
dition solved more posttest than pretest questions correctly. As a
full treatment population, they did so at a significant level with
a small effect within-subject per a Wilcoxon test (z=3.4, p<.001,
r=.15, pretest: Mireatment=7.8, posttest Mireatment=38.0). We found
the largest increase in pre/posttest scores of M=.4 from participants
who trained in C3 (multi-palette, no distractors, with feedback),
indicating that goal-driven search through multiple palettes and
guidance from correctness feedback might lead to the greatest per-
formance increase in multiple-choice transfers tasks. However, the
difference in pre/posttest scores between treatment conditions was
not significant (H(7)=2.66, p=.92, €2=.00), meaning further exper-
imentation would be required to vet that possibility. The lack of
transfer performance disparity between PPP conditions generally
replicates findings in [16, 41], and is similar to findings on PPP
inter-problem and intra-problem adaption in [33].
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7.3 Efficiency

Given the training duration differences between the sequences and
conditionals puzzles, and the dependency on standardized values
in the EI ET, and P instructional efficiency (IE) and performance
efficiency (PE) calculations introduced in 2.3, we focus efficiency
analysis on differences discovered between treatment conditions.
Though we did not find any significant PE differences, when using
time spent as an estimate of mental effort during training, we found
a significant difference with a moderate effect in IE (H(7)=26.32,
p<.001, €2=.04), with condition pairs C1 vs. C4 (p=.003) and C4
vs. C5 (p=.001) remaining significant after the Bonferroni adjust-
ment. This indicates that C5 and C1, with the two highest IE values
(Mc5=.25, Mc1=.21), and each with an isolated palette and no dis-
tractors, led to more efficient learning than C4 (Mc4=-.31), with
multiple palettes, distractors, and feedback. This result provides
partial support for H3. The low mean IE value for C7 (Mc7=-.59)
suggests that training with multiple palettes without distractors
and without feedback also degrades learning efficiency, though the
C5 vs. C7 (p=.102) and C1 vs. C7 (p=.307) pairwise comparisons
were not significant, due to the smaller participant population in
C7 noted in section 7.2. Nonetheless, these results offer evidence
that multi-palette PPPs decrease IE compared to isolated-palette
PPPs.

We also compared groups of conditions along the axes of varia-
tion, which led to no PE findings, but did reveal significant IE differ-
ences for each axis. The group of conditions with an isolated palette,
with small effect, resulted in significantly higher IE than those with
multiple palettes (UNy patette=317, Nulti-palette=247)=44,503.0,
2=2.79, p=.005, 1=.08, M_palette=-11, Mpulti-palette=-13), which
adds support to the IE finding favorable to an isolated palette be-
tween individual conditions. We also found, with small effect, sig-
nificantly higher IE for the no-distractor group compared to the
distractor group when measuring mental effort during training
both by time (U(Nistractors=301, Nno-distractors=263)=34,019.0, z=-
2.88, p=.004, r=.12, Mistractors=--06, Mno-distractors=-07) and by CL
(UNdistractors=301, Nyo-distractors=263) =33,228.5, z=-3.29, p=<.001,
r=.14, Myistractors=--11, Mpno-distractors=-13)- Lastly, we analyzed the
condition sets with feedback activated vs. deactivated, and found
that activated feedback led to substantially higher, but not quite sig-
nificant, IE when measuring mental effort via CL (U(Nfeedback=298,
Npo-feedback =266)=42,922.5, z=1.70, p=.080, r=.07, Mfeedback =--00,
Mpo-feedback=--08)-

These results indicate IE is higher when training involves an
isolated palette, no distractors, and feedback when compared to
multiple palettes, distractors, and no feedback. They nearly fully
support H3, but since the feedback result did not reach significance,
the F3 finding for maximum efficiency excludes it to focus on an
isolated block palette and no distractors. The distractors finding
aligns with [41], which similarly found decreased learning efficiency
in PPPs with distractors. To the best of our knowledge, PPP learning
efficiency of isolated or multiple palettes and feedback activation
or deactivation have not previously been reported in the literature.

7.4 Motivation
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Table 3: Selected within-subject programming attitude change

# Programming is. .. Feedback ON Distractors OFF 1-palette ON
1 fun M=.49** M=0.56"" M=0.4"*

2 enjoyable M=.59"" M=0.6"* M=0.58""

3 important to know M=.33** M=0.34"* M=0.37**

4 easy to start M=.77** M=0.97"* M=0.79"*

5 too difficult to understand M=.58"* M=0.62"" M=0.49*"

6 boring M=.26"* M=0.33** M=0.24**

7 too time consuming M=.21* M=0.32"* M=0.32""

Negative valence (5-7) calculated with (AFTER -BEFORE)*-1, all others (1-4) with AFTER-BEFORE. *p<.05, **p<.01

7.4.1 Quantitative Results. To analyze motivation quantitatively,
we scored the TEQ and calculated within-subject change in pro-
gramming attitude and CT perception from study start to end. 3
participants from the TEQ and 7 from the attitude/perceptions
tasks were excluded due to participant response insufficiencies
(NTEQ=621, Nattitude/perception=617). Though there were not signif-
icant differences in TEQ results between conditions for the inter-
est/enjoyment, pressure/tension, and perceived choice subscales,
there were with moderate effect for the perceived competence sub-
scale (H(8)=24.78, p=.002, €2=.04). After Bonferroni adjustment,
the condition pair remaining significant was C1 (M=4.65) vs C6
(M=3.63) p=.018, meaning when the presentation (isolated palette)
and distractor status (deactivated) were held constant, feedback
activation produced higher perceived competence, which supports
H2.

When comparing programming attitude and CT perception
change across sets of conditions, we found significant differences
in each of the axes of variation. Participants in the condition set
with feedback reported with small effect significantly higher in-
crease in the Likert scale response to the statement: I believe I
could successfully learn computational thinking (U(Ngeedback =295,
Nho-feedback=263)=42,777.5, z=2.17, p=.030, r=.09, Mfecdback=-27,
Mo-feedback =-10). This result supports H2 and F2 and might sug-
gest feedback has positive implications for CT self-efficacy. Those
in the condition set with an isolated palette with small effect re-
ported significant larger decrease in response: programming is
too time consuming (UN{_palette =314, Niulti-palette =244)=42,243.5,
z=2.14, p=.033, r=.09, My palette =-32, Multi-palette=-09), which re-
flects the 13% less time spent in training noted in 7.2. Lastly, those
in the condition set without distractors with small effect reported
significantly higher increase in response to: programming is easy
to start (U(Ndistractors =296, Nno=distractors=262) =34,347, z=-2.38,
p=.017, r=.10, Mistractors=-6 1, Mno-distractors=-97), indicating that
distractors induced perceptions of higher difficulty.

Additionally, we found many significant positive attitude
changes from study start to end within-subject per condition set;
selected results are presented in Table 3. Although these results
indicate attitude improvement and support H2, the absence of longi-
tudinal data represents a threat to internal validity, since we cannot
claim the change at study conclusion persists.
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7.4.2  Qualitative Results. To supplement the quantitative results,
we sought qualitative feedback by requesting that participants de-
scribe their attitude toward programming after the learning ex-
perience, as well as their perspective on the puzzle presentation,
distractors, and feedback. Especially for those who self-reported
low prior programming experience, we recorded more positive
attitudinal outcomes for participants who trained with feedback,
supportive of H2 and F2. Several reflected a sense of empowerment:
1) "I believe that programming is a complex topic to begin learning
without help, it is simple in its basic form, but I think that with
enough practice and will to learn, anyone can learn programming”;
2) "it seems much more accessible now"; 3) "it seems like something
that I actually could do if I took the time to learn starting out with
the basics it is not only for those who are innately gifted or tech-
nologically advanced, I can code as well" 4) 'T always thought that
programming was something that no "normal" person could do out
of the blue. This proved me wrong."; 5) "it seems more interesting
and maybe more accessible - before it felt as if only "chosen ones"
could do it well"

Others appreciated the motivational and gameful effects: 1) "I
think this is a great way to get you excited and interested in pro-
gramming... this would be even enjoyable for the kids and in the
meantime they unconsciously learn coding."; 2) "The puzzles were
actually very enjoyable, it felt like a game; 3) "I loved it. I think I
will continue learning more about programming by enrolling in
other programming courses."; 4) "I find it a lot easier right now. I
wanted to start it for some time but I'm a little bit lazy but this
learning experience might give me the boost to get into it finally";
5) "I thoroughly enjoyed doing this. I thought it was all going to be
white data on black screen. I really liked the step by step colourful
simplicity of the learning process.'; 6) "It’s made me want to have
another go at it as this was such a good way to learn rather than
in lectures I had many years ago where it was just slide after slide
and then trying stuff... I think this especially would be a great way
to get kids interested in programming in school as it showed how
it can be fun and satisfying without being overly complex. I really
enjoyed this!; 7) “The instant gratification of seeing the products
of your efforts on-screen spurs you on"; 8) "It’s very addictive and
fun:)".

For those with multiple palettes, we found more hesitant per-
spectives: 1) "programming scares me a bit less now"; 2) "I think
it was a great but exhausting experience"; 3) "I realized just how
much I didn’t know about programming, and how difficult it can
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be. I would have never guessed I'd struggle as much as I did, but I
consider it a valuable experience." Those who trained with feedback,
however, noted its positive effect on motivation and efficiency: 1) "i
liked receiving feedback, it was like a teacher guiding me, if it did
not verify anything i had to search by myself"; 2) "feedback was
good as meant i wasnt too far gone past a mistake before correcting
it"; 3) "i was excited that i got it right and sometime feel not putting
enough effort if i got i wrong. so i put more effort in getting it right";
4) "On the first puzzle I had some red boxes pop up so I knew which
moves I had done wrong and I could change things around until
I got confirmation from the feedback that it was correct. It helps
to know you’re on the right track otherwise it might feel you're
just endlessly trying things without really knowing if it’s correct
or not."

Those who did not receive feedback reported using more tradi-
tional testing techniques: 1) "I tried to verify whether I made the
correct move by clicking the green arrow and seeing my anima-
tion based on the moves I made."; 2) "I tried to play the animation
with the green flag and see if that gives feedback."; Feedback was
not appreciated by all, however, as small set noted discomfort: 1)
"it made me a little anxious when my moves were incorrect."; 2)
"when I received information that my movement was incorrect, I
got stressed”; 3) "I was happy when I saw that I made the correct
choice, however, when thy system turned to red and it said that
something is incorrect I began to feel anxiety and I was angry at
myself because I did not know what I did wrong and I just didn’t
understand why it’s wrong and that bothered me; 4) "I was wor-
ried and tried to understand what I did wrong that it says it was
incorrect and how I can make it work." These distressed feedback
perceptions will lead us to explore throttled feedback options to
limit disruption to those negatively affected.

The motivational impact of distractors was mixed. Some val-
ued the simplicity of an isolated palette and lack of distractors: 1)
"Having a restricted amount of pieces to work with makes things
easier”; 2) "I liked not seeing any distractor blocks it made me more
efficient and could keep me focused."; 3) "I would have easily been
more confused if additional blocks were presented to me. I am very
thankful that wasn’t the case for me because I probably wouldn’t
have accomplished anything." Others embraced the challenge dis-
tractors offered: 1) "Distractors are helpful in my opinion, because
once selected it trigger the though "ok why is this not okay?" and
then you would compare it with the other blocks understanding the
mistake."; 2) "If there were only "correct” blocks it would be more
easyer and this is not good, because to learn programming you
don’t make only "correct” things, you need to make some mistake
to understand what are you really doing"; 3) "Enabled blocks which
weren’t part of the puzzle solution helped me judge and differenti-
ate between the relevant conditionals that were required to solve
the puzzle!'; 4) “I liked that there were some similar blocks that were
not used, because that allowed me to learn about different scenarios
where I might prefer one block over another in the future. .. That
way I can simultaneously learn about a few different blocks instead
of only the ones I am directly using”; 5) "I thought that having some
"dummy" blocks to throw me off the scent was really effective, and
would help a younger learner to focus more on the problem.
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Table 4: PPP element variation findings summary

Element CL Efficiency Motivation
1-palette - Increase™ Increase™
Distractors Increase™* Decrease™™ Decrease™™
Feedback Decrease* Increase Increase™*

*p<.05, “p<.01

7.5 Findings Summary

We conclude the analysis by summarizing findings for each varied
PPP element in Table 4

8 CONCLUSION & FUTURE WORK

Our survey of, and interviews with, grade 6-9 teachers revealed the
substantial teacher support necessary to help CT learners in Scratch,
as well as their limited prior exposure to, but willingness to try,
PPPs. This led us to extend Scratch with gameful PPP functionality
focused on individual CT concepts. By varying elements of PPPs
across nine conditions in a study of 624 adults, we found PPPs
with feedback and without distractors produce lowest CL, PPPs
with feedback produce highest CT motivation, and PPPs with an
isolated block palette and without distractors produce highest CT
learning efficiency. The study analysis offers PPP developers insight
to advance efficient CT education for all.

While these results expose opportunities to advance CT learn-
ing via augmentations to popular block-based programming en-
vironments like Scratch, we recognize external validity would be
strengthened were additional CT concepts studied, and other block-
based environments included. We might also strengthen construct
validity by evaluating how fading of supportive PPP elements
within learning progressions helps learners transition toward deep-
ening CT understanding in open-ended projects. In future work, we
intend to address these issues while also exploring how block-based
environments might further equip PPP content developers with
tools to customize and differentiate auto-generated feedback for
learners. With continued study across CT concepts, functionality,
and populations, we aim to identify paths towards reliably efficient,
effective, and equitable CT learning.
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