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Abstract 31 
 32 

Mechanical mechanisms have been employed for information processing for millennia, with famous 33 

examples ranging from the Antikythera mechanism of the Ancient Greeks to the analytical machines of 34 

Babbage. More recently, electronic forms of computation and information processing have overtaken these 35 

mechanical forms, due to superior miniaturization and integration. Yet recently, a number of unconventional 36 

computing approaches have been introduced that blend ideas of information processing, materials science, and 37 

robotics. This has raised the possibility of novel mechanical systems that augment traditional electronic 38 

computing by interacting with and adapting to their environment in unprecedented ways. In this Perspective, 39 

we discuss the use of mechanical mechanisms, and associated nonlinearities, as a means of processing 40 

information with a view toward a new paradigm in which adaptable materials and structures can act as a 41 

distributed information processing network, even enabling “information processing” to be viewed as a material 42 

property alongside traditional material properties such as strength and stiffness. We focus on approaches to 43 

abstract digital logic in mechanical systems, discuss how these systems differ from traditional electronic 44 

computing, and highlight the challenges and opportunities that they present. 45 
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  I. INTRODUCTION: “MECHANICS AS INFORMATION” 46 
 47 
 History provides a number of fascinating examples of computation via clever mechanical 48 

mechanisms, including the Antikythera mechanism of the Ancient Greeks [1], the analytical 49 

machines of Charles Babbage [2], and the differential analyzer of Vannevar Bush [3].  For the 50 

most part, these older mechanical forms of computation have long since been replaced by more 51 

efficient electronic forms.  Recently there has been an explosion of unconventional computing 52 

approaches, blending ideas of information processing, chemistry, biology, materials science,  and 53 

robotics into novel information processing platforms.  Examples include neuromorphic 54 

computing [4], DNA computing [5], robotic materials [6], morphological computation [7–9], 55 

optical computing [10, 11], microwave-based quantum gates [12, 13], and 56 

pneumatic/microfluidic logic circuits [14–18]. There has also been a growing recognition that 57 

some natural systems (such as the Venus flytrap [19–21]) can also be viewed as unconventional 58 

computation platforms. These systems depart profoundly from the von Neumann architecture of 59 

classical computing and digital electronic hardware (see “Conventional computer” mapped from 60 

the Turing machine, a model for universal computation, down to the physical silicon substrate in 61 

Fig. 1.  Further explanation is provided in the Sidebar). Also, these unconventional computing 62 

systems are capable of interacting with and adapting to their environment in unprecedented ways 63 

(see Fig. 1b). 64 

 65 

 As a case study, we focus on emerging research on the use of mechanical mechanisms as 66 

a means of processing information, a concept that has become plausible thanks to major advances 67 

in additive manufacturing, materials science, and structural engineering. Unlike the gears and 68 

linkages of ancient mechanical computers, these novel mechanical computing systems harness a 69 

variety of subtle mechanisms to sense, interact and process information from their environment.  In 70 

this way, “information processing” itself can be viewed as a material property alongside traditional 71 

material properties such as strength and stiffness.  However, with the information processing 72 

intrinsically part of the composition and geometry, new design rules and computing paradigms 73 
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beyond traditional von Neumann architectures will be required (Fig. 1a). 74 

 75 

 76 
 77 
FIG. 1. Three level hierarchy of a computational system: (a) Building a computer through the three levels: 78 
(Top layer) “Computing model” (e.g., the Turing machine, combinatorial logic, and general purpose analog 79 
computer (GPAC.), (Middle layer) “Engineered architecture” which represents an abstract platform where a 80 
computing model is implemented (von Neumann architecture (see the left inset illustration) [22], logic circuit, 81 
etc.), and (Bottom layer) “Physical substrate” which realizes a design in a physical system. (b) A mechanical 82 
computing system, highlighting information processing as a material property, which can interact with 83 
environments and perform “computation”, e.g., (i) a rover inspired by mechanical computers for extreme 84 
environments [23] (Image Credit: NASA/JPL-Caltech), and (ii) soft robotic grippers with embedded sensors 85 
which can sense pressure, temperature,  etc. Reprinted with permission from Reference [24]. © 2018 Wiley. 86 
(c) A mechanical computing system can be realized by leveraging various mechanical building blocks (e.g., 87 
origami-inspired unit which can represent binary information (“0” or “1”) depending on different deformation 88 
modes, and its 2D network); reprinted with permission from Reference  [25]. 89 

 90 
 In this Perspective, we employ a three-layer framework for computation to outline the 91 

process of information abstraction in computing systems to highlight innovations for mechanical 92 

computing in each layer. Using combinatorial logic as an instructive computing model (Fig. 1a), 93 

we first consider the abstraction of mechanical binary digits (bits) in the physical substrate layer (see 94 

Fig. 1c for origami-based example), highlighting both static and dynamic representations in Sec. II. 95 

Next, we consider how the above mechanisms may be combined or networked to achieve more 96 

complex computation (Sec. III), and to potentially implement specific engineered architectures. 97 

Then we consider how these systems interact (I/O) with the surrounding environment and/or other 98 

subsystems (Sec. IV), and the unique advantages this presents over conventional computing 99 

approaches.  We conclude by summarizing the challenges and opportunities on the horizon and 100 

opportunities for broader community engagement going forward (Sec. V). 101 
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  II. MECHANICAL BIT ABSTRACTIONS 102 
 103 

 To leverage materials for information processing, the physical material must be structured to 104 

instantiate an abstract computational process. Developing these material-to-computation 105 

abstractions are core issues to defining the meaning and opportunity space of physical computation 106 

[26, 27].  As the complexity of the targeted abstract computation increases, so does the complexity 107 

of the design required to instantiate it. In light of this, binary operations are the dominant 108 

computational abstractions utilized in modern computing systems due to their relative simplicity, 109 

robustness, and scalability. In electronic systems, transistors function as a binary digit (bit) (Fig. 110 

1a), systematically switching between the “on” and “off” state to represent, process, and store 111 

information.  It is noteworthy that novel unconventional computing systems operate on alternative 112 

architectures that do not necessarily require digital representation [28]. In fact, a variety of 113 

exciting new research areas such as morphological computing [7–9], wave-based mechanical 114 

metamaterials [29–31], and neuromorphic systems [4] explicitly make use of analog computing 115 

principles. 116 

 Following the goal of illustrating pervasive challenges, we limit the scope to mechanical 117 

computing approaches that embody digital abstractions of information. One of the empowering 118 

aspects of mechanical computing is the diverse opportunities to define digital abstractions of 119 

information from the physical system. In this section, we discuss two different strategies for 120 

representing digital states in mechanical systems: non-volatile systems, which undergo quasi-static 121 

deformation between equilibrium states, thereby storing discrete state information without external 122 

energy; and volatile systems, which are abstractions from dynamic systems and require external 123 

energy to maintain the information state. 124 
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 125 
 126 
FIG. 2. Non-volatile and volatile mechanical realizations/implementations of abstract bits. One of the 127 
approaches to retain information without external power source is to utilize bistable behavior based on 128 
geometrical nonlinearities, such as (a) a unit cell composed of clamped beams, which can transform between 129 
undeformed (“0”) and deformed (“1”) configurations (reprinted with permission from Reference [32]), and 130 
(b) a bistable flexure mechanism. Reprinted with permission from Reference [33]. Origami can also be used 131 
to design non-volatile mechanical memory, e.g. (c) triangulated cylindrical origami-based structure (reprinted 132 
with permission from Reference [25]) and (d) waterbomb origami. Reprinted with permission from Reference 133 
[34]. Volatile logic can be encoded in beam dynamics, as demonstrated in (e) electromechanical beams 134 
(reprinted with permission from Reference [35], © 2008 Springer Nature) and (f) microcantilevers with 135 
stiffening behavior (reprinted with permission from Reference [36], © 2010 AIP Publishing). Other examples 136 
of volatile mechanical devices include (g) a 1D array of spiral spring cells with a magnetic mass (reprinted 137 
with permission from Reference [37]) and (h) granular chains (reprinted with permission from Reference 138 
[38], © 2014 Springer Nature). 139 

 140 
A. Non-volatile systems 141 
 142 
 Mechanical realizations of non-volatile, digital computing have predominantly assumed a 143 

binary form through harnessing bistable configurations. Such bistability can be readily obtained by 144 

introducing geometrical nonlinearity into a mechanical structure. Under certain loading and 145 

constraints, even simple beams can be designed to support two stable configurations. As an 146 

example of loading constraints that support this behavior, if planar tilted beams are confined 147 

perpendicular to their loading direction (Fig. 2a-b), they may snap between two stable 148 

configurations, which can be assigned a ‘0’ or ‘1’ state, respectively. By leveraging mechanical 149 

snap-through between these two states, one can manipulate the binary information. When the 150 
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deformation is limited to the elastic regime, this transition to bistability is governed by scale-151 

independent geometric parameters and boundary conditions rather than the material properties. 152 

Hence, beam-based bistabilities have been exploited in a number of materials (silica, soft 153 

materials, etc.)  and form factors to realize mechanical bits [32, 33, 47, 48].  Similarly, bistability 154 

can be realized in origami-based structures [25, 49–64], enabling the structure to possess two 155 

distinct ‘0’ and ‘1’ states as above.  For example, a mechanical bit has been defined in triangulated 156 

cylindrical origami (TCO) structures by transitioning between two stable states through cross-157 

sectional rotation. (see Fig. 2c, [25]). Another origami example is the waterbomb fold pattern (see 158 

Fig. 2d, [34]), which leverages bistability to “pop” between up (1) and down (0) equilibrium states 159 

of the center vertex of the fold pattern. The multistable energy landscape of the origami structures, 160 

and their ability to form modular assemblies, serves as a helpful intuition-building construct for 161 

identifying and developing mechanical computing devices. 162 

 Binary representations are of central importance in electronic computation, and have 163 

facilitated immense information densities through the miniaturization and computational scaling of 164 

a single bit. While some mechanical bit implementations may be compatible with a 165 

miniaturization approach, increasing the number of stable configurations [65–67] (i.e., changing 166 

the base of the computation) is likely a more tractable path to increasing information density. For 167 

example, mechanical mechanisms that are tristable (e.g., rotating squares [67]) or quadstable (e.g., 168 

origami [53]) could be utilized as non-volatile computing devices with superior information 169 

density to binary equivalents (see Supplementary Information for additional discussion). 170 

 171 
 172 
B. Volatile systems 173 
 174 
 In the non-volatile examples of the previous section, digital abstraction is tied to quasi-175 

static transitions between equilibrium configurations of a multistable structure.  However, digital 176 

abstraction of information and manipulation of the bit state can also be achieved via the dynamic 177 

response of a mechanical system, e.g., phase, frequency, amplitude and other metrics. One of the 178 

well-studied examples is the clamped beam under harmonic excitation [35, 68–72] which behaves 179 
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as a mechanical resonator. Figure 2e shows structural oscillations of a clamped-clamped beam 180 

integrated with a piezoelectric actuator. The bit information is expressed by the two stable phases, 181 

0 and p [35]. Another example based on beam vibration is a microcantilever with stiffening 182 

behavior that arises due to geometric nonlinearities at large amplitudes [36]. This nonlinear 183 

behavior results in distinct dynamic responses depending on whether there is a forward or 184 

backward sweep in the input drive voltage (i.e., a hysteretic response as shown in the upper right 185 

inset in Fig. 2f).  Therefore, if the system is operated at a certain drive strength in this hysteretic 186 

response regime and the input drive voltage is modulated, the dynamic response can be one of the 187 

two distinct stable states, i.e., high-amplitude or low-amplitude, depending on whether a forward 188 

or backward sweep in the input voltage is used. 189 

 The burgeoning field of mechanical metamaterials presents a large toolset of methods and 190 

building blocks to control the flow of mechanical energy, guide mechanical waves, and tune the 191 

frequency band structure [73–80]. Precise control of these dynamic phenomena, both through 192 

advances in conceptual design and experimental validation, constitute a rich testbed for novel 193 

mechanical computing abstractions. For example, Bilal et al. studied a pop-up structure which 194 

exhibits tunable transmission depending on its structural configuration [37] (i.e., a pop-up state 195 

which allows the propagation of input signals, or a flat state where elastic waves are prohibited, 196 

see Fig. 2g).  By constructing an array of the unit cells, they designed a mechanical transistor and 197 

demonstrated various logic gate operations based on transmission dynamics. Similarly, granular 198 

acoustic switches have been proposed [38], which digitize the state information by harnessing the 199 

system’s nonlinearity to tune the frequency response (Fig. 2h). The use of multi-frequency 200 

information, together with phase and amplitude control discussed above, could be exploited to 201 

abstract and manipulate multiple mechanical bits in parallel. In addition to the use of elastic 202 

waves, acoustic logic operations based on non-reciprocal propagation of sound pressure have also 203 

been proposed [81, 82]. The above examples highlight the diverse digital abstractions possible in 204 

dynamic mechanical systems, and offer an alternative view of mechanical information processing. 205 

 Bit retention in volatile systems requires sustained energy input, typically through a 206 
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continuous harmonic excitation or other driving force. The volatility provides flexible bit 207 

manipulation, such as driving multi-bit logic operations as discussed above, and flexible bit 208 

abstraction, as the bit state can be (re-)assigned for different driving frequencies, amplitudes, etc. 209 

In contrast, the bistable mechanisms of non-volatile systems retain bit information without 210 

additional energy input, but require additional mechanisms to reconfigure the system (e.g., control 211 

of loading or constraint conditions in a beam-based system). New metrics are needed to map the 212 

trade-off between computational versatility and mechanical energy consumption in mechanical 213 

computing devices.  Hybrid systems present an opportunity to harness the strengths of both, by 214 

combining the programming flexibility and operational sensitivity of volatile systems with the 215 

stable memory storage of non-volatile systems. While simple hybrid approaches could leverage 216 

non-volatile subsystems as memory and volatile subsystems as processors (analogous to the 217 

classic von Neumann architecture of Fig. 1a), it remains an open question how these subsystems 218 

could be combined in more creative ways to attain novel functionality.  The discovery of new 219 

mechanical logic networking principles and architectures that implement hybrid bit information is 220 

an open challenge. 221 

 222 
 223 
 224 
 225 
  III. MECHANICAL COMPUTING ARCHITECTURES 226 
 227 
 228 

 In order to perform more complex computing operations, the mechanical computing units 229 

discussed above require assembly into larger, integrated networks.  While replicating electronic 230 

computers is not the underlying goal of research in alternative computing approaches such as 231 

mechanical computing, the principles of digital logic design from electronic computing systems 232 

provide a robust foundation of theory and circuit simplification schemes to guide the 233 

development of mechanical logic analogs. AND, OR, and NOT gates can be combined to achieve 234 

universal logic; NAND and NOR are each able to achieve universal logic merely by 235 

combinations of themselves (functionally complete). The design of universal gates in mechanical 236 

logic systems is an important benchmark for demonstrating computational utility and for revealing 237 
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the physical constraints of networking these building blocks in one, two, and three dimensions. 238 

 The simplest examples of mechanical computing systems are 1D chains of mechanical bits, 239 

such as linkage systems [72, 83–86] or granular chains [37, 38]. For example, if two units 240 

composed of spiral springs with lumped masses (see Fig. 2g for the single element) are connected 241 

in series, this 1D chain structure can exhibit an AND gate behavior, i.e., no output signal is 242 

obtained unless input signals (“1”) are applied to both units (see the upper inset in Fig. 3a) [37]. 243 

On the other hand, if the two units are connected in parallel, the system can serve as an OR gate 244 

(the lower inset in Fig. 3a). In addition, NOR/XOR/NAND/NOT gate behaviors can be achieved 245 

by combining multiple units. The above examples are volatile, but 1D non-volatile logic systems 246 

have also been constructed, including functionally-complete logic gates (a NAND gate example in 247 

[33]). In these 1D systems, the output of one unit is connected to the input of the next unit. 248 

Therefore, input information is typically processed unidirectionally from one end of the chain to 249 

the other. 250 

 The limitation of linear information paths in 1D systems motivates the development of 2D 251 

and 3D systems, where signal branching and interactions beyond nearest neighbors are possible.  252 

Several 2D systems have been demonstrated [25, 34, 46, 87, 88].  The blue box in Fig.  3 253 

illustrates examples of 2D planar systems comprising constrained beams [32] (Fig. 3b) or 254 

waterbomb origami [34] (Fig. 3c). For example, modules composed of constrained beams (see Fig. 255 

2a) can be arranged as a grid-like planar system (Fig. 3b), which allows the implementation of 256 

multiple logic operations.    Parallel connections of two modules could coordinate to pass/block a 257 

signal or emulate an AND gate by propagating the snap-through behavior [32].   Similarly, 258 

waterbomb origami can be connected side by side to form a system of multiple bits that perform 259 

simple logic operations, depending on the configurations of the unit cells [34].  Unlike 1D 260 

systems, the mechanical computing units can interact with multiple nearest neighbors along both 261 

dimensions, allowing information to propagate across the 2D plane, instead of only along one 262 

dimension. This feature can be exploited to control multiple bits in parallel, and could enable new 263 

functionality or mechanical computing architectures. Extending to 2D and 3D not only increases 264 
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the degrees of freedom (DOFs) of mechanical systems but also allows new logic state assignments 265 

arising from the coupling of DOFs. For example, mechanical substrates that are effectively 2D in 266 

nature, such as lattice or origami structures, can take on complex and multistable 3D 267 

conformations due to the coupling of twisting and bending motions, as well as in-plane 268 

deformations. The mapping between the sequence and structure of cell deformation and global, 269 

stable configurations can also emulate logic, as recently demonstrated in an elastomeric sheet with 270 

embedded bistable domes [89]. Therefore, 2D and 3D systems can offer not only a simple 271 

extension or tiling of 1D logic elements but also a platform to assign new kinematic mechanisms 272 

and 3D deformations with a logic state.    273 

 3D mechanical computing systems have not been studied extensively.  However, a number 274 

of previously reported 1D and 2D architectures could naturally be extended to 3D [45], and could 275 

be exploited to control the mechanical flow of information in unprecedented ways. Recent 276 

advances in 3D printing could allow fabrication of more complex 3D mechanical systems that 277 

have been recently conceptualized.  For example, by utilizing a combinatorial approach, a 278 

metacube structure composed of cubic unit cells has been proposed [90]. This structure exhibits a 279 

programmed pattern on its side surface under axial compression (Fig. 3d). Not only linear motions, 280 

but also coupling between axial and rotational deformations, have been demonstrated [91] (Fig. 281 

3e), allowing vertical deformation to induce transverse/lateral motions in 3D space. In addition to 282 

these static responses, there are also opportunities to process information using the dynamic 283 

properties of a mechanical system, such as topological phases or phase transitions which were 284 

originally studied in condensed matter physics. These emerging, so-called “topological mechanical 285 

metamaterials” can be designed to provide robust control of wave dynamics in 2D planar networks 286 

and 3D volumetric systems [37, 92–98], (e.g., 3D systems with elastic polarization [99] (Fig. 3f)). 287 

Due to localization of waves (e.g., topological edge mode), such systems could enable various 288 

operations relevant to information processing, e.g., mechanical diodes, which can be tailored to 289 

route mechanical signals in a specific direction, to switch/reroute signals, or to isolate a complex 290 

routing pathway. 291 
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 The development of mechanical computing architectures involves several challenges, which 292 

will require both clear understanding of the fundamental abstraction layer discussed above (Sec. 293 

II) and new design rules for circuit and component-level integration. For example, the kinematics 294 

of the bit abstraction place constraints on the gate assembly, as input and outputs may be 295 

mechanically incompatible for certain gate combinations. Due to these constraints, circuit designs 296 

from electronic digital logic may not translate to “bottom-up” gate assembly in a mechanical logic 297 

system.  One approach to this challenge inspired by the electronics community is to develop 298 

design tools for these constraints. For example, instead of a single AND gate design, perhaps the 299 

design of an AND gate structure is optimized based on the gate types connected to it. Similarly, a 300 

“top-down” design approach may be more tractable for certain mechanical logic implementations, 301 

where higher level functionality (e.g., a full or half adder) could be designed directly rather than 302 

assembling the individual logic gates that are known to collectively produce the equivalent 303 

functionality. Topology optimization, pseudo-rigid body models, and graph-based techniques for 304 

mechanism design [100–103] are promising approaches to these more complex logic structures, 305 

with the potential benefit of reducing gate inter-connections, incompatibilities, and overall energy 306 

requirements of the mechanical computing devices. 307 

 Mechanical logic networks are also constrained by the number of accessible interactions 308 

between gates, limiting the number of inputs that an output signal can drive (also known as the 309 

problem of “fan-out” in electronic circuits).  Damping and other losses may also limit the distance 310 

of force propagation, which could constrain the overall size of the mechanical computing network.   311 

These limitations also afford approaches where the order or sequence of mechanical loading may 312 

enable multiple mechanical logic networks to co-exist within the same structure, effectively 313 

increasing the computational utility for the same size of network.  For example, Faber et al. [89] 314 

demonstrated that an elastomeric sheet populated with bistable domes exhibits distinct 3D 315 

conformations based on the order of dome inversion, not just the specific combination of inverted 316 

domes. Sequence-dependent effects of this nature could lead to complex and branched logic 317 

networks, which may redefine the current understanding of these mechanical networking 318 
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constraints.  Mechanical computing systems also have the advantage of a direct interface with the 319 

environment, which can include a large set of physics and timescales of interaction. Leveraging 320 

this additional design dimension of computing physics has the potential to relax the fan-out 321 

constraint (using long range interaction - magnetics) and recoup energy losses (harvesting 322 

environmental sources - thermal cycles), all while simultaneously integrating these cues into the 323 

computing task of the device. In the following section, we explore how new computing paradigms, 324 

enabled by integration of stimuli-responsive materials and additional physics into the logic flow, 325 

present a possible strategy for seamless embodiment of computation and function within mechanical 326 

systems. 327 

  328 
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 329 
FIG. 3. Networking mechanical computing units for digital logic. By using single-bit mechanical memory 330 
units as a building block, we can construct 1D chains (denoted by a red box) and 2D planar structures (blue 331 
box) to create classic digital logic gates and networks of these. (a) 1D array of spiral spring cells with a 332 
magnetic mass (reprinted with permission from Reference [37]). 2D planar configurations have been 333 
designed using (b) modules composed of constrained beam elements (reprinted with permission from 334 
Reference [32]), and (c) tessellation of waterbomb origami unit cells (reprinted with permission from 335 
Reference [34]). Though 3D networks for mechanical information processing have not yet been widely 336 
explored, the deformation mechanisms and unconventional properties of 3D mechanical metamaterials 337 
suggest strategies for their implementation, e.g., (d) a combinatorial design for programmed shape change 338 
(reprinted with permission from Reference [90], © 2016 Springer Nature), (e) 3D chiral metamaterials with 339 
compression-twist coupling behavior (reproduced with permission from Reference [91], © 2017 American 340 
Association for the Advancement of Science), and (f) topological materials with elastic polarization 341 
(reproduced with permission from Reference [99], © 2017 Wiley). 342 

  IV. ENVIRONMENTAL INTERACTIONS AND I/O 343 
 In Sections I-III, we have discussed an operational framework in which abstract 344 

computational models can be physically realized in networked mechanical systems. We discussed 345 

how mechanical mechanisms enabled by geometric nonlinearity could produce mechanical 346 

systems with switchable, discrete information states. However, to this point we have not discussed 347 

what, beyond mechanical loading, might induce the mechanical systems to change state.  In this 348 

section, we consider how these unconventional computing systems might interface with their 349 

environment and with other subsystems. What are the “inputs and “outputs” relevant to 350 

mechanical or material computing systems with coupled physics? How can mechanical computing 351 

augment digital electronic systems to improve performance of engineered systems?  What new 352 

computing architectures are needed to fully integrate multiple, diverse environmental inputs?  To 353 



 
15 

navigate these questions, we evaluate environmental interactions in the physical substrate and 354 

architecture levels, highlighting future opportunities for mechanical computing in the process. 355 

Figure 4a provides examples of relevant interactions (either with the external environment or with 356 

other subsystems). Note that this interaction can be triggered via stimuli-responsive 357 

materials/structures within a layer. In mechanical systems such active materials serve as an analog 358 

to conventional sensors/actuators. In this framework, a specific computation (e.g., logic gate 359 

operations) can be performed by connecting Physical substrate and Engineered architecture layers. 360 

 In conventional digital computers, silicon serves as a substrate for electronic components but 361 

is not itself designed to change or respond to the environment. Instead, environmental inputs are 362 

obtained via modular sensors, distinct from the computing device, that transduce physical 363 

quantities such as temperature or light intensity into an electronic signal that the computer can 364 

subsequently operate on.  In contrast, mechanical computing systems can be constructed from a 365 

large palette of adaptive materials, which can directly respond (bend, twist, etc.) to environmental 366 

inputs corresponding to the active materials used in the system. Examples include electronic 367 

signals (e.g., using dielectric elastomer actuators [104, 105] or liquid metal [106]), mechanical 368 

stimuli [32, 107], chemical stimuli [21, 108], acoustic pressure [87], and humidity gradients [34]. 369 

In addition, mechanical deformation can be triggered in shape memory polymers and liquid crystal 370 

elastomers in response to temperature changes [109, 110] and/or light [111]; polymers can be 371 

designed to mechanically respond to pH [112] and magnetic fields [113–115]. Moreover, multiple 372 

input sources can be combined for operation (e.g., mechanical force and magnetic field to 373 

manipulate bit information [107]; see panel i in Fig. 4b).  This could enable computation in new 374 

form factors and operating environments [116]. Multi-responsive systems can also be designed to 375 

account for stimuli order, allowing time to serve as another design parameter to logically couple or 376 

decouple stimuli [21]. 377 

 In distinct contrast with I/O in traditional digital electronics, the changes that occur to the 378 

mechanical computing system due to environmental inputs are not limited solely to the physical 379 

substrate layer—they can also manipulate the engineered architecture layer. As a simple example, 380 



 
16 

the application of external force can be used to morph a mechanical logic gate from an AND gate 381 

to an OR gate, and vice versa (panel ii in Fig. 4b) [48].  Evolving the computing architecture in 382 

response to environmental input represents a novel tool for reprogramming mechanical computing 383 

platforms, with the potential of intra- and inter-switching within and between architecture classes. 384 

Collectively, these examples highlight the novelty of mechanical computing concepts, not only in 385 

granting access to new operational environments, but more importantly, expanding the definition 386 

and methods of how information is abstracted and processed. 387 

 Understanding materials in terms of their information processing capabilities could impact 388 

every aspect of automation systems that interact with their environment.  In particular, robotic 389 

systems can be expected to be equipped with classical centralized computing when physically 390 

feasible; yet, for a variety of scenarios, this may not be plausible, nor optimal.      For example, it 391 

is typically not possible for micron-scale robots [117] to rely entirely on traditional electronic 392 

computing.         Even with classical computing available, robots will rely on physical properties 393 

to perform material pre-processing to reduce the centralized computational load.   As an example, 394 

Zhao et al. [118] use a soft robotic hand to assess fruit ripeness through a temporal-spatial 395 

integration of the mechanical deformation during contact, effectively augmenting the computing 396 

task of the robot through a form of mechanical filtering (see the top insets in panel iii of Fig. 4b). 397 

This filtering concept can be expanded to other features, such as texture, temperature, and shape, 398 

as demonstrated by Truby et al. in another soft robotic gripper example (see the middle insets in 399 

panel iii of Fig. 4b) [24]. Together, these examples highlight the opportunity to consolidate 400 

sensing and computing into the structure and physics of the device, performing ‘materials-enabled 401 

computation’ in the relevant physics and timescales of the target application.  This congruence 402 

between a computing task, physics modeling/computation, and physical task execution motivates 403 

the augmentation of conventional computing with unconventional computing substrates, to 404 

improve both energy consumption and information collection (see further discussion in Sec. V). 405 

 406 
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 407 

FIG. 4. Environmental Interactions: (a) Conceptual schematic of the advantages and opportunities of 408 
mechanical computing to directly couple with the physical environment, followed by representative examples in 409 
subpanel (b). Coupled Computing Physics: Opportunity to combine physics and sensory input in the 410 
abstraction layer of the physical substrate - (i) Multiple inputs (force and magnetic field) to manipulate the 411 
binary state (reprinted with permission from Reference [107], ©2019 American Chemical Society). Evolving 412 
Architecture: environmental stimuli can reprogram the computing architecture - (ii) example of a mechanical 413 
logic gate switching between AND and OR behavior in response to external mechanical loading (reprinted with 414 
permission from Reference [48]). Material Pre-Processing: leverage mechanics to synthesize environmental 415 
input for integration with conventional architecture - (iii) Examples of soft robotic grippers with embedded 416 
sensory functions, e.g., (top) detecting target object shapes (reprinted with permission from Reference [118], 417 
©2016 American Association for the Advancement of Science), and (middle) processing different textures and 418 
temperatures (reprinted with permission from Reference [24], ©2018 Wiley). Electromechanics: (iv) image of 419 
electromechanical SiC switch highlighting coupled mechanics and electrostatics for high temperature computing 420 
applications (reprinted with permission from Reference [119], ©2010 American Association for the 421 
Advancement of Science). New Architectures: abstractions and mappings to higher computing layers are 422 
needed to precisely define the computational contribution of new substrates and physics - (v) Illustration of a 423 
computer vision task to classify the shape of a partially occluded cube with, and without, the aid of mechanical 424 
motion.  Motion to avoid a visual occlusion reduces the conventional computing cost of a machine learning 425 
vision classifier for this task by enabling a camera to see all of an object. However, it is unclear presently what 426 
architecture and computing model should be employed for assessing the tradeoffs between conventional 427 
computation and mechanical motion. 428 
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V. CHALLENGES AND   OPPORTUNITIES 429 
 Although many recent publications have shown the feasibility and potential for storing and 430 

processing binary information as a material property, there remain both challenges and associated 431 

opportunities for advancing the field of mechanical computing. In this Section, we explore some 432 

current and future research directions related to the realization of unconventional computing in 433 

mechanical systems, leveraging the three layer model of computation (Fig. 1) to guide the 434 

discussion. 435 

A. Beyond binary abstraction 436 

 Major advances in additive manufacturing, materials science, and mechanical metamaterials 437 

have led to new ways of thinking about materials.  As presented here, the research community has 438 

begun to think about ways in which information processing itself can be thought of as a material 439 

property. Abstracting information processing is a ubiquitous and underutilized opportunity in 440 

mechanical systems. The mechanical mechanisms described in Section II underscore this point and 441 

serve as an instructive guide to identify new ways to embed and abstract information.  Extending 442 

the number of states, such as tristable mechanisms in which discrete states could take values of 0, 443 

1, 2, (or -1,0,1) is one simple example of a promising next step. Exploiting the frequency response 444 

spectrum affords another. Far more complex multistable or volatile mechanisms are also possible, 445 

allowing representation of more than just binary information. These non-traditional discrete 446 

representations present opportunities for the mechanics and materials communities to interface 447 

with computational theorists to explore new abstractions and mappings between computing layers. 448 

B. “Compilers” 449 

 In conventional computing, the choice of architecture and substrate is biased by the inherent 450 

(and clearly justifiable) demand for a universal computing platform, which has focused investment 451 

(and achieved remarkable success) into a handful of core technologies.   However, is a universal 452 

computing machine optimal for every application? The mechanical computing examples 453 

highlighted above demonstrate that even simple logic calculations could enhance the operation of 454 

a device without serving as a general purpose computer.  To tap into this computing potential, 455 



 
19 

design tools are needed to move both up and down between computing layers in Fig. 4a, not only 456 

to fit new materials and physics into established computing models, but also to identify new 457 

computing abstractions that are most compatible with the physical substrate, whether localized, 458 

dispersed, or some hierarchical combination. This relates to conventional compilers, which 459 

translate a higher level program language into a lower level language more closely tied to the 460 

operation of the physical substrate (i.e., silicon-based digital electronics for traditional computing 461 

systems).  This is a key step in telling a “universal computer” how it should specifically operate. In 462 

contrast, an analogous “compiler” for a mechanical computing system would need to play the role 463 

of algorithmically generating an appropriate computational substrate-layer (Fig. 1 and Fig. 4): i.e., 464 

it must generate a suitable design of a 3D mechanical system, reconciling its mechanical 465 

kinematics and energy constraints, and ensuring the system properly embodies sensing, 466 

computing, and actuating functions in its arrangement of potentially multiple active materials. An 467 

initial example of a mechanical logic compiler is included in Ion et al [32], which presents a 468 

design editor to minimize the size of the mechanical logic network to achieve a target logic 469 

operation. Expanding the capability of the compiler to integrate diverse environmental I/O, 470 

computing models, spatially dispersed nodes, hybrid integration with conventional electronics, and 471 

fabrication constraints presents a challenge, and potential bottleneck, for the advancement of 472 

mechanical computing concepts.  Most unconventional computing systems, including mechanical 473 

logic, are programmed at a very low level, since substrate-specific design and abstraction rules 474 

have not had time to mature. In light of this, codifying the “compiler” design rules for these 475 

unconventional substrates is an open challenge for the materials, design, and computing 476 

communities. 477 

C. Exploring new unconventional computing 478 

 Opportunities to innovate exist at all three layers of the computing framework (Fig. 1). In 479 

the Physical Substrate, novel abstractions are beginning to be identified through combinations of 480 

materials, physics, geometry, and timing to access new operation regimes. For example, by 481 

combining the physics of electrostatics with contact mechanics, sub-micron electromechanical 482 
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switches made from silicon carbide (SiC) enable digital logic computations at extreme 483 

temperatures (>500 °C) [119], typically outside the operating temperature of conventional 484 

electronics (panel iv in Fig. 4b).  The Engineered Architecture layer can also interact directly with 485 

the environment (panel ii in Fig. 4b), presenting an opportunity to embed self-reconfigurable 486 

computing architectures in mechanical systems.    The range of computational tasks this will 487 

enable has yet to be investigated. For instance, could a periodic, temporal cue from the 488 

environment trigger the material computing system to convert from a digital to an analog 489 

interpretation or to produce some form of digital-analog hybrid?  Lastly, innovations in the 490 

Computational Model layer will have the dual benefits of establishing new computing constructs 491 

for guiding the discovery of unconventional computing materials, and also stimulating new ways 492 

of characterizing and thinking about materials. For example, multistable beam networks are 493 

physically continuous, with temporally- and spatially-varying internal stress and strain states under 494 

deformation. However, it is the discrete configurations of the multistabilities, not the continuous 495 

state variables, that are leveraged to emulate logic operations in the examples of this Perspective. 496 

The focus on the discrete properties of the beam array motivates the application of discrete 497 

mathematics techniques, such as graph theory, not only to scan for computing potential, but to 498 

provide a new lens to characterize and benchmark the behavior of the underlying material 499 

structure. 500 

D. Metrics to assess mechanical computers 501 

 New computing and material performance metrics are needed to classify and benchmark 502 

the collective innovations across these computing layers (see, e.g., Ref. [120] for discussion on 503 

quantifying unconventional computing ‘resources’).  Conventional metrics are largely focused on 504 

processing speed, bit density, and I/O package miniaturization. Mechanical computing performs 505 

poorly against these benchmarks.  While miniaturization has been pursued for mechanical 506 

computing using micro-/nano-electromechanical systems (MEMS/NEMS)  [121–124]  and could 507 

provide benefits (such as robustness against harsh environments or high temperatures [119]), the 508 

relevant fabrication approaches for MEMS/NEMS come with their own set of constraints that 509 
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would limit the complexity of a mechanical logic network and the types of  materials (and hence 510 

sensors) that could be integrated.  Instead, alternative metrics are needed to better capture the 511 

unique strengths of mechanical and other unconventional computing concepts, and to assess the 512 

impact of hybridization with conventional electronics. For example, the intrinsic integration of the 513 

computation within the physical material or device offers distinct efficiencies and insertion 514 

opportunities that would be challenging for conventional approaches.  Metrics reflecting this 515 

advantage could include the number of data type conversions between input and output 516 

computations, spatial proximity of the computation to the input signal, and relevance of the 517 

computing physics and timescales to the computing application. Does a dynamic mechanical load 518 

operating on the timescale of Hz require state assessment on the order of MHz or greater?   Is it 519 

more efficient to continually query for the current configuration or to have the material/structure 520 

directly detect, assess, and process the mechanical event? Efficiency and integration benefits of 521 

this nature lack the precision and concreteness of the benchmarks currently employed for 522 

conventional computing, but are necessary for placing mechanical computing concepts in an 523 

appropriate context. 524 

 Developing methods to establish the computational equivalence of these alternative metrics 525 

in augmenting conventional computing systems is also an important next step. For instance, machine 526 

vision—and vision-based object classification—rely heavily on sophisticated algorithms to 527 

robustly handle occlusion, distortion, and other environmentally-driven image degradation. These 528 

algorithms come at high computational and, implicitly, energetic expense.   However, vision 529 

systems that can move are able to meet the same object identification requirements through 530 

mechanical motion by looking around an occlusion rather than using classifiers intended for 531 

limited data.  In addition, mechanical motion augments the view of the object relative to 532 

previously collected images, which can also improve the efficiency of classification [125].  Panel 533 

v in Fig. 4b shows an illustration of such a situation, where a camera must either identify an 534 

object—the cube—based on a partial image or must move to avoid the visual occlusion created by 535 

the cylinder. That machine learning uses mechanical motion to improve data collection and 536 
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learning efficiency [126] highlights the need for new architectures and computational models to 537 

precisely define the interactions between new material substrate mechanical properties and 538 

computational requirements. 539 

 Integration, efficiency, and material compatibility metrics will also provide clear evaluation 540 

criteria for the merits of using stimuli-responsive materials to directly harness environmental 541 

interactions in the computational abstraction.  Bottlenecks in information processing often occur at 542 

the points of data conversion between physical type (mapping sensor physics to computation 543 

physics) or computational representation (analog to digital). Mechanical computing may mitigate 544 

this bottleneck by merging the sensing and computing physics into a single domain. However, 545 

timescale incompatibilities are likely to arise as additional physical stimuli are integrated into the 546 

computation, due to the distinct timescales associated with each stimuli-responsive phenomenon.  547 

For example, a sudden change in temperature or voltage may equilibrate throughout the system 548 

more rapidly than a change in the chemical environment due to diffusion (which also introduces 549 

time dependence based on feature size).  This could be harnessed to produce exciting new effects, 550 

such as spatially and temporally distributed reprogramming in response to local environmental 551 

cues, but this will also require careful design at the architecture level to retain the meaning and 552 

utility of the computation.  Understanding the advantages of sensory consolidation at the physical 553 

substrate layer will be key to deciding whether to use conventional, unconventional, or hybrid 554 

computing approaches. 555 

E. Conclusion 556 

 Treating information processing as a material property will introduce multidisciplinary 557 

challenges that will require both new theoretical approaches and practical design tools as discussed 558 

above; solutions are therefore likely to be found at the interfaces between materials science, 559 

information theory, computer science, additive manufacturing, and robotics. The converging path 560 

ahead for these research communities is an exciting one. Our intent is that the framework 561 

highlighted in this Perspective, along with the specific mechanical computing examples reviewed, 562 

will serve as a catalyst for discovery of new material computing paradigms and will invite the 563 
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community to view information processing as a material/structure behavior. 564 
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Figure legends 584 
 585 
FIG. 1. Three level hierarchy of a computational system: (a) Building a computer through the three levels: 586 
(Top layer) “Computing model” (e.g., the Turing machine, combinatorial logic, and general purpose analog 587 
computer (GPAC.), (Middle layer) “Engineered architecture” which represents an abstract platform where a 588 
computing model is implemented (von Neumann architecture (see the left inset illustration) [22], logic circuit, 589 
etc.), and (Bottom layer) “Physical substrate” which realizes a design in a physical system. (b) A mechanical 590 
computing system, highlighting information processing as a material property, which can interact with 591 
environments and perform “computation”, e.g., (i) a rover inspired by mechanical computers for extreme 592 
environments [23] (Image Credit: NASA/JPL-Caltech), and (ii) soft robotic grippers with embedded sensors 593 
which can sense pressure, temperature,  etc. Reprinted with permission from Reference [24]. © 2018 Wiley. 594 
(c) A mechanical computing system can be realized by leveraging various mechanical building blocks (e.g., 595 
origami-inspired unit which can represent binary information (“0” or “1”) depending on different deformation 596 
modes, and its 2D network); reprinted with permission from Reference  [25]. 597 

 598 

FIG. 2. Non-volatile and volatile mechanical realizations/implementations of abstract bits. One of the 599 
approaches to retain information without external power source is to utilize bistable behavior based on 600 
geometrical nonlinearities, such as (a) a unit cell composed of clamped beams, which can transform between 601 
undeformed (“0”) and deformed (“1”) configurations (reprinted with permission from Reference [32]), and 602 
(b) a bistable flexure mechanism. Reprinted with permission from Reference [33]. Origami can also be used 603 
to design non-volatile mechanical memory, e.g. (c) triangulated cylindrical origami-based structure (reprinted 604 
with permission from Reference [25]) and (d) waterbomb origami. Reprinted with permission from Reference 605 
[34]. Volatile logic can be encoded in beam dynamics, as demonstrated in (e) electromechanical beams 606 
(reprinted with permission from Reference [35], © 2008 Springer Nature) and (f) microcantilevers with 607 
stiffening behavior (reprinted with permission from Reference [36], © 2010 AIP Publishing). Other examples 608 
of volatile mechanical devices include (g) a 1D array of spiral spring cells with a magnetic mass (reprinted 609 
with permission from Reference [37]) and (h) granular chains (reprinted with permission from Reference [38], © 2014 610 
Springer Nature). 611 

 612 
FIG. 3. Networking mechanical computing units for digital logic. By using single-bit mechanical memory 613 
units as a building block, we can construct 1D chains (denoted by a red box) and 2D planar structures (blue 614 
box) to create classic digital logic gates and networks of these. (a) 1D array of spiral spring cells with a 615 
magnetic mass (reprinted with permission from Reference [37]). 2D planar configurations have been 616 
designed using (b) modules composed of constrained beam elements (reprinted with permission from 617 
Reference [32]), and (c) tessellation of waterbomb origami unit cells (reprinted with permission from 618 
Reference [34]). Though 3D networks for mechanical information processing have not yet been widely 619 
explored, the deformation mechanisms and unconventional properties of 3D mechanical metamaterials 620 
suggest strategies for their implementation, e.g., (d) a combinatorial design for programmed shape change 621 
(reprinted with permission from Reference [90], © 2016 Springer Nature), (e) 3D chiral metamaterials with 622 
compression-twist coupling behavior (reproduced with permission from Reference [91], © 2017 American 623 
Association for the Advancement of Science), and (f) topological materials with elastic polarization 624 
(reproduced with permission from Reference [99], © 2017 Wiley). 625 

 626 
FIG. 4. Environmental Interactions: (a) Conceptual schematic of the advantages and opportunities of 627 
mechanical computing to directly couple with the physical environment, followed by representative 628 
examples in subpanel (b). Coupled Computing Physics: Opportunity to combine physics and sensory input 629 
in the abstraction layer of the physical substrate - (i) Multiple inputs (force and magnetic field) to 630 
manipulate the binary state (reprinted with permission from Reference [107], ©2019 American Chemical 631 
Society). Evolving Architecture: environmental stimuli can reprogram the computing architecture - (ii) 632 
example of a mechanical logic gate switching between AND and OR behavior in response to external 633 
mechanical loading (reprinted with permission from Reference [48]). Material Pre-Processing: leverage 634 
mechanics to synthesize environmental input for integration with conventional architecture - (iii) Examples 635 
of soft robotic grippers with embedded sensory functions, e.g., (top) detecting target object shapes (reprinted 636 
with permission from Reference [118], ©2016 American Association for the Advancement of Science), and 637 
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(middle) processing different textures and temperatures (reprinted with permission from Reference [24], 638 
©2018 Wiley). Electromechanics: (iv) image of electromechanical SiC switch highlighting coupled 639 
mechanics and electrostatics for high temperature computing applications (reprinted with permission from 640 
Reference [119], ©2010 American Association for the Advancement of Science). New Architectures: 641 
abstractions and mappings to higher computing layers are needed to precisely define the computational 642 
contribution of new substrates and physics - (v) Illustration of a computer vision task to classify the shape of 643 
a partially occluded cube with, and without, the aid of mechanical motion.  Motion to avoid a visual 644 
occlusion reduces the conventional computing cost of a machine learning vision classifier for this task by 645 
enabling a camera to see all of an object. However, it is unclear presently what architecture and computing 646 
model should be employed for assessing the tradeoffs between conventional computation and mechanical 647 
motion. 648 
 649 

FIG. S1. (a) The number (b) of n-ary digits required to express a positive integer (k) can be calculated as 650 
. The grey horizontal line indicates 232, which corresponds to the maximum value of a 4-byte 651 

integer representation.  (b) To express a large integer number efficiently, we assume that the efficiency of 652 
information storage is proportional to n and define the efficiency (f) as  where a is a weight 653 
coefficient.  We consider the case of , and plot the result for a = 1, 5, and 10. The black triangle 654 
markers represent the local minimum state, which means the most efficient storage, i.e., smaller n and 655 
smaller number of digits. (c) We calculate and plot various positive integer numbers as a function of the 656 
efficient n-ary storage.  Based on this calculation, to express smaller numbers (e.g., 103), n = 3, 4 can be 657 
advantageous, compare to binary or decimal digits. Please note that this calculation is a rough estimation 658 
without considering fabrication challenges, operation speed, or robustness. Example multistable mechanical 659 
structures include (d) ternary memory based on rotating squares (reprinted with permission from Reference 660 
[67], © 2020 American Physical Society) and (e) quaternary memory based on origami (reproduced with 661 
permission from Reference [53], © 2015 American Physical Society). See also Ref. [66] for a discussion 662 
of why base n = 3 (i.e., ternary digit) can be optimal for storage efficiency. 663 

β = logn k

f = an+ logn k
k = 105
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 BOX / SIDEBAR: “Information Processing” 664 

 665 

 666 

 When thinking about building a computational system, a ‘computer’, it is helpful to describe 667 

three levels: the model of computation, the architecture, and the physical substrate. 668 

 669 

 The model of computation. 670 

 671 

 The model of computation is an abstract, usually mathematical, model of how the 672 

computational process unfolds.   There are many models of computation.   Classically, there is a 673 

progression of models of increasing computational power: combinational logic, finite state 674 

machines, pushdown automata with an unbounded memory stack, and Turing Machines with an 675 

unbounded memory tape.  Other classical models, such as lambda calculus, are equivalent in 676 

power to the Turing Machine model. These models are discrete state space (symbols) and discrete 677 

time.  Other discrete space/discrete time models, such as Cellular Automata, have the same 678 

theoretical computational power as Turing Machines, but may map to an architecture more suited to 679 

different implementations and problems. Quantum computational models have greater efficiency, 680 

but not greater computational power, than Turing Machines (they can solve some problems faster, 681 

but they cannot solve non-Turing computable problems). 682 

 There are also continuous space/discrete time computational models, such as Coupled Map 683 

Lattices, and some Neural Network models, typically based on underlying difference equations. 684 

There are continuous space/continuous time models, such as some Spiking Neural Network 685 

models,  reaction-diffusion models,  Shannon’s General Purpose Analog Computer  (GPAC), 686 

Rubel’s general purpose extended analogue computer, and continuous time quantum  687 

computational models, typically based on underlying differential equations. 688 

 689 

 690 
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 The architecture. 691 

 An architecture is an abstract design for how a model of computation may be realized 692 

(implemented) in hardware. It focuses on a set of basic components, and how they are connected. 693 

For example, the combinational logic model maps naturally to an architecture comprising a 694 

universal set of logic gates connected into a circuit.  The classical von Neumann architecture, 695 

describing how a CPU controls and performs computational operations, with random-access 696 

memory containing a stored program and data, is not itself a natural mapping of the Turing 697 

Machine, with its sequential memory access, but has a more natural mapping to an efficient 698 

hardware implementation.  Other architectures, such as those underlying GPUs and FPGAs, are 699 

alternate designs for classical computing.  An architecture need not be realized directly in 700 

hardware; it may be a form of ‘virtual machine’ implemented in software in another architecture. 701 

For example, cellular automata and neural networks are typically implemented in classical 702 

architectures. 703 

 704 

 The physical substrate. 705 

 The physical substrate (hardware) realizes an architecture and its model of computation:  it 706 

forms the physical computer. The standard substrate for realizing the von Neumann architecture is 707 

digital electronics.  (Technically, since the von Neumann architecture, both in principle and its 708 

realizations in practice, does not have unbounded memory, it has the computational power of a 709 

finite state machine, not a Turing Machine. This tension between theoretical computational power 710 

and finitary physical limitations tends to be glossed over in practice.) 711 

 There are many other substrates supporting a range of architectures, including non-linear 712 

materials, analogue electronics, magnetic materials, optics, chemicals, biochemicals, biological 713 

organisms, and mechanical devices. Indeed, the earliest engineered computers were mechanical 714 

clockwork systems, including the Antikythera device, Babbage’s Difference Engine, and the 715 

Differential Analyzer. In recent decades all of the above approaches have been referred to as 716 

“unconventional computing” due to the enormous success of conventional silicon-based digital 717 
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electronics. Yet thanks to numerous advances in manufacturing, materials, and design, 718 

unconventional computing has recently begun to receive a great deal of attention. In this 719 

Perspective we focus primarily on digital architectures that enable information processing via 720 

mechanical mechanisms and stimuli-responsive materials.721 
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