
VELVET: a noVel Ensemble Learning approach to

automatically locate VulnErable sTatements

Yangruibo Ding∗, Sahil Suneja†, Yunhui Zheng†, Jim Laredo†, Alessandro Morari†, Gail Kaiser∗, Baishakhi Ray∗

∗Columbia University, †IBM Research

Abstract—Automatically locating vulnerable statements in
source code is crucial to assure software security and alleviate
developers’ debugging efforts. This becomes even more important
in today’s software ecosystem, where vulnerable code can flow
easily and unwittingly within and across software repositories like
GitHub. Across such millions of lines of code, traditional static
and dynamic approaches struggle to scale. Although existing
machine-learning-based approaches look promising in such a
setting, most work detects vulnerable code at a higher granularity
– at the method or file level. Thus, developers still need to inspect
a significant amount of code to locate the vulnerable statement(s)
that need to be fixed.

This paper presents VELVET, a novel ensemble learning
approach to locate vulnerable statements. Our model combines
graph-based and sequence-based neural networks to successfully
capture the local and global context of a program graph and
effectively understand code semantics and vulnerable patterns.
To study VELVET’s effectiveness, we use an off-the-shelf synthetic
dataset and a recently published real-world dataset. In the static
analysis setting, where vulnerable functions are not detected in
advance, VELVET achieves 4.5× better performance than the
baseline static analyzers on the real-world data. For the isolated
vulnerability localization task, where we assume the vulnerability
of a function is known while the specific vulnerable statement
is unknown, we compare VELVET with several neural networks
that also attend to local and global context of code. VELVET

achieves 99.6% and 43.6% top-1 accuracy over synthetic data and
real-world data, respectively, outperforming the baseline deep
learning models by 5.3-29.0%.

Index Terms—Security Bugs, Vulnerability Localization, En-
semble Learning, Transformer Model, Graph Neural Network

I. INTRODUCTION

Rapid detection and elimination of vulnerabilities is crucial

to protect production software from malicious attacks. Un-

fortunately, the shortcomings of traditional program analysis

and software testing techniques become apparent at the scale

of the software nowadays [1]–[3]. For example, dynamic

analysis tools are known to suffer from high false negatives,

as they cannot reach many code regions, particularly given

the huge size of modern applications and infrastructure. Static

analysis tools scale better but require configuration with known

vulnerability patterns (i.e., rules), typically running behind the

attackers, and tend to report high false positives.

Recent progress in AI techniques, combined with the avail-

ability of large volumes of source code, presents an oppor-

tunity for security analysts to apply data-driven approaches

that augment traditional program analysis. Researchers have

explored applying deep-learning techniques to identify se-

curity vulnerabilities [4]–[14]. These works typically learn

vulnerability patterns from large amounts of vulnerable/non-

vulnerable examples without active manual effort. However,

previous approaches are mostly limited to predicting vulnera-

ble methods or files, without locating the statement that really

triggers the vulnerability. Such coarse-grained vulnerability

detection slows down developers seeking to locate and fix

a vulnerability, since they still need to spend significant

debugging effort to inspect hundreds or even thousands of lines

of source code manually.

However, it is challenging to locate vulnerabilities at the

finer granularity of identifying vulnerable statements. First,

existing vulnerability detection tools [4], [6], [12] classify

the function as a whole, and a recent research study [13]

revealed that these tools learn high-level vulnerable features

and cannot highlight the individual vulnerable statements.

In contrast, localization requires the model to learn more

concrete statement-level vulnerable features; the model needs

to pay attention not only to the individual statements but

also to the control flows and data dependencies among them.

Second, manually annotating vulnerable statements requires

significant effort, so collecting a large volume of reliable

training data containing vulnerable location information is

expensive. We address these challenges by (i) developing a

novel ensemble learning approach, VELVET, that learns to

capture code semantics at statement granularity from both

local and global context. (ii) pre-training on large amounts

of synthetic data to learn artificial vulnerability patterns, and

then fine-tuning on a smaller real-world dataset, which enables

the model to understand more complex patterns even though

large real-world annotated datasets are not available.

Modeling Vulnerability Localization. We propose VELVET

to locate vulnerable statements. Our design stems from two

insights: (i) the model needs to capture the semantics of the

vulnerable statements, and (ii) the semantics often depend on

both local and global context. To this end, VELVET consists

of two main steps:

(i) Learning Node Semantics. For locating a vulnerable state-

ment, it is important to understand the statement semantics

(e.g., control and data dependency, context, etc.). In a static

analysis setting, such semantics can be captured well with a

code graph, where each graph node represents code elements

and edges represent the dependencies between the nodes. Rep-

resenting these dependencies via a graph has proven effective

to understand the code syntax and semantics by many previous

studies [4], [12], [13], [15]–[21]. In this work, we use a Code

Property Graph (CPG) [22] to represent the code. We then

959

2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

978-1-6654-3786-8/22/$31.00 ©2022 IEEE
DOI 10.1109/SANER53432.2022.00114

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

An
al

ys
is,

 E
vo

lu
tio

n
an

d
Re

en
gi

ne
er

in
g

(S
AN

ER
) |

 9
78

-1
-6

65
4-

37
86

-8
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SA

N
ER

53
43

2.
20

22
.0

01
14

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 04,2022 at 18:48:47 UTC from IEEE Xplore. Restrictions apply.

use a Deep Learning (DL) model to learn node semantics

from the CPG. The DL model essentially learns a node-

level embedding that captures the node content along with

contextual dependencies. We then feed the embedded node

representation to a classifier to classify the node as vulnerable

or not. We further map the node back to the corresponding

statement as the final prediction.

(ii) Incorporating Global and Local Context with Ensemble

Learning. To locate the vulnerable statement, developers spend

significant amounts of time debugging the program, trying to

both understand the functionality at a high level and, also,

estimate the behaviors from local context of suspicious code

blocks. Listing 1 shows a confirmed CVE from our real-world

dataset. To identify the out-of-array access at line 146, devel-

opers need to know the latest update of block_ptr, which

is in the surrounding context (line 138), together with the

faraway declarations of variable row_ptr and pixel_ptr.

Thus, to locate the vulnerable line, developers need to reason

about both local and global context. To mimic real-world

debugging practice, we propose a novel ensemble approach

to learn both contexts for vulnerability localization.

Using our VELVET framework, we capture node semantics

with a transformer-based model and a GGNN model. We use a

linear layer and a softmax to assign vulnerability probabilities

to each embedded node. The node with the highest vulnera-

bility probability will be marked as vulnerable, and will be

mapped back to the source code statement. Our ablation study

shows that transformer is better able to capture long-range

dependencies, i.e., global context, while GGNN captures short-

range local dependencies better. Thus, we combine these two

models as an ensemble for final localization.

Pre-training & Fine-tuning. Another challenge for DL-

based vulnerability localization tools is the scarcity of high-

quality, real-world vulnerability datasets with well-annotated

statement-level information, i.e., which specific line or lines

are the triggers of the security issue (e.g.,, line 146 in List-

ing 1). Fortunately, a recently launched real-world vulnerabil-

ity dataset, D2A [23], contains precise vulnerability location

information. We apply D2A as the main resource on which to

build the prototype for our data-driven technique. To imitate

the practical scenario at best, we sort the functions in D2A

based on their commit dates. We train the model on the past

commits and evaluate the performance on the latest ones.

Because of the time-consuming data collection process and

the expensive manual validation, D2A has a relatively small

size and is not enough to sufficiently train a generalized

model. One possible alternative is to train a localization model

on synthetic vulnerabilities: for example, NIST’s Juliet Test

Suite [24] was artificially produced to imitate CWE [25]

vulnerability patterns, and it indicates the location information

for each sample. However, models trained on synthetic data

do not usually perform very well in real scenarios [13]. In

this work, we propose a practical mitigation to address these

concerns: we pre-train VELVET with large-scale synthetic data,

forcing the model to first learn simple, artificial patterns, and

then fine-tune with D2A examples to capture the complexity

of real-world patterns. We show that the pre-training and fine-

tuning workflow mitigates the dataset scarcity problem.

Results. In the static analysis setting, where vulnerable func-

tions are not detected in advance, VELVET achieves 2.7× and

4.5× better performance than baseline static analyzers on the

synthetic and real-world dataset separately, and significantly

reduces the false positives and false negatives. For the vul-

nerability localization task, where we assume the vulnerable

function has already been perfectly detected, VELVET achieves

99.6% accuracy on the NIST Juliet Test Suite [24]. With

further fine-tuning on the D2A dataset, VELVET achieves

43.6/63.9% localization accuracies for top-1/3 predictions over

the much more complex real-world data. Our ablation study

further provides evidence that Transformer is better at captur-

ing distant dependencies while GGNN focuses better on local

context of statements, and our VELVET’s ensemble approach

is the most effective way of combining global and local

information for vulnerability localization – outperforming the

baseline deep-learning models by 5.3%-29.0%.

Listing 1: Out-of-array accesses vulnerability: CVE-2013-7009
// project: ffmpeg (commit sha: 920046a)

// file: libavcodec/rpza.c

1 static void rpza_decode_stream(...)

2 {

14 unsigned short *pixels = ...;

15 int row_ptr = 0;

16 int pixel_ptr = 0; // Fix: int pixel_ptr = -4;

...

135 case 0x00:

136 if (s->size - stream_ptr < 16)

137 return;

138 block_ptr = row_ptr + pixel_ptr;

...

146 pixels[block_ptr] = colorA;

147 block_ptr ++;

148 }

149 block_ptr += row_inc;

162}

This paper makes the following contributions:

• We propose an ensemble neural architecture, VELVET, to

locate vulnerabilities at statement-level by successfully cap-

turing local and global program dependencies [26].

• We design the model learning process as pre-training on the

synthetic data, JULIET, and fine-tuning on real-world data,

D2A, following a practical workflow that alleviates data

inadequacy concerns regarding real-world vulnerabilities.

• We evaluate VELVET on both JULIET and D2A. Our

ablation studies show our ensemble approach significantly

reduces false positives and false negatives and performs

4.5× better than the baseline static analyzers on real-world

data. We also show VELVET’s ensemble approach is the

most effective way to capture vulnerable contexts among

baseline deep-learning models.

II. BACKGROUND

Graph Neural Network (GNN). A graph is a common

way to represent source code, where each code element is

modeled as a graph node, and relations between the code

elements are captured by the edges. Graph Neural Network

(GNN) is a deep-learning model that learns directly from

960

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 04,2022 at 18:48:47 UTC from IEEE Xplore. Restrictions apply.

graph structure. GNN has been applied to bug detection [12],

[13], [27] and fixing [17], [18], [20], [28]. GNN learns the

node representations by aggregating the information through

the graph structure where nodes can only communicate via

neighboring edges. Thus, after sufficient training, each node

gains knowledge about its local neighborhood. In this way,

GNN leans more fine-granular information about semantic

(e.g.,, data-dependencies) and syntactic (e.g.,, tree structure)

properties of code than mere token-based representations [15].

In this work, we implement GGNN [29] as representative of

graph-based models.

Transformer Model. Transformer model [30] is the state-

of-art model for sequence learning and has proven to be

effective for source code modeling tasks [17], [31]–[35].

Transformer leverages the power of attention mechanisms (i.e.,

self-attention and encoder-decoder attention) and builds the

architecture entirely on that basis. Multi-head self-attention

enables the model to attend to any set of code elements across

arbitrarily long distances so that each element will maintain a

global [17] view over the entire sequence. Thus, compared

to GNN, Transformer can aggregate information from two

faraway nodes more efficiently. Nevertheless, the Transformer

model usually treats code as a sequence of tokens (keywords,

variable, etc.) and ignores the underlying graph structure of

programs. Theoretically, the multi-head attention is able to

capture the relations between code tokens during training, but

in practice, learning “edges”, de novo, is more challenging

than explicitly defining them with graph structure in advance.

Ensemble Learning. Various neural networks (e.g., GNN and

Transformer) are designed out of divergent instincts and thus

have divergent architectures. With the random initialization

of model weights, different neural architectures can learn

quite distinct aspects of the same dataset, even for the same

task. This variance leaves challenges for a single model to

capture the complexity of the data distributions. Ensemble

learning provides a practical solution to minimize individual

architectures’ noisy bias and improve overall performance: it

aggregates multiple models’ decisions by either asking models

to vote or (weighted) averaging each model’s predictions. Such

a combination can build a more stable neural network with a

comprehensive understanding of the whole data. The ensemble

method has shown its effectiveness in code modeling tasks,

e.g., Lutellier et al. [33] use ensemble learning to repair bugs

and report better results than a single-model counterpart.

Due to the diversity of vulnerability patterns, one single

model will struggle to generalize when locating vulnerabilities.

Instead, combining the knowledge learned by multiple neural

architectures can be more effective in identifying diverse

patterns. To this end, we propose an ensemble approach that

integrates the individual advances of GNN and Transformer

to predict the vulnerable statements.

III. APPROACH

This section presents our VELVET framework, which aims

to predict the vulnerable statements in source code. VELVET is

built on the premise that similar vulnerabilities have occurred

in the past [36], [37] and can be learned from the previous

experience. In particular, VELVET analyzes the code as graphs

and tries to identify vulnerable graph nodes.

To this end, we train VELVET on vulnerable/non-vulnerable

samples in a supervised learning setting, where graph nodes

are annotated with a vulnerability probability—true vulnerable

nodes are annotated with 1 and non-vulnerable nodes are

marked with 0 probability. We then design the vulnerability

localization as a classification task where each node is as-

signed a vulnerability probability. The node with the maximum

vulnerability probability will be predicted as the vulnerable

location. With sufficient training, we expect the model to

learn the patterns of where vulnerabilities are likely to occur,

transplant this knowledge to unseen samples with similar

characteristics, and make predictions accordingly. Limited

by the availability of annotated datasets, we currently only

consider functions with a single vulnerable statement/node.

However, it should be straightforward to extend VELVET to

locate multiple statements, which we plan as future work once

we get such datasets.

A. VELVET’s Localization Framework

Locating the vulnerable node in a graph can be regarded as

classifying graph nodes as vulnerable/non-vulnerable. Thus,

we define the vulnerability localization problem with respect

to a code graph, where we assume a program can be directly

transformed to a graph structure (Section III-B). We consider

a code graph as a set of nodes and edges G = (V , E), where

V indicates the set of nodes of the graph and E represents

the list of edges connecting the nodes. Given a graph G, the

goal for the vulnerability localization task is to locate the

vulnerable node v ∈ V by predicting its index, y ∈ |V|, where

|V| represents the number of nodes in the graph. Therefore,

we build the samples in our dataset as D = {Gi, yi}
m, where

m is the size of our dataset.

Given a graph G, this involves three main steps:

(i) Learn the semantic representation of each node of G in

an embedded space;

(ii) Use the node-level semantic embedding to assign a

vulnerability probability to each node; and

(iii) Select the node with highest vulnerable probability as

the vulnerable location of G.

To identify non-vulnerable graphs, we inject a dummy node to

every graph. This dummy node acts as a general representation

for the entire graph and indicates whether this graph contains

vulnerabilities or not. If a sample is non-vulnerable, we mark

the dummy node as the ground-truth location.

We design a node embedding method φ (Section III-B) to

vectorize the nodes vi as hi ∈ R
d, where d is the embedding

dimension. The set of hi that contains all the node embeddings

of a graph is defined as H. Given a sample {G, y}, we then

feed the vectorized graph into a neural-network model to learn

the semantic node representation H′ = Fmodel(H, E).
A well-trained model is expected to encode sufficient se-

mantic knowledge of a node, together with its context, so we

feed the transformed semantic representation, h′ of each node

961

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 04,2022 at 18:48:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: VELVET Overview

to a classifier that tries to compute the probability of each node

being vulnerable. More formally, the learned H′ ∈ R
dh×|V|

(dh is the hidden dimension of the model) is fed into a linear

layer with trainable weights W ∈ R
dh×1 and bias b ∈ R

1×|V|

to get a score for each node and then a softmax layer for

probability P = softmax(W⊤H′+b). Given the vulnerable

probability of each node, we take the index of the most

probable node as the prediction ŷ = argmaxi∈|V|(pi), and

compute cross-entropy loss comparing with the ground-truth.

Figure 1 illustrates the end-to-end workflow of the proposed

approach. Similar to many NN-based tools, our technique

contains two stages: Training and Inference. The following

sections explain the details of each module of the framework.

B. Building Vectorized Code Graphs

Graph Vectorization. In our work, we use Code Property

Graph (CPG) [22] to represent the graph semantics of pro-

grams (code graph module in Fig. 1). CPG is a code represen-

tation designed specifically for vulnerability detection. Besides

AST, CFG, DFG edges, it also includes several other types

of edges that encode detailed information regarding program

dependencies. Specifically, we use Joern [38] to generate CPG.

To vectorize the node information, we train a word2vec model

over all possible code tokens in our dataset, and for each node,

we concatenate the token embeddings corresponding to that

node, as the initial node representation.

Vulnerable Node Annotation. In the graph representation,

we annotate the AST node that corresponds to the vulnerable

statement as the ground-truth. As shown in Figure 1, the red

line in the training sample represents the vulnerable statement,

and we annotate the corresponding (red) node in the graph as

the ground truth.

C. Locating Vulnerable Nodes with Ensemble Model

As shown in the example of Listing 1, to identify the integer

overflow statement, a localization tool should maintain a global

view to understand the initialized value of pixel_ptr from

its declaration, together with the local context about the latest

updates of the variable block_ptr’s value. Capturing such

a combination of long-range and short-range dependencies

is necessary for the localizer to successfully identify the

vulnerable statement. To this end, we propose our ensemble

approach built on two main components to capture these two

distinct dependencies: GGNN and Transformer.

Graph-based neural networks are effective at understanding

the semantic order of programs, since they directly learn con-

trol flows and data dependencies with the pre-defined edges.

However, training involves a message passing algorithm where

nodes only communicate with their neighbors. The ability to

learn long-range dependencies is limited by the number of

message passing iterations, which are typically set to a small

number (e.g., less than eight) due to computational cost [4],

[12], [13], [15], [17], [39]. Such a limitation will result in an

inherently local [17] model. In contrast, Transformer allows

global, program-wise information aggregation [17], and with-

out pre-defined edges, the self-attention mechanism of Trans-

former is expected to encode considerable code semantics –

which can be complementary to those defined explicitly by

the code graph. Therefore, to learn the diversity of vulnerable

patterns, we separately train these two distinct models and use

their predictions in an ensemble learning setting at inference

time (Training Stage in Fig. 1).

Local GGNN Model. As the input, the initial vectorized node

representation, H, is passed to the GGNN model, along with

the list of edges E . Following the design of Li et al. [29],

the GGNN model aggregates information from node-neighbors

using message passing over different edge types with distinct

weights. This results in an aggregation vector, representing the

information from the neighborhood, for each node at time-step

t−1. Each node is then, at time-step t, updated by aggregating

its own representation of t− 1 and its neighbors’ information

using GRU units. After K time steps, the output of GGNN

model will be the transformed node representations, encoded

with local context for each node Hg = [hg
1
, h

g
2
, ..., h

g

|V|]

Global Transformer Model. In order to learn the implicit

code dependencies complementary to GGNN, we only provide

Transformer with AST nodes of the graph as a sequence.

Removing edges can also enforce the model to learn the

long-range dependencies in a more efficient way, since it

does not have to reach faraway node step-by-step. We align

the AST nodes in the order that reserves the original source

code’s sequential logic. For example, if the source code has

a order of statements as: {stmt1 -> stmt2}, then when

building the input sequence, all the nodes belonging to stmt1

will be placed at the left side of all those belonging to

stmt2. With the power of multi-head self-attention [30],

the final node representations transformed by the model are

encoded with a global view over the whole function [17]

Htr = [htr
1
, htr

2
, ..., htr

|V|]

The final node representations from the model (either

GGNN or Transformer) are then fed into a multilayer per-

ceptron layer to get a single score for each node: Sg =
[sg

1
, s

g
2
, ..., s

g

|V|] ∈ R
|V| for GGNN, Str = [str

1
, str

2
, ..., str|V|] ∈

R
|V| for Transformer. During training, all vulnerability scores

are passed into a softmax layer to get the per-node vulner-

962

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 04,2022 at 18:48:47 UTC from IEEE Xplore. Restrictions apply.

ability probability, and calculate the cross-entropy loss. We

note that GGNN and Transformer are trained independently,

and each model does its back-propagation and updates weights

without interaction.

D. Ensemble Learning

As shown in Figure 1, in the Training Stagr we inde-

pendently train two distinct neural architectures, GGNN and

Transformer, to force them to learn the diverse aspects of

vulnerable patterns. In the Inference Stage, we aim at com-

bining the knowledge of both models to make comprehensive

predictions on previously unseen data. To this end, we propose

an ensemble approach to aggregate the predictions from both

models. Concretely, as shown in Figure 1, we input the

vectorized code graph into both well-trained models, and

they will output the transformed node representations Hg ,

Htr (Section III-C) and then the vulnerability scores, Sg and

Str are computed. To aggregate the predictions, we calculate

ensemble vulnerability scores, Sen, for all nodes by averaging:

Sen = 0.5∗Sg+0.5∗Str, and then the node with the highest

ensemble score will be the predicted vulnerable node. We note

that the averaging for ensemble scores can be weighted, but

further heuristics need to be introduced to decide the weights

for different models.

The ensemble approach is technically straight-forward, but

works quite well in practice. In Section V, we show the

effectiveness of VELVET’s ensemble and empirically demon-

strate that GGNN and Transformer models are indeed learning

diverse aspects of vulnerable patterns, as expected intuitively.

IV. STUDY DESIGN

In this section, we present our datasets and how we train and

test the models with them using distinct evaluation metrics.

A. Datasets

We conducted experiments with the two datasets, JULIET

(a synthetic dataset) and D2A (a real-world dataset), which

include statement-level vulnerability annotations. Concretely,

each sample is a function, and the vulnerable location is the

statement that directly exposes the vulnerability (e.g., Line

146 in Listing 1). Every sample in the dataset has one single

vulnerable statement and is written in the C language. Note

that, there are some other existing C-language vulnerability

datasets [6], [12], [13], [40] that annotate vulnerabilities only

at the function level. Since our goal is to localize vulnerabil-

ities at the statement level, we cannot use them.

Synthetic Dataset (JULIET): The JULIET Test Suite [24] is

a synthetic dataset containing intentional flaws to test static

analysis tools. The test cases in the dataset have vulnerabil-

ities covering 118 different Common Weakness Enumeration

(CWE) classes [25] and well-annotated location information.

We extracted around 24,000 vulnerable functions with cor-

responding faulty locations, and also 26,000 non-vulnerable

functions without any vulnerable statements.

Although synthetic datasets provide large amounts of data

to train large models [6]–[8], [41], they fail to capture the

complexity of real-world data and tend to restrain the model

to simple vulnerable patterns [13]. To overcome this issue, we

also apply the recently published D2A dataset.

Real-world Dataset (D2A): It is challenging and expen-

sive to collect real-world vulnerabilities with well-annotated

statement-level information, so such datasets are rare. Zheng

et al. recently published the D2A dataset [23] which they

collected from multiple C/C++ projects such as OpenSSL

and LibTIFF, which are core components of cloud services.

These projects have also been studied by many existing

security-related works [21], [42], but without providing the

annotations we need. Zheng et al. collected vulnerabilities

using static program analysis and differential analysis. Com-

pared to existing datasets, D2A preserves more details such

as function-call traces and locations that trigger the vulnera-

bilities. The authors also spent much manual effort to ensure

the accuracy of D2A’s labels and location information.

In this work, we derive our real-world dataset from D2A,

and we end up with approximately 2,500 unique functions

with annotated vulnerable locations and 2,500 non-vulnerable

counterparts in total. Our dataset contains 9 main vulnerability

types covering 18 CWE types. Table I shows the details. The

longest function spans 1269 lines of source code, where it

would be very challenging for developers to locate the vulner-

able statement even if they know the function is problematic.

Even though both datasets have roughly the same number of

vulnerable and non-vulnerable functions, our work focuses on

statement-level localization, and at the statement granularity

both datasets are actually super imbalanced, aligning well

with the relative rareness of vulnerabilities [13], [43].

TABLE I: Distribution of vulnerability types in the datasets. Column
1&2 show how the vulnerability types in D2A map to the correspond-
ing CWEs in JULIET. Column 3&4 show the respective proportions
of the type occurrences. Noted that JULIET covers more vulnerability
types than D2A.

D2A Type JULIET Type JULIET (%) D2A (%)

Integer Overflow CWE190-191, 194-197 21.9% 56.3%

Buffer Overrun CWE121-122, 124-127 25.0% 30.8%

NullPtr Dereference CWE476 0.7% 4.9%

Memory Leak CWE401 2.0% 0.9%

Dead Store CWE563 1.0% 1.3%

Divide by Zero CWE369 1.6% 0.3%

Null Dereference CWE690 1.9% 3.0%

Uninitialized Value CWE457 1.6% 1.9%

Use After Free CWE416 0.4% 0.6%

B. Model Pre-Training & Fine-Tuning

a) Migration From the Synthetic to the Real-world. As

mentioned in Section IV-A, our real-world dataset, D2A, is

much smaller than JULIET due to the high cost of collecting

and annotating the locations of real-world vulnerable state-

ments. Given D2A’s small size, the usual same-dataset train-

test scheme would likely cause the models to overfit.

In this work, we adopt a workflow designed to alleviate

this concern of data inadequacy by pre-training VELVET on

a large amount of synthetic data and fine-tune it on the

963

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 04,2022 at 18:48:47 UTC from IEEE Xplore. Restrictions apply.

limited real-world data. We first sufficiently train models on

synthetic data with a relatively large learning rate and then

fine-tune the pre-trained models on real-world data with a

smaller learning rate. The intuition behind this design is:

the ample synthetic data has already exposed a portion of

the practical vulnerability distribution, so we ask models to

first understand this part with adequate samples, and then

keep learning other (more complex) parts when fed with

what would otherwise be an inadequate set of real samples.

In Section V-D, we experimentally determine that models

successfully leverage this “pre-training + fine-tuning” setting

to migrate the knowledge learned from synthetic data to the

real-world scenario.

b) Training, Validation, and Testing Split. In the synthetic

dataset, JULIET, we split the whole dataset into three parts,

TRAIN/VALID/TEST, with a ratio of 90%:5%:5%. We train

VELVET on the TRAIN split from scratch for 10 epochs and

evaluate the performance on TEST split.

For D2A, to imitate the practical scenario at best where

we learn from previous vulnerabilities, we sort the functions

based on their commit dates. We then train the model on the

past commits and evaluate the performance on the latest ones.

Again, we split the sorted samples into TRAIN/VALID/TEST

with the ratio of 90%:5%:5% (TEST split is made up of

the latest 5%). We fine-tune the trained models from the

synthetic dataset on TRAIN split for 50 epochs and evaluate on

TEST split. We note that the numbers of epochs for training

are carefully selected: we ensure that, in such settings, the

validation loss on VALID split of all the models will no longer

decrease for 3 consecutive epochs.

c) Experimental Configuration Models are configured with

the input hidden dimension of 256, a dropout rate of 0.1.

The learning rate for pre-training is 10−4, and for fine-

tuning is 10−5. We use Gated Graph Neural Network (GGNN)

model [29] with 8 time steps, similarly to several code model-

ing works [4], [12], [13], [15], [17], [18]. For the Transformer,

we use 6 encoder layers, 8 attention heads, while the attention

dimension is 512 and feedforward layers of dimension 2048.

All models are implemented using Tensorflow 2.2.0, CUDA

10.1, and trained using 8GB Nvidia GeForce RTX 2080

SUPER GPU. For data processing, our machine takes 26.8

seconds to generate every 1000 CPGs, and takes 60.9 seconds

to vectorize them. It takes 32 minutes to train word2vec

embeddings. The model training on JULIET takes 14 hours,

and 24 hours on D2A. These numbers are at par with existing

deep-learning-based vulnerability analysis [12], [13], [17].

C. Evaluation of Statement-level Localization

As we introduced in Section III-A, the model prediction

will be the index of a graph node. To evaluate the localization

performance in a practical scenario, we maintain a mapping

between a node and its corresponding line number in the

source code. We map both the ground-truth node and the pre-

dicted node to their source line number and check whether they

match. We evaluate statement-level localization performance

using the following metrics:

Top-k Accuracy. We use top-k accuracy as one metric to

evaluate the localization quality. We map the top-k predicted

nodes with the highest scores to their source line numbers, and

if at least one of the predictions matches the ground-truth, we

define the prediction as correct.

Prediction Distance. While accuracy is an important metric,

it fails to fully capture realistic aspects of the vulnerability

localization problem. For instance, when a wrongly predicted

location is not too far from the true target, the developer

can still find the vulnerability by glancing at the surrounding

code. In order to evaluate this aspect, we measure how far the

prediction is from the true location. We define the distance

between these two as Prediction Distance and we calculate it

as Distance = |lpred − ltrue|, where lpred is the line number

of the model prediction, and ltrue is the ground-truth.

D. Baselines

Static Analyzers One major motivation of deep-learning-

based vulnerability detection tools is to overcome the draw-

backs of rule-based static analyzers. We use them as baselines

to show the improvement brought by VELVET. We pick

three open-source static analyzers, Infer [44], FlawFinder [45]

and RATS [46]. These are popular and frequently used by

developers and researchers. For example, Infer is widely used

by large enterprises [23], [47] and FlawFinder is integrated

into many open-source code scanners such as GitHub Code

Scanner [48] and Codacy Security Scan [49]. These three static

analyzers are also used as baselines by work on deep-learning-

based vulnerability detectors [6], [7], [14], [41].

Comparing Architectures under VELVET’s framework To

figure out the best neural architecture that can be fit into our

framework for vulnerability localization, we compare different

models by replacing the architecture in the model module

in Figure 1. For example, we compare the ensemble model

with GGNN-only and Transformer-only models in Section

V-A and V-B, resp. Note that the transformer here is a bit dif-

ferent than the commonly used transformer of CodeBert [35],

Roberta [50] etc., where the inputs are token sequences. In

our case, the input consists of pre-processed graph nodes, as

we use node embedding instead of token embedding.

Comparing Aggregation Strategies under VELVET’s

framework VELVET aggregates the information learnt from

global and local contexts as an ensemble. Other re-

searchers have tried different aggregation strategies: Hellen-

doorn et al. [17] propose Graph-Sandwich models, which

stack sequence-based model and graph-based model to cap-

ture the global and local semantics for detecting and fixing

variable-misuse bugs. They also propose GREAT, which inte-

grates edge information of code graphs into the Transformer

model. Dinella et al. [18] propose a graph-based model to

learn bug-fixing edits, where they incorporate a global pointer

mechanism to locate the buggy node. These previous works

share similar insights of aggregating information from diverse

contexts, although for different tasks. We adapted these meth-

ods in our VELVET’s framework to compare different ways

to aggregate global and local information for vulnerability

964

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 04,2022 at 18:48:47 UTC from IEEE Xplore. Restrictions apply.

localization. We implement Transformer-sandwich, GREAT,

and the localization part of Hoppity by reusing their open-

source packages [17], [18]. To compare under identical set-

tings, we replace the model part in Figure 1 with the different

architectures and keep all the other parts as-is.

V. RESULTS

We evaluate VELVET with the following research questions:

• RQ1: Evaluating Classification & Localization. Can

VELVET locate vulnerabilities if they are not detected in

advance?

• RQ2: Evaluating Localization. How does VELVET per-

form on fine-grained vulnerability localization?

• RQ3: Evaluating Ensemble Strategy. Is the ensemble

model an effective way to combine global and local context,

compared with existing methods?

• RQ4: Evaluating Fine-tuning Design. What are the contri-

butions of the VELVET’s pre-training & fine-tuning design?

A. RQ1: Evaluating Classification & Localization

Motivation. First, we check how well VELVET can locate

vulnerable statements in a most realistic setting, where we

do not know in advance whether the functions are vulnerable.

This mimics a typical static analysis setting, where the static

analyzer aims to find vulnerable lines. This experiment can be

thought of as Classification & Localization, where VELVET

will classify a function as vulnerable/non-vulnerable and then

locate the statement within the vulnerable function.

In this first RQ, we focus on the comparison between VEL-

VET and the rule-based static analyzer baselines. We prioritize

this discussion, since we aim at leveraging data-driven ap-

proaches to improve the quality of static analyzers in general,

to further alleviate developers’ debugging efforts. To compre-

hensively evaluate the effectiveness of our approach, we com-

pare three variants of VELVET with static analyzers: VELVET-

ENSEMBLE, VELVET-GGNN, VELVET-TRANSFORMER.

Methodology. As mentioned in Section III-A, to fit non-

vulnerable functions into our framework, we add a dummy

node with index of 0 to every sample regardless of its

vulnerability. If the sample is non-vulnerable, then the ground-

truth will be 0, the index of the dummy node; otherwise the

ground-truth will still be the index of the vulnerable node.

Thus we successfully fit the vulnerability localization and

the non-vulnerable function identification tasks into the same

multi-class classification framework. We evaluate this task in:

1) Multi-class prediction: The most intuitive metric is class-

prediction accuracy in the multi-class classification setting,

and we refer to it as Prediction Accuracy for further discus-

sion. This setting is specific to our node-based classification

and not applicable to static analyzers.

2) Vulnerability Classification: To evaluate VELVET’s ability

to detect vulnerabilities at function level, we define the

predictions that point to the dummy node as non-vulnerable

and otherwise as vulnerable. Note this setting is coarse-

grained—if a vulnerable node has ground-truth x(x > 0),
but the model predicts non-dummy node y(y > 0), where

x 6= y, we still regard the prediction as correct in this

setting. Thus, this setting basically evaluates whether there

is a vulnerable node anywhere in the function body.

3) Vulnerability Localization: This is evaluated by top-1 accu-

racy, as we discussed in Section IV-C, where we evaluate

VELVET’s ability to correctly predict vulnerable state-

ments. We will not discuss this accuracy for RATS, since it

tends to identify the root-cause location of a vulnerability

(e.g., line 16 of Listing 1), yet our datasets annotate the

location where the vulnerability occurs (e.g., line 146 of

Listing 1). Thus, RATS has very bad accuracy (nearly 0%)

on our datasets. On the contrary, we confirmed that Infer

and FlawFinder share our approach to location annotation.

Result: VELVET significantly outperforms static analyzers,

reducing false positives and false negatives. Table II shows

the results when training the model on the combination of

vulnerable and non-vulnerable functions. All variants under

our VELVET framework outperform static analyzers by a large

margin, in three settings and on both datasets. The best-

performing VELVET-ENSEMBLE achieves 99.6% localization

accuracy on JULIET and 30.1% on D2A, while the rule-based

static analyzers, at best, only achieve 36.9% and 6.7%, re-

spectively. Our data-driven approach also reported many fewer

false positives (FP) and false negatives(FN) compared with the

static analyzers. In the function-level vulnerability detection

setting, the precision/recall/f1 of the VELVET variations are

significantly higher than all baseline static analyzers. The

results empirically validate that VELVET can help alleviate

developers’ concerns regarding the FP/FN issues of rule-based

static analyzers.

We further analyze VELVET’s neural architecture module to

figure out the best model for static analysis. Compared with the

single GGNN and Transformer, the ensemble approach wins

for Prediction Accuracy, F1 and localization accuracy by a

clear margin. The results, in general, reveal the effectiveness

of the ensemble approach for combining two distinct architec-

tures. Interestingly, we notice that Transformer beats the en-

semble model by less than 1% for classification accuracy. This

is likely because the global view of the Transformer model

enables it to have better performance on the more general

vulnerability detection task, but this advantage is diluted by

the local GGNN model when combining the two models. This

leaves us an interesting question about how to improve the

ensemble methodology when two models make contradictory

predictions. We discuss a solution in Section V-C.

B. RQ2: Evaluating Localization

Motivation. After realizing the advantages of VELVET, we

are curious about the best-suited neural architecture for our

primary goal, vulnerability localization. Thus, we further iso-

late this task by checking the efficiency of VELVET variants

only on the vulnerable samples. In other words, we check

how efficiently VELVET can identify a vulnerable statement

given the function containing the statement is known to have

a vulnerability. This mimics the scenario that by using some

other off-the-shelf tools (e.g., Devign [12]), we already know

965

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 04,2022 at 18:48:47 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Results when jointly training models on vulnerable and non-vulnerable functions. As discussed in Section V-A, Pred Acc. is
the Prediction Accuracy, Vul-CLS indicates the Vulnerability Classification setting, and Vul-LOC Acc. is the top-1 localization accuracy.

Approach

JULIET D2A

Pred Vul-CLS Vul-LOC Pred Vul-CLS Vul-LOC

Acc. Acc. Precision Recall F1 Acc. Acc. Acc. Precision Recall F1 Acc.

VELVET-ENSEMBLE 99.5% 99.6% 99.9% 99.3% 99.6% 99.6% 51.1% 58.9% 76.2% 48.1% 59.0% 30.1%

VELVET-GGNN 93.6% 94.2% 99.9% 89.0% 94.2% 98.5% 45.5% 56.7% 73.2% 39.1% 51.0% 19.6%

VELVET-TRANSFORMER 99.3% 99.6% 99.9% 99.3% 99.6% 99.1% 47.2% 59.3% 70.5% 50.4% 58.8% 29.3%

Infer* N/A 69.4% 41.5% 54.4% 47.1% 36.9% N/A N/A N/A N/A N/A N/A

FlawFinder N/A 58.3% 36.6% 51.0% 42.6% 8.6% N/A 48.7% 53.3% 6.0% 10.7% 6.7%

RATS N/A 59.3% 36.5% 46.4% 40.9% N/A N/A 45.8% 47.9% 16.4% 24.2% N/A

*We do not compare with Infer on D2A, since Zheng et al. [23] used Infer during data collection. Thus, it is unfair to compare with Infer on D2A.

which functions are vulnerable. However, a C/C++ function

may contain hundreds of lines of code, so it requires signif-

icant human effort to pinpoint the vulnerable location before

attempting to fix it. To this end, for this RQ we only train the

model on the vulnerable functions of our datasets.

Result-A: Ensemble model shows the best performance on

localization. As shown in Table III, the ensemble approach

wins against the single models, GGNN and Transformer, on

both datasets for different metrics. For the JULIET dataset,

the benefits are not as pronounced since learning vulnerable

patterns in this synthetic dataset is a relatively easy task for

all models. For D2A, the difference is more noticeable: by

incorporating both global and local context learned by the

two different architectures, VELVET-ENSEMBLE improves the

top-1 accuracy of single VELVET-GGNN by around 29.0%

and VELVET-TRANSFORMER by 9.5%. We also check the

vulnerability types and find VELVET is effective in locating

integer overflow, buffer overrun, and null-pointer deferences,

which aligns with the dominant types in the training data (Ta-

ble I). We also notice that the localization accuracy increases

compared with those in Table II when isolating the localization

task. The reason is, such an isolated training setting enables

models to focus on learning the vulnerable triggering locations

and thus decrease the overall difficulty of learning to predict

the vulnerable nodes. This implies that if a fairly good function

vulnerability detector is available, training a localizer with

only vulnerable samples will be a better choice.

TABLE III: Test performance of vulnerability localization under
VELVET framework. Top-k represents the localization accuracy for
top-k predictions. Distance represents the average Prediction Dis-
tance between the prediction and the ground-truth.

VELVET
Juliet D2A

Top-1 Distance Top-1 Top-3 Distance

Ensemble 99.6% 0.04 43.6% 63.9% 7.0

GGNN 98.1% 0.10 33.8% 54.9% 9.7
Transformer 99.4% 0.06 39.8% 62.4% 8.0

Further, VELVET gives us a decent Prediction Distance,

indicating that the vulnerabilities can be located within a 7-line

window around the ground-truth vulnerable statements. The

ensemble setting not only beats the baselines but, overall, it is a

respectable scope-reducer for debugging as the average length

of a D2A function is 80.3 lines and a significant fraction of

D2A functions have hundreds of source lines.

Result-B: Transformer learns the global context, while

GGNN captures the local context. We have empirically

demonstrated that global and local context together can im-

prove vulnerability localization. We further investigate the

performance of VELVET-GGNN and VELVET-TRANSFORMER

on the 133 (most recent) vulnerabilities in D2A-TEST —

GGNN and Transformer are manifesting complementary ca-

pacities to localize the vulnerability. Due to the repetition and

simplicity of certain vulnerable patterns, two models locate 37

vulnerabilities in common; besides these, GGNN can further

locate 8 individual vulnerabilities and Transformer alone can

locate 16.

We inspect the concrete samples that one model correctly

predicts but the other fails. We compute the average function

length of the model-specific correct predictions. As expected,

Transformer’s correct predictions have a larger function length

than for GGNN: GGNN’s correct predictions include func-

tions with, on average, 27.75 lines and 138.0 graph nodes;

for Transformer’s correct predictions, however, the functions

include 48.38 lines and 288.6 graph nodes, on average, which

are 74.3% longer in lines and 109.1% larger in nodes than

GGNN. We further conduct statistical test to make sure that the

longer average value is not caused by extremely large outliers.

This result supports our intuition that Transformer has a better

global view and is more effective in processing larger code

graphs, whereas GGNN focuses more on the local contexts of

code snippets. We also show two concrete vulnerabilities in

D2A-TEST: Listing 2&3. Both can be located by the ensemble

approach, but the single model fails on one of them. Listing

2 has a larger size and the global contexts of out, mtmp and

outlen are necessary to identify buffer overflow. In contrast,

Listing 3 is much smaller and the variable dependencies are

mostly in the surrounding lines.

Listing 2: Buffer Overrun vulnerability from D2A. VELVET-
ENSEMBLE and VELVET-TRANSFORMER can localize this vulner-
ability at line 42 while VELVET-GGNN fails.

// project: openssl (commit sha: 0211740)

// file: crypto/ec/ecdh_kdf.c

1 int ecdh_KDF_X9_63(...)

2 {...

18 for (i = 1;; i++) {

19 unsigned char mtmp[EVP_MAX_MD_SIZE];

...

32 if (outlen >= mdlen) {

33 if (!EVP_DigestFinal(mctx, out, NULL))

34 goto err;

35 outlen -= mdlen;

36 if (outlen == 0)

37 break

966

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 04,2022 at 18:48:47 UTC from IEEE Xplore. Restrictions apply.

...

42 memcpy(out, mtmp, outlen); ...

69 }

Listing 3: Integer Overflow vulnerability from D2A. VELVET-
ENSEMBLE and VELVET-GGNN can localize this vulnerability at line
19 while VELVET-TRANSFORMER fails.

// project: ffmpeg

// sha: 4bd869e

// libavcodec/aacdec.c

1 static int read_audio_mux_element(...)

2 {

3 int err;

4 uint8_t use_same_mux = get_bits(gb, 1);

...

14 if (latmctx->audio_mux_version_A == 0) {

15 int mux_slot_length_bytes =

read_payload_length_info(latmctx, gb);

...

19 else if (mux_slot_length_bytes * 8 + 256 <

get_bits_left(gb)) { ...

25 return 0;

26 }

C. RQ3: Evaluating Ensemble Strategy

Motivation. We have shown the effectiveness of the ensemble

model for comprehensively understanding the global and

local contexts, compared with the single model. However,

the ensemble approach is not the only way to achieve this

aggregation for code modeling tasks, as discussed in Sec-

tion IV-D. We incorporate the alternate aggregation strategies

to better evaluate the ensemble approach. We train the models

in two settings: first, we only include the vulnerable samples

to reveal the localization performance (Vul-only), and then

we expand the data to contain both vulnerable and non-

vulnerable functions (Hybrid). To evaluate performance, we

use the Prediction Accuracy defined in Section V-A.

TABLE IV: Comparison of Prediction Accuracy between our en-
semble method and the existing models.

Model
JULIET D2A

Vul-only Hybrid Vul-only Hybrid

VELVET-ENSEMBLE 99.6% 99.5% 43.6% 51.1%

VELVET-GGNN 98.1% 93.6% 33.8% 45.5%

VELVET-TRANSFORMER 99.4% 99.3% 39.8% 47.2%

VELVET-TRANSSANDWICH 99.2% 99.0% 41.4% 49.8%

VELVET-GREAT 99.1% 98.8% 36.8% 41.6%

VELVET-HOPPITY 98.8% 98.1% 35.3% 32.5%

Result-A: VELVET’s ensemble strategy outperforms ex-

isting models that aggregate global and local contexts.

As shown in Table IV, the ensemble approach manifests a

more powerful learning capacity compared with the exist-

ing models we studied. VELVET-ENSEMBLE beats all other

competitors for both vulnerability-only and hybrid settings on

both datasets. Specifically, on the real-world D2A, VELVET-

ENSEMBLE illustrates the generalization of the ensemble ap-

proach to understand the complicated real-world vulnerable

patterns, compared with the three re-implemented existing

works. This result shows empirically that the ensemble model

is a more direct and effective way to combine global and

local knowledge than stacking distinct models, since the

stack of models will still share learned insights during train-

ing, which may prevent them from learning more diversity.

However, compared with the single GGNN and Transformer,

the Transformer-sandwich model still reports overall better

results with a clear margin on D2A. This also suggests the

significance of incorporating distinct model designs to capture

varied aspects of code.

Result-B: Ensemble of more models alleviates the disagree-

ment among models and further improves performance.

Our main goal is to showcase the advantages of ensemble

learning with local and global information, so we initially

use one global model and one local model to conceptually

illustrate the effectiveness. However, as mentioned in Section

V-A, Transformer and GGNN sometimes make contradictory

predictions and the dominant model is not always correct.

Consequently, such disagreements harm the ensemble’s per-

formance. We provide a solution to alleviate this concern:

adding more models of the same architecture to the ensemble.

As a proof-of-concept, we enlarge VELVET-ENSEMBLE to

contain two Transformer and two GGNN models by varying

the initialization seeds, and we compare the 4-model variant

of VELVET with the 2-model one in both Vul-only and Hybrid

settings on D2A. Table V shows 4-model VELVET is a clear

winner and it can also beat all baselines in previous RQs. The

results further show the effectiveness of the ensemble approach

and indicate VELVET’s potential practical deployment.

TABLE V: Performance of adding one more GGNN and one
more Transformer model to the VELVET-ENSEMBLE. The newly
added models are randomly initialized and have exactly the same
configuration with the original ones.

VELVET

D2A Vul-Only D2A Hybrid

Vul-LOC Acc. Pred Vul-CLS Vul-LOC

Top-1 Top-3 Distance Acc. Acc. Acc.

2-model 43.6% 63.9% 7.0 51.1% 58.9% 30.1%

4-model 45.9% 68.4% 6.5 52.4% 60.6% 31.6%

D. RQ4: Evaluating Fine-Tuning Design

Motivation. In Section IV, we introduced the setting of ap-

plying fine-tuning based on the pre-trained JULIET models to

real-world data, to try to address the data inadequacy problem.

In this RQ, we evaluate the rationality and advantages of this

design. Theoretically, we expect the pre-trained JULIET mod-

els to already understand a portion of the real-world vulnerable

patterns, since the synthetic data is designed to imitate the

practical scenario, even as it struggles with the complexity of

the real-world distribution. To understand whether this is the

case, we evaluate the well-trained JULIET models of VELVET-

ENSEMBLE directly on D2A to see how much knowledge has

been directly transferred from the synthetic data. Again, we

use the two same settings, Vul-only and Hybrid, as in Section

V-C for this evaluation.

Result: Pre-training on synthetic data and fine-tuning

on real-world data effectively mitigates the real-world

vulnerability samples inadequacy problem. As shown in

the ”Before” row of Table VI, the pre-trained JULIET model

is already able to correctly localize 12% of D2A test samples,

with an average prediction distance of 14.8 in the Vul-only

setting, and has 16.5% Prediction Accuracy for the Hybrid

967

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 04,2022 at 18:48:47 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Results of VELVET-ENSEMBLE before and after the
fine-tuning on two datasets, with two settings. The “Before” row
means we directly evaluate the well-trained JULIET model on D2A.
The “After” row means the model’s performance after the sufficient
fine-tuning on real-world data.

Fine-Tuning

Vul-only Hybrid

Vul-LOC Distance Pred Vul-CLS Vul-LOC

ACC ACC ACC ACC

Before 12.0% 14.8 16.5% 56.3% 3.8%

After 43.6% 7.0 51.1% 58.9% 30.1%

setting. This result shows that a significant portion of real-

world vulnerable patterns are already well-understood by the

pre-trained JULIET models, providing a great start for fine-

tuning. Also, with its knowledge of tens of thousands of

synthetic samples, the model is less likely to be overfitted

to the relatively small D2A dataset. As a comparison, we

also show the performance after the fine-tuning (i.e., “After”

row in Table VI). We can see that the fine-tuning significantly

improves the performance on the real-world dataset, and even

with just 2.5k vulnerable samples and 2.5k non-vulnerable

samples, the model can show a generalized result in both

Vul-only and Hybrid settings. The results also provide solid

evidence to the rationality of our mitigation of the data inad-

equacy, which hopefully can help researchers move forward

without being too worried about small real-world dataset sizes

for data-driven approaches.

VI. RELATED WORK

Fault Localization. Locating buggy statements with the avail-

able test cases has been well-studied for decades [51]–[60].

Spectrum-based (SBFL) and mutation-based (MBFL) fault

localization are two well-known approaches. SBFL takes each

statement’s coverage information and its test case results

as input, calculates a suspiciousness score, and ranks the

statements’ scores to indicate the most buggy one(s). MBFL

mutates the code by pre-defined rules to evaluate each state-

ment’s actual effects on the pass/fail outcomes of test cases.

VELVET is not directly comparable, since we focus on source

code without test cases and coverage reports.

DL-based Vulnerability Detection. To automatically learn

vulnerable features and patterns directly from source code,

recent work [4], [6]–[8], [12]–[14], [27] applies a wide variety

of deep-learning models. However, most of this work predicts

function-level vulnerability, even for functions containing up

to thousands of lines. Even when developers know a function

is vulnerable, they must spend time to locate the specific

statements to edit. Wang et al. [20] propose GINN, an ad-

vanced GGNN model, and show its ability to localize null

pointer dereferences, among several GINN applications. This

work seems closest to ours but their research direction is

orthogonal: we regard graph-based models in general, ignoring

the subtle differences among variants; we instead study the

complimentary effects between graph-based and sequence-

based models, and leverage this distinction to better localize

vulnerabilities. So for our proof of concept, we just pick the

popular GGNN architecture as baseline.

VII. THREATS TO VALIDITY

Cross Validation. We tried to imitate a pragmatic real-world

scenario, where we train the model on the past vulnerabilities

and test on the latest samples. However, due to the small size

of the D2A-TEST split, the model’s reported results may not be

generalizable. To minimize this threat, we did ten-fold cross-

validation for all baseline models in the setting of Section V-B.

Table VII reveals the same trend that VELVET-ENSEMBLE is

winning by a clear margin on both metrics.

TABLE VII: Ten-fold cross-validation for Section V-B

Vul-LOC Acc Distance

VELVET-ENSEMBLE 39.9% 8.6

VELVET-GGNN 34.4% 9.8

VELVET-TRANSFORMER 37.9% 9.1

VELVET-TRANSSAND 39.3% 9.5

VELVET-GREAT 37.9% 8.7

VELVET-HOPPITY 35.5% 10.1

Cross-project. VELVET focuses on intra-project vulnerable

patterns, since we expect the model to learn from the project’s

history and apply its knowledge to the project’s new commits.

To minimize the threats brought by such settings, we further

study the model’s cross-project performance under the Sec-

tion V-B setting. We pick the D2A Apache-HTTPD project

for evaluation and the other projects for training. The results

show VELVET can achieve 41.8% Vul-LOC accuracy for top-1

and 60.0% for top-5, dropping a bit compared with the intra-

project setting but still very promising.

Data Generalizability. Our results might be biased by

the underlying data collection process, conducted by Zheng

et al. [23]. However, collecting vulnerability data at statement

granularity is hard. We have not found alternative real-world

data with such fine-granular information to fully evaluate

generalizability. To minimize this threat, we also evaluate

VELVET on a synthetic dataset and show it performs better

than static analysis alternatives.

VIII. CONCLUSION

We introduced VELVET, an ensemble model to efficiently

capture local and global code context and understand vulner-

able patterns at the individual statement level. Our evalua-

tion showed that VELVET is effective for two vulnerability

localization tasks on both synthetic and real-world data. Our

designed workflow of pre-training on synthetic data and then

fine-tuning on real-world data provides a practical solution to

the real-world dataset scarcity problem.

ACKNOWLEDGMENT

This work is supported in part by NSF grants CCF-2107405,

CCF-1845893, CCF-1815494, IIS-2040961, DARPA/NIWC-

Pacific N66001-21-C-4018, and IBM. Any opinions, findings,

conclusions, or recommendations expressed herein are those

of the authors and do not necessarily reflect those of the US

Government, NSF, DARPA, or IBM.

968

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 04,2022 at 18:48:47 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?,” in Proceed-

ings of the 2013 International Conference on Software Engineering,
pp. 672–681, IEEE Press, 2013.

[2] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford, “Ques-
tions developers ask while diagnosing potential security vulnerabilities
with static analysis,” in Proceedings of the 2015 10th Joint Meeting on

Foundations of Software Engineering, pp. 248–259, ACM, 2015.

[3] B. Liu, L. Shi, Z. Cai, and M. Li, “Software vulnerability discovery
techniques: A survey,” in 2012 fourth international conference on

multimedia information networking and security, pp. 152–156, IEEE,
2012.

[4] S. Suneja, Y. Zheng, Y. Zhuang, J. Laredo, and A. Morari, “Learning to
map source code to software vulnerability using code-as-a-graph,” 2020.

[5] L. Buratti, S. Pujar, M. Bornea, S. McCarley, Y. Zheng, G. Rossiello,
A. Morari, J. Laredo, V. Thost, Y. Zhuang, and G. Domeniconi,
“Exploring software naturalness through neural language models,” 2020.

[6] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability detection
in source code using deep representation learning,” in 2018 17th

IEEE International Conference on Machine Learning and Applications

(ICMLA), pp. 757–762, 2018.

[7] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detec-
tion,” in Proceedings of the 25th Annual Network and Distributed System

Security Symposium (NDSS‘2018), 2018.

[8] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A framework
for using deep learning to detect software vulnerabilities,” 2018.

[9] B. Li, K. Roundy, C. Gates, and Y. Vorobeychik, “Large-scale identifica-
tion of malicious singleton files,” in Proceedings of the Seventh ACM on

Conference on Data and Application Security and Privacy, pp. 227–238,
ACM, 2017.

[10] D. Maiorca and B. Biggio, “Digital investigation of pdf files: Unveiling
traces of embedded malware,” IEEE Security & Privacy, vol. 17, no. 1,
pp. 63–71, 2019.

[11] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, and
L. Cavallaro, “Droidsieve: Fast and accurate classification of obfuscated
android malware,” in Proceedings of the Seventh ACM on Conference on

Data and Application Security and Privacy, pp. 309–320, ACM, 2017.

[12] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulner-
ability identification by learning comprehensive program semantics via
graph neural networks,” in Advances in Neural Information Processing

Systems, pp. 10197–10207, 2019.

[13] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning based
vulnerability detection: Are we there yet?,” 2020.

[14] X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui, “Deepwukong: Statically
detecting software vulnerabilities using deep graph neural network,”
ACM Trans. Softw. Eng. Methodol., vol. 30, Apr. 2021.

[15] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to rep-
resent programs with graphs,” in International Conference on Learning

Representations, 2018.

[16] P. Yin, G. Neubig, M. Allamanis, M. Brockschmidt, and A. L. Gaunt,
“Learning to represent edits,” in International Conference on Learning

Representations, 2019.

[17] V. J. Hellendoorn, C. Sutton, R. Singh, P. Maniatis, and D. Bieber,
“Global relational models of source code,” in International Conference

on Learning Representations, 2020.

[18] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang, “Hoppity:
Learning graph transformations to detect and fix bugs in programs,” in
International Conference on Learning Representations, 2020.

[19] S. K. Dash, M. Allamanis, and E. T. Barr, “Refinym: Using names
to refine types,” in Proceedings of the 2018 26th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, ESEC/FSE 2018, (New York, NY,
USA), p. 107–117, Association for Computing Machinery, 2018.

[20] Y. Wang, K. Wang, F. Gao, and L. Wang, “Learning semantic program
embeddings with graph interval neural network,” Proc. ACM Program.

Lang., vol. 4, Nov. 2020.

[21] J. Gao, Y. Jiang, Z. Liu, X. Yang, C. Wang, X. Jiao, Z. Yang, and J. Sun,
“Semantic learning and emulation based cross-platform binary vulner-
ability seeker,” IEEE Transactions on Software Engineering, pp. 1–1,
2019.

[22] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discover-
ing vulnerabilities with code property graphs,” in 2014 IEEE Symposium

on Security and Privacy, pp. 590–604, IEEE, 2014.

[23] Y. Zheng, S. Pujar, B. Lewis, L. Buratti, E. Epstein, B. Yang, J. Laredo,
A. Morari, and Z. Su, “D2A: A Dataset Built for AI-Based Vulnerability
Detection Methods Using Differential Analysis,” in Proceedings of the

ACM/IEEE 43rd International Conference on Software Engineering:

Software Engineering in Practice, ICSE-SEIP ’21, (New York, NY,
USA), Association for Computing Machinery, 2021.

[24] NIST, Juliet test suite v1.3, 2017. https://samate.nist.gov/SRD/testsuite.
php.

[25] MITRE, Common Weakness Enumeration, 2020. https://cwe.mitre.org/
data/index.html.

[26] Github Repository for This Paper’s data and Code, 2021. https://github.
com/ARiSE-Lab/VELVET.

[27] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-
grained interpretations,” in Proceedings of the 29th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, ESEC/FSE 2021, (New York, NY,
USA), p. 292–303, Association for Computing Machinery, 2021.

[28] D. Tarlow, S. Moitra, A. Rice, Z. Chen, P.-A. Manzagol, C. Sutton,
and E. Aftandilian, “Learning to fix build errors with graph2diff neural
networks,” 2019.

[29] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” 2017.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings

of the 31st International Conference on Neural Information Processing

Systems, NIPS’17, p. 6000–6010, 2017.

[31] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A
transformer-based approach for source code summarization,” in ACL,
pp. 4998–5007, 2020.

[32] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified pre-
training for program understanding and generation,” in Proceedings of

the 2021 Conference of the North American Chapter of the Association

for Computational Linguistics, 2021.

[33] T. Lutellier, V. H. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut:
Combining context-aware neural translation models using ensemble for
program repair,” 2020.

[34] Y. Ding, B. Ray, D. Premkumar, and V. J. Hellendoorn, “Patching as
translation: the data and the metaphor,” in 35th IEEE/ACM International

Conference on Automated Software Engineering, ASE ’20, 2020.

[35] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A pre-trained model for
programming and natural languages,” in Findings of the Association

for Computational Linguistics: EMNLP 2020, (Online), pp. 1536–1547,
Association for Computational Linguistics, Nov. 2020.

[36] V. Kovalenko, F. Palomba, and A. Bacchelli, “Mining file histories:
Should we consider branches?,” in 2018 33rd IEEE/ACM International

Conference on Automated Software Engineering (ASE), pp. 202–213,
2018.

[37] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?,” in Proceedings of the 31st International Conference on

Software Engineering, ICSE ’09, (New York, NY, USA), p. 485–495,
Association for Computing Machinery, 2009.

[38] joern.io, Joern, 2021. https://github.com/octopus-platform/joern.git.

[39] P. Fernandes, M. Allamanis, and M. Brockschmidt, “Structured Neural
Summarization,” in International Conference on Learning Representa-

tions (ICLR), 2019.

[40] NIST, National Vulnerability Database (NVD), 2020. https://nvd.nist.
gov.

[41] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin, “Vuldeelocator: A
deep learning-based fine-grained vulnerability detector,” 2020.

[42] X. Du, B. Chen, Y. Li, J. Guo, Y. Zhou, Y. Liu, and Y. Jiang, “Leopard:
Identifying vulnerable code for vulnerability assessment through pro-
gram metrics,” in Proceedings of the 41st International Conference on

Software Engineering, ICSE ’19, p. 60–71, IEEE Press, 2019.

[43] M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y. Le Traon, and
M. Harman, “The importance of accounting for real-world labelling
when predicting software vulnerabilities,” in Proceedings of the 2019

27th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, ESEC/FSE
2019, (New York, NY, USA), p. 695–705, Association for Computing
Machinery, 2019.

969

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 04,2022 at 18:48:47 UTC from IEEE Xplore. Restrictions apply.

[44] C. Calcagno and D. Distefano, “Infer: An automatic program verifier for
memory safety of c programs,” in Proceedings of the Third International

Conference on NASA Formal Methods, NFM’11, (Berlin, Heidelberg),
p. 459–465, Springer-Verlag, 2011.

[45] D. A. Wheeler, FlawFinder. https://dwheeler.com/flawfinder/.
[46] S. S. Inc., Rough Audit Tool for Security, 2013. https://github.com/

andrew-d/rough-auditing-tool-for-security.
[47] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,

P. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez, “Moving
fast with software verification,” in NASA Formal Methods (K. Havelund,
G. Holzmann, and R. Joshi, eds.), (Cham), pp. 3–11, Springer Interna-
tional Publishing, 2015.

[48] GitHub, GitHub Code Security, 2021. https://docs.github.com/en/
code-security.

[49] Codacy, Codacy Security Scan, 2021. https://docs.codacy.com/
repositories/security-monitor/.

[50] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” 2019.

[51] R. Abreu, P. Zoeteweij, and A. J. c. Van Gemund, “An evaluation of sim-
ilarity coefficients for software fault localization,” in 2006 12th Pacific

Rim International Symposium on Dependable Computing (PRDC’06),
pp. 39–46, 2006.

[52] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accu-
racy of spectrum-based fault localization,” in Testing: Academic and

Industrial Conference Practice and Research Techniques - MUTATION

(TAICPART-MUTATION 2007), pp. 89–98, 2007.
[53] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-based

software diagnosis,” ACM Trans. Softw. Eng. Methodol., vol. 20, Aug.
2011.

[54] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th

IEEE/ACM International Conference on Automated Software Engineer-

ing, ASE ’05, (New York, NY, USA), p. 273–282, Association for
Computing Machinery, 2005.

[55] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in 2014 IEEE Seventh Inter-

national Conference on Software Testing, Verification and Validation,
pp. 153–162, 2014.

[56] M. Papadakis and Y. Le Traon, “Using mutants to locate ”unknown”
faults,” in 2012 IEEE Fifth International Conference on Software Test-

ing, Verification and Validation, pp. 691–700, 2012.
[57] L. Zhang, L. Zhang, and S. Khurshid, “Injecting mechanical faults

to localize developer faults for evolving software,” in Proceedings of

the 2013 ACM SIGPLAN International Conference on Object Oriented

Programming Systems Languages & Applications, OOPSLA ’13, (New
York, NY, USA), p. 765–784, Association for Computing Machinery,
2013.

[58] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple fault
diagnosis dimensions for deep fault localization,” ISSTA 2019, (New
York, NY, USA), p. 169–180, Association for Computing Machinery,
2019.

[59] Z. Zhang, Y. Lei, X. Mao, and P. Li, “Cnn-fl: An effective approach for
localizing faults using convolutional neural networks,” in 2019 IEEE

26th International Conference on Software Analysis, Evolution and

Reengineering (SANER), pp. 445–455, 2019.
[60] Y. Lou, A. Ghanbari, X. Li, L. Zhang, H. Zhang, D. Hao, and

L. Zhang, “Can automated program repair refine fault localization? a
unified debugging approach,” in Proceedings of the 29th ACM SIGSOFT

International Symposium on Software Testing and Analysis, ISSTA 2020,
(New York, NY, USA), p. 75–87, Association for Computing Machinery,
2020.

970

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 04,2022 at 18:48:47 UTC from IEEE Xplore. Restrictions apply.

