
360ViewPET: View Based Pose EsTimation for
Ultra-Sparse 360-Degree Cameras

Qian Zhou, Bo Chen, Zhe Yang, Hongpeng Guo and Klara Nahrstedt
Department of Computer Science, University of Illinois Urbana-Champaign

Email: {qianz, boc2, zheyang3, hg5, klara}@illinois.edu

Abstract—Immersive virtual tours based on 360-degree cam-
eras, showing famous outdoor scenery, are becoming more
and more desirable due to travel costs, pandemics and other
constraints. To feel immersive, a user must receive the view
accurately corresponding to her position and orientation in
the virtual space when she moves inside, and this requires
cameras’ orientations to be known. Outdoor tour contexts have
numerous, ultra-sparse cameras deployed across a wide area,
making camera pose estimation challenging. As a result, pose
estimation techniques like SLAM, which require mobile or dense
cameras, are not applicable. In this paper we present a novel
strategy called 360ViewPET, which automatically estimates the
relative poses of two stationary, ultra-sparse (15 meters apart)
360-degree cameras using one equirectangular image taken by
each camera. Our experiments show that it achieves accurate
pose estimation, with a mean error as low as 0.9 degree.

I. INTRODUCTION

Watching a video produced by a camera assigns us the view
at the camera’s position, making us virtually travel there. Mul-
tiple 360◦ cameras provide the views at multiple positions and
in arbitrary directions, and can be used for immersive virtual
tourism. Virtual tours are preferred to physical ones for those
constrained by time and travel costs or mobility impairments;
during pandemics, they become further appreciated due to
travel restrictions and social distancing.

Specifically, we envision a graph comprised of multiple
360◦ cameras which keep streaming 360◦ videos to the cloud:
each camera is a vertex which resembles a tour station; an
edge exists between two adjacent cameras with a line of sight
and it resembles a tour road. A user travels in the virtual space
along a tour route (i.e. a sequence of connected edges) which
is defined statically (e.g., travel companies plan professional
routes beforehand) or dynamically (e.g., tourists reach one
station and decide next stop). Ideally, a virtual tourist provides
the cloud with her virtual position (which spot of which
road) and orientation relative to the road, and receives the
corresponding view in real-time. Thus, our envisioned system
aims at new spatially-temporally immersive experience far
superior to that of a single 360◦ camera based system which
fixes user views at one position, and that of a prerecorded
image/video based system which fixes user views at one
moment (e.g., Google Street View [1] uses vehicles or people
called Trekkers to prerecord views, so user views have no
update or, at best, occasional update over time).

So back to our envisioned system. First, given a user’s
virtual position, it is easy for the cloud to find which camera

should be selected for user view generation. Second, the cloud
generates user view by cropping the camera’s 360◦ view to a
subview according to the user’s virtual orientation and field of
view (∼120◦). E.g., if she is virtually at Station A of Road A-
B with orientation 0◦, then Camera A’s 120◦ subview toward
the road forward will be her view.

However, the cropping step cannot be completed if the cloud
only has the user’s virtual position and orientation; cameras’
orientations relative to roads are indispensable (elaborated in
Section II-B). Camera poses can be manually measured at
installation by professional teams with instruments (e.g., in
urban planning), but it is cumbersome. Besides, camera pose
estimation is well studied in computer vision, particularly
using SLAM [2], [3], [4], but it requires mobile cameras which
record tens of frames per second while moving. Unfortunately,
in our outdoor tour contexts, cameras should be deployed on a
large scale, across a wide area to offer users rich scenery. Thus,
they are stationary, numerous and ultra-sparse (tens of meters
apart, elaborated in Section II-C). Since they are numerous,
manual measurement becomes a huge workload; and because
they are ultra-sparse, a SLAM strategy can get only 0.1
frame per second in average, and will fail. An automatic pose
estimation approach that works for ultra-sparse 360◦ cameras
is requisite, challenging and unexplored.

Realizing that the envisioned immersive virtual tourism
system requires a series of problems to be solved, in this
paper we take one step toward it by presenting 360ViewPET,
a strategy for automatic View based Pose EsTimation of ultra-
sparse 360◦ cameras. We only require each camera to upload
an equirectangular view to 360ViewPET running on the cloud,
which will find the relative poses of two cameras by searching
a hallmark pattern in their views; such pose information
is computed once (unless deployment changes), stored and
used over and over for user view generation. 360ViewPET
eliminates the need of manual measurement, thus essentially
simplifies the deployment of virtual tourism systems; also, it
achieves accurate pose estimation for 360◦ cameras which
are up to 15 m apart. To the best of our knowledge, no
existing visual pose estimation approach applies to such sparse
cameras. We claim our contributions as follows:

1) We propose 360ViewPET for pose estimation of two
360◦ cameras using one image taken by each. It uses
a novel vision based strategy which finds poses via
searching a hallmark pattern in cameras’ views, and
works for ultra-sparse cameras up to 15 m apart.



2) We additionally use multiple ways to dramatically re-
duce the hallmark pattern search space and improve ef-
ficiency. It shortens the time of one estimation operation
from tens of hours to 5 sec when running on a laptop.

3) We collect real data from 6 outdoor tour routes with 3
to 4 360◦ cameras, up to 15 m apart, deployed in each.
Our extensive experiments show that solutions based on
SLAM or image registration totally fail for such sparse
cameras, while 360ViewPET not only works but also
achieves a mean error as low as 0.9◦.

II. ASSUMPTIONS & PROBLEM DESCRIPTION

A. Tour Mode

We assume a graph comprised of numerous ultra-sparse
(tens of meters apart) 360◦ cameras (intrinsics are not needed)
streaming 360◦ videos to the cloud. Each camera is a vertex
resembling a tour station; an edge exists between two adjacent
cameras with a line of sight, and it resembles a tour road.
A user travels in the virtual space along a tour route (i.e. a
sequence of connected edges) made beforehand or on demand.

Our long-term goal is an immersive virtual tourism system
which detects a user’s position and orientation in the virtual
space, and presents her with the corresponding user view in
real-time. It aims at much higher immersion than existing
systems like Google Street View (more detail in the second
paragraph of Section I). In this paper, we assume that the user’s
virtual position (which spot of which road) is provided to the
cloud, so the cloud knows which camera should be selected
for user view generation. Her virtual orientation relative to
the road is also provided, and the cloud crops the camera’s
360◦ view to a subview based on her orientation and field
of view (FoV), getting her view. We show in Section II-B
that the cropping step cannot be completed without cameras’
orientations relative to roads. It justifies that our work—
camera pose estimation—is one of the many necessary steps
toward the immersive virtual tourism system.

B. Relation Between Camera’s 360◦ View and User View

Camera’s View. As shown in Fig. 1a, though a 360◦ camera
looks spherical, it also has a physical front and thus a
forward direction like a traditional camera. In this paper, a
360◦ camera’s orientation refers to its forward direction, and
is marked with a red arrow in figures.

Each 360◦ video frame is an equirectangular view whose x-
coordinate spans from 1◦ to 360◦ and y-coordinate from 1◦ to
180◦. An object’s coordinates in a camera’s view depend on
its position relative to the camera. E.g., those in the camera’s
forward direction appear in the middle of the view, with x-
coordinate 180◦; those in the backward, left, right direction
have x-coordinate 360◦, 90◦, 270◦. We show the universal
mapping relation as below, and as an example, the user is
assumed to be virtually at Camera A’s position:

1) Yaw. Fig. 1b shows the look of a camera pair A and
B seen from above, and the projections of four vectors on a
horizontal plane, including A’s orientation

−→
A , B’s orientation−→

B , the user’s orientation
−→
U , and the road direction

−−→
AB.

RightLeft

Forward Backward

1° 90° 270° 360°180°

Backward

Forward

RightLeft

180°

90°
Equirectangular 

View

(a) Camera’s 360◦ view.

𝑨

𝑩

𝑨𝑩
ψA

ψB

Horizontal
Plane

ψU

𝑼

(b) Seen from above.

𝑨 𝑩

𝑨𝑩

θA θB

Vertical
Plane

𝑼θU

(c) Seen from right.

✓ 
(d) Seen from front.

Fig. 1: 360◦ camera’s view and yaw, pitch, roll.

Yaw ψA, ψB , ψU is the angle made by
−→
A ,
−→
B ,
−→
U with−−→

AB respectively. ψU is known (an assumption in Section II-A)
while the other two are unknown.

Map User Orientation to View (x-coordinates). Because−→
A and

−→
U have an angle difference ψA-ψU , the objects in the

user’s forward direction have x-coordinate 180◦+ψA-ψU in
A’s view; if a person’s horizontal FoV is denoted as FoVx
(∼120◦), the user view is the subview of A’s view with x-
coordinate 180◦+ψA-ψU±FoVx

2 . Thus, to get the user view,
ψA is required besides ψU (known). If the user is at Camera
B’s position, we replace ψA with ψB to find her view.

So ψA and ψB are needed. If the installer simply installs
cameras at planned locations without paying attention to their
orientations, ψA and ψB are independent and arbitrary values
in [1◦, 360◦]. We define ∆ψ=ψA-ψB . Note that estimating
(∆ψ, ψB) is equivalent to estimating (ψA, ψB).

2) Pitch. Fig. 1c shows the look seen from right, and the
projections on the vertical plane where A and B coexist.
Pitch θA, θB , θU is the angle made by

−→
A ,
−→
B ,
−→
U with−−→

AB respectively. θU is known while the other two not.
Map User Orientation to View (y-coordinates). Because−→

A and
−→
U have an angle difference θU -θA, the objects in the

user’s forward direction have y-coordinate 90◦+θU -θA in A’s
view; if a person’s vertical FoV is denoted as FoVy (∼90◦),
the user view is the subview of A’s view with y-coordinate
90◦+θU -θA±FoVy

2 . If the user is at Camera B’s position, we
replace θA with θB to find her view.

So θA and θB are needed too. We define ∆θ=θA-θB . Note
that estimating (∆θ, θB) is equivalent to estimating (θA, θB).
Theoretically, θA, θB can be arbitrary in [-90◦, 90◦].

Double Alignment. If
−→
A ,
−−→
AB have the same direction, and−→

B ,
−−→
AB have the same direction, i.e., ∆ψ=ψB=∆θ=θB=0◦, we

say the cameras are double aligned.
3) Roll. Fig. 1d shows the look seen from front, and a



camera’s orientation vector is perpendicular to the reader,
appearing as a red point. In this paper we assume that a camera
has no significant rotation around its orientation vector, which
is a common requirement and easily guaranteed in practice.

So far, we have shown that four pose angles (∆ψ, ψB , ∆θ,
θB) must be estimated for user view generation.

C. Problems and Challenges

In outdoor tour contexts, cameras should be deployed on a
large scale, across a wide area to offer users rich scenery. It
means that the cameras are:

1) numerous. Manually measuring numerous camera poses
is burdensome, so an automatic estimation approach is crucial.

2) ultra-sparse. Only ultra-sparse cameras (tens of meters
apart, like streetlights) can be widely deployed. SLAM does
not work in this case: it requires a mobile camera to record
10 to 30 frames per second while moving [2], [3], [4]; let’s
assume that the camera speed is 1.5 m/s (near humans’ typical
walking speed), then SLAM requires a frame every 5 to 15
cm; our camera distance is 15 m, at least 100 times sparser.

An automatic pose estimation approach that works for such
ultra-sparse 360◦ cameras is requisite but has not been studied.

III. 360VIEWPET OVERVIEW

360ViewPET takes VA and VB—the 360◦ equirectangular
views of a camera pair A and B (tens of meters apart with
a line of sight)—as input, and outputs the pose angles (∆ψ,
ψB , ∆θ, θB) of A and B.

It estimates (∆ψ, ψB , ∆θ, θB) based on the fact that a
hallmark pattern of feature correspondences will appear in the
overlay of VA and VB iff A and B are double aligned, i.e. (∆ψ,
ψB , ∆θ, θB) = (0◦, 0◦, 0◦, 0◦). Also, note that by rotating
VA and VB using (∆ψ′, ψB ′, ∆θ′, θB ′), we can get the views
of a new camera pair A′ and B′ whose pose angles are (∆ψ-
∆ψ′, ψB-ψB ′, ∆θ-∆θ′, θB-θB ′). Specifically,

1) 360ViewPET rotates VA and VB using N different (∆ψ′i,
ψB
′
i, ∆θ′i, θB

′
i) combinations, i = 1, 2, . . . , N , getting

the views of N different A′i and B′i pairs whose pose
angles are (∆ψ-∆ψ′i, ψB-ψB ′i, ∆θ-∆θ′i, θB-θB ′i).

2) For each A′i and B′i, 360ViewPET detects if the hallmark
pattern appears in their view overlay. Assume that A′k
and B′k have the pattern, then we know they are double
aligned, i.e. (∆ψ-∆ψ′k, ψB-ψB ′k, ∆θ-∆θ′k, θB-θB ′k) =
(0◦, 0◦, 0◦, 0◦). Then (∆ψ′k, ψB ′k, ∆θ′k, θB ′k) are output
as the estimated values of (∆ψ, ψB , ∆θ, θB).

3) 360ViewPET also involves strategies to reduce N , short-
ening the time of pose estimation without accuracy loss.

In the following sections, we introduce the hallmark pattern
and its detection, and then elaborate 360ViewPET’s workflow.

IV. HALLMARK PATTERN OF DOUBLE ALIGNMENT

A hallmark pattern of feature correspondences will appear
in the overlay of VA and VB iff Camera A and B are double
aligned. Thus, if the pattern is detected, we know the four
pose angles of A and B are all 0◦.

A. Cameras’ Views When Double Aligned

First we introduce a special visual phenomenon when
cameras are double aligned. Imagine that a person physi-
cally moves from Camera A’s position to B’s position along−−→
AB and faces the direction of

−−→
AB, then:

1) the objects in front of her will expand in her eyes;
2) the objects behind her will contract to her;
3) those to her exact left or right will move parallel to her.
If Camera A and B face the direction of

−−→
AB (i.e. double

aligned), then A resembles the person before moving, and
B resembles her after moving. Thus the visual phenomenon
will appear in VA and VB (Fig. 2): object expansion in the
middle (x-coordinate: 180◦); contraction on the left and right
margins (x: 0◦ and 360◦); parallel movement between the
middle and margins (x: 90◦ and 270◦).

Fig. 2: Cameras’ views when double aligned.

B. Feature Correspondences When Double Aligned

Feature Arrow (FA). Feature detection (e.g., SURF [5],
ORB [6]) and matching techniques automatically detect fea-
tures in two images and pair the corresponding ones. A feature
arrow (FA) is defined as an arrow (denoted as −−−→pApB) drawn
in the overlay of VA and VB , with its start point pA (marked
with ◦) at a feature in VA and end point pB (marked with +)
at the corresponding feature in VB (Fig. 3). Like a vector, an
FA’s angle is the one it makes with the positive x-axis.

Fig. 3: Feature arrow in view overlay.

Hallmark FA. The visual phenomenon corresponds to the
FA pattern in Fig. 4, called the hallmark pattern of double
alignment. An FA matching this pattern is a hallmark FA:

1) View expansion. FA −−−→pApB radiates outward from the
middle center pC (i.e., ∠−−−→pApB ≈ ∠−−−→pCpA), if xA (pA’s
x-coordinate) is near 180◦.

2) View contraction. −−−→pApB radiates inward to the left
margin center pL (i.e., ∠−−−→pApB ≈ ∠−−−→pApL), if xA is near
0◦; it radiates inward to the right margin center pR (i.e.,
∠−−−→pApB ≈ ∠−−−→pApR), if xA is near 360◦.



3) Parallel movement. −−−→pApB is left (angle: 180◦) if xA is
near 90◦, and right (angle: 0◦) if xA is near 270◦.

0 90 180 270 360

X (deg)

45

90

135

Y
 (

d
e
g

)

p
C

p
L

p
R

Fig. 4: Hallmark pattern of double alignment. ◦: pA, +: pB .

As for an FA with xA ∈ (180◦, 270◦), its angle should be
a weighted mean of ∠−−−→pCpA and 0◦. And the closer it is to
the center pC , the more weight is given to ∠−−−→pCpA. A similar
rule applies to FAs with xA ∈ (0◦, 90◦), (90◦, 180◦), (270◦,
360◦). We find that a simple linear interpolation works well
enough. The general formula of a hallmark FA’s angle α is:

α =


(1− λ) · ∠−−−→pApL + λ · 180◦ if 0◦ ≤ xA < 90◦

(1− λ) · 180◦ + λ · ∠−−−→pCpA if 90◦ ≤ xA < 180◦

(1− λ) · ∠−−−→pCpA + λ · 0◦ if 180◦ ≤ xA < 270◦

(1− λ) · 0◦ + λ · ∠−−−→pApR if 270◦ ≤ xA < 360◦

(1)
λ =

xA mod 90◦

90◦
(2)

λ is a weight increasing from 0 to 1 as xA increases from
the left endpoint to the right endpoint, in interval [0◦, 90◦),
[90◦, 180◦), [180◦, 270◦) or [270◦, 360◦).

V. 360VIEWPET WORKFLOW

As introduced in Section III, Camera A and B have un-
known pose angles (∆ψ, ψB , ∆θ, θB), and 360ViewPET aims
to find those angles based on their view VA and VB .

Assume that there are N different (∆ψ′i, ψB
′
i, ∆θ′i, θB

′
i)

combinations (see combination selection in Section V-C), i =
1, 2, . . . , N . For each combination, 360ViewPET:

1) rotates A and B using the combination, getting the views
and FAs of a new camera pair A′i and B′i whose pose
angles are (∆ψ-∆ψ′i, ψB-ψB ′i, ∆θ-∆θ′i, θB-θB ′i);

2) counts the number of hallmark FAs.
The camera pair with the most hallmark FAs is regarded

as double aligned. Assume that the pair is A′k and B′k, then
we know (∆ψ-∆ψ′k, ψB-ψB ′k, ∆θ-∆θ′k, θB-θB ′k) = (0◦, 0◦,
0◦, 0◦). Finally, (∆ψ′k, ψB ′k, ∆θ′k, θB ′k) are output as the
estimated values of (∆ψ, ψB , ∆θ, θB).

A. Obtain Feature Arrows

Search Space. We first focus on introducing functionality,
and temporarily use a huge 4D search space: because ∆ψ,
ψB ∈ [1◦, 360◦] and ∆θ, θB ∈ [-90◦, 90◦] (Section II-B),
every (∆ψ′, ψB ′, ∆θ′, θB ′) combination in [1◦, 360◦]2×[-
90◦, 90◦]2 is tried. Our search granularity is 1◦, so all the
four are integers. Under this condition, N ≈ 4 billion.

Given a (∆ψ′, ψB ′, ∆θ′, θB ′) combination, we need to get
the views of Camera A′ and B′ whose pose angles are (∆ψ-
∆ψ′, ψB-ψB ′, ∆θ-∆θ′, θB-θB ′). But instead of physically
rotating A and B by ∆ψ′+ψB ′, ψB ′ horizontally and ∆θ′+θB ′,
θB
′ vertically, which is unfeasible or burdensome in practice,

we just need to rotate the cameras’ views—VA and VB .
Horizontal Rotation. To get the view of a camera physi-

cally rotated right by ψ′, we just need to rotate the original
view left by ψ′. Specifically, the original view’s subview with
x-coordinate [1◦, ψ′] is cut and appended to the right margin.
Since 1◦ and 360◦ are adjacent, the new view is seamless.

Vertical Rotation. If a camera physically rotates down by
θ′, the objects in front of it will move up by θ′ in its view
while those behind it will move down by θ′.

Feature Detection & Matching. Recall that it is FAs that
are used for finding double alignment. There are two ways
to get the FAs of a camera pair’s views. 1) rotate and detect:
for each (∆ψ′, ψB ′, ∆θ′, θB ′) combination, we rotate VA,
VB accordingly to get new views, then call a feature detection
and matching algorithm to get FAs. 2) detect and rotate: we
call a feature detection and matching algorithm to get the FAs
of the original VA, VB for only once before the search starts,
and for each combination, we just rotate the feature points
accordingly to get new FAs. The first strategy needs feature
detection and matching to be called for every test; the second
strategy constantly needs one, so we use this way.

B. Count Hallmark Feature Arrows

Given a set of FAs, we need to count how many of them
match the hallmark pattern of double alignment in Fig. 4. An
FA is regarded as a hallmark one if the difference between its
angle and the hallmark FA angle α (Formula (1)) is less than
a threshold THα (e.g., 20◦, see evaluation in Section VI-C).

Once the two steps above are performed for all the com-
binations, the combination leading to the most hallmark FAs
becomes known. Since it makes the hallmark pattern most
obvious, it is regarded to have made a double aligned camera
pair. Fig. 5a shows an example of the number of hallmark
FAs when traversing ∆ψ′ and ψB ′ (with fixed ∆θ′ and θB ′).
We see a remarkable peak: the double alignment state results
in many more hallmark FAs than unaligned states, thus the
detection of it is easy and accurate.

(a) Count hallmark FAs.

F
ψA

ψB

B

L

R
𝑨𝑩

(b) Image registration.

Fig. 5: Count hallmark feature arrows & reduce search space.



C. Reduce Search Space

There are N ≈ 4 billion (∆ψ′, ψB ′, ∆θ′, θB ′) combinations
in [1◦, 360◦]2×[-90◦, 90◦]2, and a brute-force 4D search
is unacceptably slow. To speed it up, we tried to use only
a subset of randomly selected combinations, or probabilistic
algorithms like simulated annealing, but they cannot always
find the optimal combination that leads to the most hallmark
FAs. Here we introduce how to reduce N by ∼20k times
without missing the optimal combination, then a brute-force
search can be used to find the combination quickly.

Approach for ∆ψ and ∆θ Scope Reduction. ∆ψ=ψA-
ψB is the yaw difference of two cameras, and can be any
value in [1◦, 360◦]. To narrow down its scope, one may think
of paying some attention during camera deployment, to make
A and B roughly face the same direction (e.g., north) so later
we only need to search ∆ψ around 0◦. This requires extra
equipment (e.g., magnetometer) and non-negligible manual
work. Instead, our strategy is to use image registration to find
the rough values of ∆ψ and ∆θ first, denoted as ∆ψ̃, ∆θ̃.
If ∆ψ̃, ∆θ̃ have a max error of ε, then 360ViewPET only
needs to search ∆ψ, ∆θ in [∆ψ̃-ε, ∆ψ̃+ε], [∆θ̃-ε, ∆θ̃+ε].
Our experiments in Section VI-B show that ε < 5◦.

Image registration [7] automatically discovers the corre-
spondences (e.g., using feature matching) of images which
capture the same scene from different viewports, and properly
stitches them. E.g., based on feature matching, if an object is
found to appear in both VA and VB , and with x-coordinate xA
and xB respectively, it implies that VA should be shifted left
by an offset ∆x=xA-xB and stitched to VB .

∆x is useful to us because it roughly equals ∆ψ. As
illustrated in Fig. 5b, an object F in front of

−−→
AB will appear in

VA with xA=180◦+ψA and in VB with xB=180◦+ψB , thus xA-
xB=ψA-ψB , i.e. ∆x=∆ψ. It is also true if a backward object
B is used. However, it can be easily proved (details omitted
due to space limitation) that a left object L has ∆x > ∆ψ
and a right object R has ∆x < ∆ψ. So they are not always
equal and ∆ψ cannot be accurately obtained.

Facing this issue, we evenly cut VA and VB to multiple
patches horizontally; for each patch we compute a ∆x, and
use their mean as a guess of ∆ψ. The intuition is that a
left object’s overestimated ∆ψ will cancel out a right object’s
underestimated ∆ψ to some degree, reducing the error.

Approach 2 for ∆θ Scope Reduction. Here is another way
to narrow down ∆θ scope besides image registration: if each
camera’s orientation vector is made roughly horizontal to the
ground during deployment (actually people spontaneously do
it in practice), then ∆θ will be close to 0◦, and searching
it in [-2◦, 2◦] is mostly sufficient. Note that making cameras
roughly horizontal is significantly easier and more natural than
making them all face north, so scope reduction via conscious
camera deployment is suitable for ∆θ but not ∆ψ.

Approach for θB Scope Reduction. If A and B both have
horizontal orientations, then θB=arctan(hd ) where d is their
location distance and h is height difference. In our context,
two cameras are at most 15 m apart, and drastic ground height

changes are not likely to happen within such a distance. When
d = 15 m and θB ∈ [-5◦, 5◦], we have h ∈ [-1.3m, 1.3m]. It
means that searching θB ∈ [-5◦, 5◦] can make A find and get
double aligned with a B which is 1.3 m higher or lower than
it. This should suffice most cases in practice.

Summary. With these techniques and heuristics, we can
reduce the overall search number from N = 3602 × 1802

(above 4 billion) to 11× 360× 5× 11 (∼200k, with ε = 5◦,
∆θ ∈ [-2◦, 2◦], θB ∈ [-5◦, 5◦]), by ∼20k times.

VI. EVALUATION

We conduct extensive experiments to evaluate our 360View-
PET and two existing approaches of camera pose estimation,
using real data collected from 360◦ cameras which are 15 m
apart. As shown in Table I, we find that: SLAM totally fails
for such sparse cameras; image registration only works out
two pose angles; 360ViewPET solves all the four angles, with
an overall mean error as low as 0.9◦.

TABLE I: Pose estimation performance comparison.

SLAM ImageRegistration 360ViewPET

Error of ∆ψ, ∆θ N/A 1.7◦, 0.8◦ 0◦, 0.8◦
Error of ψB , θB N/A N/A 0.9◦, 1.9◦

Settings. We collect data from RICOH THETA 360◦ cam-
eras in 6 outdoor tour routes. The first 4 tours have 4 cameras
each, deployed along a straight line (some are north-south and
others are east-west), hence 3 adjacent camera pairs (C1-C2,
C2-C3, C3-C4, all are 15 m apart). The last 2 tours have 3
cameras each, located on the vertices of a triangle, also 3
adjacent camera pairs (C4-C2, C2-C3, C3-C4). Therefore, we
have 18 diverse test cases with different objects in different
directions. Additionally, we manipulate the data by removing
some FAs from them, to generate more and harsher test cases.

For each case, we denote the first camera as A and the
second as B, and two synchronized frames VA, VB are
extracted from the videos of A and B respectively. Each frame
has 3840×1920 pixels, for horizontal [1◦, 360◦] and vertical
[1◦, 180◦]. We only use the vertical pixels in [45◦, 135◦] for
pose estimation because others are near polar and distorted, so
a cropped frame spans 360◦ horizontally and 90◦ vertically.

A. Qualitative Evaluation of 360ViewPET

We use the example below to demonstrate the effect and
result of 360ViewPET. Fig. 6a shows the initial views of A and
B; they are unaligned and only 55 hallmark FAs in their view
overlay are found (Fig. 6b). 360ViewPET tries different (∆ψ′,
ψB
′, ∆θ′, θB ′) combinations, and when using (263◦, 290◦, 0◦,

0◦), the views are better aligned (Fig. 7a) and the number
of hallmark FAs rises to 170 (Fig. 7b). The best aligned
views (Fig. 8a) and the most hallmark FAs (Fig. 8b) appear
when (258◦, 285◦, 0◦, 0◦) are used, so they are output as the
estimated pose angles. The ground truth pose angles are (258◦,
284◦, 2◦, -1◦), very close to the output.



(a) Initial view VA and VB .

(b) 55 hallmark (green) FAs in view overlay; yellow FAs are non-hallmark.

Fig. 6: Initially unaligned cameras.

(a) Views when (∆ψ′, ψB ′, ∆θ′, θB ′) = (263◦, 290◦, 0◦, 0◦).

(b) 170 hallmark (green) FAs in view overlay; yellow FAs are non-hallmark.

Fig. 7: Near double aligned cameras.

B. Quantitative Evaluation of Existing Approaches

SLAM. We use our 360◦ dataset to test OpenVSLAM [4],
which is claimed to be the first open-source visual SLAM
framework that can accept equirectangular imagery. The dis-
tance between two cameras is 0.05, 0.15, 0.5, 1.5, 5, 15 m,
corresponding to frame rate 30, 10, 3, 1, 0.3, 0.1 FPS respec-
tively. Fig. 9a shows the number of landmarks and keyframes
that are recognized for map construction. We normalize the
data and make the numbers be 100% when the frame rate is
30 FPS (5 cm). We see that the numbers rapidly deteriorate as
the camera distance increases. SLAM strategies mostly use 10
to 30 FPS (camera distance 5 to 15 cm) [2], [3], [4]. When the
distance is 15 m, no landmark or keyframe can be recognized
at all, leading to an empty map, so the strategy totally fails to
work for ultra-sparse cameras.

Image Registration. As explained in Section V-C, VA and
VB are cut into multiple patches (here we use 12), a ∆x is
computed for each patch, and their mean is used as a guess of
∆ψ. Besides, RANSAC is used for outlier FA elimination. It

(a) Views when (∆ψ′, ψB ′, ∆θ′, θB ′) = (258◦, 285◦, 0◦, 0◦).

(b) 252 hallmark (green) FAs in view overlay.

Fig. 8: Double aligned cameras.

Camera Distance (m)

N
u

m
b

e
r 

(%
) keyframe

landmark

(a) SLAM.

E
rr

o
r 

(d
e

g
)

(b) Image registration.

Fig. 9: Existing approaches fail for ultra-sparse cameras.

works out ∆ψ (mean error 1.7◦; max error 4.4◦) and ∆θ (mean
error 0.8◦; max error 2.3◦), but not ψB or θB (Fig. 9b).

C. Quantitative Evaluation of 360ViewPET

Since the image registration technique’s output ∆ψ̃ has
max error 4.4◦, 360ViewPET only needs to search (∆ψ, ψB ,
∆θ, θB) in [∆ψ̃-5◦, ∆ψ̃+5◦]×[1◦, 360◦]×[-2◦, 2◦]×[-5◦, 5◦]
(Section V-C). It has mean error (0◦, 0.9◦, 0.8◦, 1.9◦) and max
error (0◦, 2◦, 2◦, 4◦) for the four angles, with an overall mean
error and max error as low as 0.9◦ and 2◦ respectively.

Impact of Threshold THα. Fig. 10a shows the impact of
THα, the threshold of detecting hallmark FAs (Section V-B).
A too small threshold (e.g., 10◦) makes many hallmark FAs
detected as non-hallmark; a too large threshold (e.g., 25◦)
makes many non-hallmark FAs detected as hallmark. Both lead
to pose estimation with low accuracy. We find that 15◦ and
20◦ result in small errors in all the four angles.

Fig. 10b shows the detailed results for THα= 20◦: mean
error (0◦, 0.9◦, 0.8◦, 1.9◦) and max error (0◦, 2◦, 2◦, 4◦). We
notice that ∆ψ is more accurate than ∆θ, so is ψB than θB .
This is because our method performs estimation based on FAs
in cropped VA and VB , which span 360◦ horizontally but only
90◦ vertically. Thus estimating yaw related angles (ψA, ψB ,



E
rr

o
r 

(d
e
g

)

TH =10

TH =15

TH =20

TH =25

(a) Impact of THα.
E

rr
o

r 
(d

e
g

)
(b) Detailed error distribution.

Fig. 10: Estimation error of 360ViewPET.

∆ψ) has more FAs to use than estimating pitch related angles
(θA, θB , ∆θ), and is more accurate.

Impact of Tour Route. Fig. 11 shows the errors for each
of the 18 test cases (note that ∆ψ is always 0◦, thus not
shown). Cameras are deployed along a north-south straight
line in Case 1–6 and east-west in Case 7–12 and on triangle
vertices in Case 13–18. We do not find a remarkable impact
of tour routes on pose estimation accuracy, which implies that
360ViewPET is fairly stable in different situations.

Test Case ID

E
rr

o
r 

(d
e
g

) B B

(a) Linear tour.
Test Case ID

E
rr

o
r 

(d
e
g

) B B

(b) Linear tour.
Test Case ID

E
rr

o
r 

(d
e
g

) B B

(c) Triangular tour.

Fig. 11: Different tours have similar estimation accuracy.

More and Harsher Test Cases. The 18 tour cases we
have tested have three buildings of interest in the scenes and
they provide FAs for pose estimation. A critical question is
how well 360ViewPET can work in scenes with fewer FAs
available (e.g., occlusion, fewer objects around, objects with
poor features). To study this, we add different FA masks
to our current VA and VB , removing some FAs from them
and making pose estimation harder. In this way we generate
more and harsher test cases than the 18 ones. Specifically, a
mask applying to the forward, backward, left, right direction
will remove those FAs with x-coordinates between 180◦±45◦,
360◦±45◦, 90◦±45◦, 270◦±45◦, respectively. We also test the
cases where two directions have no FAs.

Mask Features in

E
rr

o
r 

(d
e

g
)

Fig. 12: More and harsher test cases.

Fig. 12 shows the overall error of cases where the FAs
in zero, one or two directions are missing. As is seen, the
error increases from 0.9◦ to 1.3◦ when the FAs in the left are
removed, and to 2.7◦ when those in the forward direction are
removed. The influence of no right FA is similar to that of
no left FA, and no backward FA is similar to no forward
FA, so the two results are omitted here. We can see that
the absence of left/right FAs has less impact on the accuracy
than that of forward/backward FAs. Since left/right FAs make
less contrition than forward/backward ones, we expect that if
masks are used on two directions, the error will be: masking
left+right < masking front+left < masking front+back. This
is congruent with Fig. 12: the three situations have an error of
1.4◦, 4◦and 4.5◦, respectively. It is good to see that even in a
case with no FA in two directions, the error is still small.

Impact of Feature Detection Algorithm. Fig. 13a shows
the performances of four famous feature detectors: KAZE [8],
BRISK [9], SURF [5], ORB [6]. They have similar overall
mean errors: 0.9◦, 1.3◦, 1.2◦, 1.8◦. But the differences in max
errors are remarkable: 2◦, 3◦, 4◦, 9◦. KAZE is recommended
from the aspect of estimation accuracy.

E
rr

o
r 

(d
e
g

) mean max

(a) Feature detection algorithm.

E
rr

o
r 

(d
e
g

)

(b) Search strategy.

Fig. 13: Impact of other factors.

Impact of Search Strategy. Fig. 13b shows the perfor-
mances of three search strategies. Fine search means ex-
hausting every (∆ψ, ψB , ∆θ, θB) combination in [∆ψ̃-5◦,
∆ψ̃+5◦]×[1◦, 360◦]×[-2◦, 2◦]×[-5◦, 5◦]; coarse-fine search
performs fine search for ∆ψ, ∆θ, θB , but searches ψB in
[1◦, 360◦] with a granularity of 5◦ first to find its rough
value, then fine searches it in ±4◦ around the rough value;
independent search first fixes ∆θ, θB at 0◦ and searches ∆ψ,
ψB in [∆ψ̃-5◦, ∆ψ̃+5◦]×[1◦, 360◦], then fixes ∆ψ, ψB at
the found values and searches ∆θ, θB in [-2◦, 2◦]×[-5◦, 5◦].
Though coarse-fine and independent searches are faster than
fine search, they have much larger max errors (5.2◦ and 8◦)
than fine search’s 2◦. We use fine search.

Time Cost. Search space reduction shortens the pose es-
timation time for a camera pair from tens of hours to 5 sec
in average (by ∼20k times), when running with MATLAB
on a laptop (2.7GHz CPU, 32GB RAM) using no GPU. If
implemented using C/C++ or run on a server, it is reasonable
to expect the time to be within 1 sec. Also, note that pose
information is computed offline once (unless camera deploy-
ment changes), then stored in the cloud, and used repeatedly
for user view generation. So taking seconds long is fine.



VII. RELATED WORK

6DoF Video System. A single 360◦ camera system only
has 3 rotational DoF; 6DoF (plus 3 translational DoF) requires
multiple cameras. One type of 6DoF systems [10], [11], [12],
[13] consists of sparsely deployed cameras which keep upload-
ing live views, and a user can continuously change her view
from one camera to another to virtually travel. 360ViewPET
is related to this type, but studies camera pose estimation, a
topic which has not been studied in these systems. Google
Street View [1] uses prerecorded views, which is less relevant
to immersive virtual tours and our work.

Another type of 6DoF systems [14], [15], [16] is based
on depth image based rendering. They use a dense camera
constellation (e.g., in [15] 16 cameras form a 1 m diameter
rig) and target contexts where user motion is head-scale (e.g.,
in virtual conferences). They are inapplicable to our contexts:
virtual outdoor tours across a wide area.

Image Registration. Image registration [7] discovers the
correspondences of images capturing the same scene from
different viewports or at different times and properly stitches
them. Template matching is preferred for image registration
when the images are rich of distinctive colors; feature detec-
tion (e.g., ORB [6]) is recommended when the images have
distinctive shapes. Unlike 360ViewPET, image registration can
estimate ∆ψ and ∆θ, but not ψB or θB .

Visual Based Localization (VBL). 360ViewPET belongs
to VBL which recovers the poses of cameras based on the
photos they took. Some VBL work [17], [18], [19] requires
coarse camera intrinsics or extrinsics (e.g., from photo EXIF
tags, GPS or magnetometer) as a prior, but 360ViewPET does
not. New solutions [20] based on deep learning are proposed;
unlike them, 360ViewPET needs no training.

Simultaneous Localization and Mapping (SLAM). SLAM
also belongs to VBL, and has been significantly studied.
Classical work (e.g., PTAM [2], ORB-SLAM [3]) applies to
planar images, and new approaches [4], [21], [22] extend to
spherical images, but they have the same drawback—require
mobile cameras which record tens of frames per second while
moving. However, we have ultra-sparse cameras and the frame
rate is only 0.1 FPS in average, making SLAM totally fail.
360ViewPET works well despite such sparse cameras.

VIII. CONCLUSION

Camera pose estimation is a necessary step toward video-
based immersive virtual tourism. In this paper, we present
the design and evaluation of 360ViewPET, a strategy which
automatically finds the relative poses of two 360◦ cameras
(up to 15 m apart) using one equirectangular image taken by
each camera, with a mean error as low as 0.9◦. It is the only
approach we know so far that works for such sparse cameras
and applies to virtual outdoor tours across a wide area.

ACKNOWLEDGMENT

This research was funded by the National Science Founda-
tion CNS 1900875, by the Postdoctoral Fellowship Program at
CS UIUC and by the Grainger College of Engineering funding.

The presented views in the article are of the authors and do
not represent the views of the funding organizations.

REFERENCES

[1] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon, R. Lyon, A. Ogale,
L. Vincent, and J. Weaver, “Google street view: Capturing the world at
street level,” Computer, vol. 43, no. 6, pp. 32–38, 2010.

[2] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in 2007 6th IEEE and ACM international symposium on
mixed and augmented reality. IEEE, 2007, pp. 225–234.

[3] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile
and accurate monocular slam system,” IEEE transactions on robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[4] S. Sumikura, M. Shibuya, and K. Sakurada, “Openvslam: a versatile
visual slam framework,” in Proceedings of the 27th ACM International
Conference on Multimedia, 2019, pp. 2292–2295.

[5] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in European conference on computer vision. Springer, 2006,
pp. 404–417.

[6] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in 2011 International conference on computer
vision. Ieee, 2011, pp. 2564–2571.

[7] B. Zitova and J. Flusser, “Image registration methods: a survey,” Image
and vision computing, vol. 21, no. 11, pp. 977–1000, 2003.

[8] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “Kaze features,” in
European Conference on Computer Vision. Springer, 2012, pp. 214–
227.

[9] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust
invariant scalable keypoints,” in 2011 International conference on com-
puter vision. Ieee, 2011, pp. 2548–2555.

[10] X. Corbillon, F. De Simone, G. Simon, and P. Frossard, “Dynamic
adaptive streaming for multi-viewpoint omnidirectional videos,” in Pro-
ceedings of the 9th ACM Multimedia Systems Conference, 2018, pp.
237–249.

[11] H. Pang, C. Zhang, F. Wang, J. Liu, and L. Sun, “Towards low latency
multi-viewpoint 360 interactive video: A multimodal deep reinforcement
learning approach,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 2019, pp. 991–999.

[12] T. Maugey, L. Guillo, and C. L. Cam, “Ftv360: a multiview 360° video
dataset with calibration parameters,” in Proceedings of the 10th ACM
Multimedia Systems Conference, 2019, pp. 291–295.

[13] K. K. Sreedhar, I. D. Curcio, A. Hourunranta, and M. Lepistö, “Immer-
sive media experience with mpeg omaf multi-viewpoints and overlays,”
in Proceedings of the 11th ACM Multimedia Systems Conference, 2020,
pp. 333–336.

[14] J. Huang, Z. Chen, D. Ceylan, and H. Jin, “6-dof vr videos with a
single 360-camera,” in 2017 IEEE Virtual Reality (VR). IEEE, 2017,
pp. 37–44.

[15] A. P. Pozo, M. Toksvig, T. F. Schrager, J. Hsu, U. Mathur, A. Sorkine-
Hornung, R. Szeliski, and B. Cabral, “An integrated 6dof video camera
and system design,” ACM Transactions on Graphics (TOG), vol. 38,
no. 6, pp. 1–16, 2019.

[16] M. Broxton, J. Flynn, R. Overbeck, D. Erickson, P. Hedman, M. Duvall,
J. Dourgarian, J. Busch, M. Whalen, and P. Debevec, “Immersive light
field video with a layered mesh representation,” ACM Transactions on
Graphics (TOG), vol. 39, no. 4, pp. 86–1, 2020.

[17] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: exploring photo
collections in 3d,” in ACM siggraph 2006 papers, 2006, pp. 835–846.

[18] C. Arth, C. Pirchheim, J. Ventura, D. Schmalstieg, and V. Lepetit,
“Instant outdoor localization and slam initialization from 2.5 d maps,”
IEEE Computer Architecture Letters, vol. 21, no. 11, pp. 1309–1318,
2015.

[19] B. Zeisl, T. Sattler, and M. Pollefeys, “Camera pose voting for large-
scale image-based localization,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2015, pp. 2704–2712.

[20] Y. Shavit and R. Ferens, “Introduction to camera pose estimation with
deep learning,” arXiv preprint arXiv:1907.05272, 2019.

[21] X. X. Zhu, Y. Yu, P. F. Wang, M. J. Lin, H. R. Zhang, and Q. X.
Cao, “A visual slam system based on the panoramic camera,” in 2019
IEEE International Conference on Real-time Computing and Robotics
(RCAR). IEEE, 2019, pp. 53–58.

[22] Y. Zhang and F. Huang, “Panoramic visual slam technology for spherical
images,” Sensors, vol. 21, no. 3, p. 705, 2021.


