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ABSTRACT

Learning how to aggregate ranking lists has been an active research area for many years and its advances
have played a vital role in many applications ranging from bioinformatics to internet commerce. The
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problem of discerning reliability of rankers based only on the rank data is of great interest to many

practitioners, but has received less attention from researchers. By dividing the ranked entities into two
disjoint groups, that is, relevant and irrelevant/background ones, and incorporating the Mallows model for
the relative ranking of relevant entities, we propose a framework for rank aggregation that can not only
distinguish quality differences among the rankers but also provide the detailed ranking information for
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relevant entities. Theoretical properties of the proposed approach are established, and its advantages over lists
existing approaches are demonstrated via simulation studies and real-data applications. Extensions of the
proposed method to handle partial ranking lists and conduct covariate-assisted rank aggregation are also

discussed.

1. Introduction

Rank data arise naturally in many fields, such as web searching
(Renda and Straccia 2003), design of recommendation systems
(Linas, Tadas, and Francesco 2010), and genomics (Bader 2011).
Many probabilistic models have been proposed for analyzing
this type of data, among which the Thurstone model (Thurstone
1927), the Mallows model (Mallows 1957), and the Plackett-
Luce model (Luce 1959; Plackett 1975) are the most well-known
representatives. The Thurstone model assumes that each entity
possesses a hidden score and all the scores come from a joint
probability distribution. The Mallows model is a location model
defined on the permutation space of ordered entities, in which
the probability mass of a permuted order is an exponential
function of its distance from the true order. The Plackett-Luce
model assumes that the preference of entity E; is associated with
a weight w;, and describes a recursive procedure for generating
a random ranking list: entities are picked one by one with the
probability proportional to their weights in a sequential fashion
without replacement, and ranked based on their order of being
selected.

Rank aggregation aims to derive a “better” aggregated rank-
ing list 7 from multiple ranking lists 71, 72, . . ., Tm. It is a clas-
sic problem and has been studied in a variety of contexts for
decades. Early applications of rank aggregation can be traced
back to the 18th-century France, where the idea of rank aggre-
gation was proposed to solve the problem of political elections
(Borda 1781). In the past 30 years, efficient rank aggregation
algorithms have played important roles in many fields, such as
web searching (Renda and Straccia 2003), information retrieval

(Fagin et al. 2003), design of recommendation systems (Linas,
Tadas, and Francesco 2010), social choice studies (Porello and
Endriss 2012; Soufiani, Parkes, and Xia 2014), genomics (Bader
2011), and bioinformatics (Lin and Ding 2010; Chen et al. 2016).

Some popular approaches for rank aggregation are based on
certain summary statistics. These methods simply calculate a
summary statistics, such as the mean, median, or geometric
mean, for each entity E; based on its rankings across different
ranking lists, and obtain the aggregated ranking list based on
these summary statistics. Optimization-based methods obtain

the aggregated ranking by minimizing a user-defined objective
m

function, that is, let T = arg rnrin - > d(t,1;), where distance
i=1

measurement d(, -) could be either Spearman’s footrule distance

(Diaconis and Graham 1977) or the Kendall tau distance (Dia-

conis 1988). More detailed studies on these optimization-based

methods can be found in Young and Levenglick (1978),Young

(1988), and Dwork et al. (2001).

In early 2000s, a novel class of Markov chain-based methods
have been proposed (Dwork et al. 2001; Lin and Ding 2010; Lin
2010; Deconde et al. 2011), which first use the observed ranking
lists to construct a probabilistic transition matrix among the
entities and then use the magnitudes of the entities’ equilib-
rium probabilities of the resulting Markov chain to rank them.
The boosting-based method RankBoost (Freund et al. 2003),
employs a feedback function ® (i,j) to construct the final rank-
ing, where ®(i,j) > 0 (or < 0) indicates that entity E; is
(or is not) preferred to entity Ej. Some statistical methods use
aforementioned probabilistic models (such as the Thurstone
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model) and derive the maximum likelihood estimate (MLE) of
the final ranking. More recently, researchers have begun to pay
attention to rank aggregation methods for pairwise comparison
data (Rajkumar and Agarwal 2014; Chen and Suh 2015; Chen
et al. 2019).

We note that all aforementioned methods assume that the
rankers of interest are equally reliable. In practice, however, it
is very common that some rankers are more reliable than the
others, whereas some are nearly non-informative and may be
regarded as “spam rankers” Such differences in the rankers’
qualities, if ignored in analysis, may significantly corrupt the
rank aggregation and lead to seriously misleading results. To the
best of our knowledge, the earliest effort to address this critical
issue can be traced to Aslam and Montague (2001), which
derived an aggregated ranking list by calculating a weighted
summation of the observed ranking lists, known as the Borda
Fuse. Lin and Ding (2010) extended the objective function
of Dwork et al. (2001) to a weighted fashion. Independently,
Liu et al. (2007) proposed a supervised rank aggregation to
determine weights of the rankers by training with some external
data. Although assigning weights to rankers is an intuitive and
simple way to handle quality differences, how to scientifically
determine these weights is a critical and unsolved problem in
the aforementioned works.

Recently, Deng et al. (2014) proposed BARD, a Bayesian
approach to deal with quality differences among independent
rankers without the need of external information. BARD intro-
duces a Partition Model, which assumes that all involved entities
can be partitioned into two groups: the relevant ones and the
background ones. A rationale of the approach is that, in many
applications, distinguishing relevant entities from background
ones has the priority over the construction of a final rank-
ing of all entities. Under this setting, BARD decomposes the
information in a ranking list into three components: (i) the
relative rankings of all background entities, which is assumed
to be uniform; (ii) the relative ranking of each relevant entity
among all background ones, which takes the form of a truncated
power-law; and, (iii) the relative rankings of all relevant entities,
which is again uniform. The parameter of the truncated power-
law distribution, which is ranker-specific, naturally serves as a
quality measure for each ranker, as a ranker of a higher quality
means a less spread truncated power-law distribution.

Lietal. (2020) proposed a stage-wise data-generation process
based on an extended Mallows model (EMM) introduced by
Fligner and Verducci (1986). EMM assumes that each entity
comes from a two-components mixture model involving a uni-
form distribution to model non-informative entities, a modified
Mallows model for informative entities and a ranker-specific
proportion parameter. Li, Yi, and Liu (2021) followed the Thur-
stone model framework to deal with available covariates for
the entities as well as different qualities of the rankers. In their
model, each entity is associated with a Gaussian-distributed
latent score and a ranking list is determined by the ranking of
these scores. The quality of each ranker is determined by the
standard deviation parameter in the Gaussian model so that a
larger standard deviation indicates a poorer quality ranker.

Although these recent articles have proposed different ways
for learning the quality variation among rankers, they all suffer
from some limitations. The BARD method (Deng et al. 2014)

simplifies the problem by assuming that all relevant entities
are exchangeable. In many applications, however, the observed
ranking lists often have a strong ordering information for rel-
evant entities, and simply labeling these entities as “relevant”
without considering their relative rankings tends to lose too
much information and oversimplify the problem. Li et al. (2020)
did not explicitly measure quality differences by their extended
Mallows model. Although they mentioned that some of their
model parameters can indicate the rankers’ qualities, it is not
clear how to properly combine multiple indicators to produce an
easily interpretable quality measurement. The learning frame-
work of Li, Yi, and Liu (2021) based on Gaussian latent variables
appears to be more suitable for incorporating covariates than for
handling heterogeneous rankers.

In this article, we propose a Partition-Mallows Model
(PAMA), which combines the partition modeling framework
of Deng et al. (2014) with the Mallows model, to accommodate
the detailed ordering information among the relevant entities.
The new framework can not only quantify the quality difference
of rankers and distinguish relevant entities from background
entities like BARD, but also provide an explicit ranking estimate
among the relevant entities in rank aggregation. In contrast to
the strategy of imposing the Mallows on the full ranking lists,
which tends to be sensitive to noises in low-ranking entities,
the combination of the Partition and Mallows Models allows
us to focus on highly ranked entities, which typically contain
high-quality signals in data, and is thus more robust. Both
simulation studies and real data applications show that the
proposed approach is superior to existing methods, for example,
BARD and EMM, for a large class of rank aggregation problems.

The rest of this article is organized as follows. A brief review
of BARD and the Mallows model is presented in Section 2
as preliminaries. The proposed PAMA model is described in
Section 3 with some key theoretical properties established. Sta-
tistical inference of the PAMA model, including the Bayesian
inference and the pursuit of MLE, is detailed in Section 4.
Performance of PAMA is evaluated and compared to existing
methods via simulations in Section 5. Two real data applications
are shown in Section 6 to demonstrate strength of the PAMA
model in practice. Finally, we conclude the article with a short
discussion in Section 7.

2. Notations and Preliminaries

Let U = {Eq, Es, ..., E,} be the set of entities to be ranked. We
use “E; < E;” torepresent that entity E; is preferred to entity E; in
aranking list 7, and denote the position of entity E; in t by 7 (i).
Note that more preferred entities always have lower rankings.
Our research interest is to aggregate m observed ranking lists,
T1,. . .» Tm, presumably constructed by m rankers independently
into one consensus ranking list which is supposed to be “better”
than each individual one.

2.1. BARD and Its Partition Model

The Partition Model in BARD (Deng et al. 2014) assumes that
U can be partitioned into two non-overlapping subsets: U =
Ur U Ug, with Ug representing the set of relevant entities and



Up for the background ones. Let I = ({I;};cy be the vector
of group indicators, where I; = I(E; € Ug) and I(-) is
the indicator function. This formulation makes sense in many
applications where people are only concerned about a fixed
number of top-ranked entities. Under this formulation, the
information in a ranking list 7% can be equivalently represented
by a triplet (z}, rkl TH, where 7. denotes relative rankings of

all background entities, rk 9 denotes relative rankings of relevant
entities among the background entities and 7, denotes relative
rankings of all relevant entities.

Deng et al. (2014) suggested a three-component model for ¢
by taking advantage of its equivalent decomposition:

1|0
Pt | D) = P, )%, 5l | D)

110 110

=P(t) | ) x P(r," | D) x P(ry | 7, "> D, (1)

where both P(rk | I) (relative ranking of the background

entities) and P(Tkl | tkl IO, I) (relative ranking of the relevant enti-
ties conditional on their set of positions relative to background
entities) are uniform, and the relative ranking of a relevant entity
E; among background ones follows a power-law distribution
with parameter y; > 0, that is,

P(r”o(z) =t D) =q(t|yno) ot - I1<t<ny+1),

leading to the following explicit forms for the three terms in
Equation (1):

P(r) | D= —, )
no.:
10 10,
P’ 1D =[] a6 1D
ieUr
1
- _, 3)
(Brk,I)Vk X (Cyk,nl) 1
1 110 1 110
P(zi |7, D) = x I(¢ € Aug(t, ), (4)
Ti,l
where n; = Z?=1 I; and ng = n — ny are the counts of relevant
and background entities respectively, By, = [[icp, T 1|0(1)
Cpom = :Zrl t~7 is the normalizing constant of the power-

law distribution, A, (tkl |0) is the set of 7, s that are compatible
with rkllo, and Ar 1 = #Ay, (rkll )} H”OH 1o ') with

‘L'kt
Mo = i 13, () = D).

Intuitively, thlS model assumes that each ranker first
randomly places all background entities to generate 7, then
“inserts” each relevant entity independently into the list
of background entities according to a truncated power-law

distribution to generate rkl 0

, and finally draws 7} uniformly
from Ay, (Tkl |0). In other words, ‘L']? serves as a baseline for

modeling tkl % and tkl. Itis easy to see from the model that a more
reliable ranker should possess a larger yx. With the assumption
of independent rankers, we have the full-data likelihood:
m
P(ti,. st | Ly) = [ [ P | L) = [(n0)] ™"
k=1
(7} € Aug (1)

rkI X (Brkl)yk X (C}’k m)”l’

<1

k=1

©)
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where y = (¥1,...,¥m). A detailed Bayesian inference proce-
dure for (I, y) via Markov chain Monte Carlo can be found in
Deng et al. (2014).

2.2. The Mallows Model

Mallows (1957) proposed the following probability model for a
ranking list T of # entities:

7(t | 70,¢) = -exp{—¢ - d(7,70)}, (6)

1
Zn(9)
where 79 denotes the true ranking list, ¢ > 0 characterizing the
reliability of 7, function d(:, -) is a distance metric between two
ranking lists, and

1_[:122(1 — e_t¢)

(1—e¢)r1 @

Zy(@) =) _expl—¢ - d(x', 1)} =

being the normalizing constant, whose analytic form was
derived in Diaconis (1988). Clearly, a larger ¢ means that 7
is more stable and concentrates in a tighter neighborhood of 7.
A common choice of d(-, -) is the Kendall tau distance.

The Mallows model under the Kendall tau distance can also
be equivalently described by an alternative multistage model,
which selects and positions entities one by one in a sequential
fashion, where ¢ serves as a common parameter that governs
the probabilistic behavior of each entity in the stochastic process
(Mallows 1957). Later on, Fligner and Verducci (1986) extended
the Mallows model by allowing ¢ to vary at different stages, that
is, introducing a position-specific parameter ¢; for each position
i, which leads to a very flexible, in many cases too flexible, frame-
work to model rank data. To stabilize the generalized Mallows
model by Fligner and Verducci (1986), Li et al. (2020) proposed
to put a structural constraint on ¢;s of the form ¢; = ¢ - (1 —a’)
with0 < ¢ < land 0 < « < 1. As a probabilistic model
for rank data, the Mallows model enjoys great interpretability,
model compactness, inference and computation efficiency. For a
comprehensive review of the Mallows model and its extensions,
see Irurozki et al. (2014) and Li et al. (2020).

3. The PAMA

The Partition Model employed by BARD (Deng et al. 2014)
tends to oversimplify the problem for scenarios where we care
about the detailed rankings of relevant entities. To further
enhance the Partition Model of BARD so that it can reflect the
detailed rankings of relevant entities, we describe a new PAMA
in this section.

3.1. The Reverse Partition Model

To combine the Partition Model with the Mallows Model, a
naive strategy is to simply replace the uniform model for the
relevant entities, that is, P(Tkl | rkllo,l) in (1), by the Mallows
Model, which leads to the updated Equation (4) as below:

()
PG 110 = — 55 I(r) € Au ("),

Tie,]



4 W. ZHU ET AL

AN AN Z|U Tk T T,?l Hor | o (£
1] -1 1| E, 2 2 | - | - 1] 0
2 - |1 2 | B, 6 4| - - -1 3] 4
3 -1 3 | B 4 3| -] - 23
4 - 1 4 | By 1 1 - - - 1 1
) - 1 <= 5 | E5 7T < 5 - - = - 3 )
- 0 0 0 | Eg 5) - 3 2 2 - -
- 0 0 0 | E; 3 - 4 1 1 - -
- 0 0 0 | Eg 8 - 1 3 3 - -
- 0 0 0 | Eg 9 - 1 4 4 - -
- 0 0 0 | Ero 10 - 1 ) 5) - -

Figure 1. Anillustrative example of construction ofI"’ IO and / based on the enhanced indicator vector Z of ny = 5 to a universe of 10 entities, and the decomposition

of a ranking list 7y into triplet (rk r,? 1,

where 7(t}) is the Mallows density of 7} and Z; =
> 10, () is the normalizing constant of the Mallows
reAUR(rk )

model with a constraint due to the compatibility of 7} with
respect to Ay, (1’k1 ‘0). Apparently, the calculation of Z;, 1, which

involves the summation over the whole space of Ay, (Ik1 |0),

whose size is A1 = #{AUR(IHO)} = fiJ{l(nil?t!), is

infeasible for most practical cases, rendering such a naive
combination of the Mallows model and the Partition Model
impractical.

To avoid the challenging computation caused by the con-

straints due to Ay, (rkllo), we rewrite the Partition Model by

switching the roles of 7,']? and 7/ in the model: instead of decom-

posing 7 as (t,? , rk ,7}) conditioning on the group indicators I,

we decompose T into an alternative triplet ('Ck > r,? It

r,? " denotes the relative reverse rankings of background entities

among the relevant ones. Formally, we note that T0|1 (i) =
n1 + 2 — typijuug (9) for any i € Ug, where tygiuuy (1) denotes
the relative ranking of a background entity among the relevant
ones. In this reverse Partition Model, we first order the relevant
entities according to a certain distribution and then use them as
a reference system to “insert” the background entities. Figure 1
illustrates the equivalence between rk and its two alternative

)Ty 0y where

: 0
presentations, (7;, l'k , rk) and (‘L’k , Tk , rk)
Given the group 1nd1cat0r vector I, the reverse Partition

Model based on (7}, Tk , ‘L'k) gives rise to the following distri-
butional form for 4:

01
P, e D)

0[1

P(t | D) =

o1

= P('L’k | ) x P(t, " | I) x P(rk It D, (8)

which is analogous to Equation (1) for the original Partition
Model in BARD. Comparing to Equation (1), however, the
new form Equation (8) enables us to specify an unconstrained

)and (rk ‘L'k ,rk) respectively, given Z.

marginal distribution for 7,/. Moreover, due to the symmetry
between rkl % and r]? " itis highly likely that the power-law dis-
tribution, which was shown in Deng et al. (2014) to approximate
the distribution of rkl ‘O(i) well for each E; € Ug, can also model

r,? |1(z') for each E; € Up reasonably well. Detailed numerical
validations are shown in the supplementary material.

If we assume that all relevant entities are exchangeable, then
all background entities are exchangeable, and the relative reserve
ranking of a background entity among the relevant entities
follows a power-law distribution, we have

PGl | 1) = = )
P 1Ly = [P @) 11w
ieUp
_ ! (10)
= (BE Ve x (C3, nl)
Pz} | ro“ = A*L x I(z) € AUR(Tk 1))’ (11)

Thol
where n; and 1y are numbers of relevant and background enti-

011, » i
[Ticus tkl (i) is the unnormalized
n1+1

ties, respectively, By ; =

part of the power law, = t~ 7 is the normalizing

Vk ny
constant, Ay, (rk ) is the set of all rk that are compatible with

a given r]?‘ ,and A} | = #{AUB('L'OH)} = ]_["1+1 S,th') with

n%l:[ = Y icu; Iz Oy = p). Apparently, the likelihood of this
reverse-Partition Model shares the same structure as that of the
original Partition Model in BARD, and thus can be inferred in a

similar way.

3.2. The PAMA

The reverse Partition Model introduced in Section 3.1 allows
us to freely model 7/ beyond a uniform distribution, which is



infeasible for the original Partition Model in BARD. Here we

employ the Mallows model for 7} due to its interpretability,

compactness and computability. To achieve this, we replace the

group indicator vector I in the Partition Model by a more general

indicator vector J = {J;}I_,, which takes value in Qg, the

space of all permutations of {1,...,#1,0,...,0}, with J; = 0
———

no
if E; € Ug,and J; = k > 0if E; € Ug and is ranked at
position k among all relevant entities in Ug. Figure 1 provides an
illustrative example of assigning an enhanced indicator vector J
to a universe of 10 entities with n; = 5.

Based on the status of J, we can define subvectors J* and °,
where J* stands for the subvector of J containing all positive
elements in J, and J° for the remaining zero elements in J.
Figure 1 demonstrates the constructions of J,J% and 79, and the
equivalence between 7, (rk, tk , rk) and (tk, rk , tk) given
J. Note that different from the Partition Model in BARD, in
which we allow the number of relevant entities represented by
ny to vary nearby its expected value, the number of relevant
entities in the new model, is assumed to be fixed and known
for conceptual and computational convenience. In other words,
we have |Ug| = n; in the new setting.

As an analogy of Equations (1) and (8), we have the following
decomposition of 7 given the enhanced indicator vector J

P(ri | 9) = P(z}, 7,7 1 9)
= P(r} |9 x P | 9) x P | 1 9). (12)

Assume that ‘L’kl | J follows the Mallows model (with parameter
¢r) centered at J*

exp{—¢y - d: (¢},97)}
Zl’ll (¢k)

where d;(,-) denotes Kendall tau distance and Z, (¢r) is
defined as in Equation (7). Clearly, a larger ¢y indicates that
ranker i is of a higher quality, as the distribution is more
concentrated at the “true ranking” defined by J*. Since the
relative ranking of background entities are of no interest to us,
we still assume that they are randomly ranked. Together with

P(z} | J,¢k) = P(z} | I, ) = ,(13)

the power-law assumption for r,? I (i), we have

ol ol
P 19) =P | Ly
1
S E Gyt Y
Viol Yot
P ") =P | )
= X I(z) € AUR(tk )), (15)
Tkl
where notations A7 ;, By ; and Cj, , are the same as in the

reverse-Partition Model. We call the resulting model the PAMA.

Different from the Partition and reverse-Partition models,
which quantify the quality of ranker ti with only one parameter
Yk in the power-law distribution, the PAMA model contains
two quality parameters ¢y and yk, with the former indicating
the ranker’s ability of ranking relevant entities and the latter
reflecting the ranker’s ability in differentiating relevant entities
from background ones. Intuitively, ¢ and yj reflect the quality

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION e 5

of ranker i in two different aspects. However, considering that
a good ranker is typically strong in both dimensions, it looks
quite natural to further simplify the model by assuming

k=9 Vi

with ¢ > 0 being a common factor for all rankers. This
assumption, while reducing the number of free parameters by
almost half, captures the natural positive correlation between
¢k and vy and serves as a first-order (i.e., linear) approximation
to the functional relationship between ¢y and . A wide range
of numerical studies based on simulated data suggest that the
linear approximation showed in Equation (16) works reasonably
well for many typical scenarios for rank aggregation. In contrast,
the more flexible model with both ¢, and y; as free param-
eters (which is referred to as PAMA*) suffers from unstable
performance from time to time. Detailed evidences to support
assumption (16) can be found in the supplementary material.

Plugging in Equation (16) into Equation (13), we have a
simplified model for 7, given J as follows:

(16)

P(t} | %,¢,70) = P(z} 1 T, ¢, 0
_expl=d - d. (t}, 1)}
Zn (9 Vi) '

Combining Equations (14), (15), and (17), we get the full likeli-
hood of i

(17)

P(ri | 9.6, 71) = Pz} | 9.6, x Prp" | 90 x P | 7",

0|1
_ Iz € AUR(fkl ) (18)
AT 1 X (B Ve X (G )M x (D, )07k x By

J)

_ + _
where D;‘I;J = expld; (rk IO Eq5 w =
[T32,(1—e*7k)

(lf_ze—aﬁyk)nl—l , dArk,iJ’ 0] and C*
as in the reverse-Partition model. At last, for the set of observed
ranking lists T = (ty,. .., T) from m independent rankers, we
have the joint likelihood:

Zﬂ1(¢) : yk) =

7.n Keep the same meaning

P(r | 3,6, 9) = [ [ P(ri | 5, ¢ 70 (19)

k=1

3.3. Model Identifiability and Estimation Consistency

Let 2, be the space of all permutations of {1,...,n} in which
7% takes value, and let @ = (J,¢,y) be the vector of model
parameters. The PAMA model in (19), thatis, P(t | #), definesa
family of probability distributions on Q2" indexed by parameter
0 taking values in space ® = Qg x Qg x €, where Qj is the
space of all permutations of {1, . . ., 11,0, }, Q¢ = (0, +00) and
Q) = [0,+00)™. We show here that the PAMA model defined
in Equation (19) is identifiable and the model parameters can be
estimated consistently under mild conditions.

Theorem 1. The PAMA model is identifiable, that is,

V0,0, €0, ifP(T | 01)

=P(t | 0y) forVT e QF, thenf; =0,. (20)

Proof. See the supplementary material. O
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Figure 2. Average ranks of all the entities with fixed Z = (1,..., n,0,..., 0),n=30,n1 = 15,m= 100,000 and F(y) = U(0, 2). (a), (b), and (c) are the corresponding

results for ¢ = 0,0.2, and 0.4 respectively.

To show that parameters in the PAMA model can be esti-
mated consistently, we will first construct a consistent estimator
for the indicator vector J as m — 0o but with the number
of ranked entities n fixed, and show later that ¢ can also be
consistently estimated once J is given. To this end, we define
7(G) = m! Z,T:l 7(i) to be the average rank of entity E;
across all m rankers, and assume that the ranker-specific quality
parameters y1, . . . , Y, are iid samples from a non-atomic proba-
bility measure F(y) defined on [0, 00) with a finite first moment
(referred to as condition C, hereinafter). Then, by the strong
law of large numbers we have

7(i) = %sz(i) — E[t()]as. withm — oo,  (21)
k=1

since {7k (i)}], are iid random variables with expectation
E[z ()] = E[E[r(i) | y]] = / E[z() | y]dF(y),

where E[t ON y] is the conditional mean of 7 (i) given the
model parameters (J, ¢, y), that is,

E[t() | y] =) _t-P(x() =t]3,¢,y).
t=1

Clearly, E[r(i)] is a function of ¢ given J and F(y). We define
ei(p) = E[t (i)] to emphasize E[t (i)]’s nature as a continu-
ous function of ¢. Without loss of generality, we suppose that
Ur = {1,...,m}and Ug = {n; + 1,...,n}, thatis, I =
(1,...,n1,0,...,0), hereinafter. Then, the Partition structure
and the Mallows model embedded in the PAMA model lead to
the following facts:

erl(@) < - <ey(Pp)ande, 41(¢) = - = en(¢)

=ep, V¢ € Q. (22)

Note that e;(¢) degenerates to a constant with respect to ¢ (i.e.,
eg) for all i > n; because parameter ¢ influences only the
relative rankings of relevant entities in the Mallows model. The
value of ey is completely determined by F(y). For the BARD
model, it is easy to see thate; = - - = e, < ey 41 =" = ey.

Figure 2 shows some empirical estimates of the e;(¢)’s based
on m = 100,000 independent samples drawn from PAMA
models with n = 30, n; = 15, and F(y) = U(0,2), but three
different ¢ values: (a) ¢ = 0, which corresponds to the BARD
model; (b) = 0.2; and (c) ¢ = 0.5. One surprise is that in
case (c), some relevant entities may have a larger e;(¢) (worse
ranking) than the average rank of background entities. Lemma 1
guarantees that for almost all ¢ € Q4, e is different from e;(¢)
fori = 1,...,n;. The proof of Lemma 1 can be found in the
supplementary material.

Lemma 1. For the PAMA model with condition C,, 3 Q¢ -
Qg s.t. (Qp — Q¢) contains only finite elements and

ei(¢p) #egfori=1,...,n, ¥V € Qp. (23)

The facts demonstrated in Equations (22) and (23) suggest
the following three-step strategy to estimate J: (a) find the subset
So of ng = (n — ny) entities from U so that the within-subset
variation of the 7 (i)’s is the smallest, that is,

_ . o2
So = arg minge; (5=, Z(e, es)”, with

ieS
es = ngl E e,

ieS

(24)

and let Us = Sy be an estimate of Ug; (b) rank the entities in
U \ So by 7(i) increasingly and use the obtained ranking J* as
an estimate of JT; (c) combine the above two steps to obtain the
estimate J of J. This can be achieved by defining Uz = U \ Ug
and It = rank({7(i) : i € Ug}), and obtain I = (Jy,...,Tn),
with ji = jj_ RIERS f]R)

Note that Up is based on the mean ranks, {7 (i)}icu, thus is
clearly a moment estimator. Although this three-step estimation
strategy is neither statistically efficient nor computationally fea-
sible (step (a) is NP-hard), it nevertheless serves as a prototype
for developing the consistency theory. Theorem 2 guarantees
that J is a consistent estimator of J under mild conditions.

Theorem 2. For the PAMA model with condition C,,, for almost

all ¢ € g, the moment estimator J converges to J with
probability 1 with m going to infinity.



Proof. Corpbining fact (23) in Lemma 1 with fact (21), we have
forV ¢ € Qg4 that

e1(@) <--- < ey (¢p)andei(P) #epfori=1,...,n.

Moreover, as fact (21) tells us that for Ve, 6 > 0,3 M > 0s.t.
forVm > M,

P(IT() —e(Pp)l <8) =1—¢,i=1,...,n,

it is straightforward to see the conclusion of the theorem. [

Theorem 2 tells us that estimating J is straightforward if the
number of independent rankers m goes to infinity: a simple
moment method ignoring the quality difference of rankers can
provide us a consistent estimate of J. In a practical problem
where only a finite number of rankers are involved, however,
more efficient statistical inference of the PAMA model based
on Bayesian or frequentist principles becomes more attractive as
effectively utilizing the quality information of different rankers
is critical.

With ny and n; fixed, parameter yk, which governs the
power-law distribution for the rank list 7y, cannot be estimated
consistently. Thus, its distribution F(y) cannot be determined
nonparametrically even when the number of rank lists m goes
to infinity. We impose a parametric form Fy (y) with ¢ as
the hyper-parameter and refer to the resulting hierarchical-
structured model as PAMA-H, which has the following
marginal likelihood of (¢, ) given J:

Lo, ¥ | J) = fP(T | 3, &, )dFy (v)

=1 / P(tx | 3,6, v dFy (i) = [ [ L@, ¥ 1 9).
k=1

k=1

We show in Theorem 3 that the MLE based on the above
marginal likelihood is consistent.

Theorem 3. Under the PAMA-H model, assume that (¢, V)
belongs to the parameter space 24 x 2, and the true parameter
(¢, Yo) is an interior point of Qg x . Let ((]33, 1,@3) be the
maximizer of L(¢,¥ | J). If Fy(y) has a density function
fu (y) that is differentiable and concave with respect to ¥, then

1imy, o0 (¢3, ¥3) = (0, Y0) almost surely.

Proof. See Supplementary material. O

4, Inference with the PAMA
4.1. Maximum Likelihood Estimation

Under the PAMA model, the MLE of 8 = (J,¢,p) is 0 =
arg maxg [(#), where

I(0) =log P(t1, 72, ..., T | 0) (25)

is the logarithm of the likelihood function (19). Here, we adopt
the Gauss-Seidel iterative method in Yang (2018), also known
as backfitting or cyclic coordinate ascent, to implement the opti-
mization. Starting from an initial point 8©), the Gauss-Seidel
method iteratively updates one coordinate of @ at each step
with the other coordinates held fixed at their current values.
A Newton-like method is adopted to update ¢ and yk. Since J
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is a discrete vector, we find favorable values of J by swapping
two neighboring entities to check whether g(J | y ¢+1, ¢+D)
increases. More details of the algorithm are provided in the
supplementary material.

~ With the MLE 8 = (J, ¢, ), we define Ur(J) = {i € U :
Ji > 0} and Up(J) = {i € U : J; = 0}, and generate the final
aggregated ranking list 7 based on the rules below: (a) set the
top-n list of T as T,, = sort(i € UR(j) by j,- 1), (b) all entities
in UB(ﬁ) tie for positions behind. Hereinafter, we refer to this
MLE-based rank aggregation procedure under PAMA model as
PAMAE.

For the PAMA-H model, a similar procedure can be applied
to find the MLE of @ = (J,¢, ), with the y = (y1,..-,¥m)
being treated as the missing data. With the MLE 8 = (J, ¢, ¥/),
we can generate the final aggregated ranking list T based on Jin
the same way as in PAMA, and evaluate the quality of ranker 7
via the mean or mode of the conditional distribution below:

for w8, .9 o e 1) - Pl | 9, 10)-
In this article, we refer to the above MLE-based rank aggregation

procedure under PAMA-H model as PAMAyg. The procedure
is detailed in the supplementary material.

4.2. Bayesian Inference

Since the three model parameters J, ¢, and y encode “orthogo-
nal” information of the PAMA model, it is natural to expect that
J, ¢ and y are mutually independent a priori. We thus specify
their joint prior distribution as

m
7(1,¢,y) =7)-7(@) - [ [0

k=1
Without much loss, we may restrict the range of ¢ and yx’s to
a closed interval [0, b] with a large enough b. In contrast, J is
discrete and takes value in the space Q27 of all permutations of
{1,...,n1,0,...,0}. It is convenient to specify 7 (J), 7(¢) and

——

ho
7 (vx) as uniform, that is,

m(J) ~ U(Q9), m(¢p) ~ U[0,b], 7(yi) ~ U[0, b].

Based on our experiences in a large range of simulation studies
and real data applications, we find that it works reasonably well
to set b = 10. In Section 3.3 we also discussed letting 7 (%) be
of a parametric form, which will be further discussed later.

The posterior distribution can be expressed as

f(j»¢»}’|'fl)1’2 ))))) tm)

m

< 7(J,¢,¥) - P(1, 725, T T, 0, ¥) = 1(¢ € [0,10) x [ |

k=1
0 0/1
X{ I(z) € Ayg () x I{yk € [0,10]) } (26)
A% g (B Ve X (Cn )M x (D, )Pk x ’

with the following conditional distributions:

mo I e Ag D)
J1¢,y) x , (27)
Jotey E]A’:k,zxwik,pykX(D;;,M”
m
1
f@ 19, o« I(¢ €l0,100) x [ | (28)

* . * 4
(Drk,3)¢ Yk x E

k=1 DYk
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I(y € [0,10])

n—n * )Yk x EX
) L (D, ) x Ey

based on which posterior samples of (J, ¢, ¥ ) can be obtained by
Gibbs sampling, where y(_j; = (V15 - - > Vk—1> Vk+1> - - > Vim)-
Considering that conditional distributions in Equations (27)-
(29) are nonstandard, we adopt the Metropolis—Hastings algo-
rithm (Hastings 1970) to enable the conditional sampling. To be
specific, we choose the proposal distributions for ¢ and yx as

a@ 1 933, y) ~ N, 0,)

® 2
))O'yk b

» (29)

f 13,0, 71—k &
By, DT x (Chm

a1 39,0, v i) ~ N,

where oq% and afk can be tuned to optimize the mixing rate of
the sampler. Since J is a discrete vector, we propose new values
of J by swapping two randomly selected adjacent entities. Note
that the entity whose ranking is #n; could be swapped with any
background entity. Due to the homogeneity of background enti-
ties, there is no need to swap two background entities. Therefore,
the number of potential proposals in each step is O(nn;). More
details about MCMC sampling techniques can be found in Liu
(2008).

Suppose that M posterior samples {(J),®,y D)1 are
obtained. We calculate the posterior means of different param-
eters as follows:

M
= 1 n+1+n

§ @) 7 1 (t) .
jiz—t_l[jl, .Ii +T(1_11 )],121,...,1’1,

- 1
- ®
¢ = i E ¢
t=1
1 M
)7](2_ E )/k(t),kzl,...,m.

We quantify the quality of ranker 7 with y%, and generate the
final aggregated ranking list T based on the J;’s as follows:

T = sort(i € U by Ji 7).

Hereinafter, we refer to this MCMC-based Bayesian rank aggre-
gation procedure under the PAMA as PAMAg.

The Bayesian inference procedure PAMAyp for the PAMA-
H model differs from PAMAg only by replacing the prior
distribution [, 7 (%), which is uniform in [0, b]™, with a
hierarchical-structured prior 7(¥) [1}Z, fy (7). The condi-
tional distributions needed for Gibbs sampling are almost the
same as Equations (27)-(29), except an additional one

m

@ 19,0,9) @) - [ [fo - (30)
k=1
We may specify f,, (y) to be an exponential distribution and let
7 (Y¥) be a proper conjugate prior to make Equation (30) easy
to sample from. More details for PAMAgg with fy, () specified
as an exponential distribution is provided in the supplementary
material.

Our simulation studies suggest that the practical perfor-
mance of PAMAp and PAMAygp are very similar when ng and n;
are reasonably large (see supplementary material for details). In
contrast, as we will show in Section 5, the MLE-based estimates
(e.g., PAMAF) typically produce less accurate results with a
shorter computational time compared to PAMAp.

4.3. Extension to Partial Ranking Lists

The proposed PAMA can be extended to more general scenarios
where partial ranking lists, instead of full ranking lists, are
involved in the aggregation. Given the entity set U and a ranking
list T of entities in S € U, we say s is a full ranking list if S = U,
and a partial ranking list if S C U. Suppose ts is a partial ranking
list and ty is a full ranking list of U. If the projection of 7y on §
equals to T, we say Ty is compatible with 75, denotes as ty ~ ts.
Let A(tg) = {tu : tu ~ Tts} be the set of all full lists that
are compatible with 7s. Suppose a partial list 7% is involved in
the ranking aggregation problem. The probability of 7x can be
evaluated by

P(tx | 37 = Y, P(r | 0,670, (31)

T~

where P(z} | J,¢,yx) is the probability of a compatible full
list under the PAMA model. Clearly, the probability in (31)
does not have a closed-form representation due to complicated
constraints between tx and 7}, and it is very challenging to do
statistical inference directly based on this quantity. Fortunately,
as rank aggregation with partial lists can be treated as a missing
data problem, we can resolve the problem via standard methods
for missing data inference.

The Bayesian inference can be accomplished by the classic
data augmentation strategy (Tanner and Wong 1987) in a similar
way as described in Deng et al. (2014), which iterates between
imputing the missing data conditional on the observed data
given the current parameter values, and updating parameter
values by sampling from the posterior distribution based on the
imputed full data. To be specific, we iteratively draw from the
following two conditional distributions:

PG, | Tt 3,8, 9)
m
=[P 1 w9, 6,70,
k=1
fOe vt 1) xm(d)
m
x7(y) x w(@) x [ TP 19,70 9).

k=1

To find the MLE of @ for this more challenging scenario,
we can use the Monte Carlo EM algorithm (MCEM; Wei and
Tanner (1990)). Let t(l), ces TIEM) be M independent samples
drawn from distribution P(z} | 7%, J, ¢, yk). The E-step involves
the calculation of the Q-function below:

QY. ¢ 199,99, 01

m

=E {2:logP(r,;k [3,7,0) | Tk>5(s),}’;(<s)’¢(s)
k=1

1 m

Mk:

log P(r" | 9, Y10 ).

M=

I
_

1t

In the M-step, we use the Gauss-Seidel method to maximize the
above Q-function in a similar way as detailed in the supplemen-
tary material.



No matter which method is used, a key step is to draw
samples from

P(t} | 3,0, i) « P(ti | 0, v @) - I(zy € A(Ti)).

To achieve this goal, we start with 7, obtained from the previ-
ous step of the data augmentation or MCEM algorithms, and
conduct several iterations of the following Metropolis step with
P(ty | w3, ¢, k) as its target distribution: (a) construct the
proposal 7; by randomly selecting two elements in the current
full list 7;" and swapping them; (b) accept or reject the proposal
according to the Metropolis rule, that is to accept t; with prob-

P(t{|9.y.0)
> P(rg 1T yi09)
automatically rejected if it is incompatible with the observed
partial list 7.

ability of min(1 ). Note that the proposed list 7 is

4.4. Incorporating Covariates in the Analysis

In some applications, covariate information for each ranked
entity is available to assist rank aggregation. One of the earliest
attempts for incorporating such information in analyzing rank
data is perhaps the hidden score model due to Thurstone (1927),
which has become a standard approach and has many exten-
sions. Briefly, these models assume that there is an unobserved
score for each entity that is related to the entity-specific covari-
ates X; = (Xi1, ..., Xip) T under a regression framework and the
observed rankings are determined by these scores plus noises,
that is,

T = sort(Six |, E; € U), where Sz = X,-Tﬂ + &ik.

Here, B is the common regression coeflicient and € ~ N(0, akz)
is the noise term. Recent progresses along this line are reviewed
by Yu (2000), Bhowmik and Ghosh (2017), and Li, Yi, and Liu
(2021).

Here, we propose to incorporate covariates into the analysis
in a different way. Assuming that covariate X; provides informa-
tion on the group assignment instead of the detailed ranking of
entity E;, we connect X; and J;, the enhanced indicator of X;, by
a logistic regression model

P | Xi) = PU; | Xi,¥)

_explX[y - 1)

C 1+expiX[y) (32)

=1...,n,

where ¢ = (Y1,..., wp)T as the regression parameters. Let X =

(X1, ...,X,) be the covariate matrix, we can extend the PAMA
as
P(tls.. ..ty I | X) =PI | X, ¥) X P(T15.. 5T | T, 0, ),
(33)

where the first term

PO X, 9) =[P | X 9)

i=1

comes from the logistic regression model (32), and the second
term comes from the original PAMA. In the extended model,
our goal is to infer (J,¢,y,¥) based on (t1,...,Tm; X). We
can achieve both Bayesian inference and MLE for the extended
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model in a similar way as described for the Partition-Mallows
Model. More details are provided in the supplementary material.

An alternative way to incorporate covariates is to replace the
logistic regression model by a Naive Bayes model, which models
the conditional distribution of X | J instead of J | X, as follows:

f@L sty X | D) =P, T | 1,0, 9) X f(X | D), (34)
where
n n nop
fx1n=[lr&1m=Tlre1n=T]]]f&n
i=1 i=1 i=1 j=1
L -5 I
= TTIT{ 50k 1wl - [y L]},

i=1 j=1

fj is prespecified parametric distribution for covariates X; with
parameter vjo for entities in the background group and vj; for
entities in the relevant group. Since the performances of the two
approaches are very similar, in the rest of this article, we use
the logistic regression strategy to handle covariates due to its
convenient form.

5. Simulation Study
5.1. Simulation Settings

We simulated data from two models: (a) the proposed PAMA,
referred to as Spy, and (b) the Thurstone hidden score model,
referred to as Sys. In the Spas scenario, we specified the true
indicator vector as J = (1,...,n,0,...,0), indicating that the
first n; entities Ey, . . ., E,, belong to Ug and the rest belong to
the background group Ug, and set

|

Clearly, a > 0 and 6gr > 0 control the quality difference and
signal strength of the m base rankers in the Spys scenario. We
set ¢ = 0.6 (defined in (16)), Sgp = %, and a with two options:
2.5and 1.5. For easy reference, we denoted the strong signal case
with a = 2.5 and the weak signal case with a = 1.5 by Spy, and
Spu, » respectively.

In the Sgs scenario, we used the Thurstone model to generate
the rank lists as 7z = sort(i € U by Si ), where S ~
N(pik» 1) and

0.1, ifk < %;

a+ (k— %) xdg, ifk> 3.

)

0, ifk <% ori>ng;

o % %
Hik a* + b% X k+ (n1 —i) x 85, otherwise.

In this model, a*, b* and &}, (all positive numbers) control the
quality difference and signal strength of the m base rankers.
We also specified two sub-cases: Sgg,, the stronger-signal case
with (a*, b*,85) = (0.5,2.5,0.2); and S,, the weaker-signal
case with (a*,b%,85) = (—0.5,1.5,0.2). Table 1 shows the
configuration matrix of p; under Sys, when m = 10,n =
100 and n; = 10. In both scenarios, the first half of rankers
is completely non-informative, with the other half providing
increasingly strong signals.

For each of the four simulation scenarios (i.e., Sppm,, Spm,,
SHs,» and Sgs, ), we fixed the true number of relevant entities
n; = 10, but allowed the number of rankers m and the total
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Table 1. The configuration matrix of the 1j's under Sys, with m=10,n =100 and
n1=10.

m w2 "3 Iz s e w7 23] 3] Mm10
Eq 0 0 0 0 0 37 39 41 43 45
E; 0 0 0 0 0 35 37 39 41 43
E3 0 0 0 0 0 33 35 37 39 4.1
Ey 0 0 0 0 0 3.1 33 35 3.7 3.9
Es 0 0 0 0 0 29 31 33 35 37
Ee 0 0 0 0 0 27 29 31 3.3 35
E7 0 0 0 0 0 25 27 29 31 33
Eg 0 0 0 0 0 23 25 27 29 3.1
Eg 0 0 0 0 0 2.1 2.3 2.5 2.7 29
Eqo 0 0 0 0 0 19 21 2.3 25 2.7

0 0 0 0 0 0 0 0 0 0

Fgp O O 0 0 0 0 0 0 0 0

number of entities # to vary, resulting in a total of 16 simulation
settings ( {scenarios : Spar,, Spm,, SHs,» SHs,} X {m : 10,20} x
{n : 100, 300} x {n : 10}). Under each setting, we simulated 500
independent datasets to evaluate and compare performances of
different rank aggregation methods.

5.2. Methods in Comparison and Performance Measures

Except for the proposed PAMAp and PAMAF, we considered
state-of-the-art methods in several classes, including the
Markov chain-based methods MC;, MC,, and MC3 in Lin
(2010) and CEMC in Lin and Ding (2010), the partition-based
method BARD in Deng et al. (2014), and the Mallows model-
based methods MM and EMM in Li et al. (2020). Classic
Naive methods based on summary statistics were ignored
because they have been shown in the previous studies to
perform suboptimally, especially in cases where base rankers are
heterogeneous in quality. The Markov-chain-based methods,
MM, and EMM were implemented in TopKLists, PerMallows,
and ExtMallows packages in R (https://www.r-project.org/),
respectively. The code of BARD was provided by its authors.

Let 7 be the underlying true ranking list of all entities, 7p =
{t(i) : E; € URg} be the true relative ranking of relevant
entities, T be the aggregated ranking obtained from a rank
aggregation approach, Tg = {7(i) : E; € Ug} be the relative
ranking of relevant entities after aggregation, and 7,,, be the top-
ny list of T. After obtaining the aggregated ranking 7 from a
rank aggregation approach, we evaluated its performance by two
measurements, namely the recovery distance kg and the coverage
PR, defined as below:

n+mn +1

kR £ dr (Tr, TR) + 1z ¥ -

a M —nz
PR=—""1
ny
where d; (Tg, Tr) denotes the Kendall tau distance between 7y
and tg, and n; denotes the number of relevant entities who
are classified as background entities in . The recovery distance
kr considers detailed rankings of all relevant entities plus mis-
classification distances, while the coverage pr cares only about
the identification of relevant entities without considering the
detailed rankings. In the setting of PAMA, ""’”TI‘H is the average
rank of a background entity. The recovery distance increases if

some relevant entities are misclassified as background entities.
Clearly, we expect a smaller xg and a larger pg for a stronger
aggregation approach.

5.3. Simulation Results

Table 2 summarizes the performances of the nine compet-
ing methods in the 16 different simulation settings, demon-
strating the proposed PAMAg and PAMAF outperform all the
other methods by a significant margin in most settings and
PAMAg uniformly dominates PAMAF. Figure 3 shows the qual-
ity parameter y learned from the Partition-Mallows Model in
various simulation scenarios with m = 10 and n = 100,
confirming that the proposed methods can effectively capture
the quality difference among the rankers. The results of y for
other combinations of (m, n) can be found in the supplemen-
tary material which demonstrates consistent performance with
Figure 3.

Figure 4 (a) shows the boxplots of recovery distances and the
coverages of the nine competing methods in the four simulation
scenarios with m = 10, n = 100, and n; = 10. The five methods
from the left outperform the other four methods by a significant
gap, and the PAMA-based methods generally perform the best.
Figure 4 (b) confirms that the methods based on the Partition-
Mallows Model enjoy the same capability as BARD in detecting
quality differences between informative and noninformative
rankers. However, while both BARD and PAMA can further dis-
cern quality differences among informative rankers, EMM fails
this more subtle task. Similar figures for other combinations of
(m, n) are provided in the supplementary material, highlighting
consistent results as in Figure 4.

5.4. Robustness to the Specification of nq

We need to specify n;, the number of relevant entities, when
applying PAMAg or PAMAF. In many practical problems, how-
ever, there may not be a strong prior information on n; and
there may not even be clear distinctions between relevant and
background entities. To examine robustness of the algorithm
with respect to the specification of n;, we design a simulation
setting Sprs, to mimic the no-clear-cut scenario and investigate
how the performance of PAMA is affected by the specification of
ny under this setting. Formally, Sy, assumes that 7; = sort(i €
U by Sik |), where Six ~ N(uik, 1), following the same data
generating framework as Sgs defined in the Section 5.1, with
Wik being replaced by

ifk < %,

0)
P— *
Hik { 2xa xk/m otherwise,

where a* = 50 and b* = 0.1. Different from Sys, and
SHs,, where pjx jumps from 0 to a positive number as i ranges
from background to relevant entities, in the Sgs, scenario ik
increases smoothly as a function of i for each informative ranker
k. In such cases, the concept of “relevant” entities is not well-
defined.

We simulate 500 independent datasets from Syg, with n =
100 and m = 10. For each dataset, we try different specifications
of n; ranging from 10 to 50 and compare PAMA to several
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Table 2. Average recovery distances [coverages] of different methods based on 500 independent replicates under different simulation scenarios.

Configuration Partition-type Models

Mallows Models MC-based Models

S n m PAMAF PAMAg BARD EMM MM MCq MG, MG CEMC
SPM1 100 10 245 15.2 571 51.7 103.2 3384 163.1 198.6 197.8
[0.95] [0.97] [0.91] [0.89] [0.81] [0.36] [0.69] [0.63] [0.62]
100 20 2.6 0.3 421 228 44.2 466.6 88.9 121.2 114.7
[0.99] [1.00] [0.95] [0.95] [0.93] [0.11] [0.82] [0.78] [0.77]
300 10 17.4 4.0 180.0 683.3 519.2 1268.3 997.7 1075.8 1085.7
[0.99] [1.00] [0.89] [0.66] [0.55] [0.17] [0.34] [0.29] [0.28]
300 20 7.1 3.2 1223 1244 157.1 1445.9 613.5 723.0 727.2
[1.00] [1.00] [0.93] [0.92] [0.90] [0.05] [0.60] [0.53] [0.52]
SPMZ 100 10 90.0 66.6 115.2 108.3 1529 404.3 285.5 307.2 313.8
[0.82] [0.86] [0.77] [0.77] [0.70] [0.24] [0.47] [0.43] [0.41]
100 20 26.9 2.4 81.5 59.8 91.5 468.1 217.3 245.2 249.5
[0.94] [1.00] [0.85] [0.87] [0.82] [0.11] [0.60] [0.55] [0.53]
300 10 81.1 26.8 468.4 609.8 4721 1388.4 1294.7 13215 13284
[0.95] [0.98] [0.69] [0.68] [0.60] [0.09] [0.15] [0.13] [0.13]
300 20 77.2 34 313.6 267.5 337.0 1469.0 1205.9 1251.8 1258.9
[0.95] [1.00] [0.79] [0.82] [0.78] [0.04] [0.21] [0.18] [0.18]
SHS1 100 10 249 20.6 229 549 1159 334.7 150.9 180.3 186.0
[0.97] [0.98] [0.99] [0.91] [0.80] [0.37] [0.71] [0.66] [0.64]
100 20 18.7 15.6 22.8 8.7 334 498.8 46.7 64.1 60.8
[0.98] [0.98] [1.00] [1.00] [0.97] [0.05] [0.92] [0.89] [0.89]
300 10 172.0 159.8 379 205.5 490.6 1098.6 627.0 7529 769.4
[0.89] [0.90] [0.99] [0.87] [0.68] [0.28] [0.59] [0.50] [0.49]
300 20 7.4 7.0 22.7 11.4 1141 1402.6 237.8 319.7 3223
[1.00] [1.00] [1.00] [1.00] [0.94] [0.08] [0.84] [0.79] [0.79]
SH52 100 10 92.6 74.0 68.7 123.7 162.3 382.4 228.2 250.2 256.6
[0.83] [0.86] [0.88] [0.77] [0.70] [0.27] [0.56] [0.52] [0.50]
100 20 244 20.0 222 124 383 500.3 87.5 103.5 102.9
[0.96] [0.97] [1.00] [0.99] [0.95] [0.04] [0.83] [0.80] [0.80]
300 10 319.1 463.8 245.6 516.9 683.5 1267.9 998.0 1076.0 1085.5
[0.79] [0.69] [0.84] [0.66] [0.55] [0.17] [0.34] [0.29] [0.28]
300 20 8.7 8.0 23.2 30.3 155.5 1430.7 437.6 516.2 5233
[1.00] [1.00] [1.00] [0.99] [0.91] [0.06] [0.71] [0.66] [0.65]
NOTE: The bold texts indicate the best performance for each row.
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Figure 3. (a) The boxplots of {yy} estimated by PAMAg with m = 10 and n = 100. (b) The boxplots of {yx} estimated by PAMAF with m = 10 and n = 100. Each column
denotes a scenario setting. The results were obtained from 500 independent replicates.

competing methods based on their performance on recovering
the top-A list [E; < E; < -+ < E4], which is still well-defined
based on the simulation design. The results summarized in
Table 3 show that no matter which n, is specified, the partition-
type models consistently outperform all the competing methods
in terms of a lower recovery distance from the true top-n; list of
items, that is, [E; < E; < --- < E, ]. Figure 5 illustrates in
details the average aggregated rankings of the top-10 entities by
PAMA as n; increases, suggesting that PAMA is able to figure
out the correct rankings of the top entities effectively. These

results give us confidence that PAMA is robust to misspecifi-
cation of ny.

Noticeably, although PAMA and BARD achieve comparable
coverage as shown in Table 3, PAMA dominates BARD uni-
formly in terms of a much smaller recovery distance in all cases,
suggesting that PAMA is capable of figuring out the detailed
ranking of relevant entities that is missed by BARD. In fact,
since BARD relies only on p; = P(I; = 1 | Ty,...,Tp)
to rank entities, in cases where the signal to distinguish the
relevant and background entities is strong, many p;’s are very



12 (&) W.ZHUETAL.

o~ SpM1 Spmy Sus, Sus,
L © =, ° T '© A = & ©q = O 5 w» - oE= T T T
S T aSiTEIT| {11, s8TTTT| o] 1e BLTETT|  |5iedTIY
@ 0 W i = ° ] T - o o °
5 . 8 o v DOHd=w2 Q =¢0 | N R
g N A ~FE T 17
()? O: ’ o ‘o 8 O:AE = N_gg S
a | | S B T T — T T T T T T 1T 1 T T T 1T L T T
OO = TIT| e[0Tz S .- TO=== o T.. e g
g {T w0T.::7| o]Troom s I e -
S P e Hoassdh e oe © | Sl [ R (RSP e s ol
5 ] Ei:E 317 TTiPPH| °l- s glii| °q:q izé?EE
3 = 8 2 _ P ™ s 3 ° il
© o i ’ o El ° -l o ol - 5
T $POS3GESC | ££9333582 | £8923S5S5Q | £89335859
SssT=3=sS332 ssT==s==2 SsT==2s5=5=g2 SssT==s5s5=2
I W i I<py W o I<p W “J <<g W 8]
oo o oo O Qo o Qo o
- ) © - °
8 0 - ] l © A oeg
. o * T LT ik
< O 2 ) °§ = T
e B |- < HoH il
% < EEBE NfoggegEEEElE
N Tliipasiiooo| qdibasTo
o 4 O | e ——— ol 5 5 8 o
£ - - e c§| o o
[ 8 ! 4 og
< © © - osg : ooovg
2 8 < & T
-2 SN L1 I L
S N g s EIEEE Nisﬁi!aggaas
o | ] o esddet o | Seeaemes s L L LS
8 - 8 <t 5
~ éi <7 ciil? . 8 8
| ° ‘ gﬂg ™ : go
(b) %>: s??ég;_wa ;%E ] ﬁ?ggg;hm- EE%?%
= = : 4 ; [V i
o SETPT I (R HE7T PSS
- Tl 1 S8BT ~4g L ~ TIll
R I R
s [eo] 3 (e} @ )
i o°§ (=3 o © > 7| oggsa o gcc§
oo aabie T Pite| SRR S0 NSRS FE Y L
= ; e i RS AR BN e 3 g1 i
SR I - I T S I s I 2§ SrE
R i AR L =C S|1hr ] osHEs
SooenC | _ememasllilt R[E====1EE
o R S T S B A | T [ T
S == 1 e e N S P e
} o B 1o s T R T T T T T T . 288 . 7T T~
o | ;E TEees| | E ﬁaﬁaa ©
S 1 1! e e
= T 885, 1888 i R 4
>3] 8808 ¢ ‘5<r.,°§°°oL§8 5 5« | g
m o ooggg o 803553000 o |8
hiaid LR T ey |
Simmmm o fe | glommma| 110} g-
1 3 5 7 9 13 57779
Ranker Ranker Ranker Ranker

Figure 4. Boxplots of the rank aggregation results of 500 replications obtained from different methods under various scenarios with m=10, n=100, and n1=10. (a) Recovery
distances in log scale and coverage obtained from nine algorithms. (b) Quality parameters obtained by Partition-type models and EMM.

Table 3. Average recovery distances [coverages] of different methods based on 500 independent replicates under scenario Ss, -

Configuration Partition-type Models Mallows Models MC-based Models

n m nq PAMAE PAMAg BARD EMM MM MCy MGy MGC3 CEMC
100 10 10 448 34.6 42.6 61.5 227.7 423.8 45.6 199.1 2413
[0.90] [0.93] [0.96] [0.88] [0.58] [0.20] [0.92] [0.63] [0.54]

100 10 20 39.2 33.9 94.2 107.0 308.6 764.6 52.3 268.9 3729
[0.95] [0.96] [0.99] [0.90] [0.75] [0.33] [0.96] [0.78] [0.67]

100 10 30 27.5 29.2 207.4 126.2 360.6 1040.2 67.8 3254 4450
[0.98] [0.98] [0.98] [0.93] [0.83] [0.44] [0.96] [0.84] [0.77]

100 10 40 16.0 17.4 363.9 131.6 408.1 1274.1 83.1 3825 486.9
[0.99] [0.99] [0.98] [0.95] [0.87] [0.54] [0.97] [0.87] [0.83]

100 10 50 8.8 9.3 565.3 134.6 452.2 1484.2 109.2 446.4 5249
[1.00] [1.00] [0.99] [0.97] [0.90] [0.62] [0.96] [0.89] [0.88]

NOTE: The bold texts indicate the best performance for each row.



Rank
\
\
m
(o)}

n;

Figure 5. Average aggregated rankings of the top-10 entities by PAMA as nq
increases from 10 to 50 for simulated datasets generated from Sys, .

< - B b ol ol wle whe v i a
o i allallalla
N_ A
Alrx
F—AA
o n1:8
< - &= == =B= ~&= =B= “&= b= “& b= =&
2 oo 4
[=) a allalla
é(\l— Py
b Ao
R
Qo n, =10
< A A A A A A A A B A
m_
A A
[SUE AAAA
a
F—AAA
n, =18
o_

T 1T 1T 1T T 1T T T T T T T T T T T T T

1 3 5 7 9 11 13 15 17 19
Entity

Figure 6. Boxplots of the estimated Z from 500 replications under the setting of
Shs, With nq being set as 8, 10, and 18, respectively. The true n1 is 10. The vertical
lines separate relevant entities (left) from background ones. The Y-axis shows the
logarithm of the entities'ranks. The rank of a background entity is replaced by their
average %. The triangle denotes the mean rank of each entity.

close to 1, resulting in nearly a “random” ranking among the
top relevant entities. Theoretically, if all relevant entities are
recognized correctly but ranked randomly, the corresponding
recovery distance would increase with #; in an order of O(m?),
which matches well with the increasing trend of the recovery
distance of BARD shown in Table 3.

We also tested the model’s performance when there is a true
n1 but it is mis-specified in our algorithm. We varied n; as 8, 10,
and 18, respectively, for setting Sgs, with #=100 and m=10,
where the true n;=10 (the first 10 entities). Figure 6 shows
boxplots of J for each misspecified case. For the visualization
purpose, we just show the boxplot of E; to Eyg. The other entities
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are of the similar pattern with E»g. The figure shows a robust
behavior of PAMAp as we vary the specifications of n;. It also
shows that the results are slightly better if we specify a n; that
is moderately larger than its true value. The consistent results of
other mis-specified cases, such as 5, 12, and 15, can be found in
the supplementary material.

6. Real Data Applications
6.1. Aggregating Rankings of NBA Teams

We applied PAMAR to the NBA-team data analyzed in Deng
et al. (2014), and compared it to competing methods in the
literature. The NBA-team dataset contains 34 “predictive” power
rankings of the 30 NBA teams in the 2011-2012 season. The
34 “predictive” rankings were obtained from 6 professional
rankers (sports websites) and 28 amateur rankers (college
students), and the data quality varies significantly across
rankers. More details of the dataset can be found in Table 1o f
Deng et al. (2014).

Figure 7 displays the results obtained by PAMAg (the partial-
list version with n; specified as 16). Figure 7(a) shows the poste-
rior distributions, as boxplots, of the quality parameter of each
involved ranker. Figure 7(b) shows the posterior distribution
of the aggregated power ranking of each NBA team. All the
posterior samples that reports “0” for the rank of an entity means
that the entity is a background one, for visualization purpose we
replace “0” by the rank of background average rank, ”+”2—1+1 =
30+2ﬂ = 23.5. The final set of 16 playoff teams are shown
in blue while the champion of that season is shown in red (i.e.,
Heat). Figure 7(c) shows the trace plot of the log-likelihood
of the PAMA model along the MCMC iteration. Comparing
the results to Figure 8 of Deng et al. (2014), we observe the
following facts: (i) PAMAp can successfully discover the quality
difference of rankers as BARD; (i) PAMAp can not only pick
up the relevant entities effectively like BARD, but also rank the
discovered relevant entities reasonably well, which cannot be
achieved by BARD; and (iii) PAMAg converges quickly in this
application.

We also applied other methods, including MM, EMM, and
Markov-chain-based methods, to this dataset. We found that
none of these methods could discern the quality difference of
rankers as successfully as PAMA and BARD. Moreover, using
the team ranking at the end of the regular season as the sur-
rogate true power ranking of these NBA teams in the reason,
we found that PAMA also outperformed BARD and EMM by
reporting an aggregated ranking list that is the closest to the
truth. Table 4 provides the detailed aggregated ranking lists
inferred by BARD, EMM, and PAMA, respectively, as well as
their coverage of and Kendall t distance from the surrogate
truth. Note that the Kendall t distance is calculated for the
eastern teams and western teams separately because the NBA
Playoffs proceed at the eastern conference and the western
conference in parallel until the NBA final, in which the two con-
ference champions compete for the NBA champion title, making
it difficult to validate the rankings between Eastern and Western
teams.
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Figure 7. Results from PAMAg for the NBA-team dataset. (a) boxplots of posterior samples of y. (b) barplots of Z; where the vertical line divides the NBA teams in Western

and Eastern Conferences. (c) the trace plot of the log-likelihood function.

Table 4. Aggregated power ranking of the NBA teams inferred by BARD, EMM, and PAMA, respectively, and the corresponding coverage of and the Kendall 7 distance from

the surrogate true rank based on the performances of these teams in the regular season.

Ranking Surrogate truth BARD EMM PAMA
Eastern Western Eastern Western Eastern Western Eastern Western

1 Bulls Spurs Heat Thunder Heat Thunder Heat Thunder
2 Heat Thunder Bulls Mavericks Bulls Maverick Bulls Maverickss
3 Pacers Lakers Celtics Clippers Knicks Clippers Celtics Lakers
4 Celtics Grizzlies Knicks Lakers Celtics Lakers Knicks Clippers
5 Hawks Clippers Magic Spurs Magic Spurs Magic Spurs
6 Magic Nuggets Pacers Grizzlies Pacers Grizzlies Hawks Nuggets
7 Knicks Mavericks 76ers Nuggets 76ers Nuggets Pacers Grizzlies
8 76ers Jazz Hawks Jazz* Hawks* Jazz* 76ers Jazz*

Kendall - - 14.5 10.5 9 10 8 10

Coverage - % % %

NOTE: The teams in italic indicate that they have equal posterior probabilities of being in the relevant group, and the teams with asterisk are those that were misclassified

to the background group.

6.2. Aggregating Rankings of NFL Quarterback Players
With the Presence of Covariates

Our next application is targeted at the NFL-player data reported
by Li, Yi, and Liu (2021). The NFL-player data contains 13
predictive power rankings of 24 NFL quarterback players. The
rankings were produced by 13 experts based on the performance
of the 24 NFL players during the first 12 weeks in the 2014
season. The dataset also contains covariates for each player sum-
marizing the performances of these players during the period,
including the number of games played (G), pass completion per-
centage (Pct), the number of passing attempts per game (Att),

average yards per carry (Avg), total receiving yards (Yds), average
passing yards per attempt (RAvg), the touchdown percentage
(TD), the intercept percentage (Int), running attempts per game
(RALt), running yards per attempt (RYds), and the running first
down percentage (R1st). Details of the dataset can be found in
(Li, Yi, and Liu 2021, table 2).

Here, we set n; = 12 in order to find which players are above
average. We analyzed the NFL-player data with PAMAp (the
covaritate-assisted version) and the results are summarized in
Figure 8: (a) the posterior boxplots of the quality parameter for
all the rankers; (b) the barplot of J; for all the NFL players with
the descending order; (c) the traceplot of the log-likelihood of
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Figure 8. Key results from PAMAg for the NFL-player dataset. (a) Boxplots of posterior samples of yy. (b) Barplots of Z;. (c) Trace plot of the log-likelihood. (d) Barplots of

posterior probabilities for each coefficient to be positive.

the model; and (d), the barplot of probabilities P(y; > 0) and
the covariates are rearranged from left to right by decreasing
the probability. From Figure 8(a), we observe that rankers 1,
3, 4, and 5 are generally less reliable than the other rankers.
In the study of the same dataset in Li, Yi, and Liu (2021),
the authors assumed that the 13 rankers fall into three quality
levels, and reported that seven rankers (i.e., 2, 6, 7, 8, 9, 10,
and 13) are of a higher quality than the other six (see (Li, Yi,
and Liu 2021, fig. 7)). Interestingly, according to Figure 8(a),
the PAMA algorithm suggested exactly the same set of high-
quality rankers. In the meantime, ranker 2 is of the lowest quality
among the seven high-quality rankers in both studies. From
Figure 8(b), a consensus ranking list can be obtained. Our result
is consistent with that of (Li, Yi, and Liu 2021, fig. 6). Figure 8(d)
shows that six covariates are more probable to have positive
effects.

Using the Fantasy points of the players (https://fantasy.nfl.
com/research/players) derived at the end of the 2014 NFL season

as the surrogate truth, the recovery distance and coverage of the
aggregated rankings by different approaches can be calculated
so as to evaluate the performances of different approaches.
Note that the Fantasy points of two top NFL players Peyton
Manning and Tony Romo are missing for unknown reasons,
we excluded them from analysis and only report results for
the top 10 positions instead of top 12. Table 5 summarizes the
results, demonstrating that PAMA outperformed the other two
methods.

7. Conclusion and Discussion

The proposed Partition-Mallows Model embeds the classic
Mallows model into a partition modeling framework developed
earlier by Deng et al. (2014), which is analogous to the well-
known “spike-and-slab” mixture distribution often employed
in Bayesian variable selection. Such a nontrivial “mixture”
combines the strengths of both the Mallows model and BARD’s


https://fantasy.nfl.com/research/players
https://fantasy.nfl.com/research/players

16 W.ZHU ET AL

Table 5. Top players in the aggregated rankings inferred by BARD, EMM, and PAMA.

Ranking Gold standard BARD EMM PAMA

1 Aaron R. Andrew L. Andrew L. Andrew L.
2 Andrew L. AaronR. AaronR. AaronR.
3 BenR. TomB. Tom B. Tom B.
4 Drew B. Drew B. BenR. Drew B.
5 Russell W. BenR. Drew B. BenR.
6 MattR. RyanT. RyanT. RyanT.
7 RyanT. Russell W. Russell W. Russell W.
8 TomB. Philip R.* Philip R.* Philip R.
9 Eli M. Eli M.* Eli M.* Eli M.*
10 Philip R. Matt R.* Matt R.* Matt R.*

R-distance - 355 32 25

Coverage - 0.7 0.7 0.8

NOTE: The entities in italic indicate that they have equal posterior probabilities of
being in the relevant group, and the players with asterisk are those that were
misclassified to the background group.

partition framework, leading to a stronger rank aggregation
method that can not only learn quality variation of rankers and
distinguish relevant entities from background ones effectively,
but also provide an accurate ranking estimate of the discovered
relevant entities. Compared to other frameworks in the
literature for rank aggregation with heterogeneous rankers, the
PAMA enjoys more accurate results with better interpretability
at the price of a moderate increase of computational burden.
We also show that the Partition-Mallows framework can
easily handle partial lists and and incorporate covariates in the
analysis.

Throughout this work, we assume that the number of rele-
vant entities n; is known. This is reasonable in many practical
problems where a specific n; can be readily determined accord-
ing to the research demands. Empirically, we found that the
ranking results are insensitive to the choice of a wide range of
values of n;. If needed, we may also determine n; according to
a model selection criterion, such as AIC or BIC.

In the PAMA model, rr(r,? | r,? ‘1) is assumed to be a uniform
distribution. If the detailed ranking of the background entities
is of interest, then we can modify the conditional distribution
b1 (t,? | t,? ') to be the Mallows model or other models. A quality
parameter can still be incorporated to control the interaction
between relevant entities and background entities. The result-
ing likelihood function becomes more complicated, but is still
tractable.

In practice, the assumption of independent rankers may be
violated. In the literature, a few approaches have been proposed
to detect and handle dependent rankers. For example, Deng
et al. (2014) proposed a hypothesis-testing-based framework to
detect pairs of over-correlated rankers and a hierarchical model
to accommodate clusters of dependent rankers; Johnson et al.
(2020) adopted an extended Dirichlet process and a similar
hierarchical model to achieve simultaneous ranker clustering
and rank aggregation inference. Similar ideas can be incorpo-
rated in the PAMA model as well to deal with non-independent
rankers.
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