Strong suppression of electron convection in Dirac and Weyl semimetals
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It is shown that the convective instability in electron fluids in three- and two-dimensional (3D and
2D) Dirac and Weyl semimetals is strongly inhibited. The major obstacles for electron convection
are the effects of the Coulomb forces and the momentum relaxation related to the interaction with
impurities and phonons. The effect of the Coulomb forces is less pronounced in 2D materials, such
as graphene. However, momentum relaxation still noticeably inhibits convection making it very

difficult to achieve in practice.

Introduction.— Electron hydrodynamics is an unusual
transport regime that can be realized in clean crystals.
As first conjectured by Gurzhi in the 1960s [1, 2], elec-
trons could form a hydrodynamic fluid when the electron-
electron scattering rate is larger than the scattering rates
of electrons on impurities and phonons. In such a regime,
the electron transport should reveal some conventional
hydrodynamic effects, including the Poiseuille-like pro-
file of the current in a wire, the formation of vortices,
etc.

Historically, a hydrodynamic electron flow was first ob-
served in a two-dimensional (2D) electron gas of high-
mobility (Al, Ga)As heterostructures [3, 4]. Later, a sim-
ilar regime was confirmed in the ultrapure 2D metal pal-
ladium cobaltate (PdCoOz) [5] and graphene [6-12]. (For
reviews on electron hydrodynamics, see Refs. [13, 14].)
Electron hydrodynamics in graphene could be experi-
mentally revealed via a negative nonlocal resistance and
the formation of current vortices [15-19], higher than bal-
listic conduction in constrictions [8, 20], and certain col-
lective modes [21-24]. The profile of electric currents
in the hydrodynamic regime can be reconstructed from
the stray magnetic fields [11] or the Hall field across
the graphene ribbon [12]. Recently, evidence of three-
dimensional (3D) relativisticlike hydrodynamic electron
transport was reported in the Weyl semimetal tungsten
diphosphide WP [25]. This shows that Dirac and Weyl
semimetals provide another promising platform for inves-
tigating the hydrodynamic regime of the electron trans-
port in solids.

Dirac and Weyl semimetals are novel materials whose
electron quasiparticle spectrum is described by the cor-
responding equations in the vicinity of the band-crossing
points known as Dirac points and Weyl nodes [26-28], re-
spectively. Representative material realizations of Dirac
semimetals include A3Bi (A = Na, K, Rb) [29, 30]
and CdsAsy [31-33] in 3D, as well as graphene in 2D.
Weyl semimetals are realized, e.g., in transition metal
monopnictides (TaAs, TaP, NbAs, and NbP) [34-40],
EquQASQ [41, 42], COgSHQSQ [43*45], etc.

Guided by experience with conventional fluids, one
may expect similar hydrodynamic effects to show up
in the electron fluid. For example, the possibility of
a preturbulent regime in graphene was proposed in
Refs. [46, 47]. (Kagome metals may provide a com-
pelling platform for realizations of turbulence in electron
fluids [48].) The formation of the Rayleigh-Bénard con-
vective cells in graphene was suggested and numerically
studied in Ref. [49]. Generally, the Rayleigh-Bénard in-
stability occurs in fluids subject to a buoyancy force (e.g.,
caused by gravity) and temperature gradient that results
in a local thermal expansion of fluid [50, 51]. If the buoy-
ancy force is strong enough, it becomes favorable to de-
velop regular convective cells where the heat transfer is
greatly assisted by the fluid motion. The observation of
such cells would be a definitive signature of electron hy-
drodynamics. The possibility of electron convection is
not only of academic interest but also can have impor-
tant practical applications. Indeed, the convective regime
may be invaluable for an effective heat transfer because
the Nusselt number, which quantifies the ratio of convec-
tive to conductive heat transfer, is up to 10 (1000) times
larger for a laminar (turbulent) flow. Since there are sig-
nificant differences between conventional fluids and elec-
tron plasma in semimetals, it is necessary to investigate
the onset conditions for electron convection in detail.

In this Letter, we show that the Rayleigh-Bénard in-
stability in electron fluids in Dirac and Weyl semimetals
is strongly inhibited. We identify two major obstacles for
the electron fluid convection: (i) Coulomb forces and (ii)
momentum-relaxation effects. Unlike many conventional
fluids, the electron plasma is electrically charged. In a
semimetal, the overall electric neutrality is preserved by
the compensating charge of immovable lattice ions. Any
deviation from local neutrality induces a strong electric
field and, consequently, is energetically unfavorable. In
other words, the effects of the Coulomb forces strongly
suppress local expansion and compression of the electron
fluid. For the same reason, a temperature gradient can-
not easily induce sufficiently large local density devia-



tions needed for triggering convection.

We support this qualitative argument by a quantita-
tive estimate of the Rayleigh number. Due to the afore-
mentioned obstacles, the latter is so large in 3D Dirac
and Weyl semimetals that achieving convection becomes
practically impossible under any realistic conditions. As
one might expect, the effects of the Coulomb forces are
less pronounced in 2D materials. However, due to ubig-
uitous disorder effects and interaction with phonons, the
momentum relaxation also noticeably inhibits a convec-
tive flow in both 2D and 3D systems.

Model.— The starting point in our discussion of the
electron fluid is the Navier-Stokes equation [13, 14],
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Here, w = € + P is the enthalpy, € is the energy density,
P is the pressure, u is the electron fluid velocity, n is the
electron number density, —e is the electron charge, and
v is the Fermi velocity. Further, n and ¢ are the shear
and bulk viscosities, respectively. In relativisticlike sys-
tems, ¢ ~ 0 [52] and 1 = Minw/v%, where Nkin ~ VETee
is the kinematic shear viscosity and 7., is the electron-
electron interaction time (see, e.g., Refs. [53, 54]). For
a relativisticlike fluid, P = €/d and w = (d + 1)e/d,
where d is the spatial dimension. The momentum relax-
ation, which is inevitable in real solids, is quantified by
the relaxation time 7 that contains contributions from
scattering on impurities and phonons. For simplicity, we
assume that the electron fluid is isotropic, which is suffi-
cient for the purposes of this study. Finally, we account
for an electric field E, which includes both external and
induced contributions.
The electric and energy current densities are
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Here, p is the chemical potential, T is temperature, and o
is the intrinsic conductivity [13]. The electric and energy
currents satisfy the standard continuity relations

—edm+(V-J)=0 (4)
and
e+ (V-J9)=(E-J), (5)

respectively.

Since the electron fluid is electrically charged, the
hydrodynamic equations should be supplemented by
Maxwell’s equations. By assuming a slow flow, we neglect

the effects of dynamic magnetic fields on fluid motion. In
such a quasistatic approximation, only the Gauss law

V -E = —4medn (6)

is relevant. Here, —edn is the deviation of the electron
charge density from the background equilibrium value.
As we will show below, electric fields induced by dn play
a profound role in suppressing electron convection in 3D.
The Coulomb forces also hinder convection in 2D sys-
tems, but their effect is less dramatic.

It is worth noting that the Coulomb interactions are
responsible for both viscosity of the electron fluid and
screening effects. Indeed, it is the microscopic interparti-
cle Coulomb force that governs the electron-electron scat-
tering and the formation of electron fluid. On the other
hand, the Gauss law in Eq. (6) determines a background
electric field, which comes as an average uncompensated
field over macroscopic distances. This field is induced
when the electron fluid is compressed or expanded locally
with respect to the ion lattice.

To investigate the possibility of electron convection, we
follow the same conceptual approach as in conventional
fluids (see, e.g., Refs. [55, 56]), but amend the hydrody-
namic equations with the Gauss law. As the first step, we
find the steady-state solutions for the temperature pro-
file and the electric field in the absence of hydrodynamic
flow. Then, by using these solutions as a background, we
derive the threshold criterion for convection.

Steady-state solution without flow.— Let us start by
determining the steady-state solution for the electric field
and temperature inside a slab of finite thickness L along
the x direction. For simplicity, we assume that the slab
is infinite along other directions.

Temperature T'(x) and the electric potential p(x) take
different values on the opposite surfaces of the slab, i.e.,

T(x=0)=T.,  T(z=L)=T1Tr, (7)

plx=0)=¢L, @@=1L)=¢r. (8)
We employ a perturbation scheme where deviations of
all quantities (denoted by a tilde) are small compared to
their global equilibrium values (denoted by subscript 0),
e.g., T/To < 1, etc. By setting u = 0 in Egs. (1) through
(6), one finds that the temperature function T'(z) is de-

termined by the Laplace equation, AT = 0. Its solution
that satisfies the boundary conditions (7) reads

%x. (9)

By taking into account this solution, Eqs. (4) and (6) can
be rewritten as follows:

Afi = dme*in = ¢Apji 4 4me? (9rn)T, (10)
Ap = —4ren, (11)
where grrp = \/4me?(0,,n) is the Thomas-Fermi wave vec-

tor. Its explicit expression is given in the Supplemental
Material [57].
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By using the equation of motion (1) at u = 0 and re-
quiring the overall charge neutrality of the sample, we
obtain the steady-state expressions for 1 and ¢ (see Sup-
plemental Material [57]). They reveal that the electric
field is nonvanishing but screened strongly inside the
sample. Also, the electric charge deviations are small
(n = 0) in the bulk of the slab. However, both elec-
tric field and charge density are noticeably nonuniform
near the surfaces. Since convection is determined largely
by bulk properties, it is justified to ignore the inhomo-
geneity of the electric field and other variables near the
surfaces. Such an approximation simplifies analytical cal-
culations but should not affect the qualitative results for
sufficiently thick samples.

Convection threshold.— To determine the threshold of
convection, we consider a hydrodynamic flow in the back-
ground of the screened electric field and the temperature
gradient obtained in the previous section. As in conven-
tional fluids [55, 56], the analysis is simplified by using an
analog of the Oberbeck-Boussinesq approximation. The
resulting system, which is linear in the flow velocity u
and the flow-driven deviations P,, E,, ny, ty, and T,
(appearing on top of the steady-state solution), reads

d—2
VP, —jAu — {H%] vV (V-u)
= —Z}%LI: — enoE, — enyE, (12)
(u- V) +we(V-u) =0, (13)
e TO
(14)
V -E, = —4rmen,,. (15)

Here, we assumed that the cross-terms containing fluid
flow velocity and the temperature gradient are small com-
pared to other terms. In addition, we neglected the terms
that are of the second order in steady-state deviations
(e.g., nE < noE).

The last term on the right-hand side in Eq. (12) and
the first term in Eq. (13) are crucial for driving con-
vection and their analogs are included in the Oberbeck-
Boussinesq approximation for conventional fluids. In-
deed, the term —enyE is similar to the buoyancy force for
regular fluids. Recall that buoyancy is the consequence
of an external (e.g., gravitational) force exerted on a fluid
with a density gradient, typically induced by a temper-
ature difference between the top and bottom surfaces.
In the case of electrons, gravitation has negligible effects
and the role of buoyancy force is played by the electric
force related to the in-medium electric field E. There-
fore, another key requirement for achieving convection is
the nonzero compressibility of the fluid. It is taken into
account by the first term in Eq. (13).

It is very important for the problem under considera-
tion that, unlike ordinary fluids, expansion and compres-

sion of the electron fluid give rise to strong electric fields.
Indeed, in view of the Gauss law (15), any change of the
electric charge density leads to an electric field. As we
will explicitly show below, this is one of the key factors
inhibiting convection in electron fluids as the energy price
for the appearance of electric fields is very high.

To estimate the threshold for convection, we use the
bulk steady-state solutions, 7 ~ 0 and E = Ex%, which
include both external and induced fields. Then, (u -
V)W = ug(0,0) o uy (Tr —Tr). The explicit expres-
sion for (0, w) as well as the general solutions to Eqs. (12)
through (15) are given in the Supplemental Material [57].

We use a plane-wave ansatz for the hydrodynamic vari-
ables uy, Ty, and pi,, e.g.,

T, = Cre'kt Ttk (16)

where k| is the wave vector perpendicular to the surface
normal. The characteristic equation for the system of
Egs. (12) through (15) reads [57]

1 k?
K (k2 + A—2> (K* + ¢p) — L—jRa =0, (17
G

where k? = k? + k2. In Eq. (17), we used the following
shorthand notations:

2

AG _ UFTT] _ \/m, (18)
wo
eAnoE(0,w)T,

Ra = L4W [n0(8rn) — so(dun)]. (19)

Here, \¢ is the Gurzhi length that quantifies the momen-
tum relaxation and Ra is the Rayleigh number. In the
limit A\¢ — oo and qrrp — 0, the characteristic equation
(17) coincides with the textbook result for conventional
fluids (cf. Ref. [55]). Convective instability characterized
by periodic spatial pattern of the fluid velocity is realized
for real k, and k. This requires Ra 2 Rami,, where
Ramin is determined from the characteristic equation (17)
with wave vectors constrained by boundary conditions.
To derive the convection threshold Rapyiy, let us deter-
mine the allowed values of k; in Eq. (17). They follow
from the boundary conditions for T}, and u, i.e.,
Tu(x=0,L)=0, wu,(x=0,L)=0. (20)
For the perpendicular components of velocity u, , we em-
ploy the free-surface boundary conditions, which provide
the most conservative estimate of the convection thresh-
old. Indeed, the no-slip boundary conditions can be con-
sidered as a source of additional dissipation that further
inhibits convection; see, e.g., Ref. [56] for neutral fluids.
We found that the free-surface boundary conditions are
satisfied for |k;| = 7n/L with n = 1,2,3,... (see Sup-
plemental Material [57] for details). It is worth noting,
however, that the exact form of the boundary conditions



is not important for our qualitative arguments because
they only determine the allowed values of k.

The characteristic equation (17) gives the following re-
lation between the Rayleigh number and wave vector:

kD4 k2) (B + k24257 (KT + K2 + gip)

_
Ra=1L kﬁ_

(21)
This shows that the Coulomb forces and the momen-
tum relaxation effects, quantified by grp and Ag, re-
spectively, increase the minimal value of the Rayleigh
number Ranin needed to achieve convection. In order to
determine Ramin, one should minimize Eq. (21) with re-
spect to the wave vectors allowed by the boundary con-
ditions, i.e., at k, = w/L. The general expression for
the minimal Rayleigh number at finite A¢ and nonzero
grr is cumbersome (see also Supplemental Material [57]).
Since the Rayleigh number Ra increases with k,, we can
estimate the corresponding lower bound Rag (which is
smaller than the actual Rapi,) by setting k, = 0 and
neglecting k; compared to ¢grr and /\51 in Eq. (21), i.e.,

Rag = L¢3 /0% < Ramin. (22)

It is instructive to mention that grp > 7/L and Ag <
L/m hold for realistic samples of 3D Dirac and Weyl
semimetals and, therefore, the above estimate is indeed
reasonable. To verify this, let us consider typical param-
eters for semimetals, e.g., uop = 20 meV, Ty = 25 K,
and use the Fermi velocity vr ~ 1.4 x 107 cm/s [58]. In
this case, one obtains grr ~ 9.9 x 10 cm~! by assum-
ing quasiparticles with a 3D relativisticlike energy spec-
trum. For such a large Thomas-Fermi wave vector, one
finds that gprp > 7/L in a wide range of experimentally
achievable samples [59]. As for the momentum relax-
ation length, we estimate A\ ~ 0.4 ym at 7 = 0.1 ns and
Tee = 0.3 ps, which is quite small compared to a typical
thickness of Dirac semimetal slabs.

By using Eq. (22) and the same characteristic param-
eters as before, we estimate the lower bound for Rami,

L>4. (23)

1 cm

Rag = L*¢3p/\% =~ 6.5 x 10%2 (

It is instructive to compare this estimate with the bench-
mark result for conventional fluids. By taking A\g — oo
and grp = 0, we find that the critical value of the
Rayleigh number is reached for k, = /L and k| min =
7/(vV2L) giving Ramin = 2774 /4 ~ 657.5.

The enormous value of the lower bound for the mini-
mal Rayleigh number (23) implies that convection in the
electron fluid is strongly suppressed. Indeed, Eq. (19)
gives the following estimate for the Rayleigh number in
Dirac semimetals:
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FIG. 1. Solid lines show the minimal Rayleigh number needed
for convection. The realistic Rayleigh numbers achievable in
Dirac semimetals are shown by the shaded regions. Dashed
lines show the Rayleigh number (24) calculated for §7" = Ty
and F = 10 V/m. The Gurzhi length is A\¢ ~ 0.4 pm and
the values of the Thomas-Fermi wave vector are grr &~ 2 X
10° cm™! at po = 1 meV, grr =~ 5.2 X 10° cm™! at o =
10 meV, and grr ~ 2.4 X 107 em ™! at o = 50 meV.

where E is the in-medium field that includes both exter-
nal and induced components, and 67/Tp is the normal-
ized temperature difference between the slab surfaces. As
is easy to see, the estimate in Eq. (24) is many orders of
magnitude smaller than Rag for any reasonable electric
field and temperature gradient available in experiments.
Thus, in agreement with the heuristic arguments, con-
vection is ruled out for 3D Dirac semimetals.

The minimal Rayleigh number Rani, as a function of
the slab width L is presented by solid lines in Fig. 1 for
the three fixed values of the chemical potential: uy =
1 meV (red), po = 10 meV (blue), and po = 50 meV
(green) [60]. As we see, the minimal Rayleigh number
needed for convection is enormous for macroscopic sam-
ples. It approaches the value in conventional fluids, i.e.,
Ramin = 277% /4, only for extremely thin slabs. In the
same figure, the shaded regions show the ranges of re-
alistic estimates for the Rayleigh number obtained from
Eq. (24) by assuming rather conservative values §7" < Ty
and E < 10 V/m. It is clear that the realistic values
of the Rayleigh number are many orders of magnitude
smaller than Ra,i, required for convection.

Graphene.— In view of the great interest in electron
hydrodynamics in graphene, let us re-examine whether
the convective instability is possible in the 2D case.
While the electron convection in graphene was already
studied in Ref. [49], the effects of the Coulomb forces
and the momentum dissipation were not taken into ac-
count. The screening effects in gated graphene can be



treated in the “gradual channel” approximation [61, 62]
(see also Ref. [21]). In this approximation, the induced
electric field is given by

E, = %Vnu, (25)
where C' = ¢/(4wL,) is the capacitance per unit area, &
is the dielectric constant, and L, is the distance to the
gate. The minimum Rayleigh number is determined sim-
ilarly to the 3D case considered above, but the Gauss law
(15) is replaced by Eq. (25) (for details, see Supplemental
Material [57]). We obtain

(B2 +k2)" (K2 + K2+ 252 (1+Q?)

Ra = L* . ., (26)
k1

where Q@ = +/e?(9,n)/C. For T, o sin(kyx), the

boundary conditions are satisfied for |k,| = 7n/L and

n =1,2,3,.... As in the 3D case, the Coulomb forces

and momentum relaxation increase the minimal Rayleigh
number needed to achieve convection.

Quantitatively, the effects of the Coulomb forces are
much weaker in 2D. This is also supported by numeri-
cal estimates. Indeed, by using typical parameters for
graphene, ie., vp = 1.1 x 108 cm/s, gy = 100 meV,
Tp = 100 K, Ly, = 100 nm, and ¢ = 1, we esti-
mate @ ~ 6.6 (see Supplemental Material [57] for de-
tails). Therefore, the Coulomb forces increase Ramin
only by about an order of magnitude. The momentum
relaxation effects, on the other hand, are very impor-
tant. We estimate \¢ ~ 2.6 ym at 7 = 0.1 ns and
Tee = (R?v%/e*)(huo/TE) ~ 0.2 ps. The corresponding
minimal value of the Rayleigh number is

Ramin ~ 2.7 x 10° (27)

at L = 100 gm. This is almost four orders of magnitude
larger than the benchmark value 277%/4. The Rayleigh
number for graphene is estimated as
3
). e

Our estimate suggests that in order to exceed the min-
imal Rayleigh number (27), centimeter-sized graphene
samples are needed when the total electric fields are of
the order of 1 V/m.

Thus, the momentum relaxation significantly inhibits
convection in 2D systems too. The effect of the Coulomb
forces, however, is less pronounced compared to the case
of 3D Dirac semimetals. This situation resembles the
role of the Coulomb forces in the spectrum of plasmons.
Indeed, the plasmon dispersion relation is gapped in 3D
due to the efficient screening of electric charge oscilla-
tions. On the other hand, in 2D systems the spectrum
of plasmons remains gapless in the gradual channel ap-
proximation, where the Coulomb forces only enhance the
plasma velocity.

Ra~4.4 x 107 =
4 Y T 1 V/m

6TE<L

1 cm

Summary.— In this Letter, we showed that the convec-
tive instability is strongly inhibited in the electron fluid
in 2D and 3D Dirac and Weyl semimetals. We identi-
fied the following two major inhibitors: (i) the Coulomb
forces and (ii) the momentum relaxation effects due to
scattering on impurities and phonons. Both are unavoid-
able and play a critical role in the charged electron fluid
in semimetals. For realistic parameters in 3D Dirac and
Weyl semimetals, the effect of the Coulomb forces domi-
nates over the momentum relaxation and leads to an ex-
tremely large convection threshold. In 2D systems such
as graphene, the key role is played by the momentum
relaxation that increases the minimum Rayleigh number
needed for convection. The corresponding threshold val-
ues are a few orders of magnitude larger than in conven-
tional fluids. Our findings imply that the electron fluid
convection is unlikely to be realized in Dirac and Weyl
semimetals.

While we focused on the fluid of electron quasipar-
ticles with an isotropic relativisticlike dispersion rela-
tion, similar arguments should apply to systems with
anisotropic and even nonrelativisticlike dispersion rela-
tions, although the quantitative details will be different.
For example, the critical value of the Rayleigh number
may be different along different crystal directions for ma-
terials with anisotropic spectra. Because of the crucial
role of the Coulomb forces, we speculate that fluids made
of neutral quasiparticles such as magnons (if their hydro-
dynamic regime is realized [63, 64]) promise to be better
candidates for convection in solid-state materials. It is
tempting to suggest that phonon fluids [2, 65-68] might
also demonstrate convective instability. It is not clear,
however, whether the analogy with conventional fluids is
complete and the equivalent of buoyancy forces is present.
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