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Abstract

By mixing the posterior distribution with a surrogate distribution, of which the normalizing constant
is tractable, we describe a new method to estimate the normalizing constant using the Wang-Landau
algorithm. We then introduce an accelerated version of the proposed method using the momentum
technique. In addition, several extensions are discussed, including (1) a parallel variant, which inserts a
sequence of intermediate distributions between the posterior distribution and the surrogate distribution,
to further improve the efficiency of the proposed method; (2) the use of the surrogate distribution to help
detect potential multimodality of the posterior distribution, upon which a better sampler can be designed
utilizing mode jumping algorithms; (3) a new jumping mechanism for general reversible jump Markov
chain Monte Carlo algorithms that combines the Multiple-try Metropolis and the directional sampling
algorithm, which can be used to estimate the normalizing constant when a surrogate distribution is
difficult to come by. We illustrate the proposed methods on several statistical models, including the
Log-Gaussian Cox process, the Bayesian Lasso, the logistic regression, the Gaussian mixture model, and
the g-prior Bayesian variable selection.

1 Introduction

Given data y, we consider a finite sequence of competing models {Mk} associated with parameters {θk}.
The marginal likelihood of data under model Mk, also referred to as the normalizing constant, is defined as

p(y | Mk) =

∫
γ(θk | y,Mk)dθk =

∫
p(θk | Mk)p(y | θk,Mk)dθk,

in which p(θk|Mk) is the prior and γ(θk|y,Mk) is the unnormalized posterior distribution. To compare
different models, Bayesian methods typically compute the Bayes factor, which is defined as the ratio of the
normalizing constants under different models, that is, Bi,j = p(y | Mi)/p(y | Mj). With the uniform prior
on modelMi andMj , Bi,j > 1 indicates that modelMi is more favorable than modelMj given the current
data y.

We can approximate the Bayes factor by estimating the normalizing constant of each model. For sim-
plicity, we will drop the dependency on y and the model index k in γ(θk | y,Mk) when the context is
clear, and use Zγ to denote the normalizing constant of γ(θ). Let γ?(θ) = γ(θ)/Zγ be the corresponding
normalized distribution. Computing the normalizing constant Zγ is essentially a task of calculating an in-
tegral. However, in many interesting cases, the complex form of the unnormalized density γ(θ), sometimes
with high dimensionality, prohibits us from obtaining neither analytic solutions nor easy numerical approx-
imations. Various Monte Carlo strategies have been developed to estimate the normalizing constant, such
as Chib’s method (Chib, 1995), inverse logistic regression (Geyer, 1994), importance sampling (Gelfand and
Smith, 1990), bridge sampling (Meng and Schilling, 1996; Meng and Wong, 1996), path sampling (Gelman
and Meng, 1994; Ogata, 1989), sequential importance sampling (Hammersley and Morton, 1954; Rosenbluth
and Rosenbluth, 1955; Kong et al., 1994), and sequential Monte Carlo (SMC) (Liu and Chen, 1998; Doucet
et al., 2000; Del Moral et al., 2006).
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In this article, we present a mixture approach for estimating normalizing constant using the Wang-Landau
(WL) algorithm (Wang and Landau, 2001). Our main idea is to construct a matching surrogate distribution
q∗(θ) with its normalizing constant Zq known, and combine γ?(θ) and q?(θ) to form a mixture distribution
with an adjustable mixing parameter tuned through the WL algorithm. The ratio r = Zγ/Zq is then an easy
function of the mixing parameter. For notational convenience, we also use q(θ) to denote the unnormalized
surrogate distribution. Many of the aforementioned methods also use a surrogate distribution q?(θ), and the
idea of using the WL algorithm to estimate the ratio r = Zγ/Zq also appears in Liang (2005) and Atchadé
and Liu (2010) in more restricted settings.

The proposed WL mixture approach is different from existing methods in the literature in the following
perspectives. First, when we apply the WL algorithm in our setting, there is a natural partition of the
target space indicated by the two (or more if needed) mixture components. Second, unlike the method in
Liang (2005), we do not require γ?(θ) and q?(θ) to be well-separated. In fact, we recommend to mix γ?(θ)
and q?(θ) together so that global jumps between γ?(θ) and q?(θ) can be potentially avoided, and the data
augmentation strategy (Diebolt and Robert, 1994) can be used to improve the sampling efficiency. Third, the
WL mixture method does not require γ?(θ) and q?(θ) to have any overlap. With the help of mode jumping
algorithms such as the Multiple-try Metropolis (MTM) (Liu et al., 2000), it tends to be much more robust
than importance sampling based methods such as bridge sampling, which crucially rely on the amount of
overlaps between γ?(θ) and q?(θ).

Following Dai and Liu (2019), we introduce an accelerated version of the proposed method using the
momentum technique. The main idea is to formulate the WL algorithm as a stochastic gradient descent
algorithm minimizing a convex and smooth function, of which the gradient is estimated using Markov chain
Monte Carlo (MCMC) iterations. Under this optimization framework, some acceleration strategies can be
employed to speed up the convergence of the WL algorithm. Empirically, we find that the simple momentum
technique helps improve the efficiency of our algorithm, and we demonstrate it on two statistical models, the
Log-Gaussian Cox process and the Bayesian Lasso.

Several extensions of the WL mixture method will be discussed. First, we propose a parallel Wang-Landau
(PWL) algorithm built on top of the proposed mixing strategy. Analogous to the ideas used by bridge
sampling and SMC, the PWL algorithm introduces a sequence of (unnormalized) intermediate distributions
{ηt(θ)}Tt=0 between the surrogate distribution q?(θ) and the target distribution γ?(θ), where η0(θ) = q(θ)
and ηT (θ) = γ(θ). For each neighboring pair ηt−1(θ) and ηt(θ), we use the WL mixture method to estimate
the ratio of their normalizing constants, and then multiply all the ratios together. We note that this step can
be implemented completely in parallel, which makes the PWL algorithm a computationally efficient choice
if users have parallel computing resources.

The second extension is utilizing the proposed mixing framework to enable mode finding and jumping
for complex target distributions. Many attempts have been made in the literature to handle the complex
landscape of the target state space, including simulated tempering (Marinari and Parisi, 1992), parallel
tempering, and population MCMC (Geyer and Thompson, 1995; Liang and Wong, 2001). Our method is
most similar to parallel tempering, which relies on a sequence of auxiliary distributions so that global jumps
are possible by “transporting” samples back and forth from the target distribution to auxiliary distributions.
In our method, the surrogate distribution q?(θ) serves as an analog of the auxiliary distribution used in parallel
tempering, and the WL weight adjustment ensures that the transportation between the target distribution
and the auxiliary distribution is sufficiently frequent. The advantage is that whenever we sample from the
surrogate distribution q?(θ), it provides us with a potential chance to jump towards a different local mode
of the target distribution γ?(θ). Furthermore, based on the identified local modes, we can design a better
sampler for the target distribution γ?(θ) using mode jumping algorithms (Tjelmeland and Hegstad, 2001;
Liu et al., 2000).

The third extension concerns with the general Bayesian model selection. Specifically, we can include the
model index Mk as a parameter in the full posterior distribution specified as:

p(θk,Mk | y) ∝ p (y | θk,Mk) p (θk | Mk) p (Mk) , (1)

and use MCMC to traverse the joint model and parameter space. The ratio between the proportions of
time that the Markov chain spends in model Mi and model Mj , adjusted by the prior p(Mk), serves as a
consistent estimator to the Bayes factor Bi,j . A reversible jump MCMC (RJMCMC) (Green, 1995) is often
required to sample across different dimensional spaces. However, it is well-known that constructing an efficient
trans-dimensional proposal is challenging (Brooks et al., 2003). To enable efficient RJMCMC, we propose to
combine MTM and the directional sampling (Liu et al., 2000) algorithm. The proposed method will be most
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effective if p (θk | y,Mk) is uni-modal for each model Mk, and the mode θ̂k can be located reasonably well
beforehand. We note that the proposed method is different from the MTM version of RJMCMC algorithm
proposed in Pandolfi et al. (2014). Their method mainly focuses on using a computationally favourable
weight function in MTM to avoid evaluating the target density, which can be expensive in complex statistical
models. Our method is perhaps most similar to the mode jumping algorithm proposed in Tjelmeland and
Hegstad (2001). While they design a mixture of Metropolis-Hastings proposals guided by deterministic local
optimization to enable large step-size jumps, we utilize the more flexible MTM. The proposed method can
serve as an alternate when it is challenging to propose an appropriate surrogate distribution.

The rest of the article is organized as follows. Section 2.1 reviews the general WL algorithm; Section 2.2
proposes our mixture formulation, and explains how we adapt the WL algorithm in the mixture setting to
estimate the normalizing constant; Section 2.3 introduces an accelerated version of the WL mixture method;
Section 2.4 explains how to use MTM to jump between the two mixture components if q?(θ) and γ?(θ) are
relatively separated; Section 2.5 describes a principled way of using the variational approximation to construct
the surrogate distribution. Section 3.1 discusses the possible advantages of the WL mixture method compared
to importance sampling, bridge sampling, and Chib’s method. Three extensions of the WL mixture method
are introduced in Section 4, including (1) a parallel variant of the proposed method (Section 4.1); (2) the use
of the surrogate distribution to handle multimodality of the target distribution (Section 4.2); (3) an efficient
MTM-RJMCMC algorithm to sample the model space (Section 4.3). Section 5 illustrates the utility of the
proposed methods with several numerical examples including a Bayesian evaluation of the Log-Gaussian Cox
process fitting, a hyper-parameter selection problem for Bayesian Lasso regression, estimating the marginal
likelihood for a logistic regression model, determining the number of components of a mixture model fitting,
and Bayesian variable selection for linear models under the spike-and-slab g-prior. Section 6 concludes with
some final remarks.

2 Normalizing Constant Estimation

2.1 The Wang-Landau algorithm

In order to improve the convenience and efficiency of the multicanonical sampling (Berg and Neuhaus, 1992),
Wang and Landau (2001) proposed a simple stochastic adaptive updating algorithm, which quickly becomes
a very popular Monte Carlo method for sampling complex physical systems. Given a target distribution p(θ)
and a user-specified partition of the target space Θ = ∪si=1Θi, where s is the total number of subregions, we
can use the WL algorithm to estimate the probability mass of the target distribution within each subregion,
that is, ψ(i) =

∫
Θi
p(θ)dθ. The main steps of the WL algorithm are outlined in Algorithm 1. Here Kt is a

Algorithm 1 Wang-Landau algorithm (Wang and Landau, 2001)

1. Sample θt from Kt−1 (θt−1, ·);

2. Update ψt(i) = ψt−1(i) [1 + ηt1 (θt ∈ Θi)] for i ∈ [1 : s];

3. Normalize {ψt(i)}si=1 to sum 1.

Markov kernel invariant to the adaptive target distribution p†t(θ) defined as

p†t(θ) ∝
s∑
i=1

p(θ)

ψt(i)
1(θ ∈ Θi), (2)

and we can simply initialize ψ0(i) as 1/s. Parameter ηt is the learning rate, and typically we should decrease it
at the rate of 1/t so as to guarantee the convergence of the algorithm. The WL algorithm essentially updates
the reweighting factors {ψt(i)} based on the flat histogram criterion, that is, after {ψt(i)} has converged, the
chain should spend equal amount of time within each subregion. The convergence of ψt(i)/ψt(j) to ψ(i)/ψ(j)
for i, j ∈ [1 : s] has been established in Atchadé and Liu (2010) under proper conditions.
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2.2 The surrogate mixture method

Suppose we have a (unnormalized) surrogate distribution q(θ) satisfying the following two conditions: (i)
preferably, q(θ) > 0 whenever γ(θ) > 0, and vice versa; (ii) its normalizing constant Zq is known. In addition,
we assume that we have two effective Markov kernels Kγ and Kq in hand so that we can sample from γ?(θ)
and q?(θ) sufficiently well. For a large number of statistical problems, efficient MCMC algorithms have
been developed for sampling from the target posterior distribution γ?(θ). Furthermore, since we control the
construction of the surrogate distribution q?(θ), we can typically make it easy to sample from without using
MCMC. More details on constructing the surrogate distribution q?(θ) are deferred to Section 2.5. Condition
(i) is not essential. In fact, by utilizing the MTM mode jumping strategies, our method can still work well
in cases where q?(θ) and γ?(θ) are well separated. We postpone the discussion to Section 2.4.

Let π(θ) = γ(θ)+q(θ). The key to the WL mixture method is to recognize that the normalizing constants
Zγ and Zq are proportional to the relative probability masses of the two components, γ?(θ) and q?(θ), in the
mixture distribution π(θ). Therefore, we can directly apply the WL algorithm to estimate the ratio Zγ/Zq.
To avoid numerical issues, we recommend to work on the logarithmic scale of the normalizing constants. The
details are summarized in Algorithm 2. The γ and q in the brackets serve as indexes (the same role as i in
Algorithm 1), and should not be misinterpreted as function arguments.

Algorithm 2 Normalizing constant estimation using the Wang-Landau algorithm

1. Algorithmic setup. Choose a decreasing positive sequence {ηt} as the sequence of learning rate. Set
a0 = 1, c ∈ (0, 1), ξ0(γ) = ξ0(q) = 0, and ψ0(γ) = ψ0(q) = 1/2. Set the total number of iterations to
be S, and we exclude the results from the first b iterations in estimation.

2. At time t = 0: initialize θ0 from some initial distribution, and sample a binary indicator I0 with
probability P(I0 = 1) ∝ γ(θ0) and P(I0 = 0) ∝ q(θ0).

3. For time t ∈ [1 : S]: given (θt−1, It−1), iterate between the following steps.

(a) Sample θt from Kt−1(θt−1, ·), which is invariant to the the adaptive mixture distribution π†t−1(θ)
defined by {ψt−1(γ), ψt−1(q)}:

π†t−1(θ) ∝ γ(θ)

ψt−1(γ)
+

q(θ)

ψt−1(q)
. (3)

(b) Sample a binary indicator It with probability P(It = 1|θt) ∝ γ(θt)/ψt−1(γ) and P(It = 0|θt) ∝
q(θt)/ψt−1(q).

(c) Update {ξt(γ), ξt(q)} and {ψt(γ), ψt(q)} as follows:

ξt(γ)← ξt−1(γ) + 1 (It = 1) , ψt(γ)← ψt−1(γ) [1 + ηat1 (It = 1)] ,

ξt(q)← ξt−1(q) + 1 (It = 0) , ψt(q)← ψt−1(q) [1 + ηat1 (It = 0)] .
(4)

(d) Normalize {ψt(γ), ψt(q)} to sum 1.

(e) If the following condition is satisfied:

max
{
ξt(γ), ξt(q)

}
|ξt(γ) + ξt(q)− 1/2|

≤ c/2,

update at+1 = at + 1 and reset ξt(γ) = ξt(q) = 0. Otherwise set at+1 = at.

4. Output the estimators log Ẑγ = log r̂ + logZq, where log r̂ = 1
S−b

∑S
t=b+1[log ξt(γ)− log ξt(q)].

Successful application of the proposed method relies on an efficient strategy to sample from the adaptive
mixture distribution π†t (θ) (Step 3(a) in Algorithm 2). This point will become more explicit after we formulate
the WL algorithm as a stochastic gradient descent algorithm following Dai and Liu (2019) (see Section 2.3),
where the MCMC sampling in Step 3(a) is essentially estimating the gradient. In practice, it can be difficult

to construct an effective Markov kernel Kt invariant to π†t (θ). However, in the case where q?(θ) and γ?(θ) are
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well mixed, we can avoid using Kt by performing a Gibbs sampling step (Diebolt and Robert, 1994) using Kγ

and Kq, which are presumably two efficient Markov kernels leaving γ?(θ) and q?(θ) invariant, respectively.
To be specific, if It−1 = 1, we sample θt from Kγ(θt−1, ·); otherwise we sample θt from Kq(θt−1, ·).

Tunable parameter sequences {ξt(γ), ξt(q)} are introduced to help check the flat histogram criterion,
that is, whether the Markov chain has spent equal amount of time in each of the two components γ?(θ) and
q?(θ). If this is approximately satisfied to the extent controlled by a threshold c ∈ (0, 1) (see the condition
in Step 3(e) in Algorithm 2), we decrease the learning rate and refresh ξt(γ) = ξt(q) = 0 so that it can start
to monitor the next stage of the algorithm. Throughout all the numerical examples in the article, we set
c = 0.2.

The WL mixture method naturally adapts to the missing data framework. The marginal likelihood of
the observed-data can be formulated as follows:

L(yobs) =

∫
p(yobs | θ)p(θ)dθ =

∫ ∫
p(yobs,ymis | θ)p(θ)dymisdθ,

where p(yobs,ymis | θ) is the complete-data distribution, and p(θ) is the prior. In the simplest case where
the integral

∫
p(yobs,ymis | θ)dymis can be analytically calculated, such as the finite mixture model in

which ymis are discrete, we can directly apply the WL mixture method to estimate the normalizing constant
L(yobs). More generally, we can treat the missing data ymis as parameters, and apply the WL mixture
method to estimate the normalizing constant of the (unnormalized) complete-data posterior distribution
γ(θ,ymis | yobs) = p(yobs,ymis | θ)p(θ).

2.3 Acceleration of the Wang-Landau mixture method

The efficiency of the WL mixture method can be further improved using the acceleration idea discussed in
Dai and Liu (2019). Note that the update of the reweighting factor ψt(γ) (Step 3(c) in Algorithm 2) can be
approximated as follows:

logψt(γ) = logψt−1(γ) + log [1 + ηat1 (It = 1)]

≈ logψt−1(γ) + ηat1 (It = 1)

≈ logψt−1(γ) + ηatP (It = 1) ,

(5)

and the update of ψt(q) can be approximated in the same way. In the last line of the above approximation,
we replace 1 (It = 1) by its expectation taken with respect to the adaptive mixture distribution defined in
(3).

Denote ut(γ) = logψt(γ) and ut(q) = logψt(q), then the approximation in (5) leads to the following
updates, which are in the form of gradient descent:

ut(γ) = ut−1(γ) + ηat (P (It = 1)− 1/2) ,

ut(q) = ut−1(q) + ηat (P (It = 0)− 1/2) .
(6)

We add −1/2 because the (negative) gradient P (It = 1)− 1/2 and P (It = 0)− 1/2 should vanish after the
algorithm has converged, and limt→∞P (It = 1) = limt→∞P (It = 0) = 1/2 because the chain is expected
to spend equal amount of time in the two mixture components γ?(θ) and q?(θ) after the WL algorithm has
converged. We note that adding a constant to ut(γ) and ut(q), or equivalently multiplying a constant to
ψt(γ) and ψt(q), does not affect the WL algorithm because the multiplicative constant will be canceled out
in Step 3(a) in Algorithm 2.

The objective function f(u(γ), u(q)) corresponding to the gradient descent updates in (6) can be derived
as follows. By (3), P (It = 1) ∝ Zγ/ψt−1(γ), and P (It = 0) ∝ Zq/ψt−1(q), thus the gradient of f(u(γ), u(q))
is: 

∂f

∂u(γ)
= − Zγ exp(−u(γ))

Zγ exp(−u(γ)) + Zq exp(−u(q))
+

1

2
,

∂f

∂u(q)
= − Zq exp(−u(q))

Zγ exp(−u(γ)) + Zq exp(−u(q))
+

1

2
.

(7)

Solving this simple partial gradient system leads to the form of the objective function:

f(u(γ), u(q)) = log [Zγ exp (−u(γ)) + Zq exp (−u(q))] +
1

2
[u(γ) + u(q)] . (8)
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The WL algorithm is essentially a stochastic gradient descent algorithm minimizing the objective function
f(u(γ), u(q)), of which the gradient involves the unknown quantity Zγ/Zq, and is estimated using a MCMC
step as Step 3(a) and 3(b) in Algorithm 2. It is not difficult to see that f(u(γ), u(q)) is smooth and convex,
and has a unique solution (u?(γ), u?(q)), up to an additive constant, satisfying u?(γ)− u?(q) = logZγ/Zq.

Once we have the optimization perspective, various acceleration tools can be employed to improve the
efficiency of the WL mixture method. One simple tool we find useful is the momentum method, which
exponentially accumulates a momentum vector to amplify the persistent gradient across iterations, thus
reducing the oscillation caused by the noise in the gradient estimate. To apply the acceleration method, we
only need to modify Step 3(c) in Algorithm 2 as follows:

3 (c′) (Momentum accelerated WL updates)

(i) Update the momentum vector:

mt(γ)← βmt−1(γ)− ηat1 (It = 1) , mt(q)← βmt−1(q)− ηat1 (It = 0) .

(ii) Update the reweighting vector:

logψt(γ)← logψt−1(γ)−mt(γ), logψt(q)← logψt−1(q)−mt(q).

(iii) Update {ξt(γ), ξt(q)} as in Step 3(c) in Algorithm 2.

The momentum vector can be simply initialized as m0(γ) = m0(q) = 0, and β is commonly set to be 0.9
or higher, which calibrates the fraction of the accumulated past gradients that we want to incorporate into
the current update. Numerical illustrations of the accelerated WL mixture method is given in Figure 2 on
two statistical models, the Log-Gaussian Cox process and the Bayesian Lasso.

2.4 Global jump via Multiple-try Metropolis

One way to handle the possible separation between the target distribution and the surrogate distribution is
using the Multiple-try Metropolis (MTM) (Liu et al., 2000). Given a target distribution π(x) defined on Rd

and a proposal transition function T (x,y), MTM aims at biasing the local sampling with a proper weight
function w(x,y):

w(x,y) = π(x)T (x,y)λ(x,y), (9)

where λ(x,y) is a user-chosen nonnegative symmetric function. Assuming the current state of the Markov
chain is xt, one step of the algorithm is detailed in Algorithm 3.

Algorithm 3 Multiple-try Metropolis (Liu et al., 2000)

1. Sample y(1), · · · ,y(m) i.i.d from T (xt, ·), and compute the weight function w(y(j),x).

2. Sample y from y(1), · · · ,y(m) with probability proportional to w(y(j),x).

3. Given y, sample x(1), · · · ,x(m−1) i.i.d from T (y, ·), and set x(m) = xt.

4. Accept y with probability:

α = min

{
1,

w(y(1),x) + · · ·+ w(y(m),x)

w(x(1),y) + · · ·+ w(x(m),y)

}
. (10)

A special choice of λ is λ(x,y) = [T (x,y)+T (y,x)]−1. In the case where T (x,y) is a symmetric proposal,
the corresponding acceptance probability simplifies to:

α = min

{
1,

π(y(1)) + · · ·+ π(y(m))

π(x(1)) + · · ·+ π(x(m))

}
. (11)

This special case is referred to as MTM (II) in Liu et al. (2000). MTM is particularly useful when it is
combined with the directional sampling algorithm. For instance, if we know a desirable jumping direction,
we can use MTM to explore a wide range along it. Let e denote the jumping direction. For the simple case
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where e is fixed throughout the algorithm and independent of the current state xt, we outline the main steps
in Algorithm 4. More generally, we can choose the jumping direction e based on the current state xt. Some
detailed discussion on a special form of this adaptive strategy can be found in Section 4.3.

Algorithm 4 Multiple-try Metropolis combined with the directional sampling algorithm

1. Sample r(1), · · · , r(m) from some user chosen distribution p(r), and let y(j) = xt + r(j) · e. Compute
the target density π(y(j)).

2. Sample y from y(1), · · · ,y(m) with probability proportional to π(y(j)). Set x(j) = y − r(j) · e.

3. Accept xt+1 = y with probability:

α = min

{
1,

π(y(1)) + · · ·+ π(y(m))

π(x(1)) + · · ·+ π(x(m))

}
. (12)

Assuming that we are equipped with an efficient kernel Kγ , some pre-MCMC runs should help us pin
down informative jumping directions, such as the directions connecting the modes of the target distribution
and the surrogate distribution. Thus, we can replace Step 3(a) in Algorithm 2 by randomly alternating
between MTM global jumps following Algorithm 4, and local moves around each mixture component using
Kγ and Kq.

In practice, if possible, we recommend the users to place the surrogate distribution close to the target
distribution to potentially avoid the implementation of MTM. On the other hand, using MTM, the WL
mixture method can handle the case where the target distribution and the surrogate distribution has little
overlaps, as long as we have an effective jumping strategy to sample from π†t (θ) defined in (3). Indeed, the
standard WL algorithm, which partitions the sample space along the energy function, is able to handle the
non-overlapping case since the subregions defined by the partition are mutually exclusive. More detailed
discussion can be found in Section 3.

2.5 Constructing the surrogate distribution

In principle, any posterior approximation with a known normalizing constant, such as the Laplace approxi-
mation or the variational approximation, can be used as the surrogate distribution. We can also use MCMC
methods to obtain posterior samples, and fit some parametric distributions on them. In this section, we de-
scribe how to construct a surrogate distribution q(θ) using the variational approximation (Jordan et al., 1999;
Blei et al., 2017). The variational approach enjoys two main advantages. First, it is computationally efficient
and does not require MCMC sampling to explore γ?(θ). Second, it provides a reasonable approximation to
γ?(θ) in a wide class of statistical models (Wainwright and Jordan, 2008).

The variational approximation aims at finding the closest distribution q?(θ) to γ?(θ) in the KL divergence
within a particular class of distributions Q, that is,

q?(θ) = arg min
p(θ)∈Q

KL (p(θ)||γ?(θ)) . (13)

KL (p(θ)||γ?(θ)) is not computable due to the unknown normalizing constant of Zγ . However, the optimiza-
tion problem (13) can be equivalently formulated as follows:

q?(θ) = arg max
p(θ)∈Q

ELBO(p) = arg max
p(θ)∈Q

{
Ep [log γ(θ)]−Ep [log p(θ)]

}
. (14)

ELBO refers to the evidence lower bound of logZγ since:

logZγ = KL (q?(θ)||γ?(θ)) + ELBO(q?) ≥ ELBO(q?). (15)

We note that the EM algorithm (Dempster et al., 1977) can also be formulated as a two-step iterative
algorithm that maximizes the ELBO with respect to the density p(θ) and the relevant model parameters
(Tzikas et al., 2008). Before solving the optimization problem (14), we need to specify the variational family
Q. A commonly considered class of distributions Q is the mean-field variational family, which assumes that

7



q?(θ) is a product of univariate distributions, that is, q?(θ) =
∏d
j=1 q

?
j (θj). We assume that q?j (θj) belongs

to some parametric family Qj whose probability density function can be evaluated exactly.
To solve the optimization problem (14), we can use the coordinate ascent variational inference (CAVI)

algorithm (Bishop, 2006). CAVI, detailed in Algorithm 5, iteratively maximizes the ELBO in a coordinate-
wise fashion. We note that optimizing (17) can be further simplified in some conjugate cases since for each
j ∈ [1 : d], conditioning on all the other components q?i (θi), i 6= j, ELBO(q?) can be rewritten as:

ELBO(q?) = −KL
(
q?j (θj)||qopt

j (θj)
)

+ constant, (16)

where qopt
j (θj) ∝ exp [E−j (log γ(θj ,θ−j))]. If qopt

j (θj) ∈ Qj (conjugacy), we know that the optimal q?j (θj)

that maximizes ELBO(q?) in (17) is qopt
j (θj) since the KL divergence is non-negative.

Algorithm 5 Coordinate ascent variational inference (CAVI) (Blei et al., 2017)

1. Initialize each q?j (θj) ∈ Qj for j ∈ [1 : d].

2. For each j ∈ [1 : d], fix all the other components q?i (θi), i 6= j, update q?j (θj) with the following optimal
univariate distribution that maximizes

ELBO(q?) = Ej

[
E−j (log γ(θj ,θ−j))

]
−Ej

[
log q?j (θj)

]
+ constant. (17)

3. Calculate ELBO(q?) where q?(θ) =
∏d
j=1 q

?
j (θj). If ELBO hasn’t converged, go back to step 2. Other-

wise output q?(θ).

3 Comparison to Other Methods

3.1 Importance sampling and sequential Monte Carlo

It is known that the performance of importance sampling is determined by how closely the proposal distri-
bution tracks the target distribution. In a good importance sampler, high probability regions of the proposal
and target distributions typically overlap substantially, and the proposal distribution typically has a heavier
tail than the target one. Otherwise, the variance of the importance sampling estimator can be unacceptably
large and the resulting estimation can be misleading. If the dimension of the problem is high, it is generally
hard to construct an appropriate proposal distribution.

Figure 1a provides a cartoon illustration of the setting that the surrogate distribution has a smaller domain
(and thinner tail) compared to the target one. Importance sampling only estimates the normalizing constant
of the target distribution restricted on the region B, thus produces an underestimated normalizing constant.
This phenomenon is illustrated on two realistic examples in Section 5, the Log-Gaussian Cox process and the
Bayesian Lasso. In contrast, the WL mixture method has approximately equal chance to explore the whole
high-density regions of the surrogate distribution and the target distribution, respectively, assuming that Kγ

and Kq both mix well. Therefore, we expect the WL mixture method to produce more accurate, rather than
underestimated, normalizing constant estimates.

Sequential Monte Carlo (SMC), built based on importance sampling, resolves the aforementioned diffi-
culty in handling a multidimensional target distribution by sequentially sampling one variable conditioning
on previously sampled variables (Liu et al., 2001; Liu, 2008). To apply SMC in our setting, we first need
a decomposition, θ = (θ1, . . . , θp), so as to construct a sequence of (unnormalized) auxiliary distributions
η1(θ1), η2(θ1, θ2), . . . , ηp(θ) = γ(θ). We then initialize by drawing n samples from a (normalized) proposal dis-

tribution q1(θ1) for the first component: θ
(1)
1 , · · · , θ(n)

1 , and attach to each with weight w
(i)
1 = η1(θ

(i)
1 )/q1(θ

(i)
1 ).

We record W1 = 1
n

∑n
i=1 w

(i)
1 , which serves as an estimate of the normalizing constant of η1(θ1). In the next

step, we can either resample the obtained “particles” {(θ(i)
1 , w

(i)
1 ), i = 1, . . . , n} with probability proportional

to, say (w
(i)
1 )α with α ∈ [0, 1], and modify the new weights to (w

(i)
1 )1−α, or proceed directly to sample θ

(i)
2

from a (normalized) user-chosen sampling distribution q2(θ2 | θ(i)
1 ), and compute the updated weights

w
(i)
2 = w

(i)
1 ×

η2(θ
(i)
1 , θ

(i)
2 )

η1(θ
(i)
1 )q2(θ

(i)
2 | θ

(i)
1 )

.
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Similarly, W2 = 1
n

∑n
i=1 w

(i)
2 is an estimate of the normalizing constant of η2(θ1, θ2). This sequential update

is carried out up to step p, and the final average weight Wp is an estimate of the normalizing constant of
ηp(θ) = γ(θ). It is easy to see that Wp is unbiased, if no resampling is involved, and is always consistent for
estimating Zγ (Del Moral, 2004). We can generalize the above SMC construct to cases where no dimensional
changes are involved, that is, η1, . . . , ηp are all defined on the full space of θ. In this case SMC looks very
similar to bridge sampling and path sampling (Gelman and Meng, 1994).

It is generally nontrivial to design a good sequence of auxiliary and sampling distributions. In Bayesian
inference problems, a common choice of the auxiliary distributions is the posterior distribution with partial
data, and a common choice for the sampling distributions is some form of prior/posterior predictive distribu-
tions. But even in those cases, the efficiency of SMC can still be problematic (Doucet et al., 2000). The WL
mixture method is generally much easier to implement and requires less tuning. In the example Log-Gaussian
Cox process (Section 5.1), instead of comparing the WL mixture method to this somewhat too generic SMC,
we compare it to a generalized form of SMC detailed in Algorithm 7.

(a) Demonstration of the proposed WL method. (b) Demonstration of mode jumping.

Figure 1

3.2 Bridge sampling

Bridge sampling provides an efficient way of utilizing importance samples (Meng and Wong, 1996). Given
the (unnormalized) target distribution γ(θ) and proposal distribution q(θ), bridge sampling inserts a bridge
γ1/2(θ) between γ(θ) and q(θ), and estimates the ratio Zγ/Zq based on the following identity:

r =
Zγ
Zq

=
Eq

[
γ1/2(θ)/q(θ)

]
Eγ

[
γ1/2(θ)/γ(θ)

] . (18)

The corresponding bridge sampling estimator is

r̂ =
(1/nq)

∑nq
i=0 γ1/2(θqi)/q(θqi)

(1/nγ)
∑nγ
i=0 γ1/2(θγi)/γ(θγi)

, (19)

where θq1, · · · ,θqnq are nq samples from the proposal distribution q?(θ), and θγ1, · · · ,θγnγ are nγ samples
from the target distribution γ?(θ).

The goal of introducing the bridge distribution γ?1/2(θ) is to get more connections between q?(θ) and

γ?(θ) through the bridge γ?1/2(θ). In addition, since bridge sampling also utilizes samples from the target

distribution γ?(θ), it helps resolve the issue of underestimating the normalizing constant illustrated in Figure
1a and discussed in Section 3.1. However, the efficiency of bridge sampling is still sensitive to the “distance”
between q?(θ) and γ?(θ). For simplicity, let us assume nq = nγ = n, and consider the optimal bridge
γopt(θ) = (nqq

?(θ)−1 + nγγ
?(θ)−1)−1 that minimizes the asymptotic variance of log r̂ under the assumption
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that all the samples are independent draws. The corresponding optimal asymptotic variance is:

Vopt =
2

n

[(∫
2q?(θ)γ?(θ)

q?(θ) + γ?(θ)
dθ

)−1

− 1

]
≥ 2

n

[(∫
2 min{q?(θ), γ?(θ)}dθ

)−1

− 1

]
. (20)

We see that the lower bound increases if we push the proposal distribution q?(θ) and the target distribution
γ?(θ) further apart. The separation can be overcome by creating multiple bridges between the proposal
distribution and the target distribution.

In contrast, with the help of the MTM directional sampling discussed in Section 2.4, the WL mixture
method can potentially overcome this separation issue. We empirically illustrate this on a 20-dimensional
multivariate normal distribution. The target distribution is N(0, I20), and the proposal (surrogate) distribu-
tion is N(µ× 120, I20) with µ = 1, 2, 3, 4, 5. The target distribution has been normalized so that the true log
normalizing constant is 0. The fixed jumping direction is e = ±(µ×120), and we use 8 tries in each multiple-
try iteration. For simplicity, we substitute the local MCMC moves around the two mixture components by
directly sampling from either the target distribution or the surrogate distribution. We set nγ = nq = 5, 000,
and run 5,000 iterations for the WL mixture method. The results are summarized in Table 1.

Method µ = 1 µ = 2 µ = 3 µ = 4 µ = 5
WL 0.000 (0.047) 0.005 (0.035) 0.004 (0.040) -0.001 (0.041) 0.013 (0.049)
BS -0.004 (0.109) 0.209 (3.152) -0.348 (5.426) -1.273 (6.932) 1.595 (7.902)

Table 1: Comparisons of the WL mixture method with bridge sampling for estimating the logarithm of the
integral of the multivariate normal density, logZmvn, which is exactly 0 in all cases. The reported values are
empirical means and standard deviations (in the bracket) of estimates based on 10 independent runs.

We see that the WL mixture method has robust performances for different µ’s, whereas bridge sampling
performs worse as the target and the surrogate/proposal distributions become more and more separated. We
note that the comparison is not entirely fair because we pre-locate the mode of the target distribution for
MTM. Our point is that the WL mixture method should be classified as a MCMC-based method and behaves
very differently from bridge sampling and other importance sampling based methods. The performance of the
WL mixture method crucially relies on an efficient strategy to sample from the adaptive mixture distribution
π†t (θ) defined in (3), rather than the amount of overlaps between the target and the surrogate distributions.

3.3 Chib’s method

The method proposed by Chib (1995) is very effective for estimating normalizing constants for a class of
Bayesian models and has been widely adopted. For any θ? such that p(θ∗ | y) > 0, we have

logZγ = log p(y | θ?) + log p(θ?)− log γ?(θ? | y), (21)

where p(y | θ?) and p(θ?) are the normalized model and prior densities at θ?, respectively. Consequently, if
we can estimate well the normalized posterior density at θ?, that is, γ?(θ? | y), we have an estimate of the
normalizing constant Zγ .

Chib (1995) shows that this is feasible using Gibbs outputs. For example, suppose θ can be decomposed
into two blocks, θ = (θ1,θ2), and we are equipped with an efficient Gibbs sampler targeting the posterior
distribution γ(θ1,θ2 | y), which iteratively samples from the two conditional distributions γ?(θ1 | θ2,y)
and γ?(θ2 | θ1,y). We further assume that we can evaluate the two conditional distributions exactly. With

the Gibbs outputs {(θ(1)
1 ,θ

(1)
2 ), · · · , (θ(n)

1 ,θ
(n)
2 )}, we can estimate the normalized posterior density at θ? as

below:

γ̂?(θ? | y) = γ̂?(θ?1 | y)γ?(θ?2 | θ?1 ,y) =

[
1

n

n∑
i=1

γ?(θ?1 | θ
(i)
2 ,y)

]
γ?(θ?2 | θ?1 ,y), (22)

which utilizes the fact that γ?(θ1 | y) =
∫
γ?(θ1 | θ2,y)γ?(θ2 | y)dθ2. For a better statistical efficiency, it

is recommended to select θ? close to the posterior mode. The above scheme can be generalized to cases in
which θ is decomposed into an arbitrary number of blocks, and also cases with missing data (Chib, 1995).

We see that Chib’s method is particularly useful and easy to implement when we have an efficient Gibbs
sampler with all the conditional distributions being tractable. In Section 5.2, we compare Chib’s method
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and the WL mixture method on the Bayesian Lasso example, in which we indeed have a closed form Gibbs
sampler. The performances of the two methods are comparable. Chib and Jeliazkov (2001) extended the
method to the setting with intractable full conditional densities, but its applicability can still be limited if we
encounter other types of MCMC algorithms such as Hamiltonian Monte Carlo (HMC), Metropolis-adjusted
Langevin algorithms (MALA), etc. In contrast, a major advantage of the WL mixture method is that it can
be built on any type of MCMC samplers, and is reasonably easy to implement.

4 Extensions

4.1 Parallel Wang-Landau (PWL) algorithm

The main idea of PWL is to introduce a sequence of intermediate distributions between the target distribution
γ?(θ) and the surrogate distribution q?(θ), and to estimate many ratios of normalizing constants in parallel.
This method is particularly useful when a good surrogate distribution q?(θ) is not easy to construct. The
idea of constructing auxiliary distributions has been used in bridge sampling (Gelman and Meng, 1994),
annealed importance sampling (Neal, 2001), sequential importance sampling (Hammersley and Morton, 1954;
Rosenbluth and Rosenbluth, 1955; Kong et al., 1994), and the general SMC algorithms (Liu and Chen, 1998;
Chopin, 2002). However, these earlier methods typically cannot be easily parallelized.

We denote the sequence of (unnormalized) intermediate distributions as {ηt(θ)}Tt=0 where η0(θ) = q(θ)
and ηT (θ) = γ(θ). The corresponding normalizing constant of ηt(θ) is denoted as Zt. For example, suppose
we have n data points y = (y1, · · · , yn) with the likelihood function and the prior specified as L(θ | y) =
p(y | θ) and p(θ), respectively. We can choose the surrogate distribution q?(θ) as the prior distribution p(θ),
which is often very far from the target posterior distribution, and set the intermediate distributions as

ηt(θ) = L(θ | y1, · · · , ynt)p(θ), (23)

where 0 = n0 < n1 < · · · < nT = n. Assuming that we have a good sampler to sample from the full posterior
distribution γ?(θ), it should be easy to construct an efficient sampler to sample from the intermediate
distributions ηt(θ). Another possibility of the intermediate distributions can be the power-function sequences
(as in parallel tempering of Geyer (1991)) such as ηt(θ) = [q(θ)]1−αt [γ(θ)]αt , where 0 = α0 < α1 < · · · <
αT = 1.

For each pair of neighboring distributions ηt(θ) and ηt−1(θ), we estimate logZt/Zt−1 using the WL
mixture method. Denoting the estimates as log r̂t for t ∈ [1 : T ], we then estimate logZγ as:

log Ẑγ =
T∑
t=1

log r̂t + logZq. (24)

Since the estimation of logZt/Zt−1 for t = 1, . . . , T can be carried out in parallel, the PWL method can
be computationally favorable if users have parallel computing resources. We note that the PWL is different
from the parallel Wang-Landau algorithm considered in Bornn et al. (2013), which aims at accelerating the
convergence of the WL algorithm.

4.2 Handling multimodality

The proposed method can be modified to detect the potential multimodality of the target distribution. As
shown in Figure 1b, suppose the current state of the Markov chain is θt1 . In Step 3(b) in Algorithm 2,
θt1 is considered to be more likely coming from γ?(θ) instead of q?(θ) (thus the color of the point is red).
Consequently, the WL mixture method will keep downweighting the mixture component γ?(θ) by increasing
its reweighting factor ψt1(γ). In the meantime, we move θt1 using the Markov kernel Kγ , thus the chain still
stays around the same local mode. At some point t2, the mixture component γ?(θ) has been downweighted
enough, that is, the reweighting factor ψt2(γ) is large enough, so that θt2 is considered to be more likely
coming from q?(θ) instead of γ?(θ) (thus the color of the point becomes blue). Then in the next step we will
move θt2 according to the Markov kernel Kq invariant to q?(θ). Since in most cases we can directly sample
from the surrogate distribution q?(θ), this step is potentially a global move compared to the previous local
move using the Markov kernel Kγ . In Figure 1b, θt2 jumps to θt3 , which is close to a different local mode of
γ?(θ).
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To estimate Eγ? [h] for some function h using the outputs of the WL mixture method, we need to weight
each sample differently. At iteration t, θt is approximately a sample from the adaptive mixture distribution
π†t−1(θ) defined in (3). Thus, we need to assign to θt a weight wt ∝ γ(θt)/π

†
t−1(θt). Then, we have the

estimate
∑S
t=0 wth(θt)/

∑S
t=0 wt, where S is the total number of iterations we run.

4.3 Multiple-try reversible jump MCMC

Instead of estimating the normalizing constant of each model, we can also perform model comparison for a
sequence of models {Mk} by incorporating the model index into the full posterior distribution as in (1), and
sampling the model indicator and model parameters jointly. Since the posterior distribution p (θk,Mk | y)
is potentially trans-dimensional, we need a reversible jump MCMC algorithm (RJMCMC) (Green, 1995).
We here propose a MTM-based reversible jump algorithm (MTM-RJMCMC), which is most useful if p(θk |
y,Mk) is approximately unimodal for each modelMk, and we can estimate the mode θ̂k well before running
the algorithm.

For i 6= j, suppose we want to move from modelMi to modelMj . We wish to directly jump towards the
mode of p(θj | y,Mj) using the MTM directional sampling, so that the acceptance probability can be much
higher than other generic jumping mechanisms. Since θi and θj are potentially in different dimensions, we
first match the dimensionality of θi and θj by introducing auxiliary parameters u = (u1, · · · , udj ) ∈ Rdj and
v = (v1, · · · , vdi) ∈ Rdi so that the dimension and domain of (θi,u) matches those of (v,θj). We note that
this is just one principled way to match the parameter spaces. For specific problems, more efficient designs
may exist and should be considered.

We define the augmented posterior distributions as:

pi (θi,u,Mi | y) = p(θi | y,Mi)qi(u)p(Mi), pj (v,θj ,Mj | y) = p(θj | y,Mj)qj(v)p(Mj), (25)

where qi(u) and qj(v) are user-chosen unimodal distributions with modes denoted as û and v̂. The above
construction implies that θi ⊥ u and θj ⊥ v. In general, users can consider introducing dependence structures
between θi,u and θj ,v.

The multiple-try trans-dimensional move from model Mi to model Mj is summarized in Algorithm 6
and briefly explained here. Given the current state θi, we first sample u from qi(u), then propose multiple

tries (v(k),θ
(k)
j ) = (θi,u) + r(k) · e for k ∈ [1 : m]. Two types of directional jumping mechanisms can be

applied to our setting: (1) fixed-directional jump; (2) adaptive-directional jump. For the fixed-directional
jump, the jumping direction is defined by the two pre-located modes of the augmented posterior distributions
pi (θi,u,Mi | y) and pj (v,θj ,Mj | y), and is fixed throughout the algorithm. For the adaptive-directional
jump, the jumping direction is defined by the current state of the chain (θi,u) and the mode of the augmented
posterior distribution pj (v,θj ,Mj | y).

There are subtle differences in the implementation of the two jumping mechanisms. First, when we set
the adaptive-directional jump as jumping towards a mode, that is, e = (v̂−θi, θ̂j −u)/||(v̂−θi, θ̂j −u)||, we
need to sample the jumping distance r from a centered symmetric distribution p(r) in order to use the same
simple form of the acceptance ratio as in (27). A more general p(r) can be allowed if we use a generalized form
of MTM in Liu et al. (2000), which results in a form more complicated than (27). In contrast, for the fixed-

directional jump, we can simply set the jumping direction as e = (v̂−θ̂i, θ̂j−û) without standardization, and
sample the jumping distance r from an arbitrary distribution, not necessarily being symmetric and centered
at 0. In fact, to push the chain directly jump into the mode (v̂, θ̂j), we recommend the users to center p(r)
around 1. Second, when calculating the acceptance probability, the adaptive-directional jump involves an
additional Jacobian (27). However, for the fixed-directional jump, the Jacobian is simply 1 and thus can be
omitted.

Each of the two jumping mechanisms has its own advantages depending on the scenarios. For instance,
if the local variations around two modes (θ̂i, û) and (v̂, θ̂j) differ significantly, the adaptive-directional jump
is more favorable, as the fixed jumping direction can be misleading when the chain jumps from the relatively
wider mode to the narrower one. On the other hand, since the sampling distribution of the jumping distance
p(r) for the fixed-directional jump can be centered at 1, when the jumping direction e = (v̂ − θ̂i, θ̂j − û) is
indeed informative, it tends to be more efficient than the adaptive-directional jump in which p(r) centers at
0.

We then sample (v,θj) from the multiple tries {(v(k),θ
(k)
j )}mk=1, with probability proportional to the aug-

mented posterior density pj(v
(k),θ

(k)
j ,Mj | y). After obtaining (v,θj), we set (θ

(k)
i ,u(k)) = (v,θj)− r(k) · e
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for k ∈ [1 : m]. We accept the trans-dimensional proposal (v,θj) with probability α given in (26) and (27),
depending on which jumping mechanism we employ. We note that the proposed trans-dimensional move

Algorithm 6 Multiple-Try reversible jump MCMC

For i 6= j, given that the current posterior draw θi is from model Mi, the trans-dimensional move to model
Mj is accomplished as follows:

1. Sample the auxiliary variable u from qi(u), which matches the dimension of θj in model Mj .

2. Set the jumping direction and sample the jumping distances.

(a) (Fixed-directional jump) Set the jumping direction as e = (v̂ − θ̂i, θ̂j − û). Sample the jumping
distances r(1), · · · , r(m) from an arbitrary distribution p(r) (recommend to center p(r) at 1).

(b) (Adaptive-directional jump) Set the jumping direction as e = (v̂ − θi, θ̂j −u)/||(v̂ − θi, θ̂j −u)||.
Sample the jumping distances r(1), · · · , r(m) from a symmetric distribution p(r) centered at 0.

3. Propose multiple tries: Set (v(k),θ
(k)
j ) = (θi,u) + r(k) · e for k ∈ [1 : m].

4. Sample (v,θj) from {(v(k),θ
(k)
j )}mk=1 with probability proportional to pj(v

(k),θ
(k)
j ,Mj | y).

5. Given (v,θj), set (θ
(k)
i ,u(k)) = (v,θj)− r(k) · e for k ∈ [1 : m].

6. Accept (v,θj) with probability α specified as below:

(a) (Fixed-directional jump)

α = min

{
1,

∑m
k=1 pj

(
v(k),θ

(k)
j ,Mj | y

)
∑m
k=1 pi

(
θ

(k)
i ,u(k),Mi | y

)}. (26)

(b) (Adaptive-directional jump)

α = min

{
1,

∑m
k=1 pj

(
v(k),θ

(k)
j ,Mj | y

)
∑m
k=1 pi

(
θ

(k)
i ,u(k),Mi | y

) × ∣∣∣∣∣1− r

||(v̂ − θi, θ̂j − u)||

∣∣∣∣∣
di+dj−1}

. (27)

r is the jumping distance corresponding to the selected try (v,θj).

should be combined with local MCMC moves within each model Mk. Since the current setting is slightly
different from that of a typical MTM, we provide here a theoretical validation in the following proposition.
The proof of Proposition 1 can be found in Section 7.1.

Proposition 1: The proposed trans-dimensional move, equipped with either the fixed-directional jumping
mechanism or the adaptive-directional jumping mechanism, leaves the posterior distribution p (θk,Mk | y)
invariant.

5 Illustrations

5.1 Log-Gaussian Cox process

We consider estimating the normalizing constant of a Log-Gaussian Cox process model on the pine forest data
set studied in Penttinen et al. (1992) and Stoyan and Stoyan (1994). The data contains the locations of 126
Scots pine saplings in a 10× 10 m2 square (see Figure 10(a) in Møller et al. (1998)). We first standardize the
locations into unit square and then discretize the unit square into a M×M regular grid. Let y = (ym)m∈[1:M ]2

denote the number of pine saplings in each grid cell, and let λ = (λm)m∈[1:M ]2 denote the latent intensity
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process. We assume the following model:

[ym | λm] ∼ Poisson (aλm) ,

where a = M−2 is the area of each grid cell. The dimension of λ is M2, and in this example, we test out
M = 10, 20, 30 thus the dimension of the problem is 100, 400, 900, respectively. We transform θ = logλ so
that all the parameters are defined on R. We specify a Gaussian process prior given as below with constant
mean µ0 and exponential covariance function on θ = (θm)m∈[1:M ]2 ,

Σ0 (m,n) = σ2 exp

(
− 1

Mβ
|m− n|

)
, m, n ∈ [1 : M ]

2
,

where we follow the same parameters setting in Møller et al. (1998): σ2 = 1.91, β = 1/33 and µ0 =
log(126)− σ2/2. The Poisson likelihood is as follows:

L (θ | y) =
∏

m∈[1:M ]2

exp (θmym − a exp (θm)) ,

thus the unnormalized posterior distribution is γ (θ | y) = N (θ;µ0,Σ0)L (θ | y). An approximate mode θ̂
of γ (θ | y) is obtained using the Newton-Raphson method.

With this example, we compare the performances of three reasonably well-tuned competitors: the WL
mixture method, importance sampling with the surrogate distribution as the proposal distribution, and a
generalized SMC algorithm detailed in Algorithm 7 in the appendix. The algorithmic settings of the three
algorithms are described below. For the WL mixture method, we use N(µq, σ

2
qI) as the surrogate distribution,

where µq = θ̂ and σq = 1.0, 1.2, 1.3 for M = 10, 20, 30, respectively. We use HMC local moves around the
mixture component γ. The gradient of the log likelihood is

∇ logL (θ | y) = y − a exp(θ),

and the HMC kernel contains 10 leapfrog steps with step size 0.25. We run in total S = 5× 104 iterations for
M = 10, S = 105 iterations for M = 20, 30, and set b = S/2. For importance sampling, we use 106 samples
so that the computation time for the three methods are comparable (see Table 2). For SMC, we use 210

particles, and run 10 HMC rejuvenation steps (Step 2(f) in Algorithm 7) for each intermediate distribution
to diversify the particles. The effective sample size adaptation criterion is set to be κ = 0.5, and on average
there are 14, 16 and 17 intermediate steps for M = 10, 20, 30, respectively.

The results are summarized in Table 2. We find that the WL mixture method and SMC produced similar
and stable estimates of the targeted log normalizing constant under all settings, whereas importance sampling
underestimated the target for both M = 20, 30, consistent with our discussion in Section 3.1. Although the
WL mixture method had slightly larger standard deviations, its implementation is much easier compared to
SMC. Importance sampling is also easy to implement, but is least accurate among the three. For this and
the Bayesian Lasso example in the next section, we also compare the convergence speeds of the standard and
the accelerated WL algorithms (see Section 2.3). Figure 2 shows that the accelerated algorithm converges
much faster than the standard one.

5.2 Hyper-parameter determination for Bayesian Lasso

We consider the Bayesian Lasso method proposed in Park and Casella (2008), which assumes a hierarchical
prior on the linear regression coefficients so that the posterior mode corresponds to the Lasso estimator
(Tibshirani, 1996). Given a centered and standardized n× p design matrix X, the response vector y follows
N(Xβ, σ2In). Following Park and Casella (2008), we put prior N(0p, σ

2Dτ ) on β, where Dτ is a diagonal
matrix diag(τ2

1 , · · · , τ2
p ). Besides, we put independent hyper-prior Exp(λ2/2) on τ2

j for j ∈ [1 : p], and

put improper prior p(σ2) ∝ 1/σ2 on σ2. This completes the full model specification and the unnormalized
posterior distribution is given by

γ(β, τ , σ2 | X,y) =
1

σ2
N(y;Xβ, σ2In)

p∏
j=1

Exp
(
τ2
j | λ2/2

)
.
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Log normalizing constant estimates
Dimension 100 400 900

SMC 474.22 (0.16) 490.71 (0.18) 497.60 (0.21)
WL 474.39 (0.10) 490.59 (0.27) 496.94 (0.34)
IS 474.14 (0.24) 487.11 (1.02) 475.98 (1.34)

Computation time (second)
Dimension 100 400 900

SMC 17.75 (0.74) 178.87 (15.99) 893.74 (66.18)
WL 15.47 (0.46) 182.80 (15.42) 815.42 (56.32)
IS 22.18 (0.84) 186.88 (16.68) 989.81 (92.15)

Table 2: Results summary of the Log-Gaussian-Cox process. WL and IS refer to the WL mixture method
and importance sampling, respectively. The reported values are empirical means and standard deviations (in
the bracket) of log normalizing constant estimates based on 10 independent runs.
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Figure 2: Demonstration of the accelerated Wang-Landau algorithm. (a) The Log-Gaussian Cox process in
Section 5.1 with M = 30. (b) The Bayesian Lasso example in Section 5.2 with SNR = 0.1 and λ = 20.

We transform the parameters ηj = log τ2
j for j ∈ [1 : p] and ξ = log σ2 so that all the parameters are defined

on R. In this example, we simulate the data set as in Yang et al. (2016). We define

β? = SNR

√
σ2

0

log p

n
(2,−3, 2, 2,−3, 3,−2, 3,−2, 3, 0, · · · , 0)ᵀ ∈ Rp

with p = 100, n = 500, SNR ∈ {0.1, 1, 3} (signal-to-noise ratio), σ2
0 = 1. The dimension of the posterior

distribution is 2× p+ 1 = 201. The design matrix X is generated from a centered multivariate normal distri-
bution with covariance matrix Σij = exp(−|i− j|). The response variable y is generated from N(Xβ?, σ2

0In).
The task is to estimate the marginal likelihood of data for a set of regularization parameters λ ∈ {5, 10, 15, 20}
under different SNR.

We compare the WL mixture method, Chib’s method and importance sampling in this example. The
surrogate distribution used in the WL mixture method, which is also the proposal distribution used in
importance sampling, is constructed using the variational approximation discussed in Section 2.5. We consider
the Normal mean-field variational family where q(βj) is N(mj , s

2
j ), q(ηj) is N(φj , ζ

2
j ), and q(ξ) is N(u, v2).

The CAVI updates are summarized in Section 7.3 in the appendix. For the WL mxiture method, the Gibbs
move proposed in Park and Casella (2008) is used for the local move around the mixture component γ. We
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Signal-to-noise ratio: SNR = 3
λ 5 10 15 20

WL -504.03 (0.57) -491.98 (0.65) -501.35 (0.32) -518.13 (0.61)
Chib -504.63 (0.73) -492.35 (1.03) -501.60 (0.43) -518.40 (0.92)

IS -508.16 (0.49) -496.02 (0.77) -506.83 (0.76) -524.43 (0.84)

Signal-to-noise ratio: SNR = 1
λ 5 10 15 20

WL -742.92 (0.32) -706.80 (0.48) -694.93 (0.42) -689.33 (0.36)
Chib -743.59 (0.46) -707.40 (0.47) -695.28 (0.63) -690.22 (0.46)

IS -747.18 (1.29) -711.67 (1.45) -700.61 (1.38) -697.72 (1.38)

Signal-to-noise ratio: SNR = 0.1
λ 5 10 15 20

WL -802.28 (0.51) -758.01 (0.48) -738.56 (0.41) -727.31 (0.42)
Chib -802.92 (0.58) -758.91 (0.79) -739.01 (0.77) -728.10 (1.04)

IS -806.13 (1.51) -763.26 (0.90) -746.09 (1.22) -735.96 (0.75)

Table 3: Results summary of Bayesian Lasso. WL, Chib and IS refer to the WL mixture method, Chib’s
method and importance sampling, respectively. The reported values are empirical means and standard devi-
ations (in the bracket) of log normalizing constant estimates based on 10 independent runs. The computation
time for the WL mixture method, Chib’s method, and importance sampling are 32.64 (±1.77) seconds, 43.50
(±1.96) seconds and 51.15 (±2.64) seconds, respectively.

detail the Gibbs move in the following. The conjugate conditional posterior distributions are

[β | rest] ∼ N(C−1
τ Xᵀy, σ2C−1

τ ), Cτ = XᵀX +D−1
τ ,

[τ−2
j | rest] ∼ Inverse-Gaussian(λσ/|βj |, λ2),

[σ2 | rest] ∼ Inv-χ2

(
n+ p,

||y −Xβ||22 + βᵀD−1
τ β

n+ p

)
.

We run a total of S = 104 iterations, and set b = 2, 000. In order that the total computation time for the
three methods are comparable (see the caption in Table 3), we use 5× 105 samples for importance sampling.
For Chib’s method, the parameters are cut into three blocks, β, τ 2 and σ2, and we run the Gibbs sampler
for 5,000 iterations and burn-in the first 10% samples.

The results are summarized in Table 3. We see that under all settings, the WL mixture method and Chib’s
method produced similar and stable estimates of the log normalizing constant, whereas importance sampling
underestimated the log normalizing constant. The regularization parameter that maximizes the marginal
likelihood of data are λ = 10, 20, 20 for SNR = 3, 1, 0.1, respectively, which corresponds to our intuition that
it requires more regularization for estimating the regression coefficients when there exists larger noises in the
data.

5.3 Logistic regression

We consider a Bayesian logistic regression on the classic German credit dataset (available from the UCI
repository (Frank and Asuncion, 2011)). There are in total n = 1, 000 personal records in the dataset. For
each records, there are 24 associated attributes including sex, age, and credit amount. The binary response
variable y indicates good or bad credit risks. Let Xn×p be the design matrix after we standardize all the
predictors. In particular, we include an intercept and all pairwise interactions. The dimension of the problem
is p = 24 + 24× 23/2 + 1 = 301. We consider the following logistic regression model:

P(yi = 1 | xi) =
exp (α+ βᵀxi)

1 + exp (α+ βᵀxi)
,

where yi ∈ {0, 1}, xi ∈ R300, α ∈ R, β ∈ R300, i ∈ [1 : n]. All the observations are assumed to be
independent. We set up similar priors on the parameters as in Heng and Jacob (2019),

[α | s2] ∼ N
(
0, s2

)
, [β | s2] ∼ N

(
0300, s

2I300

)
, s2 ∼ Exp(λ),
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with λ ∈ {0.01, 1.00}. This completes the full model specification, and the unnormalized posterior distribution
is

γ(α,β, s2 | y, X) = p(α,β | s2)p(s2)
n∏
i=1

p(yi | xi)

= λe−λs
2

N(α; 0, s2)
300∏
j=1

N(βj ; 0, s2)
n∏
i=1

exp (α+ βᵀxi)

1 + exp (α+ βᵀxi)
.

We transform s2 to the logarithmic scale log s2 so that all the parameters are defined on R. The task is to
estimate the log normalizing constant logZγ .

We compare the WL mixture method and bridging sampling (BS). We use the same surrogate (proposal)
distribution detailed in the following for both methods. We note that the variational approximation is not
straightforward as there is a term log[1+exp (α + βᵀxi)] involved in log γ(α,β, log s2 | y, X). Instead, we use
Laplace approximation. We first run a HMC algorithm to obtain posterior samples from γ(α,β, log s2 | y, X).
Then we fit a multivariate normal distribution on the posterior samples, and choose it as the surrogate
distribution. Each HMC step contains 10 leapfrog steps with step size adjusted to be 0.03. For bridge
sampling, we use the R package bridgesampling (Gronau et al., 2017), and obtain n samples from the target
distribution using RStan (Stan Development Team, 2019). Correspondingly, we run 2 × n iterations for the
WL mixture method so that approximately we also use n samples from the target distribution.

For this example, we tested out n = 1000, 1500, 2000, 2500 for λ ∈ {0.01, 1.00}. The results are summa-
rized in Figure 3. We see that the WL mixture method has a much better estimation efficiency compared
to bridge sampling. Bridge sampling approaches to the vicinity of the correct estimate only after 2,500
iterations/samples for both cases λ = 0.01 and λ = 1.00.

Figure 3: Comparison between the WL mixture method and bridge sampling (BS). For bridge sampling, the
x-axis represents the number of samples we draw from the target distribution and the proposal distribution.
For the WL mixture method, the x-axis represents half of the total number of iterations we run (see the second
to last paragraph in this section). The error bars represent the standard deviations of the log normalizing
constant estimates based on 20 independent runs.

5.4 Mixture model

We consider the univariate Gaussian mixture model. The model assumes that y1, · · · , yn are i.i.d. samples
from the following mixture distribution:

[y | π,µ,σ2] ∼
K∑
j=1

πjN(µj , σ
2
j ),

where n denotes the number of observations, K denotes the number of mixture components, π = (π1, · · · , πK)
is defined on the probability simplex, that is, π1 + · · · + πK = 1, πj > 0. The prior p(π,µ,σ2) follows the
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Galaxy K = 3 K = 4 K = 5 K = 6 K = 7 K = 8
RJMCMC 0.061 0.128 0.182 0.199 0.160 0.109

PWL 0.058 0.153 0.183 0.200 0.151 0.089
Galaxy‘ K = 9 K = 10 K = 11 K = 12 K = 13 K ≥ 14

RJMCMC 0.071 0.040 0.023 0.013 0.006 0.008
PWL 0.067 0.051 0.019 0.013 0.006 0.010

Acidity K = 2 K = 3 K = 4 K = 5 K = 6 K = 7
RJMCMC 0.082 0.244 0.236 0.172 0.118 0.069

PWL 0.086 0.245 0.250 0.179 0.095 0.064
Acidity K = 8 K = 9 K = 10 K = 11 K ≥ 12 −

RJMCMC 0.037 0.020 0.011 0.006 0.005 -
PWL 0.042 0.019 0.010 0.005 0.005 -

Enzyme K = 2 K = 3 K = 4 K = 5 K = 6 K = 7
RJMCMC 0.024 0.290 0.317 0.206 0.095 0.041

PWL 0.036 0.284 0.290 0.191 0.118 0.046
Enzyme K = 8 K = 9 K ≥ 10 − − −

RJMCMC 0.017 0.007 0.003 − − −
PWL 0.023 0.008 0.003 − − −

Table 4: Posterior distribution of the number of mixture components K for the three data sets: galaxy,
acidity, and enzyme. The number of observations for each data set are 82, 155, 245 respectively.

random β model specified in Richardson and Green (1997):

µj ∼ N(ξ, κ−1), σ2
j ∼ Inv-Gamma(α, β), π ∼ Dirichlet(δ, · · · , δ), β ∼ Gamma(g, h),

where R = max yi − min yi, ξ = [max yi + min yi]/2, κ = 1/R2, α = 2, g = 0.2, h = 10/R2, and δ = 1.
We set a uniform prior on [2,Kmax] for the number of components K, where Kmax is a pre-specified upper
bound. This completes the full model specification. We are interested in the following two tasks for this
example: (1) estimating the normalizing constant for each K ∈ [2,Kmax] so that we can approximate the
marginal posterior distribution of K; (2) demonstrating the ability of the WL mixture method in handling
multimodality.

Since the posterior distribution for the mixture model is known to be multimodal, it is challenging to
construct an appropriate surrogate distribution. Thus, we use the PWL method proposed in Section 4.1.
In particular, the surrogate distribution (also η0) is set to be the prior p(π,µ,σ2), and the sequence of
intermediate distributions {ηt} for t ∈ [1 : n] is chosen following (23), that is, ηt is the (unnormalized) partial
posterior distribution γ(µ,σ2,π | y1, · · · , yt). We use the same Gibbs sampler (detailed in Section 7.4 in the
appendix) as in Richardson and Green (1997) to move around the mixture component ηt. We run in total
S = 104 iterations and set b = S/2. We applied the PWL method in three datasets: galaxy, acidity and
enzyme, which can be found in the R package multimode. The numbers of observations in each dataset are
82, 155, 245, respectively. We compare the estimated posterior distribution of K to the results in Richardson
and Green (1997). Throughout this example, the specific reversible jump MCMC algorithm proposed in
Richardson and Green (1997) is referred to as RJMCMC. Table 4 shows that PWL and RJMCMC produced
similar estimates for all three datasets.

To demonstrate the ability of the WL mixture method in handling multimodality, we simulated n = 100
data points from a Gaussian mixture distribution with K = 4, π = (0.25, 0.25, 0.25, 0.25), µ = (−3, 0, 3, 6),
and σ = (0.5, 0.5, 0.5, 0.5). The posterior distribution γ(π,µ,σ2 | y) should have 12 symmetric modes in
the subspace of (µ1, µ2). We choose the prior p(π,µ,σ2) to be the surrogate distribution. We run the WL
mixture method for 5 × 105 iterations equipped with the same Gibbs kernel mentioned before. We employ
an importance sampling step as discussed in Section 4.2 to properly weight the samples so that they target
the posterior distribution γ?(π,µ,σ2 | y).

Figure 4 shows that the WL mixture method successfully identified all the 12 modes, whereas the Gibbs
sampler, running for the same number of iterations, was still stuck in a local mode. Table 5 compares
the estimates of E[µj |y], whose true value is approximately 1.5, and shows that the WL mixture method
significantly outperformed the Gibbs sampler. Based on the identified local modes, Table 5 also shows that
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Method E[µ1|y] E[µ2|y] E[µ3|y] E[µ4|y]
WL 1.61 (0.27) 1.38 (0.46) 1.41 (0.36) 1.60 (0.28)

MTM 1.50 (0.11) 1.54 (0.08) 1.51 (0.13) 1.50 (0.08)
Gibbs -2.92 (0.27) 0.05 (0.52) 3.00 (0.75) 5.89 (0.54)

Table 5: Estimation results obtained using the Gibbs sampler, the WL mixture method and MTM. The truth
is approximately 1.50.
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Figure 4: Proportion of time the Markov chain spent in each mode. Darker color corresponds to longer time.

the MTM mode jumping appoach can further improve the estimation accuracy. Specifically, at each iteration,
we flip a coin to decide whether we move the current state of the Markov chain using the Gibbs kernel or the
MTM kernel. If we choose a MTM directional sampling move, we randomly select a local mode and employ
the fixed-directional jump detailed in Algorithm 4. For the tuning parameters, we set m = 10 and choose
p(r) to be N(1, 0.12). We run 1/m of the total number of iterations that we run for the WL mixture method
and the Gibbs sampler to account for the additional computational effort in the MTM move. Figure 4 shows
that the chain obtained using MTM spent approximately equal amount of time in all 12 symmetric modes.

5.5 g-Prior variable selection

We compare the performance of the MTM-RJMCMC proposed in Section 4.3 and that of a standard birth-
and-death RJMCMC (BD-RJMCMC, detailed below) in the setting of Bayesian variable selection for the
pollution data (McDonald and Schwing, 1973). The response variable y is the age-adjusted mortality rate
obtained for the years 1959-1961 in 201 standard metropolitan statistical areas. There are in total n = 60
observations. The design matrix X contains p = 15 predictors including the average annual precipitation,
the average temperature in January and July, and the population per household. We consider the standard
linear model assuming that [y | X,β, σ2] follows N

(
Xβ, σ2I

)
. We center the response variable y so that

there is no intercept in the model, and standardize each predictor in the design matrix X.
Let γ ∈ {0, 1}p be the binary indicator such that γj = 1 represents that the predictor Xj is selected into

the model. We employ the g-prior on parameters β:[
βγ | γ, σ2

]
∼ N

(
0γ , gσ

2
(
Xᵀ

γXγ

)−1
)
.

The g-prior enables us to integrate out β so that we can obtain the marginal distribution of γ:

p(γ | y, X) ∝ (g + 1)−qγ/2
[
yᵀy − g

g + 1
yᵀXγ

(
Xᵀ

γXγ

)−1
Xγy

]−n/2
, (28)

where qγ denotes the number of selected predictors. We see that g controls the sparsity of the model, and a
larger g induces a sparser model. For σ2, we use a noninformative prior p

(
σ2
)
∝ 1/σ2. This completes the

full model specification. The task is to estimate the marginal probability of each predictor being selected.
The ground truth is obtained by enumerating all 32,768 possible γ and calculating the marginal probability
using (28). To compare the MTM-RJMCMC and the BD-RJMCMC, we pretend that we do not have the
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privilege to integrate out β, thus we will sample from the trans-dimensional joint posterior distribution
p
(
βγ ,γ, σ

2 | y, X
)
.

We use the Gibbs sampler to iterate between the following conditional distributions:[
βγ ,γ | σ2,y, X

]
∼
(
2πgσ2

)− qγ2 ∣∣Xᵀ
γXγ

∣∣ 12 exp

(
− 1

2σ2

[
g + 1

g
||Xγβγ ||2 − 2βᵀ

γX
ᵀ
γy

])
,

[
σ2 | y, X,βγ ,γ

]
∼ Inv-Gamma

(
n+ qγ

2
,

1

2

[
1

g
||Xγβγ ||2 + ||y −Xγβγ ||2

])
.

Given γt, the jumping rule for γt+1 as described below is the same for both algorithms. We first flip a coin
to decide whether we stay in the current model (γt+1 = γt) or move to a different model (γt+1 6= γt). If we
choose to leave the current model (a trans-dimensional move), we randomly move into a higher dimension
(add a predictor) or move into a lower dimension (exclude a predictor) with equal probability 0.5. When the
chain is at the boundary (qγ is 1 or 15), the proposal going out of the range is automatically rejected. Given
γt+1, the within-dimensional move (when γt+1 = γt) for βt+1 is conjugate:[

βγ | γ, σ2,y, X
]
∼ N

(
g

g + 1

(
Xᵀ

γXγ

)−1
Xᵀ

γy,
gσ2

g + 1

(
Xᵀ

γXγ

)−1
)
.

For the trans-dimensional move, the MTM-RJMCMC and the BD-RJMCMC have different proposals for
βt+1. For the MTM-RJMCMC, we follow the fixed-directional jumping mechanism detailed in Algorithm
6. Since we only add or remove one predictor in each trans-dimensional move, the algorithm requires only
one auxiliary variable. We choose the auxiliary distribution to be N(0, 1). We sample the jumping distance
r from N(1, 1), and set the number of tries to be m = 5. For the BD-RJMCMC, if we choose to add a
predictor, we propose it from N

(
0, 0.52

)
. We run 5 × 104 iterations for the MTM-RJMCMC and 1.5 × 105

iterations for the BD-RJMCMC so that the computation for the two algorithms are comparable (see the
caption in Table 6). For both algorithms, we burn-in the first 10% samples.

The estimation results for g = exp(10) and g = exp(15), respectively, are summarized in Table 6. We see
that the MTM-RJMCMC produced more accurate estimation results than the BD-RJMCMC. In particular,
we see that the BD-RJMCMC might have been stuck in a local mode thus mistakenly selected two wrong
predictors X12 and X13. Intuitively, we see that the directional jumping in the MTM-RJMCMC is much
more informative than the blind proposal in the BD-RJMCMC, thus preventing the algorithm from getting
stuck in local modes.

Sparsity g = exp(10) g = exp(15)
Predictors Truth MTM-RJMCMC BD-RJMCMC Truth MTM-RJMCMC BD-RJMCMC

X1 0.118 0.118 (0.016) 0.068 (0.042) 0.036 0.025 (0.013) 0.007 (0.006)
X2 0.177 0.170 (0.008) 0.115 (0.052) 0.118 0.100 (0.010) 0.043 (0.041)
X3 0.009 0.009 (0.002) 0.010 (0.003) 0.001 0.001 (0.001) 0.001 (0.001)
X4 0.020 0.019 (0.003) 0.016 (0.004) 0.012 0.009 (0.002) 0.004 (0.004)
X5 0.010 0.008 (0.002) 0.005 (0.002) 0.001 0.000 (0.001) 0.001 (0.001)
X6 0.143 0.148 (0.017) 0.139 (0.035) 0.270 0.278 (0.015) 0.126 (0.118)
X7 0.005 0.005 (0.001) 0.003 (0.001) 0.001 0.001 (0.002) 0.001 (0.001)
X8 0.013 0.014 (0.002) 0.013 (0.001) 0.005 0.003 (0.001) 0.001 (0.001)
X9 0.289 0.300 (0.008) 0.302 (0.027) 0.468 0.527 (0.013) 0.433 (0.112)
X10 0.008 0.008 (0.002) 0.007 (0.001) 0.004 0.004 (0.001) 0.002 (0.001)
X11 0.010 0.009 (0.002) 0.009 (0.003) 0.004 0.003 (0.001) 0.001 (0.001)
X12 0.011 0.013 (0.007) 0.108 (0.110) 0.003 0.001 (0.001) 0.183 (0.149)
X13 0.010 0.011 (0.008) 0.107 (0.111) 0.002 0.000 (0.001) 0.182 (0.148)
X14 0.168 0.163 (0.013) 0.094 (0.065) 0.070 0.050 (0.013) 0.016 (0.016)
X15 0.003 0.003 (0.001) 0.002 (0.001) 0.001 0.000 (0.001) 0.001 (0.001)

Table 6: Estimates of the marginal probability of each variable being selected. The reported values are
empirical means and standard deviations (in the bracket) based on 10 independent runs. The computation
time for the MTM-RJMCMC and the BD-RJMCMC are 39.2 (±1.01) seconds and 59.8 (±1.24) seconds,
respectively.
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6 Concluding Remarks

We have described a general strategy to construct a mixture of the unnormalized target posterior distribution
and a surrogate distribution with a known normalizing constant for estimating the Bayes factor. Such
a mixture formulation allows us to use the generalized WL algorithm and the MTM machinery for fast
MCMC mixing and accurate estimation of the normalizing constant. We have also designed acceleration and
parallelization schemes to further improve its performance.

By efficiently jumping back and forth between the target distribution and the surrogate distribution, pos-
sibly with the help of mode jumping algorithms such as MTM, the performance of the WL mixture method
is less sensitive to the potential separation between the target distribution and the surrogate distribution
compared to importance sampling based methods. The WL mixture method also has more general applica-
bility compared to Chib’s method, when the sampler of the target distribution involves more sophisticated
MCMC steps beyond the closed-form Gibbs sampler (all conditional distributions are easy to sample from) or
standard Metropolis-Hasting algorithms. In addition, the WL mixture method requires less effort in delicate
tuning in its implementation compared to other advanced methods such as path sampling, reversible-jump
MCMC, and sequential Monte Carlo methods.

There are several future directions that we would like to follow. First, although we have shown the power
of the WL mixture method, a rigorous theoretical framework is required to better understand the nature of the
method. Second, instead of mixing the target distribution with a single surrogate distribution, a multiple-
component mixture formulation can be considered. Third, although the intuitive idea of first using some
deterministic algorithm to find modes and then conducting MCMC to do mode jumping has been around, an
efficient way of achieving the intended goal has not been formulated precisely. Our proposed MTM-enhanced
jumping strategy, together with the WL adjustment, can help achieve the goal. It is particularly useful to
identify some specific classes of models where this general methodology is straightforward and effective to
apply.
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7 Appendix

7.1 Proof of Proposition 1

Proof: We first consider the fixed-directional jump. In the following, we calculate the transition probability
P ((θj ,Mj) | (θi,Mi)). Suppose the transition from (θi,Mi) to (θj ,Mj) is achieved by some jumping
distance r , then we have:

θj = u+ r(θ̂j − û) and v = θi + r(v̂ − θ̂i).

It follows that

P ((θj ,Mj) | (θi,Mi)) =

∫
qi(u)× pj (v,θj ,Mj | y)∑m

k=1 pj(v
(k),θ

(k)
j ,Mj | y)

×min

{
1,

∑m
k=1 pj

(
v(k),θ

(k)
j ,Mj | y

)
∑m
k=1 pi

(
θ

(k)
i ,u(k),Mi | y

)}

×
m−1∏
k=1

p(r(k))p(r)dr(1) · · · dr(m−1)

=

∫
min

{[
m∑
k=1

pj

(
v(k),θ

(k)
j ,Mj | y

)]−1

,

[
m∑
k=1

pi

(
θ

(k)
i ,u(k),Mi | y

)]−1}

×
m−1∏
k=1

p(r(k))dr(1) · · · dr(m−1) × p (θj ,Mj | y) qi(u)qj(v)p(r),

where

θ
(k)
j = u+ r(k)(θ̂j − û), v(k) = θi + r(k)(v̂ − θ̂i), θ

(k)
i = v − r(k)(v̂ − θ̂i), u(k) = θj − r(k)(θ̂j − û).

We note that when we jump back from (v,θj) to (θi,u), we flip the sign of the jumping direction, that is,

changing the jumping direction to (û − θ̂j , θ̂i − v̂), so that we keep the same jumping distance r. This is
the reason why we do not require the sampling distribution of the jumping distance p(r) to be symmetric
and centered at 0. Since the Jacobian between (v,θj) and (θi,u) is simply 1, and the multiple integral
is symmetric in the index i and j, the transition kernel satisfies the detailed balance condition thus leaves
p (θk,Mk | y) invariant.

For the adaptive-directional jump, to ensure the reversibility of the transition kernel, we first standardize
the jumping direction, that is, setting e = (v̂ − θi, θ̂j − u)/||(v̂ − θi, θ̂j − u)||, so that the jumping distance
becomes independent to the current state of the chain (θi,u). Besides, because the jumping direction always
points to the modes of the augmented posterior distributions defined in (25), we should flip the sign of the
jumping distance when we jump back from (v,θj) to (θi,u) as we won’t flip the sign of the jumping direction.
Consequently, the sampling distribution of the jumping distance is required to be symmetric and centered at
0.

The proof of the reversibility of the transition kernel equipped with the adaptive-directional jump follows
similarly (thus is omitted) as the case of the fixed-directional jump, but requires additional calculations of
the Jacobian, which are detailed as follows. Suppose the transition from (θi,Mi) to (θj ,Mj) is achieved by
some jumping distance r, then we have:

θj = u+ r
θ̂j − u

||(v̂ − θi, θ̂j − u)||
and v = θi + r

v̂ − θi
||(v̂ − θi, θ̂j − u)||

.

We define x ∈ Rdi+dj as follows. For 1 ≤ k ≤ dj , let xk = (θ̂jk − uk)/||(v̂ − θi, θ̂j − u)||3/2. For 1 ≤ l ≤ di,

let xdj+l = (v̂l − θil)/||(v̂ − θi, θ̂j − u)||3/2. Then we have:

∣∣∣∣∂(θj ,v)

∂(u, θi)

∣∣∣∣ = det
(
(1− r||x||2)Idj + rxxᵀ

)
=

[
1− r

||(v̂ − θi, θ̂j − u)||

]di+dj−1

.
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7.2 SMC algorithm

Algorithm 7 Sequential Monte Carlo (SMC)

Input: proposal distribution q(θ), Markov kernels {Kt}

1. Initialization:

(a) sample θ
(i)
0 from q(θ) for i ∈ [1 : n] independently;

(b) set λ0 = 0 and t = 0.

2. While λt < 1 iterate the following steps:

(a) set t← t+ 1;

(b) for some pre-specified κ ∈ (0, 1), select λt based on λt−1 and {θ(i)
t−1}i∈[1:n] by solving the

following equation

n−1ESSt(λ) =

(
n−1

∑n
i=1(γ/q)(θ

(i)
t−1)λ−λt−1

)2

n−1
∑n
i=1(γ/q)(θ

(i)
t−1)2(λ−λt−1)

= κ;

(c) if λt = 1, set T = t;

(d) compute weights for i ∈ [1 : n]

w
(i)
t =

γt(θ
(i)
t−1)

γt−1(θ
(i)
t−1)

,

where the (unnormalized) intermediate distribution γt(θ) = γ(θ)λtq(θ)1−λt .

(e) resample particles {θ(i)
t−1}i∈[1:n] proportional to weights {w(i)

t }i∈[1:n] to obtain a new set of

particles (θ̂
(i)
t )i∈[1:n];

(f) sample θ
(i)
t ∼ Kt(θ̂

(i)
t , ·) for i ∈ [1 : n];

Output: normalizing constant estimates Ẑγ =
∏T
t=1

1
n

∑n
i=1 w

(i)
t .
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7.3 Variational approximation for Bayesian Lasso

Algorithm 8 CAVI updates for Bayesian Lasso
.

1. Given q(βi) for i 6= j, q(η) and q(ξ), update q(βj).

(mj , sj) = arg max
(m, s>0)

{
e−u+ v2

2

[
A−jm−

1

2

(
(XᵀX)jj + e−φj+

ζ2j
2

)(
m2 + s2

)]
+

1

2
log s2

}
,

where A−j =
∑n
k=1Xkjyk −

∑
k 6=j(X

ᵀX)kjmk.

2. Given q(ηi) for i 6= j, q(β) and q(ξ), update q(ηj).

(φj , ζj) = arg max
(φ, ζ>0)

{
φ− λ2eφ+ ζ2

2 − e−u+ v2

2 (m2
j + s2

j )e
−φ+ ζ2

2 + log ζ2

}
.

3. Given q(β), q(η), update q(ξ).

(u, v) = arg max
(u, v>0)

{
− (n+ p)u−Be−u+ v2

2 + log v2

}
,

where B = yᵀy − 2yᵀXm+ tr
[
(mmᵀ + diag(s2

k))XᵀX
]

+
∑p
k=1(m2

k + s2
k)e−φk+

ζ2k
2 .

7.4 Gibbs sampler for mixture model

Algorithm 9 Gibbs sampler for mixture model
.

1. Given π,µ,σ2, sample Z = (Z1, · · · , Zn) from the following distribution:

P(Zi = j | µ,σ2,y) ∝ πjN(yi;µj , σ
2
j ), j ∈ [1 : K].

2. Given Z, sample π = (π1, · · · , πK) from Dirichlet(δ + n1, · · · , δ + nK). nj =
∑n
i=1 1(Zi = j) for

j ∈ [1 : K].

3. Given Z,σ2, sample µ = (µ1, · · · , µK) from:

[µj | σ2
j ,Z,y] ∼ N

(∑
i:Zi=j

yi/σ
2
j + κξ

nj/σ2
j + κ

,
1

nj/σ2
j + κ

)
, j ∈ [1 : K].

4. Given Z,µ, β, sample σ2 = (σ2
1 , · · · , σ2

K) from:

[σ2
j | Z, µj , β,y] ∼ Inv-Gamma

α+
1

2
nj , β +

1

2

∑
i:Zi=j

(yi − µj)2

 .

5. Given σ2, sample β from Gamma(g +Kα, h+
∑K
j=1 1/σ2

j ).
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