Entropy Wave Instability in Dirac and Weyl Semimetals
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Hydrodynamic instabilities driven by a direct current are analyzed in 2D and 3D relativisticlike
systems with the Dyakonov-Shur boundary conditions supplemented by a boundary condition for
temperature. Besides the conventional Dyakonov-Shur instability for plasmons, we find an entropy
wave instability in both 2D and 3D systems. The entropy wave instability is a manifestation of
the relativisticlike nature of electron quasiparticles and a nontrivial role of the energy current in
such systems. These two instabilities occur for the opposite directions of fluid flow. While the
Dyakonov-Shur instability is characterized by the plasma frequency in 3D and the system size in
2D, the frequency of the entropy wave instability is tunable by the system size and the flow velocity.

Introduction.— Plasma instabilities attract significant
attention and play an important role in various branches
of science including high-energy and condensed matter
physics, astrophysics, controlled thermonuclear fusion,
etc. A few decades ago Dyakonov and Shur predicted [1]
that an electron plasma in a hydrodynamic regime should
become unstable in a biased two-dimensional (2D) het-
erostructure subject to a background direct current (dc)
flow and rather unconventional asymmetric alternating
current (ac) boundary conditions. This Dyakonov-Shur
instability (DSI) appears due to the amplification of
plasma waves (equivalently, plasmons) caused by mul-
tiple reflections from the device boundaries. Such an en-
hancement is reminiscent of the Fermi acceleration mech-
anism [2, 3], where charged particles are accelerated due
to reflection from shock fronts or moving magnetic mir-
rors. The DSI could provide an effective way to create
sources of terahertz radiation by using a direct current.
This is particularly important in the modern industry
where compact, efficient, and tunable sources of tera-
hertz radiation are needed [4]. Furthermore, the DSI
allows one to detect terahertz radiation by converting an
ac signal to the dc one [5], which could be used to create
terahertz detectors.

The recent surge of interest in the DSI is connected
with the experimental observation of the electron hydro-
dynamics in 2D electron gas of (Al, Ga)As heterostruc-
tures [6, 7] and graphene [8-14] (see Refs. [15, 16] for re-
cent reviews on electron hydrodynamics). In addition to
2D systems, evidence of three-dimensional (3D) relativis-
ticlike hydrodynamic electron transport was reported in
the Weyl semimetal tungsten diphosphide WP [17]. Be-
cause Dirac and Weyl semimetals provide a suitable plat-
form for investigating electron hydrodynamics in solids,
the DSI in graphene received a lot of attention [18-22].
Despite extensive theoretical studies, the generation of
terahertz waves by the DSI was not confirmed experi-
mentally yet. Nevertheless, the inverse effect, namely the

rectification of ac signals, was reported in Refs. [23-27].

Motivated by the recent experimental progress in Dirac
and Weyl semimetals, we study hydrodynamic instabil-
ities driven by a dc current in relativisticlike 2D and
3D systems with the Dyakonov-Shur boundary condi-
tions amended by a fixed temperature boundary condi-
tion. Since the energy flow can be as important as the
charge flow in a relativisticlike system, we pay special
attention to the energy current in the hydrodynamic de-
scription. One of our main findings is an instability as-
sociated with the entropy waves [28, 29]. We dub it the
entropy wave instability (EWI). Unlike the conventional
DSI, the frequency of the EWI is determined by the flow
velocity. This makes the corresponding unstable modes
easily tunable. Interestingly, the EWI and DSI occur for
the currents of opposite directions.

Model.— In the hydrodynamic regime, the dynamics
of the electron fluid made of relativisticlike quasiparticles
is described by the Navier-Stokes equation, the charge
and energy continuity relations, and the Gauss law that
relates the electric potential to the charge density. The
corresponding system of equations reads [15, 16]
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Here, w = € + P is the enthalpy, € is the energy density,
P is the pressure, u is the electron fluid velocity, n is
the electron number density, —e is the electron charge,
and vp is the Fermi velocity. Notice that, because of a
relativisticlike dispersion of quasiparticles, the thermo-
dynamic quantities depend on the fluid velocity in the



laboratory (ion lattice) frame. Their explicit expressions
are given in the Supplemental Material [30]. Unlike other
quantities, the equilibrium charge densities in the labo-
ratory and comoving frames are the same (i.e., n = ng),
since they must be compensated by the charge density
of ions. From general considerations, the hydrodynamic
regime is expected to break down when the fluid velocity
approaches vp. Therefore, we will assume that u < vp.

In Eq. (1), the shear viscosity n is defined as
N = Nkinw/ v%, where 7y, is the kinematic shear viscos-
ity [31]. The momentum relaxation is quantified by the
relaxation time 7 that describes scattering on impuri-
ties and phonons. In the hydrodynamic regime, we ne-
glect the intrinsic electric and thermal conductivities [15].
Therefore, the electric and energy current densities are
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In the 2D system, we use the “gradual channel” approx-
imation [1, 32|, where C' = ¢/(4nL,) is the capacitance
per unit area, ¢ is the dielectric constant of the substrate,
and L, is the distance to the gate. Note that the steady-
state solution of the hydrodynamic equations implies the
presence of electric field Ey = —wouo/(engvs7), which
was explicitly used in Eqgs. (6) and (8).

In the dissipationless limit (7 — o0) and to the leading
order in |ug|/vp, the characteristic equation that deter-
mines the spectrum of collective modes reads (see Sup-
plemental Material [30] for details)

4
(w — upky) {oﬂ — wi + ugky (uOkm — go.)) — v?ki] =0

(10)
in 3D and
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in 2D. Here, vy, = vp/\/a is the sound velocity in a d-
dimensional space (d = 2,3). The square of the plasma
frequency for a 3D relativisticlike fluid is given by
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In the 2D case, we introduced dimensionless parameter
&€ =2e*n3/(woC).

2D: Y1 = —Enl.

proportional to fluid velocity u, ie., J = —enu and
J¢ = wu.

To study current-driven instabilities, we employ the
conventional linear stability analysis where weak fluctu-
ations are superimposed on top of a steady uniform flow,
quantified by the fluid velocity ug = ugX, e.g.,

Uy (t, 1) = ug + uge” Wk, (5)
Similar expressions are valid also for the other quantities
(n, ¢, and €). Here, w and k are the angular frequency
and the wave vector of excitations, respectively. For the
sake of simplicity, we neglect all transverse fluctuations
and focus on the one-dimensional instability assuming
k = k,%x. Linearizing Eqs. (1)—(4) and using ansatz (5),
we obtain the following set of linear algebraic equations
at n =0:
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Collective modes.— To clarify the physical origin of
the EWI, it is instructive to determine the solutions to
the characteristic equations (10) and (11) in an infinite
medium without imposing any boundary conditions.

To the leading order in |ug|/vp < 1, we find the fol-
lowing dispersion relations for collective modes:
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Here, wy correspond to plasmons. Notice that the plas-
mon spectrum in a gated 2D sample is gapless and linear
in the wave vector. The corresponding plasmon velocity
is v, = vs/1 + &. The third solution w, given in Eq. (15)
corresponds to the so-called entropy wave [28, 29].
Considering the important role of the entropy wave,
let us discuss its properties in detail. For simplicity, we
consider the limit 7 — oo. In drastic contrast to plas-
mons, the flow velocity does not oscillate in this wave,
i.e., up = 0. It is characterized by oscillating electron
number n; and energy €; densities and, in turn, the en-
tropy. As follows from the Navier-Stokes equation (6),
the solution with u; = 0 is possible because the gradient
of pressure defined by the third term on the left-hand



side of the equation is counterbalanced by the Coulomb
force provided by the term on the right-hand side. To
the leading order in |ug|/vs, one finds that
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According to Eq. (15), the entropy wave is a downstream
wave; i.e., it propagates with the local flow velocity ug.

It is interesting to point out that modes with similar
dispersion relations appear in geophysics. For example,
the Coriolis force and the pressure gradient compensate
each other in the Rossby wave [33], which is an inertial
wave occurring in rotating fluids. Its dispersion relation
contains the term o upk, and a term quadratic in k, due
to the coordinate dependence of the planetary vorticity.
In the absence of background flow, the frequency of the
entropy mode is zero which is analogous to geostrophic
currents [34].

Boundary conditions and instabilities.— Both plas-
mons and entropy waves are stable collective modes in
an infinite medium. Let us show now that the stability
of these modes is affected profoundly by the boundary
conditions. We consider a sample with length L along
the x direction. In addition to the standard Dyakonov-
Shur boundary conditions, we fix temperature at the left
(x = 0) surface

ny(z =0) =0, (17)
Jo(x = L)=noui(x = L) +upni(z = L) =0, (18)
Ti(z=0)=0. (19)

Physically the Dyakonov-Shur boundary conditions cor-
respond to short circuiting the sample at * = 0 (zero
impedance) (17) and leaving the other side # = L open
(infinite impedance) (18). The condition in Eq. (19) can
be enforced by connecting the boundary to a large ther-
mostat, e.g., made of a metal with high thermal conduc-
tivity and specific heat.

It is convenient to solve hydrodynamic equations in
terms of w1, nq, and €;. One can show (see Supplemental
Material [30] for details) that oscillations of pressure P
are related to e as follows:
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at the leading order in |ug|/vs. Then, the boundary con-
dition (19) can be reexpressed in terms of €; and uy, i.e.,
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where A, = w,/(vsqrr) and g2y = 4me? (J,no) is the
square of the Thomas-Fermi wave vector.
We seek solutions to Egs. (6)—(9) in the form
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and define uy, €1, and ¢ from Eqs. (7)—(9) (see Supple-
mental Material [30] for the corresponding expressions).
Here, >, runs over the three roots k;j(w) of Eq. (10) or
(11). By using the boundary conditions (17), (18), and
(21), we derive the characteristic equation for w, which
defines allowed collective modes in the system.

Let us start with the plasmons. To the linear order in
ug, their frequencies are given by the following relations:
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in the 3D case, and
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in the 2D case, respectively. In both expressions, [ € Z.
(For the results to the quadratic order in ug, see SM.)
Since 0 < A, < 1 for T'# 0 (see SM for the temperature
dependence of A,), the plasmons are unstable in both 3D
and 2D systems. This is in agreement with Refs. [19, 22]
for slow flow [35].

As we see from Egs. (23) and (24), enforcing the
boundary conditions leads to the DSI for ug > 0. In
the linear regime, it is quantified by a growing ampli-
tude o< e[+t Eventually, the growth will be cut off
by nonlinearities (see, e.g. Refs. [21, 22]). As for the real
part, the plasmon frequencies are quantized due to the
finite thickness of the slab, where k, — 7(l+1/2)/L. As
expected, the minimal frequency is determined by w,, in
3D and the inverse sample size in 2D.

Entropy wave instability and numerical results.— Let
us turn to the entropy mode now. By solving the charac-
teristic equation for large Lwy,/vs [36], the corresponding
frequency can be approximated as
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in 2D. For the entropy wave, unlike plasmons, the real
part of w, is controlled by the flow velocity and the sam-
ple size, i.e., Re[w.] o< ug/L, in both 2D and 3D. The
entropy mode becomes unstable for uy < 0 due to the
combined effect of the fluid flow and the boundary con-
ditions.

Let us emphasize several distinctions between the plas-
mon and entropy modes. Plasmons are characterized by
large in-phase oscillations of energy and number den-
sities, as well as having a non-negligible velocity (see
Supplemental Material [30] for details). They are also
delocalized; i.e., the magnitude of oscillations is large



throughout the slab. In the case of entropy modes, os-
cillations of velocity are suppressed. Unlike plasmons,
these modes show a noticeable localization at the z = L
interface. This localization becomes less pronounced for
the modes with large [ when the real part |Re [we] | 2 wp
in 3D or |Rew.]| 2 vsm/(2L) in 2D, when the entropy
waves may hybridize with plasmons.

Our numerical and approximate analytical results for
collective modes in a 3D Dirac system are shown in Fig. 1.
The results for the 2D case are qualitatively similar with
the frequency scale normalized by v,/ L instead of w), (see
Supplemental Material [30]). The separation between the
branches of both modes become small for realistic system
size Lwy/vs > 1. While this complicates the numerical
calculations and obscures the presentation, the qualita-
tive features remain the same as for Lw,/vs ~ 10. There-
fore, for the sake of clarity, we use a rather small width
L = 10vs/w, and show only the lowest five branches of
the numerical results and the approximate analytical so-
lutions given in Eq. (25). As one can see, even at such a
small width, the density of solutions quickly increases at
ug — 0 for the entropy mode. It is clear from Fig. 1 that
the approximate expressions (23) and (25) agree well with
the numerical results. As expected, the plasmons have
nonzero frequencies at ug — 0 and the solutions for the
entropy modes vanish in this limit. We notice also that
the instability increment is much larger for the entropy
waves than for plasmons. Therefore, the corresponding
instability should be more pronounced than the DSI for
the same flow velocities.

All in all, different frequencies, growth rates, and spa-
tial profiles of oscillating variables make the EWI pro-
foundly different from the conventional DSI.

Estimates and momentum relazation effects.— For
typical 3D Dirac and Weyl semimetal parameters, we
use puo = 20 meV, Ty = 25 K, and the Fermi ve-
locity vp ~ 1.4 x 107 cm/s [37]. Then, we estimate
wp/(2m) ~ 12 THz and vs ~ 8 x 10% ecm/s. The char-
acteristic length scale is vs/w, ~ 1 nm.

For the 2D case, we use graphene as a characteris-
tic system with vp = 1.1 x 108 cm/s, pp = 100 meV,
To = 100 K, L, = 100 nm, and ¢ = 3.3 (assum-
ing a hexagonal boron nitride substrate). In this case,
vs & 7.8 x 107 cm/s, € ~ 65.1, and v, ~ 8.1v,. The cor-
responding characteristic frequency of collective modes is
vp/L =~ (1 pm/L) THz, i.e., it also lies in the terahertz
range.

It is instructive to discuss briefly the effects of momen-
tum relaxation and viscosity. In view of a distinct nature
of plasmons and entropy waves, the role of momentum
relaxation in the DSI and EWI is qualitatively differ-
ent. The suppression of the plasmon DSI can be roughly
described by replacing w — w — i/7, where 7 is the re-
laxation time. For the parameters used, the instability
disappears when 7 < 3L/(2ug) in 3D and 7 < 2L/ ug
in 2D (we assumed A, ~ 1 here). On the other hand,

1.2 T ¥ T T

Relw]/wp

0.2 ]
é’“ 0.1 ]
E 0.0 —
E o1 :
-0.2¢
-03f (b) . . :
-0.2 -0.1 0.0 0.1 0.2
Uo/Vs
FIG. 1. The real (a) and imaginary (b) parts of the fre-

quency of collective modes as a function of velocity uo in the
3D case. We show only the lowest five branches of numerical
and approximate analytical results. Black solid lines corre-
spond to the approximate expression (23). The approximate
relation (25) is shown by magenta dashed lines. We fixed
L =10vs/wp, Ap = 0.98, and took the limit 7 — oo.

the EWI is quite robust with respect to momentum re-
laxation. This is explained by the fact that these waves
have weak oscillating velocity compared to other oscil-
lating variables, e.g., |u1|/vs < |n1|/no; see also Supple-
mental Material. The effects of viscosity can be estimated
similar to Ref. [1] as w —i/7 — w — i/T — inkin7? /L% In
essence, it also suppresses the DSI but becomes impor-
tant only for a small width. A more detailed study of the
dissipation effects will be reported elsewhere.

Summary.— We found that Dirac and Weyl semimet-
als, subject to the Dyakonov-Shur boundary conditions
and a boundary condition for temperature, develop an
entropy wave instability. The latter is connected with the
entropy mode in relativisticlike hydrodynamics, where
the energy current plays an important role. The entropy
wave instability is absent in materials with a nonrelativis-
tic energy dispersion, where the energy current plays a
secondary role.

We estimate that the growth rate of the entropy wave
instability is parametrically larger than that for the
Dyakonov-Shur instability. Moreover, the two instabil-



ities occur for the opposite directions of the applied cur-
rent. The frequencies of unstable modes are determined
by the system size and the flow velocity (entropy wave),
only the system size (2D plasmons), and the plasmon
frequency (3D plasmons). The tunability of the entropy
wave instability provides the means to detect and dis-
tinguish it from other instabilities in the experiment. It
can be identified by measuring the emission of radiation
with a frequency proportional to the flow velocity. Our
estimates suggest that the current-driven instabilities are
achievable for realistic samples and flow velocities. Thus,
the entropy wave instability holds a potential for use in
tunable sources of radiation.
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