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SUMMARY

Sequential Monte Carlo algorithms have been widely accepted as a powerful computational
tool for making inference with dynamical systems. A key step in sequential Monte Carlo is
resampling, which plays a role of steering the algorithm towards the future dynamics. Sev-
eral strategies have been used in practice, including multinomial resampling, residual resam-
pling, optimal resampling, stratified resampling, and optimal transport resampling. In the one-
dimensional cases, we show that optimal transport resampling is equivalent to stratified resam-
pling on the sorted particles, and they both minimize the resampling variance as well as the
expected squared energy distance between the original and resampled empirical distributions. In
general d-dimensional cases, if the particles are first sorted using the Hilbert curve, we show that
the variance of stratified resampling is O(m−(1+2/d)), an improved rate compared to the previ-
ously known best rate O(m−(1+1/d)), where m is the number of resampled particles. We show
this improved rate is optimal for ordered stratified resampling schemes, as conjectured in Gerber
et al. (2019). We also present an almost sure bound on the Wasserstein distance between the orig-
inal and Hilbert-curve-resampled empirical distributions. In light of these results, we show that,
for dimension d > 1, the mean square error of sequential quasi-Monte Carlo with n particles can
be O(n−1−4/{d(d+4)}) if Hilbert curve resampling is used and a specific low-discrepancy set is
chosen. To our knowledge, this is the first known convergence rate lower than o(n−1).

Some key words: Hilbert space-filling curve; Particle filter; Resampling; Sequential Monte Carlo; Sequential quasi-
Monte Carlo; Stratification.
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1. INTRODUCTION

Sequential Monte Carlo, which dates back to the study of self-avoiding random walks and
molecular structural optimizations (Hammersley & Morton, 1954; Rosenbluth & Rosenbluth,
1955; Siepmann & Frenkel, 1992; Grassberger, 1997), has been studied intensively in the past
two decades and applied broadly to high-dimensional statistical inference, signal processing,
biology and many other areas (Liu & Chen, 1998; Doucet et al., 2001). Through building up
the sampling (trial) distribution sequentially, a set of weighted samples can be used to approxi-
mate the high-dimensional target distribution. The state-space model is a particularly interesting
dynamical system that has been treated with sequential Monte Carlo. The model is defined by
Markovian dynamics for a hidden state and an emission distribution that relates the hidden state
to noisy observations. The hidden state, for instance, can represent the underlying volatility in
an economical time series (Taylor, 2008; Gatheral, 2011), or the location in a terrain navigation
problem (Bergman et al., 1999; Bergman, 2001; Gustafsson et al., 2002), or many others. In such
models, characterizing the distribution of the hidden state is known as the filtering problem, and
within this context, sequential Monte Carlo is also known as the bootstrap filter (Gordon et al.,
1993), Monte Carlo filter (Kitagawa, 1996), or particle filter (Del Moral, 1997).

Roughly speaking, sequential Monte Carlo is built based on sequential importance sampling,
which recursively simulates a future state, reweights the sample path, and then potentially re-
samples the paths (Liu & Chen, 1998). In sequential imputation (Kong et al., 1994), which is a
form of sequential importance sampling without any resampling, weight degeneracy arises as an
inevitable problem. Since the importance weights are updated recursively at each step, stochas-
tically the total weights will concentrate on a very few samples, leading to an exponentially
increasing coefficient of variation. One effective strategy to avoid weight degeneracy is to re-
sample from the current samples according to the corresponding weights (Liu & Chen, 1995).
Resampling alone does not provide any additional information but only adds noise to the esti-
mate of the current state. A main motivation for resampling is the belief that particles with small
weights are unpromising for further development and thus should be discarded so as to reallocate
resources to particles with larger weights for exploring regions that may be more promising for
the future. Liu & Chen (1995) provided an early attempt at analyzing resampling for statistical
models, providing some useful insights but lacking a rigorous theory.

There are various means to resample from a collection of weighted particles. Informally, one
would like to minimize the “resampling randomness” over a certain class of valid resampling
schemes. This goal is closely related to the balanced sampling design in survey sampling (Tillé,
2006, Chapter 8), which seeks to reduce the sampling variance using auxiliary variables. A naı̈ve
way to resample is bootstrap resampling or multinomial resampling (Gordon et al., 1993), where
the new particles are sampled from independent and identically distributed multinomial distri-
butions based on the original particle weights. Residual resampling (Liu & Chen, 1998) and
stratified resampling (Kitagawa, 1996) are two more popular resampling schemes in practice.
These methods have also been studied and used in scientific fields outside of statistics under
different names of resampling, such as parent selection for genetic algorithms (Brindle, 1980,
Chapter 4.2) and, in physics, stochastic reconfiguration (Gubernatis et al., 2016, Chapter 10.3).
Douc & Cappé (2005) compared the above resampling schemes and concluded that residual
resampling and stratified resampling always have a smaller conditional variance than multino-
mial resampling does. For discrete state-spaces, the optimal resampling method (Fearnhead &
Clifford, 2003) offers an interesting way of diversified sampling. Besides these traditional re-
sampling schemes, Reich (2013) proposed optimal transport resampling, an approach borrowing
ideas from transportation theory. However, to the best of our knowledge, there has been no theo-
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Stratification and Optimal Resampling for Sequential Monte Carlo 3

retical guarantee for optimal transport resampling aside from its validity. Recently, Gerber et al.
(2019) showed that stratified resampling after ordering the particles by the Hilbert space-filling
curve has a relatively low conditional variance in some cases, which is also one of our interests
in this article.

Sequential quasi-Monte Carlo, introduced in Gerber & Chopin (2015), is a class of algorithms
taking advantage of Hilbert curve resampling and quasi-Monte Carlo point sets. By constructing
a low-discrepancy set on a product space, sequential quasi-Monte Carlo combines resampling
and growth and numerically outperforms regular sequential Monte Carlo significantly. Theoreti-
cally, however, the convergence rate in terms of the mean square error has only been shown to be
o(n−1) for certain low-discrepancy sets. It is naturally believed that the rate could be improved
and should depend on the dimension d.

In this paper, we focus on theoretical properties of various resampling schemes and sequential
quasi-Monte Carlo. We show that, in the one-dimensional case, optimal transport resampling is
equivalent to stratified resampling on the sorted particles, which minimizes the resampling vari-
ance as well as the expected squared energy distance between the empirical distributions before
and after resampling. In the d-dimensional case, a natural generalization of ordered stratified
sampling in one dimension is Hilbert curve resampling (Gerber et al., 2019), which is stratified
resampling on particles sorted using the Hilbert space-filling curve. We prove that its resampling
variance is of the order O(m−(1+2/d)) when d > 1, where m is the number of resampled parti-
cles. This improves the previous best known rate O(m−(1+1/d)). We show that the order cannot
be further improved by resorting to a different ordering rule, confirming a conjecture in Gerber
et al. (2019). We also derive a bound on the Wasserstein distance between the empirical distribu-
tions before and after Hilbert curve resampling. Based on the theoretical results on resampling,
we further design a low-discrepancy set for sequential quasi-Monte Carlo and prove that the
mean square error under this set is of the order O(n−1−4/{d(d+4)}) for d > 1. This improves
the original rate o(n−1). We believe this low-discrepancy set captures some key intuitions of
quasi-Monte Carlo; the tools, moreover, may be of independent interest for the analysis of other
low-discrepancy sets.

2. PRELIMINARIES

2.1. Notations
We use superscripts to denote the step or iteration and subscripts for the sample index; the

temporal notations are omitted for the sake of clarity whenever there is no confusion. The
target distribution is denoted as π(x), while g(x) denotes a trial distribution. When written
without a subscript, X and W mean (X1, X2, . . . , Xn) and (W1,W2, . . . ,Wn) for an appro-
priate n, and the set of tuples (Xj ,Wj)

n
j=1 refers to a set of weighted samples, where Wj ≥

0, j = 1, 2, · · · , n. Unless stated otherwise, the Wj’s are normalized so that
∑n

j=1Wj = 1.
We use X̃1, X̃2, · · · , X̃m to denote the equally weighted samples after resampling, so that
in some sense,

∑m
i=1m

−1δX̃i
≈
∑n

j=1WjδXj , where δx denotes the Dirac measure at point
x. If Xj ∈ X for j = 1, 2, . . . , n, we use X n to denote the space in which X lives. We use
Z ∼ Multinomial(1, y, p) to mean that pr(Z = yi) = pi, where p is a probability vector. We
write md(·) for the Lebesgue measure in d dimensions. The standard L2 norm is denoted as
‖ · ‖. For a vector a, diag(a) represents the diagonal matrix with the ith diagonal element being

ai. For a real number u, buc denotes the greatest integer less than or equal to u. The symbol i.i.d.∼
denotes sampling independent and identically distributed random variables.
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4 Y. LI, W. WANG, K. DENG, AND J. S. LIU

2.2. Sequential Monte Carlo
To set up future analyses, we here describe a generic sequential Monte Carlo procedure. Let

the target distribution π(x) be supported in a T -dimensional space, which can be viewed as a
joint distribution of a sequence of variables, say π(x(1:T )). We can sample sequentially from
a sequence of distributions {πt(x(1:t))}Tt=1, where πT = π. A generic sequential Monte Carlo130

algorithm is outlined in Algorithm 1.

Algorithm 1. Sequential importance sampling with resampling.

Input: A sequence of target distributions {πt(x(1:t))}Tt=1 and a sequence of trial
distributions g1(x(1)) and {g(x(t) | x(1:t−1))}Tt=2

Output: weighted particles (X
(1:T )
i ,W

(T )
i )1≤i≤n

At time t = 1,
Draw X

(1)
1 , · · · , X(1)

n from g1(X(1)).
Calculate and normalize the importance weight: W (1)

j ∝ π1(X
(1)
j )/g1(X

(1)
j ).

Resample X̃(1)
1 , X̃

(1)
2 , · · · , X̃(1)

n from X
(1)
1 , · · · , X(1)

n with probabilities
W

(1)
1 , · · · ,W (1)

n , and reweight the samples X̃(1)
1 , X̃

(1)
2 , · · · , X̃(1)

n equally with 1/n.
Let X(1)

j = X̃
(1)
j for j = 1, 2, . . . , n.

for t = 2 to T do
Draw X

(t)
j from gt(X

(t) | X(1:t−1)
j ) for j = 1, 2, . . . , n conditionally independently.

Calculate and normalize the importance weight:

W
(t)
j ∝ πt

(
X

(1:t)
j

)/{
πt−1

(
X

(1:t−1)
j

)
gt

(
X

(t)
j | X

(1:t−1)
j

)}
if t < T then

Resample X̃(1:t)
1 , X̃

(1:t)
2 , · · · , X̃(1:t)

n from X
(1:t)
1 , · · · , X(1:t)

n with probabilities
W

(t)
1 , · · · ,W (t)

n , and reweight the samples X̃(1:t)
1 , X̃

(1:t)
2 , · · · , X̃(1:t)

n equally with
1/n.
Let X(1:t)

j = X̃
(1:t)
j .

Return (X
(1:T )
i ,W

(T )
i )1≤i≤n

In the special case of a state-space model, we have

Y (t) |
(
X(1:t) = x(1:t), Y (1:t−1)

)
∼ py(· | x(t)),

X(t) |
(
X(1:t−1) = x(1:t−1), Y (1:t−1)

)
∼ px(· | x(t−1)), t = 2, · · · , T,

(1)

where px and py represent distributions as well as density functions, X(1), · · · , X(T ) are unob-
served hidden states, and Y (1), · · · , Y (T ) are the observed sequence of variables. The filtering
problem focuses on the target distribution

πT (x(1:T )) ∝
T∏
t=1

{
px(x(t) | x(t−1))py(y

(t) | x(t))
}
.

While implementing Algorithm 1 for such a state-space model, the trial distribution at each
step can be naturally (or naı̈vely) chosen as gt(x(t) | x(t−1)) = px(x(t) | x(t−1)), and thus the
corresponding importance weight can be updated as w(t) ∝ w(t−1)py(y

(t) | x(t)).135
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Stratification and Optimal Resampling for Sequential Monte Carlo 5

W1 = 0.3 W2 = 0.3 W3 = 0.1 W4 = 0.2 W5 = 0.1

Fig. 1: Illustration of stratified resampling. First line up the weights, then divide the interval into
m equal-sized subintervals. Uniformly choose one point from each subinterval and record in
which weight’s region it lands. In the presented example where m = 4, n = 5, particles 1 and 5
are resampled once, particle 2 is resampled twice and particles 3 and 4 are discarded.

2.3. Resampling matrix
Suppose we have weighted particles (Wj , Xj)

n
j=1 with weights summing to one. Without loss

of generality, we assume that the Xj’s are distinct since we can always merge particles with
identical values and add up their weights. Consider the family of resampling methods indexed
by a matrix Pm×n, where the new unweighted particles (X̃i)

m
i=1 are sampled independently from

X̃i | X,W ∼ Multinomial(1, X, (pi1, pi2, . . . , pin)),

and P has non-negative entries with
∑m

i=1 pij = mWj and
∑n

j=1 pij = 1. Note that permuting
P ’s rows does not change the resampling scheme. It can be easily verified that such a resampling
strategy is unbiased, which means that for any function φ we have

E

{
1

m

m∑
i=1

φ(X̃i) | X,W

}
=

1

m

m∑
i=1

m∑
j=1

pijφ(Xj) =
n∑
j=1

Wjφ(Xj).

We use Pm,W to denote the set of all matrices of this form and the set of all corresponding re-
sampling methods, with a slight abuse of notation. We call this collection of resampling methods
matrix resampling methods. The use of resampling matrices appeared at least as early as in Hu
et al. (2008), and subsequently in many other works (Reich, 2013; Whiteley et al., 2016; Webber,
2019). Most available resampling methods, as listed below, fit into this framework.

In multinomial resampling, each X̃i is an independent and identically distributed sam-
ple from the multinomial distribution Multinomial(1, X,W ). This corresponds to pij =
Wj for i = 1, . . . ,m, j = 1, . . . , n, as shown in Figure 2(a). In stratified resampling, we
let Ui ∼ Unif ((i− 1)/m, i/m], independently for i = 1, . . . ,m, and let X̃i = Xj if Ui ∈(∑j−1

k=1Wk,
∑j

k=1Wk

]
. See Figure 1 for an illustration. Stratified resampling corresponds to a

staircase matrix; see Figure 2(b) for an example and Definition 1 for a formal definition. In resid-
ual resampling, we first make bmWjc copies of Xj for all j = 1, . . . , n; then, apply multinomial
or stratified resampling (corresponding to Figure 2(c) and (d), respectively) for drawing the rest
m−

∑n
j=1bmWjc particles with W̃j ∝ mWj − bmWjc.

2.4. Criteria for choosing resampling schemes
To choose from the set of valid resampling procedures, we need a measure of goodness of

a resampling procedure. Let P =
∑n

j=1WjδXj and P̃ =
∑m

i=1m
−1δX̃i

. It is natural to favor a
stable process, where P̃ is close to P. Explicitly, we want to minimize E{`(P, P̃) | X,W} for
a loss function `. For example, we can pick `(P, P̃) to be [EP{φ(X)} − EP̃{φ(X)}]2 and use
the conditional variance var{m−1

∑m
i=1 φ(X̃i) | X,W} as a measure of goodness. We can also

choose ` to be the squared energy distance, which has the advantage of explicit expression and
the property that the energy distance is zero if and only if two distributions are the same. The
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6 Y. LI, W. WANG, K. DENG, AND J. S. LIU


0.3 0.3 0.1 0.2 0.1
0.3 0.3 0.1 0.2 0.1
0.3 0.3 0.1 0.2 0.1
0.3 0.3 0.1 0.2 0.1


(a) Multinomial


1
0.2 0.8

0.4 0.4 0.2
0.6 0.4


(b) Stratified


1

1
0.1 0.1 0.2 0.4 0.2
0.1 0.1 0.2 0.4 0.2


(c) Multinomial Residual


1

1
0.2 0.2 0.4 0.2

0.6 0.4


(d) Stratified Residual

Fig. 2: Examples of resampling matrices with m = 4 and n = 5, and particle weights
(W1,W2,W3,W4,W5) = (0.3, 0.3, 0.1, 0.2, 0.1).

energy distance (Rizzo & Székely, 2016) between distributions P1 and P2 is defined as the square
root of

D2(P1,P2) = 2E(‖Y1 − Y2‖)− E(‖Y1 − Y ′1‖)− E(‖Y2 − Y ′2‖),

where Y1 and Y ′1 follow P1, Y2 and Y ′2 follow P2, and the four random variables are mutually
independent. Another example is the Wasserstein distance, for p ≥ 1, defined between distribu-
tions P1 and P2 as

Wp(P1,P2) = inf
γ∈Γ(P1,P2)

{
E(Y1,Y2)∼γ(‖Y1 − Y2‖p)

}1/p
,

where Γ(P1,P2) is the set of all probability measures that have P1 and P2 as their marginal
distributions.

In Section 3, we prove that minimizing the conditional variance is equivalent to minimizing
the expected squared energy distance in one-dimensional cases, both of which can be achieved
by ordered stratified resampling (i.e., stratified resampling on the sorted particles). In Section 4,
we give upper bounds for conditional variance and expected Wasserstein distance for ordered
stratified resampling, where the particles are sorted according to the Hilbert curve in multiple
dimensions.

3. OPTIMAL RESAMPLING IN ONE DIMENSION

A good resampling scheme should ideally incorporate the information of the state values, since
the loss function usually depends on them. In this section, we show that, by incorporating the
Xj’s value information, the stratified resampling method minimizes several objectives proposed
in the literature. We consider the case in which the particles take values in a one-dimensional
space. One example is the state-space model with one-dimensional hidden states.

We first define the staircase matrix, which is the same as a stratified resampling matrix as we
show in Proposition 1. In doing so, we gain a greater insight into why ordering the states before
applying stratified resampling can lower the resampling variance.

DEFINITION 1 (STAIRCASE MATRIX). We call a matrix P staircase matrix if (i) in each row
and column of P , non-zero entries are consecutive. In other words, if pij1 6= 0 and pij2 6= 0
for j1 < j2, then for all j1 < j < j2, pij 6= 0; and (ii) for any quadruplet (i, j, k, l) such that
i < k, j < l, at least one of pil and pkj is 0.

A staircase matrix has at most n+m− 1 non-negative entries and has a clear spatial structure.
The non-negative entries form a path from the top left entry to the bottom right entry, allowing
diagonal moves. For example, Figure 2 (b) is a staircase matrix, but the other three are not. Below
we show uniqueness of the staircase representation and its relevance to stratified resampling.
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LEMMA 1. For m,n > 2 and positive ri’s and cj’s, there can only be one unique m by n
staircase matrix with non-negative entries and satisfies

∑n
j=1 pij = ri and

∑m
i=1 pij = cj .

PROPOSITION 1. Any stratified resampling scheme corresponds to a unique staircase matrix
up to row permutations.

Lemma 1 and Proposition 1 allow us to define the stratified resampling matrix.

DEFINITION 2 (STRATIFIED RESAMPLING MATRIX). We call a matrix P SR
m,W ∈ Pm,W the

stratified resampling matrix of a set of weighted particles (Xj ,Wj)
n
j=1 if P SR

m,W can be con-
verted to a staircase matrix after some row permutation.

THEOREM 1. For particles (Xj ,Wj)
n
j=1 with X1 < X2 < · · ·Xn, resampling defined by

P SR
m,W minimizes the following objectives:

(i) The conditional variance varP

(
m−1

∑m
i=1 X̃i | X,W

)
.

(ii) The expected squared energy distance EP
{
D2
(∑m

i=1m
−1δX̃i

,
∑n

j=1WjδXj

)}
.

(iii) The earth mover distance
∑m

i=1

∑n
j=1 pij`(Yi −Xj) where ` is a strictly convex function,

and Y1 < · · · < Ym is any given sequence of ascending numbers.

Remark 1. If the goal is to estimate E{φ(X)}, then ordering the states by function φ and then
applying stratified resampling gives the minimum variance. This result also appeared in Webber
(2019), where it was proved using an optimization argument. Our proof uses a similar idea and
directly shows that when the resampling variance is minimized, the resampling matrix must be a
staircase matrix and corresponds to ordered stratified resampling. A similar approach is used to
prove (iii) as well.

4. ERROR OF ORDERED STRATIFIED RESAMPLING

Intuitively, since the new particles in resampling are sampled independently, in order to min-
imize a discrepancy measure, we want to make sure that each new particle brings in little ran-
domness. It is easy to see from the staircase structure of a resampling matrix that each X̃i takes
value in a sequence of consecutive Xj’s according to the order that enables the staircase struc-
ture. Thus, if these Xj’s are ordered in the one-dimensional space and function φ(·) is Lipschitz,
then the values φ(X̃i) are bounded in a small region, which leads to the following result.

THEOREM 2. Suppose one-dimensional particles (X̃i)
m
i=1 are resampled with ordered strati-

fied resampling from (Xj ,Wj)
n
j=1, then for any Lipschitz function φ with coefficient Lφ,

var

{
1

m

m∑
i=1

φ(X̃i) | X,W

}
≤

L2
φ

4m2

(
max

1≤i≤n
Xi − min

1≤i≤n
Xi

)2

.

In multiple dimensions, it has been noticed that the Hilbert space-filling curve (Hilbert, 1935)
can help lower the sampling variance (Gerber & Chopin, 2015; He & Owen, 2016; Gerber et al.,
2019). In particular, Gerber et al. (2019) used the Hilbert curve in the context of resampling.
They showed that the resampling variance for Lipschitz functions with m particles is of order
O(m−(1+1/d)), where d is the number of dimensions. We improve this bound to O(m−(1+2/d))
and show that this new rate is the best for ordered stratified resampling schemes with any order-
ing, as conjectured in Gerber et al. (2019).
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(a) H2,1 (b) H2,2 (c) H2,3 (d) H2,4

(e) H3,1 (f) H3,2 (g) H3,3 (h) H3,4

Fig. 3: Hilbert curves of the first four orders in two and three dimensions.

A d-dimensional Hilbert curve is a continuous functionH : [0, 1]→ [0, 1]d. Its most important
properties relevant to our tasks are as follows:

(i) H is surjective.
(ii) H is Hölder continuous with exponent 1/d (He & Owen, 2016):

‖H(x)−H(y)‖ ≤ 2
√
d+ 3|x− y|1/d.

(iii) H is measure-preserving. For each Lebesgue measurable I ⊆ [0, 1], m1(I) = md(H(I)).

The Hilbert curve can be defined as the limit of a sequence of curves; see Figure 3 for an illustra-
tion in two and three dimensions. Many software packages can efficiently convert between x and
H(x), such as the Python package hilbertcurve. In practice, the computation cost of this approxi-
mation is quite minimal compared to the sampling part. We omit here the rigorous definition of
Hilbert curves and refer interested readers to Sagan (2012). For the purpose of resampling, the
most relevant property is the Hölder continuity. This ensures that H(I), the image of an interval
I ⊆ [0, 1], has its diameter bounded above by 2

√
d+ 3 ·m1(I)1/d. As an illustration, we plot

the images of H([i/k, (i+ 1)/k]) for i = 0, 1, . . . , k − 1 and k = 5, 6, 7, 8 in Figure 4.
Now we formally introduce the Hilbert curve resampling first proposed in Gerber et al. (2019).

Proposition 2 in Gerber et al. (2019) says that there exists a one-to-one Borel measurable func-
tion h : [0, 1]d → [0, 1] such that H(h(x)) = x for all x ∈ [0, 1]d. The resampling procedure is
to first sort the particles so that (h(Xj))

n
j=1 is in ascending order, and then apply stratified re-

sampling. Note that in one dimension this reduces to ordered stratified sampling. Following the
intuition in the one-dimensional case, each resampled particle is bounded in a small region in
[0, 1]d due to the Hölder continuity of H , which limits the variability of X̃i. See Figure 5 for an
illustration. Theorem 3 gives an upper bound on the resampling variance, which is an improved
bound compared to the one reported in Theorem 5 of Gerber et al. (2019).
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Stratification and Optimal Resampling for Sequential Monte Carlo 9

(a) Five parts. (b) Six parts. (c) Seven parts. (d) Eight parts.

Fig. 4: The unit square divided into several parts with equal areas based on the Hilbert curve.

(a) n = 200 particles resampled into m = 20. (b) n = 200 particles resampled into m = 30.

Fig. 5: The unit square divided into m parts based on the Hilbert curve and the particle weights.
The size of each point represents their particle weight. Each region contains particles with
weights summing to one (neighbouring regions divide weights of the particles on the bound-
ary).

THEOREM 3. Let φ : [0, 1]d → [0, 1], d > 1, be a Lipschitz function with Lipschitz coefficient
Lφ. If (Xj)

n
j=1 is sorted in ascending order by the value of h(Xj), then stratified sampling

satisfies

varHC-strat

{
1

m

m∑
i=1

φ(X̃i) | X,W

}
≤

(d+ 3)L2
φ

m1+2/d
.

Remark 2. The intuition behind Theorems 2 and 3 is the same: in stratified resampling, the
variance of each individual resampled particle is controlled because it is sampled from a set of
particles spatially close to each other. In fact, one can easily generalize Theorem 3 to the Hölder
function case: if |φ(x)− φ(y)| ≤ Lφ‖x− y‖β , β ∈ (0, 1], then

varHC-strat

{
1

m

m∑
i=1

φ(X̃i) | X,W

}
≤

(d+ 3)L2
φ

m1+2β/d
.

Remark 3. The exponent 1 + 2/d in the theorem improves the original rate 1 + 1/d in Gerber
et al. (2019). Gerber et al. (2019) conjectured that the Hilbert curve is the best choice for ordering
the particles. For clarity, we take the Lipschitz coefficient to be 1 and m = n. Define the space
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10 Y. LI, W. WANG, K. DENG, AND J. S. LIU

of valid probability vectors as

∆n =

(w1, w2, . . . , wn) ∈ Rn :
n∑
j=1

wj = 1, wi ≥ 0 for all 1 ≤ i ≤ n

 .

Theorem 3 implies that

lim sup
n→∞

n1+ 2
d sup
X∈[0,1]d×n

sup
W∈∆n

sup
φ∈Φd

varHC-strat

{
1

n

n∑
i=1

φ(X̃i) | X,W

}
≤ d+ 3,

where Φd denotes the set of 1-Lipschitz functions from [0, 1]d to [0, 1], d > 1. For other space-
filling curves with a different Hölder exponent that may be cheaper to implement, similar results
hold with an exponent different from 1 + 2/d. However, we show in Proposition 2 that no other
ordering rule can improve the exponent 1 + 2/d.

PROPOSITION 2. Let Φd be the set of 1-Lipschitz functions from [0, 1]d to [0, 1], d > 1. Let
o(x) : [0, 1]d → [0, 1] be a one-to-one function. The stratified sampling procedure after ordering
particles by o satisfies

lim sup
n→∞

n1+ 2
d sup
X∈[0,1]d×n

sup
W∈∆n

sup
φ∈Φd

varo-strat

{
1

n

n∑
i=1

φ(X̃i) | X,W

}
≥ 1

27d
.

Hilbert resampling is also stable in terms of the Wasserstein distance, as stated in Theorem 4.
The Wasserstein distance is arguably a more intuitive notion to measure the stability of a resam-
pling algorithm than conditional variance. When p ≤ d, Theorem 4 is intuitively optimal, since
m balls with radius of the order 1/m1/d are needed to cover the d-dimensional unit cube.

THEOREM 4. Under d-dimensional Hilbert curve resampling, d ≥ 1, the Wasserstein dis-
tance Wp between P̃ =

∑m
i=1m

−1δX̃i
and P =

∑n
j=1WjδXj is almost surely upper bounded

by 2
√
d+ 3 m

− 1
max(p,d) .

It is worthwhile to point out that in practice, depending on the target quantities of interest, there
may exist an effective dimension lower than d. For example, if we only care about functions of
the first d̃ coordinates, we should sort the particles using the d̃-dimensional Hilbert curve for
the first d̃ coordinates of the particles; if the particles concentrate on a d̃-dimensional subspace,
we should project the particles to this subspace and sort the particles using the corresponding
d̃-dimensional Hilbert curve.

5. MEAN SQUARE ERROR OF SEQUENTIAL QUASI-MONTE CARLO

5.1. Sequential quasi-Monte Carlo
We show here how to utilize the results in previous sections to obtain a new convergence rate

for the sequential quasi-Monte Carlo proposed in Gerber & Chopin (2015), which can be struc-
tured identically to Algorithm 1 with the same weight computation, but with different resampling
and growth steps.

Suppose there exists function Γ1(·) and Γt(·, ·) for 2 ≤ t ≤ T such that Γ1(V ) ∼ g1(·) and
Γt(X,V ) | X ∼ gt(· | X), where V ∼ Unif([0, 1]d) is independent of X . Assume at the begin-
ning of step t, we have weighted samples (X

(1:t−1)
j ,W

(t−1)
j )nj=1, which have been ordered by

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asab004/6132360 by H

arvard C
ollege Library, C

abot Science Library user on 21 April 2021



Stratification and Optimal Resampling for Sequential Monte Carlo 11

(a) Sobol sequence. (b) Stratified multiple-descendant growth. (c) Independent sampling.

Fig. 6: Comparison of low-discrepancy sets on [0, 1]2 (n = 50, k = 10, r = 5).

the Hilbert mapping h so that h(X
(t−1)
1 ) ≤ · · · ≤ h(X

(t−1)
n ). Recall that Hilbert-curve stratified

sampling can then be implemented by independently sampling Ui ∼ Unif{((i− 1)/n, i/n]} for
1 ≤ i ≤ n and let X̃(t−1)

i = X
(t−1)
σ(Ui,W ), where σ(Ui,W ) = j if

∑j−1
k=1Wk < Ui ≤

∑j
k=1Wk.

Suppose we have a low-discrepancy set U (t) = {(ui, vi) : ui ∈ [0, 1], vi ∈ [0, 1]d, 1 ≤ i ≤ n},
labeled in the way such that the u1:n are in the ascending order. Intuitively speaking, a low-
discrepancy set is a set that spreads evenly in [0, 1]1+d; see Gerber & Chopin (2015) for a more
detailed discussion. Sequential quasi-Monte Carlo combines resampling and growth by defining
X

(1)
j = Γ1(vj) and X(t)

j = Γt(X
(t−1)

σ(uj ,W
(t−1)
1:n )

, vj), for 2 ≤ t ≤ T and 1 ≤ j ≤ n. If the set U (t)

contains n independent samples from Unif([0, 1]1+d), then we recover Algorithm 1 with Hilbert
resampling. It was shown in Gerber & Chopin (2015) that some choice of U (t) (e.g., the nested
scrambled Sobol sequence) can achieve a mean square error of order o(n−1). Next, we will show
that a specifically chosen set can achieve O(n−1−4/{d(d+4)}).

5.2. Stratified multiple-descendant growth
The intuition behind sequential quasi-Monte Carlo is that the consecutive resampled particles

(X
(t)

σ(uj ,W
(t)
1:n)

)bj=a are close in space due to the Hölder continuity of the Hilbert curve, so if va:b

are more spread out, the space can be probed more consistently by stratified growth. The main
difficulty of quantifying the convergence rate of sequential quasi-Monte Carlo lies in the deter-
ministic or semi-deterministic nature of the set U (t). We exploit this intuition and construct a
specific set that enables a more careful convergence analysis.

Let n = sr, and let Uk ∼ Unif{((k − 1)/s, k/s]} be independent for 1 ≤ k ≤ s. Let
V(k−1)s+` = H(Ṽk`), where H is the d-dimensional Hilbert curve and Ṽk` ∼ Unif{((`−
1)/r, `/r]}, independently for 1 ≤ k ≤ s, 1 ≤ ` ≤ r. We define U (t)

SMG = {(Ubi/rc+1, Vi) : 1 ≤
i ≤ n}. Here, SMG stands for stratified multiple-descendant growth, because we essentially re-
sample s particles, and let each particle have r descendants in a stratified manner. This idea is
also closely related to the optimal resampling in the discrete space (Fearnhead & Clifford, 2003).
Figure 6 compares the discrepancy set generated by stratified multiple-descendant growth and
two other approaches. The next theorem focuses on bounding the mean square error of the SMG
estimate of the posterior mean of φ in a state-space model.

THEOREM 5. In a state-space model (1), we let gt(x(t) | x(t−1)) = px(x(t) | x(t−1)) and run
sequential quasi-Monte Carlo withU (t)

SMG. Assume that eachX(t) falls in a compact set, assuming
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12 Y. LI, W. WANG, K. DENG, AND J. S. LIU

to be X = [0, 1]d without loss of generality. Suppose (X
(t)
j ,W

(t)
j )1≤j≤n are the weighted sam-

ples at time t, where the number of multiple descendants r = cn2/(d+4) and particle dimension
d ≥ 2. Assume that, for any t,

(i) a(v) = πt−1 (X)−1 gt (v | X)−1 πt ((X, v)), b(v) = πt−1 ((X, v))−1 πt ((X, v, u)), c(v) =
Γt(X, v), and Γ1(v) are bounded in [−M,M ] and L-Lipschitz.

(ii) πt−1 ((X, v))−1 ∫
X πt ((X, v, u)) du is lower bounded by e > 0.

Then, for any L-Lipschitz φ bounded in [−M,M ],∣∣∣∣∣E
{∑n

j=1W
(t)
j φ(X

(t)
j )∑n

j=1W
(t)
j

}
−

∫
πt(x

(1:t))φ(x(t))dx(1:t)

∣∣∣∣∣ = O(n
− 1

2
− 2

d(d+4) ),

var

{∑n
j=1W

(t)
j φ(X

(t)
j )∑n

j=1W
(t)
j

}
= O(n

−1− 4
d(d+4) )

for all t, where the constants in O depend only on M , L, e and t.

Remark 4. There are different ways to map generally supported random vectors into [0, 1]d.

Here we recommend the inverse transformation method proposed in Gerber & Chopin (2015).

One significant advantage is that the spatial structure of the particles is preserved to a large extent

by this method.

In dimension d = 2, our simulations in a stochastic volatility model seem to suggest that the

rate is rather tight. The results are shown in Figure 7 and the model details are included in Ap-

pendix B. We can see that the empirical slope gets closer to the slope −4/3 given by Theorem 5

as n gets larger.

●

●

●

●

●

● ●

●

●

●

Fig. 7: The m versus the number of particles in logarithmic scales. The dashed line is a reference

line with a slope of −4/3, the rate shown by our theory.

6. DISCUSSION

We have discussed how one may improve the performance of sequential Monte Carlo and

sequential quasi-Monte Carlo via stratified sampling and multi-descendent growth. The matrix

resampling framework in Section 2.3 can be generalized to allow resampled particles to carry
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Stratification and Optimal Resampling for Sequential Monte Carlo 13

unequal weights, such as in the optimal resampling of Fearnhead & Clifford (2003). Let q1:m

satisfy qi ≥ 0 and
∑m

i=1 qi = 1. We can resample according to a matrix P = (pij)m×n with
non-negative entries, where

∑n
j=1 pij = 1 and

∑m
i=1 qipij = Wj , by conditionally independent

sampling:

X∗i | X,W ∼ Multinomial(1, X, (pi1, pi2, . . . , pin)), i = 1, 2, . . . ,m,

and then assigning X∗i the weight qi. We focused on the case with qi = 1/m in this article, but
by choosing unequal qi’s, one may further reduce the resampling variance at the cost of less
balanced weights. It is unclear what an optimal trade-off might be.

When the resampled particles are not mutually independent conditional on the original parti-
cles, the resampling method cannot be represented by a resampling matrix. Systematic resam-
pling (Carpenter et al., 1999) is such an example. All criteria mentioned in Section 2.4 are still
well-defined for non-matrix resampling, but techniques developed here are not directly applica-
ble. It is of interest to investigate if the Hilbert curve can still be utilized effectively in a broader
class of resampling methods beyond the independent ones.

While our theoretical results are on sequential quasi-Monte Carlo with multiple-descendent
growth, we believe that there are better choices of low-discrepancy sets. In fact, the Sobol se-
quence may be such an example based on our preliminary simulations, and it was conjectured
in Gerber & Chopin (2015) that the optimal convergence rate of sequential quasi-Monte Carlo
can reach O(n−1−2/d). It is of interest to see if the tools developed here can guide the choice
of low-discrepancy sets or be generalized to analyze convergence rates of other commonly used
low-discrepancy sets.
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