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Abstract

Mechanical mechanisms have been employed for information processing for millennia, with famous
examples ranging from the Antikythera mechanism of the Ancient Greeks to the analytical machines of
Babbage. More recently, electronic forms of computation and information processing have overtaken these
mechanical forms, due to superior miniaturization and integration. Yet recently, a number of unconventional
computing approaches have been introduced that blend ideas of information processing, materials science, and
robotics. This has raised the possibility of novel mechanical systems that augment traditional electronic
computing by interacting with and adapting to their environment in unprecedented ways. In this Perspective,
we discuss the use of mechanical mechanisms, and associated nonlinearities, as a means of processing
information with a view toward a new paradigm in which adaptable materials and structures can act as a
distributed information processing network, even enabling “information processing” to be viewed as a material
property alongside traditional material properties such as strength and stiffness. We focus on approaches to
abstract digital logic in mechanical systems, discuss how these systems differ from traditional electronic

computing, and highlight the challenges and opportunities that they present.
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I. INTRODUCTION: “MECHANICS AS INFORMATION”

History provides a number of fascinating examples of computation via clever mechanical
mechanisms, including the Antikythera mechanism of the Ancient Greeks [1], the analytical
machines of Charles Babbage [2], and the differential analyzer of Vannevar Bush [3]. For the
most part, these older mechanical forms of computation have long since been replaced by more
efficient electronic forms. Recently there has been an explosion of unconventional computing
approaches, blending ideas of information processing, chemistry, biology, materials science, and
robotics into novel information processing platforms. Examples include neuromorphic
computing [4], DNA computing [5], robotic materials [6], morphological computation [7-9],
optical computing [10, 11], microwave-based quantum gates [12, 13], and
pneumatic/microfluidic logic circuits [14—18]. There has also been a growing recognition that

some natural systems (such as the Venus flytrap [19-21]) can also be viewed as unconventional

computation platforms. These systems depart profoundly from the von Neumann architecture of
classical computing and digital electronic hardware (see “Conventional computer” mapped from
the Turing machine, a model for universal computation, down to the physical silicon substrate in
Fig. 1. Further explanation is provided in the Sidebar). Also, these unconventional computing
systems are capable of interacting with and adapting to their environment in unprecedented ways

(see Fig. 1b).

As a case study, we focus on emerging research on the use of mechanical mechanisms as
a means of processing information, a concept that has become plausible thanks to major advances
in additive manufacturing, materials science, and structural engineering. Unlike the gears and
linkages of ancient mechanical computers, these novel mechanical computing systems harness a
variety of subtle mechanisms to sense, interact and process information from their environment. In
this way, “information processing” itself can be viewed as a material property alongside traditional
material properties such as strength and stiffness. However, with the information processing

intrinsically part of the composition and geometry, new design rules and computing paradigms

3



74 beyond traditional von Neumann architectures will be required (Fig. 1a).
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78 FIG. 1. Three level hierarchy of a computational system: (a) Building a computer through the three levels:
79 (Top layer) “Computing model” (e.g., the Turing machine, combinatorial logic, and general purpose analog
80 computer (GPAC.), (Middle layer) “Engineered architecture” which represents an abstract platform where a
81 computing model is implemented (von Neumann architecture (see the left inset illustration) [22], logic circuit,
82 etc.), and (Bottom layer) “Physical substrate” which realizes a design in a physical system. (b) A mechanical
83 computing system, highlighting information processing as a material property, which can interact with
84 environments and perform “computation”, e.g., (i) a rover inspired by mechanical computers for extreme
85 environments [23] (Image Credit: NASA/JPL-Caltech), and (ii) soft robotic grippers with embedded sensors
86 which can sense pressure, temperature, etc. Reprinted with permission from Reference [24]. © 2018 Wiley.
87 (¢) A mechanical computing system can be realized by leveraging various mechanical building blocks (e.g.,
88 origami-inspired unit which can represent binary information (“0” or “1”’) depending on different deformation
89 modes, and its 2D network); reprinted with permission from Reference [25].
90
91 In this Perspective, we employ a three-layer framework for computation to outline the

92  process of information abstraction in computing systems to highlight innovations for mechanical
93  computing in each layer. Using combinatorial logic as an instructive computing model (Fig. 1a),
94  we first consider the abstraction of mechanical binary digits (bits) in the physical substrate layer (see
95  Fig. 1c for origami-based example), highlighting both static and dynamic representations in Sec. II.
96  Next, we consider how the above mechanisms may be combined or networked to achieve more
97  complex computation (Sec. III), and to potentially implement specific engineered architectures.
98  Then we consider how these systems interact (I/O) with the surrounding environment and/or other
99  subsystems (Sec. IV), and the unique advantages this presents over conventional computing

100  approaches. We conclude by summarizing the challenges and opportunities on the horizon and

101  opportunities for broader community engagement going forward (Sec. V).

4
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II. MECHANICAL BIT ABSTRACTIONS

To leverage materials for information processing, the physical material must be structured to
instantiate an abstract computational process. Developing these material-to-computation
abstractions are core issues to defining the meaning and opportunity space of physical computation
[26, 27]. As the complexity of the targeted abstract computation increases, so does the complexity
of the design required to instantiate it. In light of this, binary operations are the dominant
computational abstractions utilized in modern computing systems due to their relative simplicity,
robustness, and scalability. In electronic systems, transistors function as a binary digit (bit) (Fig.
la), systematically switching between the “on” and “off” state to represent, process, and store
information. It is noteworthy that novel unconventional computing systems operate on alternative
architectures that do not necessarily require digital representation [28]. In fact, a variety of
exciting new research areas such as morphological computing [7-9], wave-based mechanical
metamaterials [29-31], and neuromorphic systems [4] explicitly make use of analog computing

principles.

Following the goal of illustrating pervasive challenges, we limit the scope to mechanical
computing approaches that embody digital abstractions of information. One of the empowering
aspects of mechanical computing is the diverse opportunities to define digital abstractions of
information from the physical system. In this section, we discuss two different strategies for
representing digital states in mechanical systems: non-volatile systems, which undergo quasi-static
deformation between equilibrium states, thereby storing discrete state information without external
energy; and volatile systems, which are abstractions from dynamic systems and require external

energy to maintain the information state.
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FIG. 2. Non-volatile and volatile mechanical realizations/implementations of abstract bits. One of the
approaches to retain information without external power source is to utilize bistable behavior based on
geometrical nonlinearities, such as (a) a unit cell composed of clamped beams, which can transform between
undeformed (“0”) and deformed (“1”’) configurations (reprinted with permission from Reference [32]), and
(b) a bistable flexure mechanism. Reprinted with permission from Reference [33]. Origami can also be used
to design non-volatile mechanical memory, e.g. (¢) triangulated cylindrical origami-based structure (reprinted
with permission from Reference [25]) and (d) waterbomb origami. Reprinted with permission from Reference
[34]. Volatile logic can be encoded in beam dynamics, as demonstrated in (e) electromechanical beams
(reprinted with permission from Reference [35], © 2008 Springer Nature) and (f) microcantilevers with
stiffening behavior (reprinted with permission from Reference [36], © 2010 AIP Publishing). Other examples
of volatile mechanical devices include (g) a 1D array of spiral spring cells with a magnetic mass (reprinted
with permission from Reference [37]) and (h) granular chains (reprinted with permission from Reference
[38], © 2014 Springer Nature).

A. Non-volatile systems

Mechanical realizations of non-volatile, digital computing have predominantly assumed a
binary form through harnessing bistable configurations. Such bistability can be readily obtained by
introducing geometrical nonlinearity into a mechanical structure. Under certain loading and
constraints, even simple beams can be designed to support two stable configurations. As an
example of loading constraints that support this behavior, if planar tilted beams are confined
perpendicular to their loading direction (Fig. 2a-b), they may snap between two stable
configurations, which can be assigned a ‘0’ or ‘1’ state, respectively. By leveraging mechanical

snap-through between these two states, one can manipulate the binary information. When the
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deformation is limited to the elastic regime, this transition to bistability is governed by scale-
independent geometric parameters and boundary conditions rather than the material properties.
Hence, beam-based bistabilities have been exploited in a number of materials (silica, soft
materials, etc.) and form factors to realize mechanical bits [32, 33, 47, 48]. Similarly, bistability
can be realized in origami-based structures [25, 49—64], enabling the structure to possess two
distinct ‘0’ and ‘1’ states as above. For example, a mechanical bit has been defined in triangulated
cylindrical origami (TCO) structures by transitioning between two stable states through cross-
sectional rotation. (see Fig. 2c, [25]). Another origami example is the waterbomb fold pattern (see
Fig. 2d, [34]), which leverages bistability to “pop” between up (1) and down (0) equilibrium states
of the center vertex of the fold pattern. The multistable energy landscape of the origami structures,
and their ability to form modular assemblies, serves as a helpful intuition-building construct for

identifying and developing mechanical computing devices.

Binary representations are of central importance in electronic computation, and have
facilitated immense information densities through the miniaturization and computational scaling of
a single bit. While some mechanical bit implementations may be compatible with a
miniaturization approach, increasing the number of stable configurations [65—-67] (i.e., changing
the base of the computation) is likely a more tractable path to increasing information density. For
example, mechanical mechanisms that are tristable (e.g., rotating squares [67]) or quadstable (e.g.,
origami [53]) could be utilized as non-volatile computing devices with superior information

density to binary equivalents (see Supplementary Information for additional discussion).

B. Volatile systems

In the non-volatile examples of the previous section, digital abstraction is tied to quasi-
static transitions between equilibrium configurations of a multistable structure. However, digital
abstraction of information and manipulation of the bit state can also be achieved via the dynamic
response of a mechanical system, e.g., phase, frequency, amplitude and other metrics. One of the

well-studied examples is the clamped beam under harmonic excitation [35, 68—72] which behaves
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as a mechanical resonator. Figure 2e shows structural oscillations of a clamped-clamped beam
integrated with a piezoelectric actuator. The bit information is expressed by the two stable phases,
0 and 7 [35]. Another example based on beam vibration is a microcantilever with stiffening
behavior that arises due to geometric nonlinearities at large amplitudes [36]. This nonlinear
behavior results in distinct dynamic responses depending on whether there is a forward or
backward sweep in the input drive voltage (i.e., a hysteretic response as shown in the upper right
inset in Fig. 2f). Therefore, if the system is operated at a certain drive strength in this hysteretic
response regime and the input drive voltage is modulated, the dynamic response can be one of the
two distinct stable states, i.e., high-amplitude or low-amplitude, depending on whether a forward
or backward sweep in the input voltage is used.

The burgeoning field of mechanical metamaterials presents a large toolset of methods and
building blocks to control the flow of mechanical energy, guide mechanical waves, and tune the
frequency band structure [73—80]. Precise control of these dynamic phenomena, both through
advances in conceptual design and experimental validation, constitute a rich testbed for novel
mechanical computing abstractions. For example, Bilal et al. studied a pop-up structure which
exhibits tunable transmission depending on its structural configuration [37] (i.e., a pop-up state
which allows the propagation of input signals, or a flat state where elastic waves are prohibited,
see Fig. 2g). By constructing an array of the unit cells, they designed a mechanical transistor and
demonstrated various logic gate operations based on transmission dynamics. Similarly, granular
acoustic switches have been proposed [38], which digitize the state information by harnessing the
system’s nonlinearity to tune the frequency response (Fig. 2h). The use of multi-frequency
information, together with phase and amplitude control discussed above, could be exploited to
abstract and manipulate multiple mechanical bits in parallel. In addition to the use of elastic
waves, acoustic logic operations based on non-reciprocal propagation of sound pressure have also
been proposed [81, 82]. The above examples highlight the diverse digital abstractions possible in
dynamic mechanical systems, and offer an alternative view of mechanical information processing.

Bit retention in volatile systems requires sustained energy input, typically through a
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continuous harmonic excitation or other driving force. The volatility provides flexible bit
manipulation, such as driving multi-bit logic operations as discussed above, and flexible bit
abstraction, as the bit state can be (re-)assigned for different driving frequencies, amplitudes, etc.
In contrast, the bistable mechanisms of non-volatile systems retain bit information without
additional energy input, but require additional mechanisms to reconfigure the system (e.g., control
of loading or constraint conditions in a beam-based system). New metrics are needed to map the
trade-off between computational versatility and mechanical energy consumption in mechanical
computing devices. Hybrid systems present an opportunity to harness the strengths of both, by
combining the programming flexibility and operational sensitivity of volatile systems with the
stable memory storage of non-volatile systems. While simple hybrid approaches could leverage
non-volatile subsystems as memory and volatile subsystems as processors (analogous to the
classic von Neumann architecture of Fig. 1a), it remains an open question how these subsystems
could be combined in more creative ways to attain novel functionality. The discovery of new
mechanical logic networking principles and architectures that implement hybrid bit information is

an open challenge.

I11. MECHANICAL COMPUTINGARCHITECTURES

In order to perform more complex computing operations, the mechanical computing units
discussed above require assembly into larger, integrated networks. While replicating electronic
computers is not the underlying goal of research in alternative computing approaches such as
mechanical computing, the principles of digital logic design from electronic computing systems
provide a robust foundation of theory and circuit simplification schemes to guide the
development of mechanical logic analogs. AND, OR, and NOT gates can be combined to achieve
universal logic; NAND and NOR are each able to achieve universal logic merely by
combinations of themselves (functionally complete). The design of universal gates in mechanical

logic systems is an important benchmark for demonstrating computational utility and for revealing
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the physical constraints of networking these building blocks in one, two, and three dimensions.

The simplest examples of mechanical computing systems are 1D chains of mechanical bits,
such as linkage systems [72, 83—86] or granular chains [37, 38]. For example, if two units
composed of spiral springs with lumped masses (see Fig. 2g for the single element) are connected
in series, this 1D chain structure can exhibit an AND gate behavior, i.e., no output signal is
obtained unless input signals (“1”") are applied to both units (see the upper inset in Fig. 3a) [37].
On the other hand, if the two units are connected in parallel, the system can serve as an OR gate
(the lower inset in Fig. 3a). In addition, NOR/XOR/NAND/NOT gate behaviors can be achieved
by combining multiple units. The above examples are volatile, but 1D non-volatile logic systems
have also been constructed, including functionally-complete logic gates (a NAND gate example in
[33]). In these 1D systems, the output of one unit is connected to the input of the next unit.
Therefore, input information is typically processed unidirectionally from one end of the chain to
the other.

The limitation of linear information paths in 1D systems motivates the development of 2D
and 3D systems, where signal branching and interactions beyond nearest neighbors are possible.
Several 2D systems have been demonstrated [25, 34, 46, 87, 88]. The blue box in Fig. 3
illustrates examples of 2D planar systems comprising constrained beams [32] (Fig. 3b) or
waterbomb origami [34] (Fig. 3c). For example, modules composed of constrained beams (see Fig.
2a) can be arranged as a grid-like planar system (Fig. 3b), which allows the implementation of
multiple logic operations. Parallel connections of two modules could coordinate to pass/block a
signal or emulate an AND gate by propagating the snap-through behavior [32]. Similarly,
waterbomb origami can be connected side by side to form a system of multiple bits that perform
simple logic operations, depending on the configurations of the unit cells [34]. Unlike 1D
systems, the mechanical computing units can interact with multiple nearest neighbors along both
dimensions, allowing information to propagate across the 2D plane, instead of only along one
dimension. This feature can be exploited to control multiple bits in parallel, and could enable new

functionality or mechanical computing architectures. Extending to 2D and 3D not only increases
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the degrees of freedom (DOFs) of mechanical systems but also allows new logic state assignments
arising from the coupling of DOFs. For example, mechanical substrates that are effectively 2D in
nature, such as lattice or origami structures, can take on complex and multistable 3D
conformations due to the coupling of twisting and bending motions, as well as in-plane
deformations. The mapping between the sequence and structure of cell deformation and global,
stable configurations can also emulate logic, as recently demonstrated in an elastomeric sheet with
embedded bistable domes [89]. Therefore, 2D and 3D systems can offer not only a simple
extension or tiling of 1D logic elements but also a platform to assign new kinematic mechanisms
and 3D deformations with a logic state.

3D mechanical computing systems have not been studied extensively. However, a number
of previously reported 1D and 2D architectures could naturally be extended to 3D [45], and could
be exploited to control the mechanical flow of information in unprecedented ways. Recent
advances in 3D printing could allow fabrication of more complex 3D mechanical systems that
have been recently conceptualized. For example, by utilizing a combinatorial approach, a
metacube structure composed of cubic unit cells has been proposed [90]. This structure exhibits a
programmed pattern on its side surface under axial compression (Fig. 3d). Not only linear motions,
but also coupling between axial and rotational deformations, have been demonstrated [91] (Fig.
3e), allowing vertical deformation to induce transverse/lateral motions in 3D space. In addition to
these static responses, there are also opportunities to process information using the dynamic
properties of a mechanical system, such as topological phases or phase transitions which were
originally studied in condensed matter physics. These emerging, so-called “topological mechanical
metamaterials” can be designed to provide robust control of wave dynamics in 2D planar networks
and 3D volumetric systems [37, 92-98], (e.g., 3D systems with elastic polarization [99] (Fig. 31)).
Due to localization of waves (e.g., topological edge mode), such systems could enable various
operations relevant to information processing, e.g., mechanical diodes, which can be tailored to
route mechanical signals in a specific direction, to switch/reroute signals, or to isolate a complex

routing pathway.
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The development of mechanical computing architectures involves several challenges, which
will require both clear understanding of the fundamental abstraction layer discussed above (Sec.
IT) and new design rules for circuit and component-level integration. For example, the kinematics
of the bit abstraction place constraints on the gate assembly, as input and outputs may be
mechanically incompatible for certain gate combinations. Due to these constraints, circuit designs
from electronic digital logic may not translate to “bottom-up” gate assembly in a mechanical logic
system. One approach to this challenge inspired by the electronics community is to develop
design tools for these constraints. For example, instead of a single AND gate design, perhaps the
design of an AND gate structure is optimized based on the gate types connected to it. Similarly, a
“top-down” design approach may be more tractable for certain mechanical logic implementations,
where higher level functionality (e.g., a full or half adder) could be designed directly rather than
assembling the individual logic gates that are known to collectively produce the equivalent
functionality. Topology optimization, pseudo-rigid body models, and graph-based techniques for
mechanism design [100—103] are promising approaches to these more complex logic structures,
with the potential benefit of reducing gate inter-connections, incompatibilities, and overall energy
requirements of the mechanical computing devices.

Mechanical logic networks are also constrained by the number of accessible interactions
between gates, limiting the number of inputs that an output signal can drive (also known as the
problem of “fan-out” in electronic circuits). Damping and other losses may also limit the distance
of force propagation, which could constrain the overall size of the mechanical computing network.
These limitations also afford approaches where the order or sequence of mechanical loading may
enable multiple mechanical logic networks to co-exist within the same structure, effectively
increasing the computational utility for the same size of network. For example, Faber et al. [89]
demonstrated that an elastomeric sheet populated with bistable domes exhibits distinct 3D
conformations based on the order of dome inversion, not just the specific combination of inverted
domes. Sequence-dependent effects of this nature could lead to complex and branched logic

networks, which may redefine the current understanding of these mechanical networking
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constraints. Mechanical computing systems also have the advantage of a direct interface with the
environment, which can include a large set of physics and timescales of interaction. Leveraging
this additional design dimension of computing physics has the potential to relax the fan-out
constraint (using long range interaction - magnetics) and recoup energy losses (harvesting
environmental sources - thermal cycles), all while simultaneously integrating these cues into the
computing task of the device. In the following section, we explore how new computing paradigms,
enabled by integration of stimuli-responsive materials and additional physics into the logic flow,
present a possible strategy for seamless embodiment of computation and function within mechanical

systems.
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FIG. 3. Networking mechanical computing units for digital logic. By using single-bit mechanical memory
units as a building block, we can construct 1D chains (denoted by a red box) and 2D planar structures (blue
box) to create classic digital logic gates and networks of these. (a) 1D array of spiral spring cells with a
magnetic mass (reprinted with permission from Reference [37]). 2D planar configurations have been
designed using (b) modules composed of constrained beam elements (reprinted with permission from
Reference [32]), and (c) tessellation of waterbomb origami unit cells (reprinted with permission from
Reference [34]). Though 3D networks for mechanical information processing have not yet been widely
explored, the deformation mechanisms and unconventional properties of 3D mechanical metamaterials
suggest strategies for their implementation, e.g., (d) a combinatorial design for programmed shape change
(reprinted with permission from Reference [90], © 2016 Springer Nature), (e) 3D chiral metamaterials with
compression-twist coupling behavior (reproduced with permission from Reference [91], © 2017 American
Association for the Advancement of Science), and (f) topological materials with elastic polarization
(reproduced with permission from Reference [99], © 2017 Wiley).

Iv. ENVIRONMENTAL INTERACTIONS ANDI/O

In Sections I-11I, we have discussed an operational framework in which abstract
computational models can be physically realized in networked mechanical systems. We discussed
how mechanical mechanisms enabled by geometric nonlinearity could produce mechanical
systems with switchable, discrete information states. However, to this point we have not discussed
what, beyond mechanical loading, might induce the mechanical systems to change state. In this
section, we consider how these unconventional computing systems might interface with their
environment and with other subsystems. What are the “inputs and “outputs” relevant to
mechanical or material computing systems with coupled physics? How can mechanical computing
augment digital electronic systems to improve performance of engineered systems? What new

computing architectures are needed to fully integrate multiple, diverse environmental inputs? To
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navigate these questions, we evaluate environmental interactions in the physical substrate and
architecture levels, highlighting future opportunities for mechanical computing in the process.
Figure 4a provides examples of relevant interactions (either with the external environment or with
other subsystems). Note that this interaction can be triggered via stimuli-responsive
materials/structures within a layer. In mechanical systems such active materials serve as an analog
to conventional sensors/actuators. In this framework, a specific computation (e.g., logic gate
operations) can be performed by connecting Physical substrate and Engineered architecture layers.

In conventional digital computers, silicon serves as a substrate for electronic components but
is not itself designed to change or respond to the environment. Instead, environmental inputs are
obtained via modular sensors, distinct from the computing device, that transduce physical
quantities such as temperature or light intensity into an electronic signal that the computer can
subsequently operate on. In contrast, mechanical computing systems can be constructed from a
large palette of adaptive materials, which can directly respond (bend, twist, etc.) to environmental
inputs corresponding to the active materials used in the system. Examples include electronic
signals (e.g., using dielectric elastomer actuators [104, 105] or liquid metal [106]), mechanical
stimuli [32, 107], chemical stimuli [21, 108], acoustic pressure [87], and humidity gradients [34].
In addition, mechanical deformation can be triggered in shape memory polymers and liquid crystal
elastomers in response to temperature changes [109, 110] and/or light [111]; polymers can be
designed to mechanically respond to pH [112] and magnetic fields [113—115]. Moreover, multiple
input sources can be combined for operation (e.g., mechanical force and magnetic field to
manipulate bit information [107]; see panel i in Fig. 4b). This could enable computation in new
form factors and operating environments [116]. Multi-responsive systems can also be designed to
account for stimuli order, allowing time to serve as another design parameter to logically couple or
decouple stimuli [21].

In distinct contrast with I/O in traditional digital electronics, the changes that occur to the
mechanical computing system due to environmental inputs are not limited solely to the physical

substrate layer—they can also manipulate the engineered architecture layer. As a simple example,
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the application of external force can be used to morph a mechanical logic gate from an AND gate
to an OR gate, and vice versa (panel ii in Fig. 4b) [48]. Evolving the computing architecture in
response to environmental input represents a novel tool for reprogramming mechanical computing
platforms, with the potential of intra- and inter-switching within and between architecture classes.
Collectively, these examples highlight the novelty of mechanical computing concepts, not only in
granting access to new operational environments, but more importantly, expanding the definition

and methods of how information is abstracted and processed.

Understanding materials in terms of their information processing capabilities could impact
every aspect of automation systems that interact with their environment. In particular, robotic
systems can be expected to be equipped with classical centralized computing when physically
feasible; yet, for a variety of scenarios, this may not be plausible, nor optimal. ~ For example, it
is typically not possible for micron-scale robots [117] to rely entirely on traditional electronic
computing. Even with classical computing available, robots will rely on physical properties
to perform material pre-processing to reduce the centralized computational load. As an example,
Zhao et al. [118] use a soft robotic hand to assess fruit ripeness through a temporal-spatial
integration of the mechanical deformation during contact, effectively augmenting the computing
task of the robot through a form of mechanical filtering (see the top insets in panel iii of Fig. 4b).
This filtering concept can be expanded to other features, such as texture, temperature, and shape,
as demonstrated by Truby et al. in another soft robotic gripper example (see the middle insets in
panel iii of Fig. 4b) [24]. Together, these examples highlight the opportunity to consolidate
sensing and computing into the structure and physics of the device, performing ‘materials-enabled
computation’ in the relevant physics and timescales of the target application. This congruence
between a computing task, physics modeling/computation, and physical task execution motivates
the augmentation of conventional computing with unconventional computing substrates, to

improve both energy consumption and information collection (see further discussion in Sec. V).
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FIG. 4. Environmental Interactions: (a) Conceptual schematic of the advantages and opportunities of
mechanical computing to directly couple with the physical environment, followed by representative examples in
subpanel (b). Coupled Computing Physics: Opportunity to combine physics and sensory input in the
abstraction layer of the physical substrate - (i) Multiple inputs (force and magnetic field) to manipulate the
binary state (reprinted with permission from Reference [107], ©2019 American Chemical Society). Evolving
Architecture: environmental stimuli can reprogram the computing architecture - (ii) example of a mechanical
logic gate switching between AND and OR behavior in response to external mechanical loading (reprinted with
permission from Reference [48]). Material Pre-Processing: leverage mechanics to synthesize environmental
input forintegration with conventional architecture - (iii) Examples of soft robotic grippers with embedded
sensory functions, e.g., (fop) detecting target object shapes (reprinted with permission from Reference [118],
©2016 American Association for the Advancement of Science), and (middle) processing different textures and
temperatures (reprinted with permission from Reference [24], ©2018 Wiley). Electromechanics: (iv) image of
electromechanical SiC switch highlighting coupled mechanics and electrostatics for high temperature computing
applications (reprinted with permission from Reference [119], ©2010 American Association for the
Advancement of Science). New Architectures: abstractions and mappings to higher computing layers are
needed to precisely define the computational contribution of new substrates and physics - (v) Illustration of a
computer vision task to classify the shape of a partially occluded cube with, and without, the aid of mechanical
motion. Motion to avoid a visual occlusion reduces the conventional computing cost of a machine learning
vision classifier for this task by enabling a camera to see all of an object. However, it is unclear presently what
architecture and computing model should be employed for assessing the tradeoffs between conventional
computation and mechanical motion.
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V. CHALLENGES AND OPPORTUNITIES

Although many recent publications have shown the feasibility and potential for storing and
processing binary information as a material property, there remain both challenges and associated
opportunities for advancing the field of mechanical computing. In this Section, we explore some
current and future research directions related to the realization of unconventional computing in
mechanical systems, leveraging the three layer model of computation (Fig. 1) to guide the

discussion.
A. Beyond binary abstraction

Major advances in additive manufacturing, materials science, and mechanical metamaterials
have led to new ways of thinking about materials. As presented here, the research community has
begun to think about ways in which information processing itself can be thought of as a material
property. Abstracting information processing is a ubiquitous and underutilized opportunity in
mechanical systems. The mechanical mechanisms described in Section II underscore this point and
serve as an instructive guide to identify new ways to embed and abstract information. Extending
the number of states, such as tristable mechanisms in which discrete states could take values of 0,
1, 2, (or -1,0,1) is one simple example of a promising next step. Exploiting the frequency response
spectrum affords another. Far more complex multistable or volatile mechanisms are also possible,
allowing representation of more than just binary information. These non-traditional discrete
representations present opportunities for the mechanics and materials communities to interface

with computational theorists to explore new abstractions and mappings between computing layers.
B. “Compilers”

In conventional computing, the choice of architecture and substrate is biased by the inherent
(and clearly justifiable) demand for a universal computing platform, which has focused investment
(and achieved remarkable success) into a handful of core technologies. However, is a universal
computing machine optimal for every application? The mechanical computing examples
highlighted above demonstrate that even simple logic calculations could enhance the operation of

a device without serving as a general purpose computer. To tap into this computing potential,
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design tools are needed to move both up and down between computing layers in Fig. 4a, not only
to fit new materials and physics into established computing models, but also to identify new
computing abstractions that are most compatible with the physical substrate, whether localized,
dispersed, or some hierarchical combination. This relates to conventional compilers, which
translate a higher level program language into a lower level language more closely tied to the
operation of the physical substrate (i.e., silicon-based digital electronics for traditional computing
systems). This is a key step in telling a “universal computer” how it should specifically operate. In
contrast, an analogous “compiler” for a mechanical computing system would need to play the role
of algorithmically generating an appropriate computational substrate-layer (Fig. 1 and Fig. 4): i.e.,
it must generate a suitable design of a 3D mechanical system, reconciling its mechanical
kinematics and energy constraints, and ensuring the system properly embodies sensing,
computing, and actuating functions in its arrangement of potentially multiple active materials. An
initial example of a mechanical logic compiler is included in lon et al [32], which presents a
design editor to minimize the size of the mechanical logic network to achieve a target logic
operation. Expanding the capability of the compiler to integrate diverse environmental I/O,
computing models, spatially dispersed nodes, hybrid integration with conventional electronics, and
fabrication constraints presents a challenge, and potential bottleneck, for the advancement of
mechanical computing concepts. Most unconventional computing systems, including mechanical
logic, are programmed at a very low level, since substrate-specific design and abstraction rules
have not had time to mature. In light of this, codifying the “compiler” design rules for these
unconventional substrates is an open challenge for the materials, design, and computing

communities.

C. Exploring new unconventional computing

Opportunities to innovate exist at all three layers of the computing framework (Fig. 1). In
the Physical Substrate, novel abstractions are beginning to be identified through combinations of
materials, physics, geometry, and timing to access new operation regimes. For example, by
combining the physics of electrostatics with contact mechanics, sub-micron electromechanical
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switches made from silicon carbide (SiC) enable digital logic computations at extreme
temperatures (>500 °C) [119], typically outside the operating temperature of conventional
electronics (panel iv in Fig. 4b). The Engineered Architecture layer can also interact directly with
the environment (panel ii in Fig. 4b), presenting an opportunity to embed self-reconfigurable
computing architectures in mechanical systems. The range of computational tasks this will
enable has yet to be investigated. For instance, could a periodic, temporal cue from the
environment trigger the material computing system to convert from a digital to an analog
interpretation or to produce some form of digital-analog hybrid? Lastly, innovations in the
Computational Model layer will have the dual benefits of establishing new computing constructs
for guiding the discovery of unconventional computing materials, and also stimulating new ways
of characterizing and thinking about materials. For example, multistable beam networks are
physically continuous, with temporally- and spatially-varying internal stress and strain states under
deformation. However, it is the discrete configurations of the multistabilities, not the continuous
state variables, that are leveraged to emulate logic operations in the examples of this Perspective.
The focus on the discrete properties of the beam array motivates the application of discrete
mathematics techniques, such as graph theory, not only to scan for computing potential, but to
provide a new lens to characterize and benchmark the behavior of the underlying material

structure.

D. Maetrics to assess mechanical computers

New computing and material performance metrics are needed to classify and benchmark
the collective innovations across these computing layers (see, e.g., Ref. [120] for discussion on
quantifying unconventional computing ‘resources’). Conventional metrics are largely focused on
processing speed, bit density, and I/O package miniaturization. Mechanical computing performs
poorly against these benchmarks. While miniaturization has been pursued for mechanical
computing using micro-/nano-electromechanical systems (MEMS/NEMS) [121-124] and could
provide benefits (such as robustness against harsh environments or high temperatures [119]), the
relevant fabrication approaches for MEMS/NEMS come with their own set of constraints that
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would limit the complexity of a mechanical logic network and the types of materials (and hence
sensors) that could be integrated. Instead, alternative metrics are needed to better capture the
unique strengths of mechanical and other unconventional computing concepts, and to assess the
impact of hybridization with conventional electronics. For example, the intrinsic integration of the
computation within the physical material or device offers distinct efficiencies and insertion
opportunities that would be challenging for conventional approaches. Metrics reflecting this
advantage could include the number of data type conversions between input and output
computations, spatial proximity of the computation to the input signal, and relevance of the
computing physics and timescales to the computing application. Does a dynamic mechanical load
operating on the timescale of Hz require state assessment on the order of MHz or greater? Is it
more efficient to continually query for the current configuration or to have the material/structure
directly detect, assess, and process the mechanical event? Efficiency and integration benefits of
this nature lack the precision and concreteness of the benchmarks currently employed for
conventional computing, but are necessary for placing mechanical computing concepts in an

appropriate context.

Developing methods to establish the computational equivalence of these alternative metrics
in augmenting conventional computing systems is also an important next step. For instance, machine
vision—and vision-based object classification—rely heavily on sophisticated algorithms to
robustly handle occlusion, distortion, and other environmentally-driven image degradation. These
algorithms come at high computational and, implicitly, energetic expense. However, vision
systems that can move are able to meet the same object identification requirements through
mechanical motion by looking around an occlusion rather than using classifiers intended for
limited data. In addition, mechanical motion augments the view of the object relative to
previously collected images, which can also improve the efficiency of classification [125]. Panel
v in Fig. 4b shows an illustration of such a situation, where a camera must either identify an
object—the cube—based on a partial image or must move to avoid the visual occlusion created by

the cylinder. That machine learning uses mechanical motion to improve data collection and
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learning efficiency [126] highlights the need for new architectures and computational models to
precisely define the interactions between new material substrate mechanical properties and

computational requirements.

Integration, efficiency, and material compatibility metrics will also provide clear evaluation
criteria for the merits of using stimuli-responsive materials to directly harness environmental
interactions in the computational abstraction. Bottlenecks in information processing often occur at
the points of data conversion between physical type (mapping sensor physics to computation
physics) or computational representation (analog to digital). Mechanical computing may mitigate
this bottleneck by merging the sensing and computing physics into a single domain. However,
timescale incompatibilities are likely to arise as additional physical stimuli are integrated into the
computation, due to the distinct timescales associated with each stimuli-responsive phenomenon.
For example, a sudden change in temperature or voltage may equilibrate throughout the system
more rapidly than a change in the chemical environment due to diffusion (which also introduces
time dependence based on feature size). This could be harnessed to produce exciting new effects,
such as spatially and temporally distributed reprogramming in response to local environmental
cues, but this will also require careful design at the architecture level to retain the meaning and
utility of the computation. Understanding the advantages of sensory consolidation at the physical
substrate layer will be key to deciding whether to use conventional, unconventional, or hybrid

computing approaches.
E. Conclusion

Treating information processing as a material property will introduce multidisciplinary
challenges that will require both new theoretical approaches and practical design tools as discussed
above; solutions are therefore likely to be found at the interfaces between materials science,
information theory, computer science, additive manufacturing, and robotics. The converging path
ahead for these research communities is an exciting one. Our intent is that the framework
highlighted in this Perspective, along with the specific mechanical computing examples reviewed,

will serve as a catalyst for discovery of new material computing paradigms and will invite the
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community to view information processing as a material/structure behavior.

ACKNOWLEDGMENTS

HY and JRR gratefully acknowledge support from the Army Research Office award number
WO11NF-1710147, Air Force Office of Scientific Research award number FA9550-19-1-0285,
and DARPA Young Faculty Award W911NF2010278. PB, AG, and RV gratefully acknowledge
support from the Materials and Manufacturing Directorate and the Air Force Office of Scientific
Research of the Air Force Research Laboratory. TM gratefully acknowledges support provided by
NSF 1837515 and ARO MURI Award W911NF-19-1-0233. SS acknowledges support from the

Splnspired project, EPSRC grant number EP/R032823/1.

AUTHOR INFORMATION

These authors contributed equally: H. Yasuda, P. R. Buskohl.

Contributions

All authors contributed to the conceptual development and to the writing of the manuscript.
Corresponding author

Correspondence to J. R. Raney.

Competing interests

The authors declare no competing interests.

23



584
585

586
587
588
589
590
591
592
593
594
595
596
597
598

599
600
601
602
603
604
605
606
607
608
609
610
611
612

613
614
615
616
617
618
619
620
621
622
623
624
625

626
627
628
629
630
631
632
633
634
635
636
637

Figure legends

FIG. 1. Three level hierarchy of a computational system: (a) Building a computer through the three levels:
(Top layer) “Computing model” (e.g., the Turing machine, combinatorial logic, and general purpose analog
computer (GPAC.), (Middle layer) “Engineered architecture” which represents an abstract platform where a
computing model is implemented (von Neumann architecture (see the left inset illustration) [22], logic circuit,
etc.), and (Bottom layer) “Physical substrate” which realizes a design in a physical system. (b) A mechanical
computing system, highlighting information processing as a material property, which can interact with
environments and perform “computation”, e.g., (i) a rover inspired by mechanical computers for extreme
environments [23] (Image Credit: NASA/JPL-Caltech), and (ii) soft robotic grippers with embedded sensors
which can sense pressure, temperature, etc. Reprinted with permission from Reference [24]. © 2018 Wiley.
(¢) A mechanical computing system can be realized by leveraging various mechanical building blocks (e.g.,
origami-inspired unit which can represent binary information (“0” or “1””) depending on different deformation
modes, and its 2D network); reprinted with permission from Reference [25].

FIG. 2. Non-volatile and volatile mechanical realizations/implementations of abstract bits. One of the
approaches to retain information without external power source is to utilize bistable behavior based on
geometrical nonlinearities, such as (a) a unit cell composed of clamped beams, which can transform between
undeformed (“0”) and deformed (“1”’) configurations (reprinted with permission from Reference [32]), and
(b) a bistable flexure mechanism. Reprinted with permission from Reference [33]. Origami can also be used
to design non-volatile mechanical memory, e.g. (¢) triangulated cylindrical origami-based structure (reprinted
with permission from Reference [25]) and (d) waterbomb origami. Reprinted with permission from Reference
[34]. Volatile logic can be encoded in beam dynamics, as demonstrated in (e) electromechanical beams
(reprinted with permission from Reference [35], © 2008 Springer Nature) and (f) microcantilevers with
stiffening behavior (reprinted with permission from Reference [36], © 2010 AIP Publishing). Other examples
of volatile mechanical devices include (g) a 1D array of spiral spring cells with a magnetic mass (reprinted
with permission from Reference [37]) and (h) granular chains (reprinted with pemmission fiom Reference [38], © 2014
Springer Nature).

FIG. 3. Networking mechanical computing units for digital logic. By using single-bit mechanical memory
units as a building block, we can construct 1D chains (denoted by a red box) and 2D planar structures (blue
box) to create classic digital logic gates and networks of these. (a) 1D array of spiral spring cells with a
magnetic mass (reprinted with permission from Reference [37]). 2D planar configurations have been
designed using (b) modules composed of constrained beam elements (reprinted with permission from
Reference [32]), and (c¢) tessellation of waterbomb origami unit cells (reprinted with permission from
Reference [34]). Though 3D networks for mechanical information processing have not yet been widely
explored, the deformation mechanisms and unconventional properties of 3D mechanical metamaterials
suggest strategies for their implementation, e.g., (d) a combinatorial design for programmed shape change
(reprinted with permission from Reference [90], © 2016 Springer Nature), (e) 3D chiral metamaterials with
compression-twist coupling behavior (reproduced with permission from Reference [91], © 2017 American
Association for the Advancement of Science), and (f) topological materials with elastic polarization
(reproduced with permission from Reference [99], © 2017 Wiley).

FIG. 4. Environmental Interactions: (a) Conceptual schematic of the advantages and opportunities of
mechanical computing to directly couple with the physical environment, followed by representative
examples in subpanel (b). Coupled Computing Physics: Opportunity to combine physics and sensory input
in the abstraction layer of the physical substrate - (i) Multiple inputs (force and magnetic field) to
manipulate the binary state (reprinted with permission from Reference [107], ©2019 American Chemical
Society). Evolving Architecture: environmental stimuli can reprogram the computing architecture - (ii)
example of a mechanical logic gate switching between AND and OR behavior in response to external
mechanical loading (reprinted with permission from Reference [48]). Material Pre-Processing: leverage
mechanics to synthesize environmental input forintegration with conventional architecture - (iii) Examples
of soft robotic grippers with embedded sensory functions, e.g., (fop) detecting target object shapes (reprinted
with permission from Reference [118], ©2016 American Association for the Advancement of Science), and
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638 (middle) processing different textures and temperatures (reprinted with permission from Reference [24],

639 ©2018 Wiley). Electromechanics: (iv) image of electromechanical SiC switch highlighting coupled

640 mechanics and electrostatics for high temperature computing applications (reprinted with permission from
641 Reference [119], ©2010 American Association for the Advancement of Science). New Architectures:

642 abstractions and mappings to higher computing layers are needed to precisely define the computational

643 contribution of new substrates and physics - (v) Illustration of a computer vision task to classify the shape of
644 a partially occluded cube with, and without, the aid of mechanical motion. Motion to avoid a visual

645 occlusion reduces the conventional computing cost of a machine learning vision classifier for this task by
646 enabling a camera to see all of an object. However, it is unclear presently what architecture and computing
647 model should be employed for assessing the tradeoffs between conventional computation and mechanical
648 motion.

649

650 FIG. S1. (a) The number (/) of n-ary digits required to express a positive integer (k) can be calculated as
651 B=log, k. The grey horizontal line indicates 232, which corresponds to the maximum value of a 4-byte
652 integer representation. (b) To express a large integer number efficiently, we assume that the efficiency of
653 information storage is proportional to 7 and define the efficiency (f) as f = an+log, k where a is a weight
654 coefficient. We consider the case of k=10, and plot the result for @ = 1, 5, and 10. The black triangle
655 markers represent the local minimum state, which means the most efficient storage, i.e., smaller n and
656 smaller number of digits. (¢) We calculate and plot various positive integer numbers as a function of the
657 efficient n-ary storage. Based on this calculation, to express smaller numbers (e.g., 10%), n = 3, 4 can be
658 advantageous, compare to binary or decimal digits. Please note that this calculation is a rough estimation
659 without considering fabrication challenges, operation speed, or robustness. Example multistable mechanical
660 structures include (d) ternary memory based on rotating squares (reprinted with permission from Reference
661 [67], © 2020 American Physical Society) and (e) quaternary memory based on origami (reproduced with
662 permission from Reference [53], © 2015 American Physical Society). See also Ref. [66] for a discussion
663 of why base n = 3 (i.e., ternary digit) can be optimal for storage efficiency.
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BOX / SIDEBAR: “Information Processing”

When thinking about building a computational system, a ‘computer’, it is helpful to describe

three levels: the model of computation, the architecture, and the physical substrate.

The model of computation.

The model of computation is an abstract, usually mathematical, model of how the
computational process unfolds. There are many models of computation. Classically, there is a
progression of models of increasing computational power: combinational logic, finite state
machines, pushdown automata with an unbounded memory stack, and Turing Machines with an
unbounded memory tape. Other classical models, such as lambda calculus, are equivalent in
power to the Turing Machine model. These models are discrete state space (symbols) and discrete
time. Other discrete space/discrete time models, such as Cellular Automata, have the same
theoretical computational power as Turing Machines, but may map to an architecture more suited to
different implementations and problems. Quantum computational models have greater efficiency,
but not greater computational power, than Turing Machines (they can solve some problems faster,

but they cannot solve non-Turing computable problems).

There are also continuous space/discrete time computational models, such as Coupled Map
Lattices, and some Neural Network models, typically based on underlying difference equations.
There are continuous space/continuous time models, such as some Spiking Neural Network
models, reaction-diffusion models, Shannon’s General Purpose Analog Computer (GPAC),
Rubel’s general purpose extended analogue computer, and continuous time quantum

computational models, typically based on underlying differential equations.
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The architecture.

An architecture is an abstract design for how a model of computation may be realized
(implemented) in hardware. It focuses on a set of basic components, and how they are connected.
For example, the combinational logic model maps naturally to an architecture comprising a
universal set of logic gates connected into a circuit. The classical von Neumann architecture,
describing how a CPU controls and performs computational operations, with random-access
memory containing a stored program and data, is not itself a natural mapping of the Turing
Machine, with its sequential memory access, but has a more natural mapping to an efficient
hardware implementation. Other architectures, such as those underlying GPUs and FPGAs, are
alternate designs for classical computing. An architecture need not be realized directly in
hardware; it may be a form of ‘virtual machine’ implemented in software in another architecture.
For example, cellular automata and neural networks are typically implemented in classical

architectures.

The physical substrate.

The physical substrate (hardware) realizes an architecture and its model of computation: it
forms the physical computer. The standard substrate for realizing the von Neumann architecture is
digital electronics. (Technically, since the von Neumann architecture, both in principle and its
realizations in practice, does not have unbounded memory, it has the computational power of a
finite state machine, not a Turing Machine. This tension between theoretical computational power

and finitary physical limitations tends to be glossed over in practice.)

There are many other substrates supporting a range of architectures, including non-linear
materials, analogue electronics, magnetic materials, optics, chemicals, biochemicals, biological
organisms, and mechanical devices. Indeed, the earliest engineered computers were mechanical
clockwork systems, including the Antikythera device, Babbage’s Difference Engine, and the
Differential Analyzer. In recent decades all of the above approaches have been referred to as
“unconventional computing” due to the enormous success of conventional silicon-based digital
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electronics. Yet thanks to numerous advances in manufacturing, materials, and design,
unconventional computing has recently begun to receive a great deal of attention. In this
Perspective we focus primarily on digital architectures that enable information processing via

mechanical mechanisms and stimuli-responsive materials.
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