
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Journal of the American Statistical Association

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uasa20

Neuronized Priors for Bayesian Sparse Linear
Regression

Minsuk Shin & Jun S Liu

To cite this article: Minsuk Shin & Jun S Liu (2021): Neuronized Priors for Bayesian Sparse Linear
Regression, Journal of the American Statistical Association, DOI: 10.1080/01621459.2021.1876710

To link to this article:  https://doi.org/10.1080/01621459.2021.1876710

View supplementary material 

Accepted author version posted online: 20
Jan 2021.

Submit your article to this journal 

Article views: 315

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/loi/uasa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2021.1876710
https://doi.org/10.1080/01621459.2021.1876710
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2021.1876710
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2021.1876710
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2021.1876710
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2021.1876710
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2021.1876710&domain=pdf&date_stamp=2021-01-20
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2021.1876710&domain=pdf&date_stamp=2021-01-20


 
Neuronized Priors for Bayesian Sparse Linear 
Regression 

Minsuk Shin1 and Jun S Liu2 

1Department of Statistics, University of South Carolina 

2Department of Statistics, Harvard University  

 

Corresponding author Minsuk Shin mshin@fas.harvard.edu 

 

Abstract 
Although Bayesian variable selection methods have been 
intensively studied, their routine use in practice has not 
caught up with their non-Bayesian counterparts such as 
Lasso, likely due to difficulties in both computations and 
flexibilities of prior choices. To ease these challenges, we 
propose the neuronized priors to unify and extend some 
popular shrinkage priors, such as Laplace, Cauchy, 
horseshoe, and spike-and-slab priors. A neuronized prior 
can be written as the product of a Gaussian weight variable 
and a scale variable transformed from Gaussian via an 
activation function. Compared with classic spike-and-slab 
priors, the neuronized priors achieve the same explicit 
variable selection without employing any latent indicator 
variables, which results in both more efficient and flexible 
posterior sampling and more effective posterior modal 
estimation. Theoretically, we provide specific conditions on 
the neuronized formulation to achieve the optimal posterior 
contraction rate, and show that a broadly applicable MCMC 
algorithm achieves an exponentially fast convergence rate 
under the neuronized formulation. We also examine various 
simulated and real data examples and demonstrate that 
using the neuronization representation is computationally 
more or comparably efficient than its standard counterpart 
in all well-known cases. An R package NPrior is provided for 
using neuronized priors in Bayesian linear regression. 
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Keywords: Bayesian shrinkage; spike-and-slab prior; variable selection; scalable 

Bayesian computation. 

1 Introduction 

We consider the standard linear regression model of the form 

,X y θ  (1) 

where T
1{ , , }ny y y  is the vector of responses, X is the n × p covariate matrix, 

T
1{ , , } p

p   θ  is the coefficient vector, and 2~ (0, I)N  . To model the 

sparsity of θ  when p is large, one often imposes a shrinkage prior on the θj’s. A 

popular choice is the one-group continuous shrinkage prior, which can be 

represented as a hierarchical scale-mixture of Gaussian distributions: 

2 2 2 2

2

| , ~ (0, )

~ (or ~ ) and ~ ,
j w j w j

j j w g

N

 

    

     
 (2) 

for 1, ,j p  , where   and πg are some distributions chosen by the user. The 

local shrinkage parameter 2
j  governs the shrinkage level of each individual 

parameter, whereas the global shrinkage parameter 2
w  controls the overall 

shrinkage effect (Polson and Scott, 2010). It is common that the variance of the 

Gaussian prior in (2) contains the unknown error variance 2  of the model. 

However, as shown in Moran et al. (2018), the inclusion of 2  in (2) can result in 

inconsistency of 2  under high-dimensional settings. We thus offer a choice to 

not mix 2  in the prior of θ . 

A few choices of   have been shown to induce desirable shrinkage on the 

regression parameters, including the Strawderman-Berger prior with   being a 

mixture of gamma distributions (Berger et al., 1996), the Bayesian Lasso (Park 

and Casella, 2008) with   being an exponential distribution, the horseshoe prior 

(Carvalho et al., 2010) with    being a half-Cauchy distribution, the generalized 

double Pareto (Armagan et al., 2013) with   being a mixture of Laplace 
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distributions, and the Dirichlet-Laplace prior (Bhattacharya et al., 2015) with   

being the product of a Dirichlet and a Laplace random variables. Some recent 

theoretical investigations show that the marginal prior density of θj with a heavy 

tail and a sufficient mass around zero achieves the minimax optimal rate of 

posterior contraction (Ghosh et al., 2017; Song and Liang, 2017; van der Pas 

et al., 2016). 

Another popular class of shrinkage priors is the class of spike-and-slab (SpSL) 

priors (George and McCulloch, 1993; Mitchell and Beauchamp, 1988), also 

known as two-group mixture priors, which can be written as: 

0 1| ~ (1 ) ( ) ( )
~ ( ),

j j j j j j

j Bernoulli
       

 

 
 (3) 

for 1, ,j p  . Distribution π0 is typically chosen to be highly concentrated 

around zero, i.e., the “spike”, whereas π1 is relatively disperse, i.e., the “slab”. 

Thus, when 0j  , coefficient θj is strongly shrunk towards zero, whereas when 

1j  , the slab part allows θj to be nearly unshrunk. Parameter η controls the 

sparsity of the model (Scott and Berger, 2010). When a point-mass at zero is 

used for π0, we call the resulting prior a discrete SpSL prior; otherwise we call it a 

continuous SpSL prior. Common choices of π0 and π1 for a continuous SpSL 

prior are Gaussian distributions with a small and a large variance, respectively 

(George and McCulloch, 1993). Under some regularity conditions, it has been 

shown that an appropriate choice of η leads to model selection consistency 

(Narisetty and He, 2014) and the optimal posterior contraction (Castillo 

et al., 2015; Castillo and van der Vaart, 2012) for high-dimensional linear 

regression and the normal means model. 

With continuous shrinkage priors, MCMC sampling of θj given the local and 

global shrinkage parameters can be efficiently implemented by taking advantage 

of the conjugacy. However, while continuous shrinkage priors have 

computational advantages over discrete SpSL priors, the resulting posterior 
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inference does not automatically provide sparse estimates of the coefficients, so 

that extra and ad hoc steps are needed for variable selection (Hahn and 

Carvalho, 2015). Computational implementations of SpSL priors often employ a 

binary latent vector indicating which of the two components each coefficient 

comes from. When a discrete SpSL prior is employed, the posterior inference of 

θ  is notoriously challenging. MCMC sampling strategies (Dellaportas 

et al., 2002; Guan and Stephens, 2011) and stochastic search strategies (Berger 

and Molina, 2005; Hans et al., 2007; Zhang et al., 2007) have been proposed to 

counter the computational difficulty, mostly relying on the conjugacy of each 

component of the prior. An MCMC strategy for non-conjugate discrete SpSL 

priors, such as the one that uses reversible jump proposals (Green, 1995), is 

rarely practical especially under high-dimensional settings. 

As a computationally scalable strategy, Rockova and George (2014) proposed 

the Expectation Maximization Variable Selection (EMVS), which is an EM 

algorithm to obtain the maximum a posteriori (MAP) estimator of the regression 

coefficients under continuous SpSL priors with Gaussian components. Rockova 

and George (2018) further extended their idea to cases with a SpSL Lasso 

(SSLasso) prior by adopting Laplace distributions for π0 and π1. These 

procedures, however, provide only point estimates, and are insufficient for 

quantifying uncertainties in model selection and estimation. 

To address these practical issues in using shrinkage priors, we propose 

neuronized priors, which provide a unified form for popular shrinkage priors such 

as the horseshoe, Cauchy, SpSL, and more. In the form of neuronized priors, 

each regression coefficient is reparameterized as a product of a weight 

parameter and a transformed scale parameter via an activation function, as 

follows: 

Definition 1.1. (Neuronized prior) For a non-decreasing activation function T and 

hyper-parameters α0 and τw, a neuronized prior for θj is defined as: 

Acc
ep

ted
 M

an
us

cri
pt



0: ( ) ,j j jT w     (4) 

where the scale parameter αj follows N(0, 1) and the weight parameter wj follows 

2(0, )wN  , all independently for 1, ,j p  . 

As the name implies, this formulation is inspired by the use of activation functions 

in neural network models (Rosenblatt, 1958; Rumelhart et al., 1986). Under this 

setting, we can write down the joint distribution as: 

2 T T
02 2

0 2 2

( , , )1( , | , , ) exp ,
2 2 2n

w

X 
  

  

  
    

  

y
y

θ α w α α w wα w  (5) 

where T T 2
1 1{ , , } , { , , } , ( )p pw w      α w  is the prior on 2 , and 

T
0 1 0 1 0( , , ) { ( ) , , ( ) } ,

def

p pT w T w D        θ α w w  (6) 

where D  is the diagonal matrix with diagonal elements the 0( )jT   ’s. We 

show that for most existing shrinkage priors we can find specific activation 

functions such that the resulting neuronized priors approximate the existing ones. 

Therefore, existing theoretical properties of various shrinkage priors can be 

directly applied to posterior behaviors based on the neuronized priors. This 

theoretical equivalence will be discussed in Section 2. We also show that 

variable selection procedures based on neuronized priors offer following 

advantages: 

 Unification. Various classes of shrinkage priors can be practically 

implemented by just changing the activation function. This characteristic 

significantly reduces practical hurdles for the user to test out different 

priors simultaneously, which can be a valuable option. For example, we 

may find that horseshoe prior is appropriate for analyzing GWAS data on 

bipolar disorders, whereas SpSL priors work much better for Type-1 

diabetes (Song et al., 2020). 
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 Flexibility and efficient computation. Without having to rely on prior-

likelihood conjugacy, neuronized priors still attain comparable or better 

efficiency for MCMC-based posterior inference compared with the 

standard procedures, thus can easily accommodate non-conjugate priors. 

In addition, neuronized priors also enable a scalable coordinate descent 

optimization algorithm for posterior modal estimation, even with discrete 

SpSL priors. 

 Desirable theoretical properties. We give explicit conditions on the 

activation function and hyperpriors so that the resulting neuronized 

Bayesian regression achieves the optimal posterior contraction rate 

(Section 5), and show that a random-walk Metropolis-Hastings (RWMH) 

algorithm converges to the target distribution at an exponential rate, even 

for non-conjugate priors. 

The rest of the article is organized as follows. Section 2 details the neuronized 

counterparts of a few popular shrinkage priors for Bayesian linear regression: the 

discrete SpSL, the Bayesian Lasso, and the horseshoe and Cauchy priors. 

Section 3 shows how to manage neuronized priors to achieve one’s intended 

goals, such as matching a target prior or controlling the sparsity level. Section 4 

details main computational strategies and advantages of neuronized priors. 

Section 5 studies theoretical properties of the neuronized priors, including 

sufficient conditions for achieving an optimal posterior contraction rate and 

geometric ergodicity of MCMC algorithms under a simple setting. Section 6 

reports simulation studies to compare the effects of different priors and their 

neuronized counterparts. Two real data examples are analyzed in Section 7, and 

a short conclusion is given in Section 8. Proofs of the main results, efficiency 

comparisons of some MCMC algorithms, and additional simulation studies are 

provided in the Supplementary Materials. 

2 Neuronization of Standard Sparse Priors 
2.1 Discrete and continuous SpSL priors 
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Let the activation function in (4) be the Rectifier Linear Unit (ReLU) function, 

( ) max{0, }T t t . When 0 0  , 0( )jT    follows an equal mixture of the point-

mass at zero and the half standard Gaussian, as shown in Figure 1(a). This 

implies that the marginal density of ( )j jT w  is a SpSL distribution of the form 

0| ~ (1 ) ( ) ( ),
~ (1/ 2),Bernoulli

      



 
 (7) 

where π is the marginal density of the product of two independent standard 

Gaussians, which is shown to have an exponential tail in Proposition 2.3. This tail 

behavior is desirable, since Castillo and van der Vaart (2012) and Castillo 

et al. (2015) showed that the optimal minimax rate of posterior contraction can be 

achieved when the tails of the slab part of (7) are exponential or heavier. We 

note that continuous SpSL priors can be obtained from formulation (4) by 

adopting a “leaky” ReLU activity function (Maas et al., 2013), i.e. ( ) max{ , }T t ct t  

for some c < 1. 

 

Figure 1 Here 

More generally, hyper-parameter α0 controls the prior probability of sparsity: 

0 0 0 0 0( ( ) 0 | ) ( | ) ( )j jP T P            , with   being the standard 

Gaussian CDF. Thus, setting 0~ ( ( ))Bernoulli    in (7) leads to the same 

distribution as that implied by (4). Conversely, (0,1)  , we choose 

1
0 ( )    to achieve the desired sparsity. Scott and Berger (2010) showed 

that, for the sparsity parameter η in model (3), the Beta hyper-prior 

0 0~ ( , ),Beta a b  (8) 

with 0 0 1a b   results in a strong effect on multiplicity correction. Castillo and 

van der Vaart (2012) and Castillo et al. (2015) found that the resulting SpSL 

procedure achieves model selection consistency and the optimal posterior 

contraction rate if one chooses 0 0( , ) (1, )aa b p  for a > 1, under an asymptotic 
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regime where the number of predictors p increases at a sub-exponential rate of 

n, i.e., exp{ }cp n  for c < 1. The neuronized priors can accommodate this 

Bernoulli-beta hyper-prior by adopting a hyper-prior on α0 as below: 

Proposition 2.1. Consider (4) with (·)T  being ReLU and a hyper-prior on α0, 

0 01 1
0 0 0 0( ) ( ) (1 ( )) ( ),a b      
     (9) 

where   and   are the pdf and cdf of N(0, 1), respectively. Then, the resulting 

prior distribution is identical to the form of (3) with the Beta prior (8) on η. 

Since α0 is highly correlated with other parameters such as α , an MCMC 

algorithm equipped with naive random-walk proposals would result in low 

sampling efficiency and poor mixing quality. Instead, we consider an efficient 

group-move update via a generalized Gibbs sampler (Liu and Sabatti, 2000). The 

details of this computational strategy is provided in Section 4.2. 

As a demonstration, we analyze the Boston housing price data with linear 

regression. The dataset contains n = 506 median housing prices of owner-

occupied homes in the Boston area, together with 10 variables that might be 

associated with the median prices. Under the Jeffreys prior on 2 , which is 21/ , 

we consider the independent neuronized prior: 0( )j j jT w    , where 

~ (0,1)j N  and 2~ (0, )j ww N   for 1, ,j p  . As shown in Figure 2, the solution 

path resulting from the neuronized prior with the ReLU activation function is 

almost identical to that resulting from the standard discrete SpSL prior. 

Figure 2 Here 

2.2 The Bayesian Lasso 

The Bayesian Lasso imposes a Laplace prior on θj and uses a Gaussian mixture 

representation to facilitate efficient MCMC computations (Park and 
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Casella, 2008). We shall show that the neuronized prior with T(t) = t 

approximates the Bayesian Lasso. 

Lemma 2.2. With the activation function T(t) = t, the marginal density of θ 

resulting from the neuronized prior is proportional to 

1 2 2 2 2

0
exp{ / (2 ) / 2}wz z z dz 


   . 

Since 

2 2 2 2

0
exp{ | | / } exp{ / (2 ) / 2}w wz z dz   



    , the Laplace density differs from the 

form in Lemma 2.2 only by a term 1z  in the integrand. Furthermore, the following 

proposition shows that the tail of this neuronized prior decays at an exponential 

rate like the Bayesian Lasso prior. 

Proposition 2.3. Let πL be the marginal density function of θ defined in (4) with 

T(t) = t and 0 0  . Then, 0(0,1),     and constants 1 2, 0c c  , such that 

1/2 1/2
1 2 0exp{ (1 ) | | / } ( ) exp{ (1 ) | | / } when .w L wc c               

Hoff (2017) also pointed out the similarity between the Bayesian Lasso and the 

product representation of the parameter (i.e., the neuronized prior with an identity 

activation function). He showed that the MAP estimator based on the product 

representation of the parameter is identical to the standard Lasso. 

The histogram in Figure 3(a) compares the Bayesian Lasso prior with its 

neuronized version, verifying that the two distributions are indeed very similar. 

However, the Laplace prior has slightly more density around zero than the 

neuronized counterpart. Figure 4 shows the solution paths of the Bayesian 

Lasso, the neuronized Bayesian Lasso, and the standard Lasso for the analysis 

of the Boston housing price data set, which are almost identical. 

Figure 3 Here 

Figure 4 Here 
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2.3 Horseshoe, Cauchy and their generalizations 

We start with a simple result for transforming Normal to a heavy tail distribution. 

Then, we show some activation functions that can make the corresponding 

neuronized priors approximate the horseshoe and Cauchy priors. 

Lemma 2.4. Let 2
1( ) exp( ( ) )T t sign t t  with 1 (0,1)  , and let ~ (0,1)Z N  and 

( )U T Z . Then, the density function of U is 1

1 11
2 2( ) | log( ) |Uf u u u

  

 , u > 0. If 

1
1 (1 )k   , we have 

1 1

1 1 1( )
2 1 2 1 2

kE U
k k 

 
  

  
. 

The proof is straightforward, and thus omitted. This lemma implies that any 

polynomial tails of the local shrinkage prior can be constructed by “neuronizing” a 

Normal random variable through an exponential function, up to a logarithmic 

factor. We further show that the adoption of this exponential activation function 

induces a marginally polynomial-tailed prior on ( )T w  , as the following result: 

Proposition 2.5. Let πE be the marginal density of θ defined in (4) with 

2
1( ) exp( ( ) )T t sign t t  for 10 1/ 2  . Then, for any 0  , there exists θ0 such 

that 1 1

1 11 1( 1 )(1 ) ( 1 )(1 )
2 22 2

1 2(log | |) | | ( ) (log | |) | |Ec c
 

      
      

   if 0  , where c1 

and c2 are some positive constants. 

As λ1 dictates the tail behavior of a neuronized prior with an exponential 

activating function, we consider the following class of activating functions: 

2
1 2 3( ) exp{ sign( ) },T t t t t      (10) 

with 1 0  , which results in a class of generalized horseshoe priors. We 

recommend to choose λ3 so that the resulting distribution for /j w   in (4) has a 

similar interquartile range as that for the standard horseshoe distribution, i.e., 1.1 

~1.5. We numerically found that, with 2( ) exp{0.5sign( ) 0.733 }T t t t t  , the 

neuronized prior for /j w   approximates the horseshoe prior well (the details of 
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the numerical evaluation is deferred to Section 3.1). In the same sense, the 

neuronized prior for /j w   approximates the standard Cauchy distribution if 

2( ) exp{0.5 1.27 0.29}T t t t   . We may therefore regard the neuronized priors 

induced by 2
1 2 3( ) exp{ }T t t t      as generalized Cauchy priors, which differ 

from those induced by (10) in having weaker shrinkage effects for weak signals 

because T(t) is bounded below by 2 2
3

1

| |exp min 0,
4

 




   
     

. 

Figure 3(b) and (c) show histograms contrasting the horseshoe and Cauchy 

priors with their corresponding neuronized versions, respectively. Figure 5 

compares the solution paths under the neuronized and standard horseshoe 

priors for the same Boston housing price data, demonstrating their nearly 

identical behaviors. Table 1 summarizes the results in this Section. 

Figure 5 Here 

Table 1 Here 

Although it covers a large class of prior densities as demonstrated, the current 

neuronization formulation as in (4) still has difficulties emulating some 

distributions. For example, nonlocal priors (Johnson and 

Rossell, 2010, 2012; Rossell and Telesca, 2017), which are bimodal and 

symmetric around zero, cannot be easily constructed using (4). However, one 

may still capture the bimodality of a desired prior by changing the distribution of 

w and α in (4) to be bimodal. Also, dependent prior densities cannot be 

represented by a product of neuronized priors. These examples include the 

Zellner’s g-prior (Zellner, 1986) and the Dirichlet-Laplace prior (Bhattacharya 

et al., 2015). But an extension of the neuronized prior to a multivariate version 

may overcome this limitation. 

3 Managing Neuronized Priors 
3.1 Find the activation function to match a given prior 
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Section 2 presents neuronized formulations for some popular existing priors. 

More generally, if we want to find an activation function T so that the resulting 

neuronized prior matches a desired target distribution ( )   symmetric about 

zero, we may consider a family of activation functions { }T  parameterized by  , 

and then numerically find ̂  so that ˆT  minimizes a certain discrepancy measure 

between the resulting neuronized prior and the target ( )  . For example, we can 

consider a family of exponential functions as in (10) by setting 1 2 3{ , , }     to 

construct a generalized horseshoe prior. More flexibly, the function space 

spanned by a class of B-spline basis functions can be a reasonable choice, i.e., 

( ) ( )T t t  B , where B is a vector of K B-spline basis functions and K  . 

If we aim to match the polynomial tail of a general target prior, we can consider 

an additive mixture of an exponential function as in Proposition 2.5 and a basis 

expansion. More precisely, we define a class of activation functions 

parameterized by 1{ , } ζ : 

2
1 1( ) exp{ sign( ) } ( ) , with 0.T t t t t    Bζ  

These activation functions naturally lead to polynomial tails for the corresponding 

neuronized priors because the effect of B-spline bases are minimal as | |t  . 

To find an appropriate ζ , we can first find λ1 to match the tails of the target prior 

based on the results of Proposition 2.5. For example, if the target prior decays at 

the rate of | | bx  , we choose 1
1

2( 1)b
 


. 

Once λ1 is fixed, we generate a large number S of i.i.d. samples from the the 

neuronized prior: 
1, , 0( )i i iT w      , where ( , ) ~ (0,1) (0,1)i iw N N  , for 

1, ,i S  ; and also generate ~ ( )
iid

i    for 1, ,i S  , where (·)  is the target 

prior. We measure the discrepancy between these two samples, for example, by 

( ) ( )

1

( ) | |
S

i i

i

D  


 ζ , where ( )i
  and ( )i  are the i-th largest value of the generated 

samples , 1, ,{ }i i S    and 1, ,{ }i i S   , respectively. Some other attractive measures 

Acc
ep

ted
 M

an
us

cri
pt



are the l2 distance or the Wasserstein distance. Then, we can minimize ( )D ζ  

with respect to ζ  by using a grid search algorithm or a simulated annealing 

algorithm (Kirkpatrick and Vecchi, 1983). This optimization is not computationally 

intensive as long as the dimension of ζ  is moderate. 

3.2 Choosing hyper-parameters 

Neuronized priors have two hyper-parameters: the variance of the global 

shrinkage parameter 2
w  and the bias parameter α0. The roles of these hyper-

parameters are different according to the choice of the activation function. When 

we consider neuronized continuous shrinkage priors, α0 is set at 0 by default. 

When we use neuronized discrete SpSL prior via the ReLU activation function, 

the prior probability for each coefficient to be non-zero is 0( )  . As shown in 

Proposition 2.1, we can impose a hyper-prior on α0 so that the sparsity level is 

adaptively controlled by the data set. However, sampling α0 conditional on other 

parameters in Gibbs sampling is not trivial and naive random-walk proposals for 

a MH algorithm is highly inefficient due to its high posterior correlation with other 

parameters. We describe an efficient group-move in the next section. 

The choice of 2
w  is a bit complicated. When 2( ( ))T   is bounded, the prior 

expected signal-to-noise ratio for the regression model is 
2 2 2 2 2

0/ [ ( )] /w jp T     θ . Thus, the choice of τw needs to reflect our prior 

knowledge about the signal strength in the data. Although some theoretical 

analysis has been attempted on the normal means model (van der Pas 

et al., 2014) under a fixed 2
w , a theoretically justified selection of the hyper-prior 

for 2
w  has not been found. 

When 2( ( ))T   does not exist as in the horseshoe and Cauchy cases, the signal 

strength interpretation is not valid. As noted by Carvalho et al. (2010), for 

horseshoe priors the shrinkage factor 2 2 1(1 ( ) )j j wT      determines the 

shrinkage level of θj and can be interpreted as an approximation of (1 )j  in 

(3). We thus numerically search 2
w  so that 01 ( )j    for some prior belief on 
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the proportion of non-zero parameters 0 (0,1)  , which is set at 

min{0.01,0.1 / }n p  by default. We subsequently use this setting and show that 

the empirical performance of the resulting procedure is promising in various 

simulation and real data examples. 

As shown in Moran et al. (2018), the traditional conjugate prior for linear models, 

i.e., 2 2
0| ~ ( , )pN I  0θ  and 2

0~ Inv-Chisq( )   a priori, can lead to inconsistency 

in high-dimensional problems. To avoid this undesirable situation, we assume 

that 2~ (0, )j ww N   and 2 ~  Inv-Gam(a, b) are independent a priori. 

4 Sampling and Optimization with Neuronized 
Priors 
4.1 MCMC sampling with neuronized priors 

Consider the linear regression model in (1) and the unnormalized joint 

distribution of α , w, and 2  as in (5). The conditional posterior distribution of w 

given α  and other hyper-parameters is Gaussian: 

2 2 2| , , , ~ ( , ),w N    yw α  (11) 

where T 2 2 1( I)wD X XD         and TD X   y , with D  as defined in (6). 

When an Inv-Gam(a, b) is imposed on 2 , the conditional distribution of 2  

given other parameters is Inv-Gam
2

2( / 2 , / 2 ).n a X b  y θ  When p is large 

relative to n, the numerical calculation of T 2 2 1( )wD X XD I       is highly 

expensive. Bhattacharya et al. (2016) proposed a fast sampling procedure that 

reduces the computational complexity from 3( )O p  to 2( )O n p , which is employed 

here. Conditional on w and ( )jα , each αj can be sampled by a naive RWMH 

algorithm, for 1, ,j p  . Since wj and αj tend to be highly correlated a posteriori, 

a better strategy is to integrate out wj so as to draw j   from ( ) ( )( | , , )j j j   y w α , 

and then draw wj from ( ) ( )( | , , , )j j j jw 

 y w α . 
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Algorithm 1 Here 

The RWMH step in Algorithm 1 is local and cheap, and is thus iterated M times 

for sampling each αj. We set M = 10 in all our numerical examples and find the 

resulting algorithm to perform well. We use ( ) 2( ,2 )t
jN   as the proposal 

distribution, which enables αj to propose efficiently between the regions 

0{ : }j j    and 0{ : }j j   . We subsequently use Algorithm 1 as the default 

to implement the posterior inference based on the neuronized prior. Parameter α0 

is set at 0 for neuronized continuous shrinkage priors, but will follow a hyper-prior 

distribution as in (9) for neuronized SpSL priors, whose MCMC update is detailed 

next. 

4.2 Sampling α0 efficiently 

For neuronized discrete SpSL priors, we may want to impose a prior distribution 

on α0 to accommodate some vague prior knowledge of the sparsity level as in 

Proposition 2.1. Due to high correlation between α0 and the αj’s, however, a 

naive MH approach in which α0 is updated by a MH step conditioned on α  is 

highly inefficient. To overcome this difficulty, we consider a group-move via the 

generalized Gibbs sampling formulation (Liu and Sabatti, 2000): update α  and α0 

simultaneously by a common shift   . More precisely, 0( , )α  is updated as 

0 0( , ) ( , ),     1α α  

where δ is drawn from the distribution *
0( ) ( , )g       1α , where *

0( , ) α  is 

the conditional posterior density of α  and α0. After this group-move, it is 

necessary to update each αj conditionally to distinguish the individual posterior 

behavior, but we do not need to consider an extra step to update α0 individually. 

When the prior is of the form (9) with 0 0 1, ( )a b g    is simply Gaussian: 

T 1
0(( ) / ( 1),( 1) ).N p p   α α  (12) 
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However, when 0 1a   or 0 1b  , the distribution ( )g   is non-standard, and an 

extra approximation step is needed for updating δ. To this end, we propose a 

multiple-try MH independence sampler (MTM-IS) to sample δ, following the ideas 

in Liu et al. (2000). This algorithm proposes multiple candidates 1, , m   drawn 

independently from a proposal distribution (such as the Gaussian distribution in 

(12)), and then chooses one from them with probability proportional to their 

importance weights. The acceptance-rejection ratio is adjusted to account for this 

selection effect. The detailed algorithm is as follow. 

 

Algorithm 2 Here 

A proof of the correctness of this algorithm follows immediately the approach in 

Liu et al. (2000) and thus omitted. 

4.3 MCMC strategies for discrete SpSL priors 

A most direct and effective approach for conducting sparse Bayesian linear 

regression is to employ a discrete SpSL prior for the coefficients. When the 

continuous component of this prior is conjugate to the Gaussian likelihood, a 

well-known computational strategy is the collapsed Gibbs sampler (Liu, 1994), 

which integrates out all the continuous parameters (e.g., regression coefficients) 

and samples, via MCMC, the binary indicator vector γ  defined in (3) from the 

posterior distribution 

2
2

2

( | ) ( )
( | , )

( | ) ( )
m h
m h







 








y
y

y
γ

γ
γ

, where ( )m y  is the marginal 

likelihood of γ  and (·)h  is the model prior mass function. Note that 2  is still 

present in the marginal likelihood because our prior is not fully conjugate with 

respect to the error variance. This collapsed sampler can become highly 

inefficient if one calculates the marginal likelihood by brute force at every 

iteration. A more efficient strategy is to update the required matrix inversion and 

determinant incrementally. For example, to add or remove a variable from the 

current model, we need to modify the sample covariance matrix by adding or 
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deleting one row and one column. The corresponding inverse and determinant 

can be updated using the formulas in Section B of Supplementary Materials. 

However, even with this efficient implementation, the fully collapsed sampler is 

still rather slow. 

Alternatively, we can consider a half-collapsed sampling strategy, which appears 

to be computationally more efficient. Instead of integrating out all the θ’s, at each 

iteration we sample γj from the conditional distribution ( )[ | , ]j j  yθ , with θj 

integrated out, and then update θj conditional on γj. Although each iteration step 

of this half-collapsed sampler is less efficient than the fully-collapsed one, a 

major advantage of this approach is that every step is much faster to compute. A 

comparison between the fully-collapsed and the half-collapsed Gibbs sampler is 

provided in the Supplementary Materials, suggesting that the half-collapsed 

Gibbs sampler is ten times or more efficient than the fully-collapsed one for the 

examined examples. 

However, both collapsing approaches become unavailable if one cannot 

analytically integrate out the continuous parameters. In such cases, either a 

crude and/or time-consuming approximation strategy, or a cleverly designed, yet 

case-specific, data augmentation strategy (Polson et al., 2013), or a much less 

efficient reversible-jump scheme (Green, 1995), has to be employed. In contrast, 

the neuronized priors can achieve the same effect as standard discrete SpSL 

priors while permitting more efficient computation even if one cannot marginalize 

out continuous components in the joint posterior distribution. When a ReLU 

activation function is adopted, the result below further shows that conditional 

distribution ( ) ( )( | , , )j j j   y w α  is a mixture of two truncated Gaussians and can 

be sampled exactly. 

Proposition 4.1. Let j k k
k j

r X 


 y  and 1( , , )p  α , and let ( , ; , )trN a b c d  

denote the truncated Gaussian with mean a and variance b on (c, d). The 

conditional distribution 2[ | , , , ]j j  yα w  based on the posterior distribution (5) 
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with the ReLU activation function is 2
0 0(0,1; , ) (1 ) ( , ; , ),tr tr j jN N          

where  
T

10 2 2 T 2 2
T 2 2

( )
,j j j j j

j j j j j
j j j

r X w X w
X X w

X X w


   



  


, and 

2

2
0 2

2 2
2

002 2
0 2 2 2

( )exp
2

.

( )exp 1 exp
2 2 2

j

j j j jj j
j

j j

r

r r X w





  

 
   

 
 

  
  


           

          
         

 

There is another computational advantage of using the ReLU activation function. 

When sampling w in a Gibbs step, the conditional posterior distribution can be 

decomposed as a product of independent Gaussian densities so that the 

numerical inversion of the p × p matrix   in (11) can be avoided. We can rewrite 

that 

* *

2 2

0
, ,

0 I 0w




 

   
       

 

in (11), where * * *T * * 2 2 1 * * * *T( I) ,wD X X D D X          y , and *D  and *X  are 

the sub-matrices induced by the index of the nonzero regression coefficients. 

This expression means that for those j with 0j  , coefficient θj is set to zero 

and the sampling of wj follows 2 2(0, )wN    independently. The conditional 

distribution of the sub-vector *
0{ : }j jw   w  is * 2 *( , )N    . To sample *w , we 

only need to compute * , which has a much smaller size than the p × p matrix 

, reducing computational complexity from 3( )O p np  to  * 3 *| | | |O p n w w , 

where a b  is the minimum operator between a and b. 

4.4 A scalable algorithm for finding posterior modes 

For massive-sized data sets, MCMC algorithms may not be practical and one 

needs to consider optimization-based algorithms. We here propose the 

Coordinate-Ascent Algorithm for Neuronized priors (CAAN) to find the MAP 
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estimator. CAAN adopts a warm start strategy as in Rockova and George (2018) 

by initiating with a hyper-parameter that results in a weak shrinkage and 

increasing gradually the strength of the shrinkage. While this warm start strategy 

requires multiple implementations of the optimization with various hyper-

parameters, it reduces the chance of being trapped in a local optimum. Although 

it cannot be guaranteed to converge to a global optimum, empirical results in 

Sections 6 and 7 show that CAAN performs similarly as SSLasso and 

significantly better than other considered methods. 

Algorithm 3 Here 

A key to the success of CAAN is the optimization with respect to αj while fixing 

other parameters, ( )jα  and w. Because the function of αj in ( ) of Algorithm 3 is 

a linear combination of a quadratic function and a function of 0( )jT   , we 

divide the optimization space into two parts: 0{ : }j j    and 0{ : }j j   , and 

find a local maximum from each part. Then, we update αj to the best of the two 

local maxima. This one-dimensional optimization problem can be easily solved 

by many existing algorithms and we adopt the secant algorithm of Brent (1973). 

Vector w is updated jointly conditioning on α  by taking advantage of the 

Gaussian conjugacy. 

The algorithm employs a temperature scheme to help with the optimization task. 

With t taking values in an (2 1)L -level schedule, 0 2 1Lt t   , CAAN 

maximizes the objective function 

T T
2

2 2

1 ( , ) log
2 2 2 2w

nX
t t t


 

    y α α w wθ α w  

with respect to α , w, and 2 . At each temperature tk, we conduct coordinate 

ascent iterations M times. This approach is different from simulated annealing 

(Kirkpatrick and Vecchi, 1983) in that (a) the term 2log
2
n

  is free of the 

temperature, (b) temperature t is bounded below by one, and (c) we do 
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coordinate-ascending instead of MCMC sampling at each iteration. 

Consequently, at a warm temperature the solution tends to select a large-sized 

model, and irrelevant features get eliminated as the temperature decreases. At 

default, we set M = 20, L = 10, N = 20, 

223k
kt
L

 
   

 for 0, ,k L  , and 

1 2L Lt t   =1. To reduce the chance of getting trapped in a local optima, in the 

first L  levels of schedule, we add a random noise ~ Exp(1)  to 2  after every N 

iterations. 

For the ReLU activation function, α0 affects the sparsity level since it sets the 

prior probability for each coefficient to be non-zero as 0 0( )    . By using 

Proposition 2.1, we deploy a hyper-prior on α0 so that the induced prior on ψ0 is 

0 0( , )Beta a b . As a default in all SpSL procedures, we set 0 0( , ) (1,1)a b  , and this 

beta-binomial prior on the sparsity has been shown to have a strong effect on 

multiplicity control (Scott and Berger, 2010). 

4.5 Comparisons with other posterior optimization 
procedures 

We consider four optimization procedures for the Bayesian SpSL variable 

selection problem: a Majorization-Minimization (MM) algorithm (Yen et al., 2011), 

EMVS (Rockova and George, 2014), SSLasso (Rockova and George, 2018), and 

our CAAN. To compare the algorithms and track their solution paths, we adopt as 

goodness measures the mean-squared error (MSE) and the Extended Bayesian 

information criterion (EBIC; Chen and Chen (2008)), i.e., 

EBIC( ) BIC | | log ,p k k  (13) 

where k  denote the set of selected variables ζ is a tuning parameter, and BIC is 

the Bayesian information criterion (Schwarz et al., 1978). We set ζ = 1 as 

suggested by Chen and Chen (2008). 
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MM finds the MAP estimator of our problem by approximating the l0-norm by a 

continuous function: 
3

1 1
3 30 0

1

lim log(1 | |) / (log(1 ))
p

j
j


   




  θ . In practice, we 

need to choose τ3 in advance, which strongly affects the performance of the 

approximation. While a smaller τ3 leads to a better approximation to the original 

posterior distribution, the resulting target function becomes highly non-concave 

and is much more difficult to optimize. 

EMVS and SSLasso were proposed to evaluate the MAP estimator based on an 

EM formulation when using a continuous SpSL prior as in (3). The prior for 

EMVS is a mixture of 0 0(0, )N   and 1 1(0, )N  , and that for SSLasso is a 

mixture of 0 0( )Laplace   and 1 1( )Laplace  , where 0 1   and 0 1  . 

Since the spike prior part is not a point mass, ν0 (or λ0) needs to be carefully 

chosen to control how much the spike prior density is concentrated around zero. 

We impose a uniform prior on η in (3). We choose 1 100   and 1
0 (1,1000)   for 

EMVS; and choose 1 1   and let λ0 vary in (5,50) for SSLasso. To implement 

EMVS, we use the EMVS library in R. For SSLasso, we follow the 

recommendations in Rockova and George (2018). At the beginning, we fix 

0 1( 1)   ; then, we increase the value of λ0 by 1 after the convergence of the 

optimization step and use the solution of the previous evaluation as the initial 

point for the following optimization. At the end, we track the solutions of SSLasso 

with varying λ0. 

We generate synthetic data based on the Bardet-Biedel data set (Scheetz 

et al., 2006) to be detailed in Section 7. Specifically, we retain the original 

predictors, set the error variance 2 1  , and let the first ten elements of the 

coefficient vector be ±2 with random signs and the rest zero. EBIC and log-MSE 

paths for each procedure are examined as iteration increases. For each 

procedure, we consider ten initial points randomly generated from i.i.d. standard 

Gaussian. 
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Figures 6 displays the optimization paths of MM, EMVS, SSLasso, and CAAN. 

We observe that the optimization paths of MM and EMVS quickly converged to 

some sub-optimal models, corresponding to different solutions when started with 

different random initializations. Although all procedures failed to provide 

consistent results when initialized with different starting configurations, CAAN 

and SSLasso showed similar behaviors and were more stable than EMVS and 

MM in that the searched models of CAAN and SSLasso tend to have smaller 

EBIC values. In the Supplementary Materials, we also provide an additional 

example where the true model size is five, and all methods performed better. In 

particular, CAAN and SSLasso consistently chose the same model with ten 

different initializations. 

Figure 6 Here 

5 Theoretical Properties of Neuronized Priors 
5.1 Posterior contraction rates 

Because neuronized priors are naturally related to standard ones as 

demonstrated in Section 2, existing theoretical results for standard frameworks 

can also be applied to their neuronized counterparts. In this section, we formalize 

more specific conditions on neuronized priors to achieve optimal theoretical 

properties as with standard Bayesian sparse regression procedures in high-

dimensions. 

We first introduce some notations. For two sequences an and bn, n na b  means 

that /n na b   as , n nn a b  indicates that ( )n nb O a , and n na b  denotes 

that the asymptotic rates of an and bn are the same. For a symmetric matrix A, 

( )min A  and ( )max A  denote the minimum and maximum eigenvalues of A, 

respectively. We assume that the true regression coefficient vector 0
pθ  is 

indeed sparse, and we denote the corresponding set of relevant variables as 

Acc
ep

ted
 M

an
us

cri
pt



0,{ : 0}jj  t . The size of a finite set k  is denoted by | |k , the sub-matrix of A 

implicated by the index set k  is Ak , and the corresponding sub-vector of θ  is kθ . 

We say that the posterior contraction rate of a parameter pθ  is ϵn, if for any 

constant M,   
0

0
0sup ( , ) | , 0nd M X  yθ

θ
θ θ , where 

0θ
 is the expectation 

with respect to the sampling distribution of the data under the true parameter 0θ , 

and d is a discrepancy measure, such as the l1 or l2 distance. It has been shown 

that the minimax optimal contraction rate can be achieved for linear regression 

coefficients under discrete SpSL priors (Castillo et al., 2015), continuous SpSL 

priors (Narisetty and He, 2014; Ročková et al., 2018; Rockova and 

George, 2018), and continuous shrinkage priors (Bhattacharya 

et al., 2015; Ghosh et al., 2017; Song and Liang, 2017). To obtain sufficient 

conditions for neuronized priors to achieve desirable theoretical properties, we 

consider the following conditions. 

Regularity conditions: There exist constants 1 2 3 4, , , 0C C C C   such that 

(A1) Sparsity: 2| | (log ) / (1)p n ot .  

(A2) Feature magnitudes: 1 1 1 22 2
min maxj p j j p jC n X X C n      .  

(A3) Eigenvalues of the design matrix: T
3:| | | |log

inf ( )minn
X X C n


k kk k t

.  

(A4) Signal strength: 2
0,min | | log /j j p nt t  and 2

0, 4max j j C t . 

Condition (A3) is commonly considered in recovering the true model (Bühlmann 

and van de Geer, 2011; Kim et al., 2012; Narisetty and He, 2014; Shin 

et al., 2018; Song and Liang, 2017) when p increases much faster than n. 

Condition (A4) is imposed to prevent degenerating situations where the true 

coefficients decay or diverge at an extremely fast rate. 
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Theorem 5.1. Assume that (A1) – (A4) hold and 2  is known. Suppose, for the 

neuronized prior defined in Definition 1.1 with T be the ReLU function, 

1 2 1 2( log ) /16 wn p n p    and α0 follows the distribution in (9) with 0 0( , ) (1, )ua b p  

for some constant u > 1. Then, the posterior distribution based on this neuronized 

prior achieves the optimal posterior contraction rate ϵn, i.e., 

1

2

| | log / , under  norm,

| | log / , under  norm.
n

p n l

p n l


 


t

t
 (14) 

Song and Liang (2017) investigated a similar posterior contraction problem under 

standard continuous shrinkage priors. They showed that when the tails of a prior 

decay at a polynomial rate and the prior possesses enough density around the 

true regression coefficients, the resulting posterior distribution contracts to the 

true coefficient at the optimal minimax rate. Following their approach, we show 

that the same claim can be applied to the neuronized version of continuous 

shrinkage priors as follows: 

Theorem 5.2. Assume that (A1) – (A4) hold and 2  is known. Suppose that 

2( ) exp{ /{2( 1)}}T t t r   for 2r  , and let ( 1)/( 1) | | log /u r
w p p n    t  and 

log (log )w O p   for some u > 0, and 0 0  . Then, the posterior distribution of 

θ based on the corresponding neuronized prior achieves the optimal contraction 

rate in (14). 

Two practical implications follow immediately from these theorems: for discrete 

neuronized priors, cares are required for specifying a hyper-prior on α0 (in 

particular, the choice of b0) to control the asymptotic sparsity level; for continuous 

neuronized priors, the choice of the activation function is important. 

5.2 Convergence of naive MCMC algorithms 

Convergence properties of MCMC algorithms have been of interest to many 

researchers. In particular, geometric ergodicity of the Markov chain underlying a 

practical MCMC algorithm has been deemed necessary (Jarner and 
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Hansen, 2000; Johnson et al., 2013; Roberts et al., 2004; Roberts and 

Tweedie, 1996). A Markov chain with a transition kernel P and the target 

distribution (·| ) y  is said to be geometrically ergodic if, (0) θ  and 

1,2, ,t    (0) (0)( ,·) (·| ) ( )t t
TV

P C  yθ θ , for some (0,1)  and a finite 

function (·)C , where sup | ( ) ( ) |TV
A

W G W A G A


   , with  being a Borel σ-

algebra of subsets of Θ, is called the total variation between distributions W and 

G. A geometrically ergodic Markov chain is called uniformly ergodic if C is 

uniformly bounded on Θ. Geometric ergodicity implies that a generalized central 

limit theorem is valid for estimates based on MCMC samples (Atchadé 

et al., 2011; Flegal and Jones, 2011; Jones et al., 2006). 

Tan et al. (2013) investigated convergence behaviors of MH algorithms with 

different proposal distributions and showed that a Gibbs sampler and its MH-

within-Gibbs algorithm either are both geometrically ergodic or are both not. By 

using this fact, we show geometric ergodicity of Algorithm 1 for a wide class of 

neuronized priors characterized by activation functions with stable tables, 

including all cases discussed previously. 

Definition 5.3. Function T(x), x , is said to have stable tails if there exist 

constants 1 2 3, , 0C C C   such that (a) when 3x C  , either 1| ( ) |T x C   or 

2| ( ) |T x C   and the sign of ( )T x  does not change; and (b) when 3x C , either 

1| ( ) |T x C   or 2| ( ) |T x C   and the sign of ( )T x  does not change. 

Theorem 5.4. Consider the case with X being orthogonal, 2  known, and α0 

fixed. Suppose the activation function T for a neuronized prior has stable tails. 

Then, Algorithm 1 is geometrically ergodic. 

Theorem 5.5. Under the standard Bayesian linear regression setting, suppose we 

employ a standard continuous shrinkage prior as in (2) with a heavy-tailed 

distribution   such that ( ) exp{ }x cx  , x > 0, for some constants c > 0 and 
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0 1  . Then, the corresponding MCMC algorithm cannot achieve geometric 

ergodicity if one updates τj conditional on other variables by a RWMH algorithm. 

Theorem 5.4 implies that a naive MH algorithm can be practical for neuronized 

priors provided that the activation function is not too erratic. All activation 

functions in Table 1 attain stable tails, so the considered neuronized Bayesian 

shrinkage procedures achieve a fast convergence of their MCMC. In contrast, 

Theorem 5.5 shows that, under the conventional setting, geometric ergodicity 

cannot be achieved by a RWMH algorithm under a heavy-tailed prior on τj; e.g., 

the horseshoe prior. In this setting, the conditional posterior distribution of τj, used 

in the Gibbs sampler, is also heavy-tailed (at least sub-exponential). As shown in 

Mengersen and Tweedie (1996), when the target distribution of a RWMH 

algorithm is heavy-tailed, the resulting MCMC algorithm cannot be geometrically 

ergodic. 

To attain an optimal rate of posterior contraction, however, we need to choose a 

heavy-tailed prior on τj’s as discussed in Section 5.1. Thus, some clever, but 

case-specific, MCMC moves need to be designed. For example, using a slice 

sampler for updating τj in horseshoe priors can be shown to be geometrically 

ergodic (Roberts and Rosenthal, 1999). Even so, empirical results in Sections 6 

and 7 show that employing the neuronized horseshoe prior with Algorithm 1 is 

computationally more efficient than an efficient MCMC algorithm using the slice 

sampling under the conventional framework, which may be due to high 

correlations between the τj’s and θj’s when using representation (2) for such a 

prior. The form of the neuronized prior can be viewed as a transformed 

parameter expansion (Liu and Wu, 1999) via an activation function, which 

improves the mixing property of Algorithm 1. This advantage of parameter 

expansion is also discussed in Scott (2010). 

6 Simulation Studies 
6.1 Simulation setups and evaluation criteria 
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Under the Bayesian regression framework, we compare the effect of some 

standard priors, such as Bayesian Lasso, the horseshoe, and the discrete SpSL 

as in (3), with that of their neuronized counterparts. We also include a scalable 

approximation algorithm called Skinny Gibbs (SkG; Narisetty et al. (2019)) for 

continuous SpSL priors. By ignoring the correlation between selected variables 

and the other variables, SkG improves computational efficiency. 

Among the optimization-based algorithms in comparison, we include two 

penalized likelihood procedures, Lasso (Tibshirani, 1996) and SCAD (Fan and 

Li, 2001). Cross-validations (CV) and either BIC (when n > p) or EBIC (when n < 

p) are used to select tuning parameters for both LASSO and SCAD. As a 

calibration, we provide the oracle estimate, i.e., the OLS estimate under the true 

model. Posterior mode-finding algorithms includes MM, EMVS, SSLasso and 

CAAN under two neuronized SpSL priors, in which the slab part matches either 

Laplace or Cauchy (denoted as N-SpSL-L and N-SpSL-C, respectively; see 

Table 1). We impose 0 0 1a b   in (8), 1 10   for EMVS, and 1 0.1   for 

SSLasso. Then, we evaluate the MAP estimators based on different choices of ν0 

for EMVS and λ0 for SSLasso and select a value that minimizes BIC for low-

dimensions and EBIC for high-dimensions. R packages EMVS and SSLASSO 

(available on the CRAN) are used for the implementation. 

To evaluate the estimation performances, we report both the Mean Squared 

Error (MSE) and the cosine of the angle between the true coefficient vector 0θ  

and its estimate θ , i.e., 
T
0

0 || ||
θ θ
θ θ

, for each method. The angle measure is more 

stringent as it cannot benefit from a simple shrinkage. To measure model 

selection performances, we examine the Matthews correlation coefficient (MCC; 

Matthews (1975)) defined as 
TP·TN FP·FNMCC

(TP FP)(TP FN)(TN FP)(TN FN)



   

, 

where TP, TN, FP, and FN denote the numbers of true positives, true negatives, 

false positives, and false negatives, respectively. The value of MCC is bounded 

by one, and the closer to one MCC is, the better a model selection procedure is. 
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The Effective Sample Size (ESS) is adopted as an efficiency measure for a 

MCMC procedure, which is defined as ESS
1 2 ( )

t

N

t




 
, where N is number of 

MCMC samples and ( )t  is the lag-t autocorrelation. We report the average of 

the ESS (per second) of the ten “most significant” coefficients, i.e., with the 

largest posterior variances. 

We consider a Toeplitz design (i.e., AR(1) dependence) to generate the 

covariates: ~ (0, )iX N   for 1, ,i n  , where ( )lk   with | |0.7 l k
lk   for 

1 ,l k p  . Additional simulation settings, such as one with i.i.d. standard 

Gaussian covariates, can be found in Supplementary Materials. Two “low”-

dimensional cases are tested: (a) 100, 50n p  ; and (b) 400, 100n p  . The 

number of nonzero βj’s is 1 /10p p , with each taking ±0.2 randomly. Another 

two “high”-dimensional cases (with n < p) are also tested: (c) 100, 300n p  ; and 

(d) 150, 1000n p  . We let the coefficient vector be 

0 { 0.4, 0.45, 0.5, 0.55, 0.6,0, ,0}        . The error variance is set at 2 1   for all 

scenarios. 

6.2 Technicalities about computational strategies 

For using regular SpSL priors in (3), we impose a uniform distribution on η. For 

its neuronized version, we impose a hyper-prior on α0 as in (9). We consider the 

Jeffrey’s prior on 2  for all Bayesian procedures; i.e. 2 2( ) 1/   . For the 

horseshoe prior and its neuronized version, we numerically find a proper 2
w  as 

discussed in Section 3.2. For Bayesian Lasso and its neuronized version, we 

choose the global shrinkage parameter that matches the tuning parameter value 

λCV determined by cross-validations for the standard Lasso procedure. 

For standard discrete SpSL priors, we examine both the Gaussian and Cauchy 

distributions for the slab part. We employ the half-collapsed Gibbs sampler as 

discussed in Section 4.3, denoted as SpSL-G(HCG) and SpSL-C(HCG) for 

Gaussian slabs and Cauchy slabs, respectively. Note that the use of a Gaussian 
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slab does not match the neuronized SpSL prior with a ReLU activation function 

since the product of two independent Gaussians in the neuronization formulation 

results in a Laplace-like slab distribution. Nevertheless, we use the standard 

Gaussian SpSL prior to sustain computational efficiency. 

We let “N-SpSL-L(Exact)” denote the neuronized SpSL prior implemented via the 

exact Gibbs sampler as in Proposition 4.1, and use “N-SpSL-L(RW)” and “N-

SpSL-C(RW)”, corresponding to a Laplace-like and a Cauchy slab, respectively, 

to denote that implementation via Algorithm 1, which uses RWMH to update α0. 

Since “N-SpSL-L(RW)” produces identical results as “N-SpSL-L(Exact)” but is 

60% - 80% less efficient (see the Supplementary Materials for a detailed 

comparison), we omit its results from the comparison tables. For the standard 

SpSL prior with a Cauchy slab (i.e., “SpSL-C”), we lose the conjugacy and need 

to use numerical integration (a trapezoidal rule) to marginalize out each 

coefficient in a Gibbs sampler. In contrast, its neuronized version N-SpSL-C(RW) 

can be implemented by Algorithm 1 directly, only requiring one to choose an 

appropriate activation function as in Table 1. We note that, due to the existence 

of a location-shift by α0, the resulting neuronized prior differs slightly from the 

standard SpSL prior with a Cauchy slab, although they share the same behavior 

at tails, i.e., decaying at the rate of 2x . 

The Bayesian Lasso is implemented by an efficient Gibbs sampler as in Park and 

Casella (2008). For the standard horseshoe prior, we use a slice sampler to 

sample each local shrinkage parameter. For both procedures, since the posterior 

distribution does not provide a sparse solution, we set a threshold of ˆ0.1  , 

where 2̂  is the posterior mean of the regression error variance, and select only 

those predictors whose posterior mean estimates of the coefficients have a 

magnitude higher than the threshold. For all procedures, we generate 10,000 

MCMC samples after 2,000 burn-in iterations, replicate 100 data sets, and 

average the results over the replications. 
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Tables 2, 3 Here 

6.3 Results discussion 

Tables 2 and 3 summarize low-dimensional and high-dimensional simulation 

results, respectively. In general, we observe that (a) no procedure clearly 

dominate others in all situations for all criteria; (b) Bayesian averaging results in a 

better performance than the corresponding MAP estimator; (c) the Lasso-based 

procedures typically show the best estimation performance under the low-

dimensional settings, but they tends to select more false positives; (d) the SpSL-

based procedures attain competitive model selection performances under high-

dimensional settings. 

SpSL-G(HCG) shows the most efficient performance in terms of ESS because it 

takes advantage of the conjugacy to marginalize continuous components, which, 

however, is also restrictive. For example, with a Cauchy slab, SpSL-C(HCG) has 

a much reduced ESS because it has to employ a numerical integration method 

for marginalization. In contrast, its neuronized counterpart N-SpSL-C(RW), which 

is implemented via a single unified algorithm that can accommodate any 

activation function, obtained an ESS 80% larger than that of SpSL-C(HCG). 

In general, neuronized priors performed robustly throughout all situations, with 

improved computational efficiency in comparison with their standard counterparts 

for most cases. In particular, the N-HS was at least two times more efficient than 

the HS in terms of ESS in all simulation scenarios, which might be due to the 

highly correlated latent structure between τj’s and θj’s in the standard horseshoe 

prior. We verified via very long MCMC iterations that our implementations of the 

horseshoe prior and its neuronized counterpart indeed produce identical 

posterior inference results (more details are given in Supplementary Materials). 

Their differences shown in the tables are due to numerical approximation errors. 
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The tables also list the performances of optimization-based SpSL procedures 

including the CAAN, the MM algorithm, the EMVS, and the SSLasso. The results 

show that, overall, the CAAN and the SSLasso significantly outperformed the MM 

and the EMVS algorithms in terms of estimation and model selection. 

7 Real Data Examples 

We analyze both the Boston housing data set introduced in Section 2 and the 

Bardet-Biedl data set available in the R package flare. The Bardet-Biedl data set 

contains mRNA expression values of 31,042 probe sets in eye tissues of 120 

twelve-week old male rats, normalized by the robust multi-chip averaging method 

(Irizarry et al., 2003). This data set has been analyzed previously (Fan 

et al., 2011; Huang et al., 2008; Kim et al., 2008). As with those papers, our goal 

is to find a subset of probe sets that are associated with the probe set 

1389163_at, corresponding to gene TRIM32, which is linked to the Bardet-Biedl 

syndrome. All probe sets are ranked according to the magnitudes of their 

marginal correlations with 1389163_at, and the top 200 are retained for the 

regression analysis (n = 120 and p = 200). 

Figure 7 shows the ESS obtained at 5 seconds, 10 seconds, and 20 seconds, 

respectively, by the MCMC algorithms corresponding to different priors for the 

Boston housing data set and the Bardet-Biedl data set. The efficiency 

comparison results are consistent with those in the simulation study. In (a), we 

observe that SpSL-G(HCG) obtained the largest ESS, and N-SpSL-L(Exact) was 

about 50% less efficient. With the Cauchy slab, SpSL-C(HCG) and N-SpSL-

C(RW) performed similarly. For (b), the advantage of SpSL-G(HCG) over N-

SpSL-L(Exact) appeared to have shrunk, and N-SpSL-C(RW) attained 50% more 

ESS than SpSL-C(HCG) does under the same time unit. In (c) and (d), we see 

clear evidences that the neuronized horseshoe formulation results in significantly 

more efficient computation than the standard one. 

Figure 7 Here 
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Table 4 Here 

We employ the out-of-sample mean squared prediction error (MSPE) to measure 

the prediction performance of each procedure by setting aside a randomly 

selected 10% of the samples for testing. We also consider the cosine angle 

between the test responses and the corresponding predicted values; i.e., 

T
test test 2 2

/ ( · )y y y y . This measure is useful in cases where people care more 

about how correlated the prediction is with the observation, such as in financial 

market forecasting. The process is replicated 100 times and the averages are 

reported in Table 4, which shows that the neuronized priors performed 

comparably with their standard counterparts. In particular, N-SpSL(MAP) achieve 

the smallest MSPE for both data sets. For the Boston housing data set, the sizes 

of the models selected by different approaches are comparable. For the Bardet-

Biedl data set, however, the Bayesian Lasso and its neuronized version N-

BL(RW) selected much larger models than other methods. We also noticed that 

both EMVS and SkG selected the null model but had different prediction results, 

which is due to their adoption of different non-degenerate priors for the model 

parameters. 

8 Discussion 

Inspired by the idea of neuron activation, which is central to all neural network-

based methods, we propose to use an activation function and a product 

representation to unify and extend shrinkage priors employed in high-

dimensional Bayesian regression analyses. By simply changing the activation 

function, our unified framework (together with its companion software package) 

enables practitioners to easily test out effects of different classes of priors for a 

regression model. We show that the neuronization procedure can be efficiently 

implemented to emulate a wide class of distributions including many non-

conjugate and mixture priors, which is a clear advantage over existing Bayesian 

regression frameworks. The neuronization formulation can also be easily 
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extended to a broad class of nonlinear models (such as logistic regression), 

where the lack of prior conjugacy may hinder the applicability and scalability of 

conventional Bayesian regression procedures, especially when one wants to 

employ discrete SpSL priors. 

Furthermore, the neuronization idea can be applied to construct structured 

sparsity priors for more complicated models. For example, some sparsity 

patterns may be spatially correlated, which is computationally challenging if one 

directly imposes spatial correlations among the latent indicator variables that 

underlie either a discrete or a continuous multivariate SpSL prior. In contrast, a 

multivariate structure can be easily imposed on the αj’s in the neuronized prior 

setting (4). Because all parameters in such a setting are continuous and non-

latent, a Hamiltonian Monte Carlo algorithm can be used to efficiently sample 

from the posterior distribution. 

All introduced algorithms are coded in the R package NPrior available on a 

Github repository github.com/rabbitinasubmarine/NPrior. 
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Algorithms 

Algorithm 1 A general MCMC algorithm for neuronized priors 

Initialize the parameters α , α0, w, 2 . For 1,i N   

 • Sample w conditional on 2, ,y α  from (11).  

 • Set ( , )X r y θ α w .  

 For 1, ,j p    

 • Update 0( )j j jX T w   r r .  
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 Repeat M times  

 •  Sample αj from 2 2
( ) ( )[ | , , , , ]j j j w   y α w  by using a RWMH step for  

 the log-target function 2 2 2log( ) / 2 / 2 / (2 )j j j jv v m    , — (*)   

 where T 2 2 2
0( ) /j j j j wv X X T        and T

0( ) /j j j jm X T v  r .  

 • Sample wj from 2 2
( ) ( )[ | , , , , , ]j j j j ww    y α w , which is 2 1( , )j jN m v  .  

  End.  

 • Update 0( )j j jX T w   r r .  

 End.  

 •  Sample 2  from 2 2[ | , , , ]w y α w , which is an inverse Gamma. 

 •  When 0 0 1a b  , sample δ from (12). In case where 0 1a   or 0 1b  , 

 draw δ via Algorithm 2. Then, update   1α α  and 0 0    . 

 End. 

Algorithm 2 The Multiple-Try-Metropolized Independence Sampler (MTM-

IS) 

Let the target density be ( )g  , and let the trial/proposal density be ( )h   (a 

default is (12)). We define ( ) ( ) / ( )w g h   . Let ( )t  be the sample at step t. 

Then, at step t + 1, 

 Draw 1, , m   i.i.d. from the trial density ()h ; 

 Select j    from 1{ , , }m   with probability ( )jw   
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 Compute ( ) 1
( )

( )
min 1,

( ) ( )

m

k
t k

t
k

k j

w
p

w w



 




 
  

  
 

  




; let ( 1)t     with probability ( )tp , 

and let ( 1) ( )t t    with probability ( )1 tp . 

Algorithm 3 The Coordinate-Ascent Algorithm for Neuronized prior (CAAN) 

• Initialize the parameters α , α0, w, 2 . 

 • Set a candidate set of temperature, (1) (2 1){ , , }Lt t  , where ( ) ( 1)l lt t   and 

(2 1) 1Lt   . 

 For 1, ,2 1l L    

 • Set ( )lt t . 

 • Set ( , )X r y θ α w .  

 For M iterations 

 For 1, ,j p    

 • Update 0( )j j jX T w   r r .  

 • Update αj by optimizing the logarithm of the marginalized posterior  

 density function 2 2log( ) / 2 / 2 / 2j j j jv v m    with respect to αj,  

 where T 2 2 2
0( ) /j j j j wv X X T        and T

0( ) /j j j jm X T v  r . — (  )  

 • Update wj by mj.  

 • Update 0( )j j jX T w   r r .  

 End.  

Acc
ep

ted
 M

an
us

cri
pt



 Every N iterations, 

 •  Update 
22

1 12( ( , ) / 2 ) /{ 2 2}X t b n a     y θ α w .  

 If l < L  

  •  Set 2 2 z   , where ~ exp(1)z .  

 •  Update 0 0 0 0
1

{ ( ) 1}/ ( 2)
p

j
j

a p b  


      .  

 End.  

 End. 
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Fig. 1 (a) histogram of ( )T  ; (b) histogram of ( )T w ; (c) histogram of the 

standard SpSL prior in (7). 
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Fig. 2 Solution paths of the neuronized prior and the discrete SpSL prior. 
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Fig. 3 Histograms of some prior distributions. The blue lines indicate the 

density functions of their neuronized counterpart. 
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Fig. 4 Solution paths of the neuronized prior, the Bayesian Lasso and the 

Lasso. 
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Fig. 5 Solution paths of the neuronized prior and the horseshoe prior. 
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Fig. 6 Trace plots of the log-MSE (top row) and EBIC (bottom row) paths from 

10 different initial points for the four optimization algorithms, based on a synthetic 

data set generated from the Bardet-Biedl dataset (n = 120 and 200p  ) with the 

true model 10. The MM procedure used 2
3 10  . 
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Fig. 7 Effective samples size versus actual computation time for the Boston 

housing data set (the first column) and the Bardet-Biedl data set (the second 

column). For each procedure, the first, second, and third boxplot indicates the 

ESS evaluated at 5 seconds, 10 seconds, and 20 seconds, respectively. 
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Table 1 The choice of T for neuronized priors and the corresponding existing 

Bayesian priors. The default value of 2
w  is set to be one, if it is not specified.  

Activation function T(t)  Target Prior  

max{0, }t  (ReLU) Discrete SpSL with Laplace slab 

t (linear)  Bayesian Lasso  

2exp{0.5sign( ) 0.733 }t t t   Horseshoe  

2( ) exp{0.5 1.27 0.29}T t t t     Cauchy  
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Table 2 Results for the low-dimensional setting with dependent covariates. SpSL, HS, and BL indicate the procedure 

based on the discrete SpSL, the horseshoe, and Bayesian Lasso priors, respectively. The sign “N” stands for the 

neuronized version of the corresponding prior. 

 ( 200, 50)n p   ( 400, 100)n p   

Method  MSE  Cos  MCC  FP  ESS MSE  Cos  MCC  FP  ESS 

Oracle  0.069(0.008)  0.870    0.069(0.013)  0.929    

SpSL-G(HCG)  0.167(0.009)  0.558 0.48(0.02) 0.01 15242.5 0.295(0.014)  0.581 0.49(0.01) 0.03  2594.8 

N-SpSL-L(Exact) 0.150(0.009)  0.592 0.53(0.04) 0.03 5826.2 0.261(0.014)  0.630 0.53(0.01) 0.07  1089.6 

SpSL-C(HCG)  0.159(0.009)  0.582 0.51(0.03) 0.02 1023.6 0.275(0.014)  0.613 0.51(0.01) 0.05  277.7 

N-SpSL-C(RW)  0.168(0.009)  0.554 0.48(0.02) 0.01 1747.8 0.299(0.014)  0.574 0.48(0.01) 0.03  422.2 

HS  0.142(0.008)  0.594 0.55(0.03) 0.04 610.1 0.240(0.012)  0.658 0.56(0.01) 0.04  91.1 

N-HS(RW)  0.143(0.008)  0.594 0.55(0.03) 0.03 1357.0 0.243(0.012)  0.653 0.55(0.01) 0.04  217.3 

BL  0.198(0.011)  0.569 0.51(0.01) 2.94 2798.2 0.273(0.010)  0.669 0.60(0.02) 3.25  397.5 

N-BL(RW)  0.157(0.008)  0.601 0.53(0.01) 1.49 1152.8 0.218(0.009)  0.698 0.62(0.02) 0.99  361.2 

SkG  0.159(0.008)  0.573 0.50(0.01) 0.02 9961.8 0.276(0.010)  0.614 0.51(0.01) 0.06  1189.6 

SpSL(MM)  0.193(0.012)  0.481 0.41(0.04) 1.27  0.310(0.012)  0.582 0.48(0.02) 2.77   

EMVS  0.225(0.010)  0.436 0.45(0.02) 0.00  0.412(0.013)  0.419 0.40(0.02) 0.00   
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 ( 200, 50)n p   ( 400, 100)n p   

SSLasso  0.208(0.009)  0.449 0.41(0.02) 0.80  0.355(0.010)  0.510 0.49(0.01) 1.26   

N-SpSL(MAP)  0.222(0.010)  0.537 0.48(0.02) 1.03  0.310(0.013)  0.624 0.57(0.02) 1.12   

N-BL(MAP)  0.152(0.009)  0.616 0.54(0.02) 1.70  0.226(0.011)  0.684 0.61(0.01) 1.86   

Lasso(CV)  0.134(0.009)  0.608 0.48(0.02) 5.34  0.228(0.011)  0.668 0.45(0.01) 13.61  

SCAD(CV)  0.222(0.009)  0.528 0.39(0.02) 3.72  0.339(0.011)  0.572 0.38(0.02) 8.86   

Lasso(BIC)  0.174(0.010)  0.465 0.48(0.02) 0.44  0.307(0.013)  0.516 0.57(0.01) 0.56   

SCAD(BIC)  0.187(0.010)  0.465 0.45(0.02) 0.69  0.361(0.014)  0.475 0.50(0.02) 1.14   
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Table 3 Results for the high-dimensional setting with dependent covariates. 

 ( 100, 300)n p   ( 150, 1000)n p   

Method  MSE  Cos  MCC  FP  ESS MSE  Cos  MCC  FP  ESS 

Oracle  0.141(0.045)  0.956    0.084  0.977    

SpSL-G(HCG)  0.872(0.059)  0.630 0.56(0.04) 0.11  3123.3 0.759(0.052)  0.675 0.58(0.02) 0.09  709.9 

N-SpSL-L(Exact) 0.824(0.057)  0.641 0.56(0.02) 0.26  837.8 0.709(0.051)  0.693 0.62(0.02) 0.24  185.3 

SpSL-C(HCG)  0.829(0.057)  0.647 0.58(0.02) 0.23  113.8 0.699(0.046)  0.705 0.63(0.01) 0.16  30.9 

N-SpSL-C(RW)  0.882(0.059)  0.625 0.56(0.04) 0.06  261.3 0.759(0.055)  0.673 0.58(0.02) 0.10  66.4 

HS  0.820(0.054)  0.629 0.57(0.02) 0.88  15.5 0.765(0.049)  0.655 0.56(0.01) 3.66  3.5 

N-HS(RW)  0.813(0.054)  0.636 0.58(0.02) 0.82  122.8 0.738(0.049)  0.670 0.57(0.01) 3.70  8.1 

BL  1.055(0.134)  0.455 0.53(0.11) 8.84  78.6 0.984(0.058)  0.255 0.57(0.18) 0.43  19.1 

N-BL(RW)  0.902(0.065)  0.536 0.58(0.08) 5.74  124.2 0.967(0.061)  0.451 0.59(0.17) 0.09  15.4 

SkG  0.939(0.063)  0.585 0.54(0.02) 0.00  1950.7 0.924(0.050)  0.587 0.53(0.03) 0.01  530.7 

SpSL(MM)  1.022(0.069)  0.519 0.45(0.12) 1.05   1.282(0.078)  0.380 0.32(0.16) 2.77   

EMVS  1.283(0.073)  0.385 0.48(0.10) 0.00   1.327(0.083)  0.339 0.49(0.12) 0.00   

SSLasso  0.965(0.057)  0.587 0.56(0.03) 0.00   0.752(0.047)  0.672 0.67(0.02) 0.00   
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 ( 100, 300)n p   ( 150, 1000)n p   

N-SpSL(MAP)  1.057(0.064)  0.538 0.51(0.05) 0.32   0.999(0.062)  0.554 0.55(0.02) 0.00   

N-BL(MAP)  0.786(0.053)  0.619 0.29(0.19) 19.63  0.727(0.052)  0.636 0.25(0.23) 35.48  

Lasso(CV)  0.782(0.051)  0.636 0.43(0.04) 10.81  0.717(0.047)  0.664 0.39(0.08) 16.52  

SCAD(CV)  1.027(0.070)  0.575 0.34(0.08) 9.80   1.000(0.065)  0.587 0.34(0.10) 13.69  

Lasso(EBIC)  1.186(0.078)  0.476 0.50(0.06) 0.04   1.165(0.076)  0.497 0.55(0.03) 0.04   

SCAD(EBIC)  1.183(0.079)  0.476 0.49(0.05) 0.06   1.178(0.074)  0.493 0.54(0.03) 0.05   
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Table 4 Results for the real data sets. MSPE and MS stand for the mean 

squared prediction error (out-of-sample) and the model size (number of selected 

variables), respectively. 

 Boston housing Bardet-Biedl 

Method  MSPE  Cos(Angle) MS MSPE  Cos(Angle) MS  

SpSL-G(HCG)  25.246(0.914)  0.841  6.82 0.425(0.026) 0.697  2.64  

N-SpSL-L(Exact) 25.288(0.903)  0.841  6.98 0.421(0.024) 0.701  2.28  

SpSL-C(HCG)  25.252(0.907)  0.841  6.18 0.421(0.026) 0.689  2.36  

N-SpSL-C(RW)  25.203(0.892)  0.841  6.08 0.452(0.038) 0.696  2.28  

HS  25.479(0.927)  0.839  5.56 0.375(0.020) 0.697  8.56  

N-HS(RW)  25.461(0.924)  0.840  5.60 0.378(0.020) 0.696  8.12  

BL  25.448(0.938)  0.829  6.10 0.357(0.021) 0.642  80.97 

N-BL(RW)  25.411(0.903)  0.829  6.10 0.364(0.015) 0.661  94.53 

SkG  25.332(0.891)  0.841  8.00 0.766(0.047) 0.653  0.00  

SpSL(MM)  27.341(1.115)  0.826  4.81 0.502(0.035) 0.669  5.63  

EMVS  25.385(0.923)  0.840  6.00 0.697(0.040) 0.685  0.00  

SSLasso  25.058(0.897)  0.842  6.00 0.491(0.038) 0.648  2.90  

N-SpSL(MAP)  24.043(0.871)  0.848  6.90 0.355(0.017) 0.689  2.76  

N-BL(MAP)  25.192(0.890)  0.842  6.59 0.432(0.029) 0.705  12.00 

Lasso(CV)  25.196(0.886)  0.842  8.60 0.424(0.031) 0.707  22.59 

SCAD(CV)  25.111(0.894)  0.842  7.31 0.491(0.037) 0.694  9.77  

Lasso(BIC)  26.833(0.954)  0.833  7.09 1.176(0.047) 0.665  2.07  

SCAD(BIC)  25.515(0.926)  0.839  6.34 1.157(0.052) 0.655  2.25  
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