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ABSTRACT
We propose a kernel-based partial permutation test for checking the equality of functional relationship
between response and covariates among different groups. The main idea, which is intuitive and easy to
implement, is to keep the projections of the response vectorY on leading principle components of a kernel
matrix fixed and permuteY ’s projections on the remaining principle components. The proposed test allows
for different choices of kernels, corresponding to different classes of functions under the null hypothesis.
First, using linear or polynomial kernels, our partial permutation tests are exactly valid in finite samples
for linear or polynomial regression models with Gaussian noise; similar results straightforwardly extend to
kernels with finite feature spaces. Second, by allowing the kernel feature space to diverge with the sample
size, the test can be large-sample valid for a wider class of functions. Third, for general kernels with possibly
infinite-dimensional feature space, the partial permutation test is exactly valid when the covariates are
exactly balanced across all groups, or asymptotically valid when the underlying function follows certain
regularized Gaussian processes. We further suggest test statistics using likelihood ratio between two
(nested) Gaussian process regression models, and propose computationally efficient algorithms utilizing
the EM algorithm and Newton’s method, where the latter also involves Fisher scoring and quadratic
programming and is particularly useful when EM suffers from slow convergence. Extensions to correlated
and non-Gaussian noises have also been investigated theoretically or numerically. Furthermore, the test
can be extended to use multiple kernels together and can thus enjoy properties from each kernel. Both
simulation study and application illustrate the properties of the proposed test.
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1. Introduction

Testing whether the same functional relationship between
response and covariates holds across different groups is a chal-
lenging and important problem. For example, in clinical trial
studies, people want to compare effects of several treatments
conditional on some important covariates of patients such
as age, gender, and genetic information. Traditional methods
assume parametric forms of these functional relationships,
such as linear or quadratic with unknown coefficients. When
such assumptions cannot be supported by prior knowledge,
nonparametric tests for the equality of functional relationships
were recommended, especially in the exploratory stage of
data analysis. Most methods in the nonparametric setting
focus on univariate functions and use kernel estimator for
estimating regression curves. For example, Pardo-Fernández,
Van Keilegom, and González-Manteiga (2007) proposed
empirical process based procedures for testing the equality of
multiple regression curves. A comprehensive review on this
topic can be found in Neumeyer and Dette (2003).

Testing the equality of functions has also been studied from
a Bayesian perspective. Behseta and Kass (2005) proposed two
methods for testing the equality of two univariate functions
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using the Bayesian adaptive regression splines. Benavoli and
Mangili (2015) usedGaussian processes for Bayesian hypothesis
testing on the equality of two functions, as well as the mono-
tonicity and periodicity of a function. Behseta, Kass, and Wall-
strom (2005) applied hierarchical Gaussian processes to study
the variability among multiple functions, where they assumed
an independent Gaussian process prior for each function and
focused on the estimation of the variance component.

A closely related study for comparing two regression func-
tions, but with slightly different focus, is the regression discon-
tinuity design (Thistlethwaite andCampbell 1960), underwhich
there can be no overlap between covariate distributions for the
two groups in comparison. In this case, testing equality of two
functions essentially reduces to testing whether two functions
can be smoothly connected at the boundary. Various frequentist
approaches have been proposed, including nonparametric ker-
nel regressionmethods and local linear regression (Hahn, Todd,
and der Klaauw 2001); for a comprehensive review, see Imbens
and Lemieux (2008).Most existingmethods focusmainly on the
case with univariate covariates. Recently, Branson et al. (2019)
and Rischard et al. (2018) proposed Bayesian approaches using
Gaussian processes, and extended the regression discontinuity
design to multivariate settings with spatial covariates.
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In this article, we first propose a partial permutation test for
linear functional relationships, and then generalize it to handle
nonlinear relationships via kernelmethods.We demonstrate the
exact validity of the partial permutation test when the kernel
corresponds to a finite-dimensional feature mapping whose
linear span contains the underlying true function, or when the
covariates are exactly balanced across all groups. We further
establish the asymptotic validity of the partial permutation test
for a general smooth functional relationship when we choose
the kernel adaptively with the sample size, or when the under-
lying function is from some Gaussian process. Note that the
Gaussian process regression (GPR) model has received much
attention recently for modeling functional relationships (see,
e.g., Rasmussen and Williams 2006; Shi and Choi 2011) and
is closely related to the kernel regression, which minimizes a
squared loss with penalization on the functional norm in a
reproducing kernel Hilbert space (RKHS) characterized by a
kernel. Intuitively, we can understand p-values under the GPR
model in an averaging sense over the Gaussian process prior on
the underlying function. As Meng (1994) suggested, uniformity
under parameters following prior is a useful criterion for the
evaluation of any proposed p-value. We also investigate the
power of the test when there exists functional heterogeneity
across different groups, and extend the test to cases with cor-
related noises across individuals.

The article proceeds as follows. Section 2 introduces nota-
tions,model assumptions and the partial permutation test based
on the linear or polynomial kernel, and proves its finite-sample
validity when the underlying function is linear or polynomial.
Section 3 first studies the partial permutation test using general
kernels for general underlying functions under the null hypoth-
esiswith homogeneous functional relationship across all groups,
and then shows its finite-sample or asymptotic validity under
additional conditions on the kernel, the underlying function and
the covariate distribution. Section 4 studies the power of the
partial permutation test under the alternative hypotheses with
heterogeneous function relations across all groups. Section 5
discusses practical implementation of the partial permutation
test. Section 6 extends the partial permutation test to corre-
lated noises. Section 7 conducts simulation study, and Section 8
applies the proposed test to a real dataset. Section 9 concludes
with a short discussion.

2. Notations, Hypotheses, Kernels, and Permutation
Tests

2.1. Notations and Problem Formulation

Let Yi ∈ R, Xi ∈ R
d and Zi ∈ {1, 2, . . . ,H} denote the

response variable, covariates of dimension d, and the group
indicator for the ith (1 ≤ i ≤ n) observation, respectively,
and let Y = (Y1,Y2, . . . ,Yn)�, X = (X1,X2, . . . ,Xn)� and
Z = (Z1,Z2, . . . ,Zn)� be the corresponding vectors of all the
n units. Given observations from multiple groups, we want to
test whether they share the same (unknown) functional rela-
tionship. Specifically, given a response variable Y and a vector of
covariates X, the null hypothesis assumes that individuals from
H (H ≥ 2) groups have the same relationship E(Y|X) = f0(X)

plus a Gaussian noise with constant variance, where f0 is an

unknown function in a given class (e.g., linear or polynomial
functions), that is,

H0 : Yi = f0(Xi) + εi, εi|X,Z iid∼ N (0, σ 2
0 ), (1 ≤ i ≤ n)

(1)

where X and Z can be either fixed or random, and noises εi’s
are independent and identically distributed (iid) conditional on
X and Z. The alternative hypothesis allows different groups to
have different (unknown) functions f1, . . . , fH :

H1 : Yi = fZi(Xi) + εi, εi|X,Z iid∼ N (0, σ 2
0 ), (1 ≤ i ≤ n)

(2)

or even different noise variances in different groups:

H′
1 : Yi = fZi(Xi) + εi, εi|X,Z ∼ N (0, σ 2

Zi), (1 ≤ i ≤ n).
(3)

2.2. Partial Permutation Test for Linear Functional
Relationship

We first consider a special case in which the relationship
between the response and covariates under H0 is linear,
that is, f0(x) = β0 + ∑d

k=1 βkxk in (1) for some β =
(β0,β1, . . . ,βd)

� ∈ R
d+1. Let KLinear(x, x′) = 1 + x�x′

denote the linear kernel function with x, x′ ∈ R
d. We write

the corresponding sample kernel matrix as Kn ∈ R
n×n, with

its (i, j)th element being [Kn]ij = KLinear(Xi,Xj) and its eigen-
decomposition denoted as �C��. Here, � = (γ 1, . . . , γ n) ∈
R
n×n is an orthogonal matrix and C = diag(c1, . . . , cn) ∈ R

n×n

has nonnegative diagonal elements in descending order.
The linear kernel can be equivalently written as KLinear(x, x′)

= φ(x)�φ(x′), an inner product in a feature space defined
by the feature mapping φ : x → (1, x�)� ∈ R

d+1. Let
� ≡ (φ(X1), . . . ,φ(Xn))� ∈ R

n×(d+1) be the matrix of all the
observed covariates mapped into the feature space, and let f 0 ≡
(f0(X1), . . . , f0(Xn))� be the vector of function values evaluated
at these covariates. Under the null model (1), we can verify that
f 0 = �β lies in the column space of �, or equivalently the
column space of kernel matrix Kn = ���. Because Kn has
at most rank d + 1, the eigenvectors (γ d+2, . . . , γ n) must be
orthogonal to the column space ofKn, as well as the vector f 0 in
this column space. As a result, under H0, we have

��Y =
(
γ �
1 f 0, γ

�
2 f 0, . . . , γ

�
d+1f 0, 0, . . . , 0

)�

+
(
γ �
1 ε, γ �

2 ε, . . . , γ �
n ε

)�
,

where ε = (ε1, . . . , εn)� ∈ R
n. Therefore, γ �

i Y = γ �
i ε for i =

d + 2, . . . , n, and are iid conditional on X and Z. Consequently,
given any test statistic, we can perform permutation tests by
randomly permuting γ �

i Y for i = d + 2, . . . , n. Note that
this procedure takes advantage of the fact that projections of Y
onto the eigenvectors corresponding to zero eigenvalues are just
random noises. Intuitively, this observation may be generalized
so that one can treat projections of Y onto eigenvectors with
small eigenvalues as Gaussian noises (i.e., ε) instead of signals
(i.e., f 0), which are then exchangeable and permit permutation
tests.
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For the convenience of presentation, we summarize in Algo-
rithm 1 a general discrete or continuous partial permutation
test procedure with a given kernel function K, permutation size
bn, and test statistic T. For linear functional relationships, we
have the following theorem on the validity of the p-value from
either the discrete or continuous partial permutation test using
the linear kernel.

Algorithm 1 Discrete and continuous partial permutation tests
with kernel function K, permutation size bn and test statistic T
for {X,Y ,Z}
1) Perform eigen-decomposition for kernel matrix Kn = �C��, where

[Kn]ij = K(Xi,Xj),� is an orthogonalmatrix andC is a diagonalmatrix
with diagonal elements in descending order.

2) LetW = ��Y ≡ (W1, . . . ,Wn)�.
(a) For the discrete partial permutation test, we define the permutation

set Sy as follows:

Sy ={Yψ : Yψ = �Wψ ,Wψ ∈ Sw}, with
Sw ={Wψ : Wψ = (Wψ(1),Wψ(2), . . . ,Wψ(n)),ψ ∈ M(n, bn)},
where M(n, bn) is defined to be the set of permutations of
{1, 2, . . . , n} that keep the first n − bn elements invariant, that is,

M(n, bn) ={
ψ : ψ(i) = i, for i = 1, 2, . . . , n − bn,
and {ψ(n − bn + 1), . . . ,ψ(n)} is a permutation of
{n − bn + 1, . . . , n}}.

Note that we allow the sets Sy and Sw to have members of identical
value. For example, if ψ 
= ψ ′ ∈ M(n, bn) butWψ = Wψ ′ (which
may happen if some Wj’s take on the same value), then they are
treated as two elements in Sw.

(b) For continuous partial permutation test, define the permutation set
Sy as follows:

Sy ={Y∗ : Y∗ = �W∗,W∗ ∈ Sw}, with
Sw = {

W∗ : W∗
i = Wi, i = 1, 2, ..., n − bn,
n∑

i=n−bn+1
(W∗

i )2 =
n∑

i=n−bn+1
W2

i

⎫⎬
⎭ .

3) Draw Wp ∈ Sw uniformly, and let Yp = �Wp. Naturally, Yp is
uniformly distributed on Sy, where both Sw and Sy can be viewed as
a function of X and Y .

4) The resulting partial permutation p-value with test statistic T is then
defined as

p(X,Y ,Z) = Pr{T(X,Yp,Z) ≥ T(X,Y ,Z)|X,Y ,Z}.

Theorem 1. Let {(Xi,Yi,Zi)}1≤i≤n denote samples from the
model under H0 in (1), where the functional relationship f0(x)
is linear in x. Then, the p-value obtained by either the discrete
or continuous partial permutation test described in Algorithm 1
with kernel KLinear, permutation size bn ≤ n− (d+ 1), and any
test statistic T is valid, that is, ∀α ∈ (0, 1), PrH0{p(X,Y ,Z) ≤
α|X,Z} ≤ α.

Remark 1. When the matrix � consisting of the covariates
mapped into the feature space is not of full rank, we can relax
the constraint to be bn ≤ n − rank(�). Similar relaxations also
hold for Theorem 2 and Corollaries 1 and 2.

Theorem 1 suggests that we can use any test statistic to
conduct a valid permutation test as long as the underlying

functional relationship between the response and the covariates
is linear. To achieve a high power when the null hypothesis
is false, we suggest to use the likelihood ratio statistics with
respect to alternative hypotheses that are of particular interest.
For example, we may choose either (2) or (3) as the alternative
hypothesis, where we assume that the functions f1, . . . , fH are
still linear in the covariates but can have different coefficients
across the H groups.

Under the Gaussian linear regression model, Algorithm 1
is able to generate permutation samples that change only the
responses but keep both the covariates and group indicators
fixed, which means that our partial permutation test is an exact
conditional test—conditioning on the covariates and group
indicators (X,Z). This is important since it avoids imposing
any distributional assumption on (X,Z). As a side note, simply
permuting the group indicators Zi’s may not lead to a valid
permutation test since such a permutation does not maintain
the joint distribution of the covariates and the group indicator.
An analogous approach is the classic bootstrap procedure based
on residual resampling (Freedman and Peters 1984; Hinkley
1988), which generates new data similar to the observed ones
but keeps (X,Z) fixed. In general, the residual bootstrap can
help relax the Gaussianity assumption on the noises, but loses
the finite-sample exact validity. Moreover, the parametric F-test,
whose test statistic is equivalent to a likelihood ratio statistic,
is finite-sample valid and is also regarded as most powerful
under the linear model with Gaussian noises. As demonstrated
both theoretically and empirically in Sections 4 and 7, our
partial permutation test can have almost the same power as the
F-test.

2.3. Partial Permutation Test for Polynomial Functional
Relationship

We consider here a more general case in which the rela-
tionship between the response and covariates under H0 is a
polynomial of degree p (or smaller), where p is a positive
integer. Specifically, under H0, we assume that f0(x) =∑

j1+j2+···+jd≤p βj1j2···jdx
j1
1 x

j2
2 . . . xjdd . Let KPoly(x, x′) = (1 +

x�x′)p denote a degree-p polynomial kernel function. We
again let Kn denote the corresponding sample kernel matrix
with entries [Kn]ij = KPoly(Xi,Xj), and let �C�� be the
eigen-decomposition of Kn, where C = diag(c1, . . . , cn) is the
diagonal matrix with nonnegative eigenvalues ci in descending
order, and � = (γ 1, . . . , γ n) ∈ R

n×n is an orthogonal matrix.
As with the linear case, we can rewrite the kernel matrix’s

entry as an inner product in a feature space defined by the
feature mapping φ, that is, KPoly(x, x′) = φ(x)�φ(x′), where
φ(x) consists of all the monomials xj11 x

j2
2 . . . xjdd with j1 + j2 +

· · · + jd ≤ p up to some positive coefficients. Let � =
(φ(X1), . . . ,φ(Xn))� be the n × (d+p

d
)
matrix consisting of

the observed covariates mapped into the feature space, and let
f 0 = (f0(X1), . . . , f0(Xn))� denote the vector of function values
evaluated at these covariates. Under the null model (1), we can
verify that f 0 must lie in the column space of � or equivalently
the column space of Kn = ���. Because the rank of Kn is at
most

(d+p
d

)
provided that

(d+p
d

)
< n, (γ

(d+p
d )+1, . . . , γ n) must
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be orthogonal to the column space of Kn, as well as f 0 in the
column space. Therefore, under H0, we have

��Y =
(
γ �
1 f 0, . . . , γ

�
(d+p

d )
f 0, 0, . . . , 0

)�
+

(
γ �
1 ε, . . . , γ �

n ε
)�

,

recalling that Y = (Y1, . . . ,Yn)� and ε = (ε1, . . . , εn)�. So
{γ �

i Y , i = (d+p
d

)+1, . . . , n} = {γ �
i ε, i = (d+p

d
)+1, . . . , n} are

iid conditional on (X,Z), and we can perform permutation test
by permuting {γ �

i Y , i = (d+p
d

) + 1, . . . , n}.
Theorem 2. Let {(Xi,Yi,Zi)}1≤i≤n denote samples from the
model under H0 in (1), where the functional relationship f0(x)
is polynomial in x with degree at most p. Then, the p-value
obtained by either the discrete or continuous partial permuta-
tion test with kernelKPoly, permutation size bn ≤ n−(d+p

d
)
, and

any test statisticT is valid, that is,∀α ∈ (0, 1), PrH0{p(X,Y ,Z) ≤
α|X,Z} ≤ α.

Similar to that for Theorem 1, we recommend to use a likeli-
hood ratio statistic with carefully chosen alternative hypothesis
of interest in order to achieve a good power. For example, we
may hypothesize that under the alternative hypothesis (2) or (3)
the functions f1, . . . , fH are still polynomial up to degree p but
can have different coefficients across different groups.

3. Partial Permutation Test for General Functional
Relationship

3.1. Partial Permutation Test under the Null Hypothesis

Inspired by the partial permutation test based on linear and
polynomial kernels, we generalize it to arbitrary kernels.
Let K be any kernel that is symmetric, positive definite and
continuous, and let Kn ∈ R

n×n be the corresponding sample
kernel matrix with [Kn]ij = K(Xi,Xj). Similar to the previous
sections, we define eigen-decomposition on the kernel matrix
Kn = �C��, where � = (γ 1, . . . , γ n) ∈ R

n×n is an
orthogonal matrix and C = diag(c1, . . . , cn) ∈ R

n×n has
nonnegative diagonal elements in descending order. Recall
that Y = (Y1, . . . ,Yn)�, ε = (ε1, . . . , εn)�, and f 0 =
(f0(X1), . . . , f0(Xn))�. Then, we have

��Y =
(
γ �
1 f 0, γ

�
2 f 0, . . . , γ

�
n f 0

)� +
(
γ �
1 ε, γ �

2 ε, . . . , γ �
n ε

)�
.

(4)

Different from linear or polynomial kernel for linear or poly-
nomial functions, the kernel matrix Kn can be of full rank, and
γ �
i f 0 = 0 may not hold exactly for any i. However, the kernel

matrix Kn often has its eigenvalues decreasing quickly and is
effectively rank-deficient (see, e.g., Hastie and Zhu 2006), and
γ �
i f 0 is often close to 0 for sufficiently large iwhen f0 is relatively

smooth with respect to kernel K. Below we give some intuition
for this.

Assume that covariates Xi’s are iid with respect to prob-
ability measure μ. By Mercer’s theorem, the kernel func-
tion has the following eigen-decomposition: K(x, x′) =∑∞

i=1 λiψi(x)ψi(x′), where λ1 ≥ λ2 ≥ . . . are the eigenvalues,

and the eigenfunctions ψi’s are orthonormal bases for the class
of square-integrable functions. The cross-product γ �

i f 0 can be
intuitively understood as an approximation (or sample analog)
of the inner product

∫
f0ψjdμ between the function f0 and

the ithe eigenfunction ψi after proper scaling (see, e.g., Braun,
Buhmann, and Müller 2008). Note that ψi becomes more and
more non-smooth with respect to kernel K as i increases. When
the underlying function f0 is relatively smooth with respect to
K, the inner product between f0 and ψi, and thus the sample
version γ �

i f 0, diminishes quickly as i increases. Consequently,
the projection of Y onto the space spanned by the γ i’s for large i
is mostly dominated by the Gaussian noise, based on which we
can then conduct permutation tests.

Unlike Theorems 1 and 2, with a general kernel K and a
general function f0, the partial permutation test is not finite-
sample valid. This motivates us to investigate how to adjust the
partial permutation test. It turns out that the correction needed
for the partial permutation p-value depends crucially on

ω(bn, σ−1
0 f0) = σ−2

0

n∑
i=n−bn+1

(γ �
i f 0)

2, (5)

which can be intuitively understood as the left-over signal-
proportion (LOSP) among the components used for the partial
permutation test of size bn. LetQbn denote the quantile function
of the χ2-distribution with degrees of freedom bn, and for any
0 < α0 < 1, define

v(bn, σ−1
0 f0,α0) = 1

2
exp

{
2
√
2ω(bn, σ−1

0 f0) ·
√
Qbn(1 − α0) + ω(bn, σ−1

0 f0)
}

− 1
2
(6)

as a function of permutation size bn, standardized function
σ−1
0 f0 and α0 ∈ (0, 1). The following theorem shows that,

by adding the correction term (6) to the p-value, the partial
permutation test becomes valid under H0.

Theorem 3. Let {(Xi,Yi,Zi)}1≤i≤n denote samples from model
H0 in (1). Given 1 ≤ bn ≤ n and α0 ∈ (0, 1), we define the
corrected partial permutation p-value as

pc(X,Y ,Z) = p(X,Y ,Z) + v(bn, σ−1
0 f0,α0) + α0,

where p(X,Y ,Z) is the p-value from either the discrete or
continuous partial permutation test (as in Algorithm 1) with
kernel K, permutation size bn, and any test statistic T; and
v(bn, σ−1

0 f0,α0) is defined as in (6). Then the corrected partial
permutation p-value is valid under model H0, that is, ∀α ∈
(0, 1), PrH0{pc(X,Y ,Z) ≤ α|X,Z} ≤ α.

In Theorem 3, the correction term v(bn, σ−1
0 f0,α0) is

increasing in bn, that is, the larger the permutation size, the
larger the correction for the p-value will be. Note that the
corrected permutation p-value pc(X,Y ,Z) depends on the
unknown true function f0 and cannot be calculated directly.
Besides, the asymptotic validity of the uncorrected partial
permutation p-value, p(X,Y ,Z), requires that bn · ω(bn, σ−1

0 f0)
converges to zero in probability as n → ∞, which may or may
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not hold depending on the complexity of function f0 as well
as the choice of the permutation size. Nevertheless, Theorem 3
helps us understand the bias of this p-value for finite samples and
provides insights on how to correct for it. In Sections 3.2–3.4, we
will consider special cases under which the LOSP ω(bn, σ−1

0 f0)
defined in (5) can be exactly or asymptotically zero and the
partial permutation test can itself be finite- or large-sample valid
without requiring any correction. Moreover, in Section 3.5, we
consider GPR models, under which the LOSP can be bounded
stochastically and the permutation test becomes asymptotically
valid.

3.2. Special Case: KernelsWith Finite-Dimensional Feature
Space

We first consider the case in which kernel K has only a
finite number of nonzero eigenvalues, or equivalently, the
corresponding feature space is finite-dimensional, that is,
K(x, x′) = φ(x)�φ(x′) with φ(x) ∈ R

q for some q < ∞.
Following the same arguments aswith the linear and polynomial
kernels discussed in Sections 2.2 and 2.3, which are special cases
of the current setting, we decompose the sample kernel matrix
Kn as �C��, with � = (γ 1, · · · , γ n) being the orthogonal
matrix of eigenvectors and C the diagonal matrix of eigenvalues
in descending order. If function f0(x) is linear in φ(x), then
γ �
i f 0 = 0 for i > q and thus the partial permutation test is

finite-sample valid when the permutation size bn is no larger
than n− q. We summarize the results in the following corollary.
Although it is a straightforward extension of Theorem 2, this
result provides us some intuition and a bridge to general kernels.

Corollary 1. Let {(Xi,Yi,Zi)}1≤i≤n denote samples from model
H0 in (1). Suppose that the kernel function K has the decompo-
sition K(x, x′) = φ(x)�φ(x′) with φ(x) ∈ R

q for some q < ∞,
and the underlying function f0(x) is linear in φ(x). Then, the
p-value obtained by either the discrete or continuous partial
permutation test with kernelK, permutation size bn ≤ n−q, and
any test statisticT is valid, that is,∀α ∈ (0, 1), PrH0{p(X,Y ,Z) ≤
α|X,Z} ≤ α.

3.3. Special Case: KernelsWith Diverging-Dimensional
Feature Space

We extend Section 3.2 to consider kernels whose feature space
dimensions can increase with the sample size, under which
the partial permutation test can be (asymptotically) valid for
a wider class of underlying functional relationships. Specifi-
cally, let {ej : j = 1, 2, . . .} be a given series of basis func-
tions of the covariate. For each integer q > 0, we define
kernel Kq(x, x′) ≡ φq(x)�φq(x′) ≡ ∑q

j=1 ej(x)ej(x′), where
φq(x) = (e1(x), e2(x), . . . , eq(x))� denotes the corresponding
feature mapping based on the first q basis functions. Motivated
by Corollary 1, intuitively, the partial permutation test using
kernel Kq is approximately valid if the underlying function
f0(·) can be approximated well by a linear combination of the
first q basis functions. Moreover, we can increase the feature
space dimension q at a proper rate as the sample size increases,
and render the partial permutation test asymptotically valid

provided that f0(·) lies in the space generated by the infinite
series of basis functions {e1(x), e2(x), . . .}, as characterizedmore
precisely in the following corollary. For any function f of the
covariate, we introduce

r(f ; q) = min
b∈Rq

∫ (
f − b�φq

)2dμ
= min

b1,...,bq∈R

∫ (
f −

q∑
j=1

bjej
)2dμ

to denote the squared distance between f and its best linear
approximation using the first q basis functions, whereμ denotes
the probability measure for the covariate. The limiting behavior
of r(f ; q) as q goes to infinity then characterizes howwell f can be
linearly approximated by this infinite series of basis functions.
Note that here we implicitly assume that both f and ej’s are
square-integrable.

Corollary 2. Let {(Xi,Yi,Zi)}1≤i≤n denote samples from model
H0 in (1), and assume that Xi’s are identically distributed from
some probability measure μ. Suppose that kernel function Kq
has the form Kq(x, x′) ≡ φq(x)�φq(x′) ≡ ∑q

j=1 ej(x)ej(x′)
for q ≥ 1 and some series of basis functions {ej}∞j=1. If there
exists a sequence {qn}∞n=1 such that qn < n for all n and n(n −
qn)r(f0; qn) → 0 as n → ∞, then the resulting p-value obtained
by either the discrete or continuous partial permutation test (as
in Algorithm 1) with kernel Kqn , permutation size bn ≤ n− qn,
and any test statistic T is asymptotically valid, that is, ∀α ∈
(0, 1), lim supn→∞ PrH0{p(X,Y ,Z) ≤ α} ≤ α.

From Corollary 2, the existence and construction of a valid
large-sample partial permutation test depends crucially on how
well the underlying functional relationship f0 can be linearly
approximated by the basis functions {ej}∞j=1. Below we con-
sider constructing {ej}∞j=1 based on a general kernel K with
infinite-dimensional feature space. Recall the discussion in Sec-
tion 3.1. Suppose we have the eigen-decomposition of the kernel
K(x, x′) = ∑∞

j=1 λjψj(x)ψj(x′), where λ1 ≥ λ2 ≥ . . . are the
eigenvalues, and ψ1,ψ2, . . . are the eigenfunctions and form an
orthonormal basis for the space of square-integrable functions.
If we choose ej = λ

1/2
j ψj for all j ≥ 1, then kernel Kq based

on the first q basis functions converges to K as q goes to infinity.
Moreover, if the underlying function f0 belongs to the RKHSHK
corresponding to kernelK, then we have f0 = ∑∞

j=1 αjλ
1/2
j ψj =∑∞

j=1 αjej for some coefficients αj’s with
∑∞

j=1 α2
j < ∞, under

which r(f0; q) = ∑
j>q α2

j λj ≤ λq
∑

j>q α2
j = o(λq) as q →

∞. As discussed later in Section 5.1, the eigenvalues λj’s often
decays at a polynomial rate with power greater than 1, in the
sense that λq = O(q−κ) for some κ > 1. This then implies that
r(f0; q) = o(λq) = o(q−κ) .

Intuitively, we prefer a larger permutation size and thus
a smaller qn, which can generally lead to a more powerful
test. However, conditions in Corollary 2 require us to be more
considerate in selecting qn. Let us focus on the case where
the approximation error for f0 decays polynomially, that is,
r(f0; q) = o(λq) = o(q−κ) for some κ > 1. When κ ∈ (1, 2), we
can choose qn = n − cnnκ−1 with cn being of constant order;
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in this case, the permutation size can be n − qn � nκ−1 and
n(n − qn)r(f0; qn) must be of order o(1). When κ ≥ 2, we can
choose qn = cnn2/κ with cn being of constant order; in this case,
the permutation size can be n − qn = n − cnn2/κ � n and
n(n − qn)r(f0; qn) must be of order o(1).

3.4. Special Case: Exactly Balanced Covariates across All
Groups

Assume that the design matrix X enjoys a balancing property
that the empirical distributions of covariates are exactly the same
across all H groups, that is,

{Xi : Zi = 1, 1 ≤ i ≤ n} = {Xi : Zi = 2, 1 ≤ i ≤ n}
= . . .

= {Xi : Zi = H, 1 ≤ i ≤ n}. (7)

Let r denote the number of distinct covariate values. Obvi-
ously, r ≤ n/H, and the equality holds if and only if the
covariates within each group are all distinct. We can verify
that the rank of kernel matrix Kn for all units is the same as
that for the r distinct covariate values. Thus, rank(Kn) ≤ r;
moreover, the equality generally holds when kernel function
K corresponds to an infinite-dimensional feature space, for
example, the Gaussian kernel. When Kn is indeed of rank r, as
demonstrated in the supplementarymaterial, for any underlying
function f0, the LOSP ω(bn, σ−1

0 f0) in (5) is exactly zero as
long as the permutation size bn is no larger than n − r, under
which the correction term v(bn, σ−1

0 f0,α0) in (6) also reduces to
zero. Consequently, the partial permutation p-value p(X,Y ,Z)

must be valid under model H0, as summarized in the following
corollary.

Corollary 3. Let {(Xi,Yi,Zi)}1≤i≤n denote samples from model
H0 in (1). If the design matrix is exactly balanced in the sense
that (7) holds and the kernel matrix for all the r ≤ n/H distinct
covariate values in each group is of full rank (or equivalently
rank(Kn) = r), then the partial permutation p-value fromeither
the discrete or continuous partial permutation test with kernel
K, permutation size bn ≤ n − r, and any test statistic T is
valid under model H0, that is, ∀ α ∈ (0, 1), PrH0{p(X,Y ,Z) ≤
α|X,Z} ≤ α.

The validity of the test in Corollary 3 is closely related to
that of the usual permutation test, which permutes the group
indicators of samples with the same covariate value. Corollary 3
is more general in the sense that it allows for more general
rotations (instead of purely switching) of the responses, utilizing
the Gaussianity of the noises.

3.5. Special Case: Gaussian Process RegressionModel

In this subsection, instead of treating f0 in (1) under H0 as a
fixed unknown function as in previous sections, we here assume
that the function follows a Gaussian process and show that
p(X,Y ,Z) is asymptotically valid under such a GPR model. We
note that the GPR model has been widely used in functional
analysis.

3.5.1. TheModel Formulation
Given a symmetric, positive definite, and continuous kernel K,
the GPR model assumes that

H̃0 : Yi = f (Xi) + εi, εi|X,Z iid∼ N (0, σ 2
0 ),

f ∼ GP
(
0,

δ20
n1−γ

K
)
, (8)

where f is independent of X,Z and the εi’s, and δ20/n1−γ , which
depends on the sample size n, represents our belief on the
smoothness of the underlying function. The GPR model is
closely related to kernel regression, which minimizes a penal-
ized mean squared loss over a RKHS HK corresponding to
kernel K. Specifically, the kernel regression estimator f̂n,τn is
given by

f̂n,τn = arg min
f∈HK

1
n

n∑
i=1

|Yi − f (Xi)|2 + τn||f ||2HK , (9)

where τn is a regularization parameter penalizing theHK norm
of f . This estimator is identical to the posterior mean of f under
the GPR model in (8) when τn = σ 2

0 /(nγ δ20). Christmann and
Steinwart (2007) studied sufficient conditions on τn to guarantee
the consistency of kernel regression estimator f̂n,τn , which then
provides us some guidance on the choice of the smoothness
parameter δ20/n1−γ . The following proposition is a direct corol-
lary of Christmann and Steinwart (2007, Theroem 12).

Proposition 1. Let {(Xi,Yi,Zi)}ni=1 be random samples from
modelH0 in (1). If the Xi’s are iid with a compact support X , f0
is a measurable function,EH0(Y2) < ∞,K is a universal kernel,
and 0 < γ < 1/4, then the posterior mean f̃ induced by model
H̃0 in (8) is consistent for the underlying true f0 in (1), that is,
EH0 |f̃ (X) − f0(X)|2 Pr−→ 0 as n → ∞.

In Proposition 1, the universal kernel was introduced by
Micchelli, Xu, and Zhang (2006), which has the property that
the corresponding RKHS is dense in C(X ), the space consisting
of all continuous functions onX with the infinity norm.We can
intuitively summarize conditions on the Gaussian process prior
of f and the relation between its variance parameter and sample
size as follows. First, f should be almost surely continuous.
Second, if two realizations of f fit observations equally well,
it is preferable to give the smoother one more weight. Third,
as the sample size increases, the posterior mean and mode of
f should increasingly concentrate around the true functional
relationship. All the requirements above can be satisfied by the
GPR model with an appropriate choice of the kernel function
and by letting the variance parameter decrease at a proper rate
as the sample size increases.

3.5.2. Large-Sample Valid Partial Permutation Test
The following theorem shows that the partial permutation p-
value is asymptotically valid under the GPR model H̃0 in (8)
under certain conditions.

Theorem 4. Let {(Xi,Yi,Zi)}1≤i≤n denote samples from model
H̃0 in (8). If the Xi’s are iid from a compact support X with
some probabilitymeasureμ, the eigenvalues {λk} of kernelK on

https://doi.org/10.1080/01621459.2021.2000867
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(X ,μ) satisfy λk = O(k−ρ) for some ρ > 1, and γ < 1 − ρ−1,
then for sequence {bn} satisfying bn = O(nκ)with 0 < κ < 1−
ρ−1−γ , the partial permutation p-value from either the discrete
or continuous partial permutation test with kernel K, permuta-
tion size bn, and any test statistic T is asymptotically valid under
H̃0, that is, ∀α ∈ (0, 1), lim supn→∞ PrH̃0

{p(X,Y ,Z) ≤ α} ≤ α.

In Section 5.1, we will show that there exist universal kernels
with polynomially decaying eigenvalues. Coupled with a choice
of the smoothness parameter γ that satisfies the conditions
in Proposition 1 and Theorem 4, the partial permutation test
is asymptotically valid under a GPR model that imposes a
reasonable amount of regularization on the underlying func-
tion. Furthermore, we emphasize that the asymptotic validity
of the partial permutation test essentially requires that the ratio
between the variance parameter for the Gaussian process prior
and the variance of observation noises is of order n−(1−γ ) for
some γ < 1 − ρ−1. Thus, even if the Gaussian process prior
on f does not follow the regularized form as in (8), we can still
perform asymptotically valid partial permutation test by adding
noises to the responses.

Theorem 4 proves the large-sample validity of the partial
permutation test. Below we investigate its finite-sample perfor-
mance in analogous to Section 3.1. Let ξn = (δ20/n1−γ )/σ 2

0
denote the variance ratio for the function and noise. For any
given bn, we define

ω̃ (bn, ξn) = δ20/n1−γ

σ 2
0

· cn−bn+1 = ξn · cn−bn+1

to denote the LOSP for the components of Y used for the
partial permutation test of size bn, recalling that cn−bn+1 is the
(n − bn + 1)th largest eigenvalue of Kn. Note that here the
LOSP ω(bn, σ−1

0 f ) defined in Section 3.1 can be bounded by
bn · ω̃(bn, ξn) in expectation under the GPR in (8). Recall that
Qbn is the quantile function of the χ2-distribution with degrees
of freedom bn. For 1 ≤ bn ≤ n and α0 ∈ (0, 1), we define

ṽ(bn, ξn,α0) = 1
2
exp

[
1
2
ω̃(bn, ξn) · Qbn(1 − α0)

]
− 1

2
. (10)

The following theorem shows that, by adding a correction term,
the partial permutation p-value becomes finite-sample valid
under H̃0.

Theorem 5. Let {(Xi,Yi,Zi)}1≤i≤n denote samples from model
H̃0 in (8). Given 1 ≤ bn ≤ n and 0 < α0 < 1, we define the
corrected partial permutation p-value as follows:

p̃c(X,Y ,Z) = p(X,Y ,Z) + ṽ(bn, ξn,α0) + α0,

where p(X,Y ,Z) is the p-value from either the discrete or con-
tinuous partial permutation test with kernelK, permutation size
bn, and any test statistic T, and ṽ(bn, ξn,α0) is as defined in (10).
Then the corrected partial permutation p-value is valid under
model H̃0, that is, ∀α ∈ (0, 1), PrH̃0

{p̃c(X,Y ,Z) ≤ α|X,Z} ≤ α.

Note that in Theorem 5, the correction term ṽ(bn, ξn,α0) is
monotone increasing in the permutation size bn. This is intuitive
since the larger the permutation size, the larger the correction
for the partial permutation p-value is needed. As discussed
shortly in Section 5.2, Theorem 5 provides us some guidance
on the choice of permutation size in finite samples.

4. Partial Permutation Test Under Alternative
Hypotheses

4.1. KernelsWith Finite-Dimensional Feature Space

While previous discussions focused on the validity of partial
permutation tests under the null hypothesis that the samples
share the same functional relationship across all groups, we here
investigate how such tests behave under alternative hypotheses.
As the permutation test allows for a flexible choice of test statis-
tics, which can be tailored based on the alternative hypotheses of
interest, we study a special class of test statistics that are linked
to a certain form of likelihood ratio statistics under a general
kernel with finite-dimensional feature space. That is, the kernel
function can be decomposed as K(x, x′) = φ(x)�φ(x′) with
φ(x) ∈ R

q for some q < ∞.
As demonstrated in Corollary 1, the partial permutation test

is exactly valid under model H0 in (1) when f0(x) is linear in
the transformed covariates φ(x). It is then straightforward to
hypothesize that, under the alternative model specified in (2),
the functional relationship between the response and covariates
is also linear in the transformed covariates, but the coefficients
can vary across groups, that is, for 1 ≤ i ≤ n,

Yi =
H∑
h=1

1(Zi = h)β�
h φ(Xi) + εi, εi|X,Z iid∼ N (0, σ 2

0 ),

(11)
whereβh denotes the regression coefficient vector for samples in
the hth group. This motivates us to use the F statistic for testing
β1 = . . . = βH as our test statistic, which is equivalent to
the likelihood ratio statistic up to a monotone transformation.
Let P0 and P1 denote the projection matrices onto the column
spaces of the transformed covariates for regression model (11)
under the null model that β1 = · · · = βH and the full model
without any constraint on the parameters, respectively, and let
p0 and p1 denote the matrices’ ranks. Then, the F statistic for
testing β1 = · · · = βH has the form

F(X,Y ,Z) = Y�(P1 − P0)Y�/(p1 − p0)
Y�(In − P1)Y�/(n − p1)

. (12)

It turns out that the permutation distribution of the F statistic in
(12) under our continuous partial permutation test with kernel
K and permutation size bn = n − p0 is F distributed with
degrees of freedom p1 − p0 and n − p1, which matches the
repeated sampling distribution of the F statistic when model
(11) holds with β1 = · · · = βH . Therefore, with the same
choice of the test statistic (i.e., F statistic or equivalently the like-
lihood ratio statistic), the partial permutation test is equivalent
to the usual F-test or likelihood ratio test for nested regression
models.We summarize the results in the following theorem. Let
Fd1,d2 denote the distribution function of the F distribution with
degrees of freedom d1 and d2.

Theorem 6. Consider any samples {(Xi,Yi,Zi)}1≤i≤n and any
kernel K of form K(x, x′) = φ(x)�φ(x′) with φ(x) ∈ R

q and
q < ∞. The permutation distribution of the F statistic in (12)
under the continuous partial permutation test with kernelK and
permutation size n − p0 is an F distribution with degrees of
freedom p1 − p0 and n− p1, and the corresponding partial per-
mutation p-value is p(X,Y ,Z) = 1 − Fp1−p0,n−p1(F(X,Y ,Z)).
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In Theorem 6, if the transformed covariates are linearly
independent within each group (i.e., the matrix whose rows
consist of φ(Xi)� for samples in group h is of full column rank,
1 ≤ h ≤ H), then p0 = q and p1 = Hq. The equivalence
between the partial permutation test and F-test in Theorem 6
has two implications. First, it confirms the finite-sample validity
of the partial permutation test when the null hypothesis (i.e.,
model (11) with β1 = . . . = βH) holds. Second, it shows
that the partial permutation test using the F statistic is most
powerful when the the alternative hypothesis is indeed of form
(11) with possibly unequal βh’s. Furthermore, as demonstrated
in Corollary 1, the partial permutation test allows for a more
flexible choice of test statistics, which can be tailored toward
any alternative hypothesis of interest, since the test uses partial
permutation to get the valid null distribution. Finally, although
Theorem 6 considers only kernels with a finite-dimensional
feature space, it sheds light on general kernels as well since we
can always view a general kernel as the limit of kernels with
finite-dimensional feature spaces.

4.2. KernelsWith Diverging-Dimensional Feature Space

We now extend the discussion in Section 4.1 to kernels
with diverging-dimensional feature spaces as the sample size
increases, similar to that in Section 3.3. Let {ej}∞j=1 be a given
series of basis functions of the covariate, and let Kq(x, x′) =
φq(x)�φq(x′) = ∑q

j=1 ej(x)ej(x′) be the kernel with feature
mapping φq(x) = (e1(x), . . . , eq(x))� consisting of the first
q basis functions. We consider partial permutation test based
on kernel Kqn whose feature space dimension qn can vary with
the sample size n, and study its power using the F statistic as
in (12) with φ replaced by φqn . Analogously, we let Pn0 and
Pn1 denote the projection matrices on to the column spaces of
the transformed covariates under the null and the full models,
and let pn0 and pn1 denote the matrices’ ranks, respectively.
Moreover, since we will investigate the power of the test under
local alternatives, we allow the functional relationship between
response and covariates under modelH1 in (2) to also vary with
the sample size, and write them explicitly as fn1, fn2, . . . , fnH .
Throughout this subsection, we assume that the covariates Xi’s
are identically distributed from some probability measure μ,
and use r(fnh; q) = minb∈Rq

∫
(fnh − b�φq)2dμ to denote the

squared error for the best linear approximation of fnh using the
first q basis functions.

Theorem 7. Let {(Xi,Yi,Zi)}1≤i≤n denote samples from model
H1 in (2), and assume that the Xi’s follow probability measure
μ. If, as n → ∞ and for some θ ≥ 0,

pn1 − pn0 → ∞,
pn1 − pn0
n − pn1

→ 0,
n

∑H
h=1 r(fnh; qn)√pn1 − pn0

→ 0,

f�(In − Pn0)f√pn1 − pn0
= (or ≥) θ + oPr(1), (13)

where f = (fnZ1(X1), fnZ2(X2), . . . , fnZn(Xn))�, then, ∀α ∈
(0, 1), the p-value from the continuous partial permutation test
with kernel Kqn , permutation size n− pn0, and F test statistic as

in (12) must satisfy that

Pr
(
p(X,Y ,Z) ≤ α

) = (or ≥) �
(
zα + θ/

√
2
)

+ o(1),

where �(·) denotes the distribution function of standard Gaus-
sian distribution and zα denotes the αth quantile of the standard
Gaussian distribution.

From the discussion after Theorem 6, we generally expect
that pn0 � qn and pn1 − pn0 � qn, under which the first two
conditions in (13) reduce to that qn → ∞ and qn/n → 0
as n → ∞. Below we assume these are true and discuss two
implications from Theorem 7.

First, we consider the case where the null hypothesis holds,
that is, fn1 = fn2 = · · · = fnH = f0 for some f0 that
depends neither on the group index nor the sample size. We
can then demonstrate that f�(In − Pn0)f = nr(f0; qn) · OPr(1).
From Theorem 7 with θ = 0, the partial permutation test will
be asymptotically valid when nr(f0; qn) = o(q1/2n ). Suppose
the approximation error for f0 decays polynomially, that is,
r(f0; q) = o(q−κ) for some κ > 0. Then a sufficient condition
for the large-sample validity of the partial permutation test
will be nq−κ

n = O(q1/2n ), under which we can choose qn �
n2/(2κ+1). Compared to Corollary 2, Theorem 7 imposes weaker
conditions on {qn} for ensuring the validity of the test. This is not
surprising since Corollary 2 allows for an arbitrary choice of test
statistics while Theorem 7 concerns only the F statistic.

Second, we consider the case where the alternative hypoth-
esis holds, and assume that the underlying functions have the
form fnh = f0 + δnζh (1 ≤ h ≤ H), for some constant sequence
δn = O(1) and some functions f0, ζ1, . . . , ζH that do not vary
with the sample size. Intuitively, {δn} and τhh′ ≡ ∫

(ζh − ζh′)2dμ
measure the functional heterogeneity across the H groups. For
simplicity, we further assume that the covariates in theH groups
are exactly balanced and the covariates within each group are
iid, under which we can bound f�(In − Pn0)f from below by
(2H)−1δ2n

∑n
i=1(ζh(Xi)−ζh′(Xi))2 = (2H)−1nδ2n{τhh′ +oPr(1)}

for all 1 ≤ h, h′ ≤ H. From Theorem 7, if nr(f0; qn) =
o(q1/2n ), nr(ζh; qn) = o(q1/2n ) for all h, and nδ2n ≥ θ

√
8H3qn

for sufficiently large n and some θ ≥ 0, then asymptotically the
power of the level-α partial permutation test is at least �(zα +
θ maxh,h′ τhh′); see the supplementary material for details. Sup-
pose that the approximation errors for functions f0, ζ1, . . . , ζH
all decay polynomially, that is, r(f0; q) = o(q−κ) and r(ζh; q) =
o(q−κ) as q → ∞, and that τh,h′ > 0 for at least one pair
of h 
= h′. From the discussion before, we can then choose
qn � n2/(2κ+1) to ensure Type I error control. Consequently,
if δn � (

√qn/n)1/2 = n−κ/(2κ+1), then the power of the level-
α partial permutation test must converge to 1 as the sample size
n goes to ∞. Recall the discussion in Section 3.3 and note that
the mth-order Sobolev space on [0, 1] corresponds to a RKHS
with eigenvalue λj decaying polynomially at rate j−2m (Xing
et al. 2020). The derived rate with κ = 2m actually matches the
minimax distinguishable rate n−2m/(4m+1) in Xing et al. (2020)
for testing whether two functions in the mth-order Sobolev
space are parallel; see also Shang and Cheng (2013).
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5. Implementation of Partial Permutation Test

5.1. Choice of the Kernel Function

We first show there exist kernel functions with polynomially
decaying eigenvalues as discussed in Sections 3.3 and 3.5.
Indeed, as demonstrated by Kühn (1987), such a property holds
for a general kernel as long as it is sufficiently smooth. For any set
D ⊂ R

d and 0 ≤ s ≤ 1, define Cs,0(D,D) as the set consisting
of all continuous functions G : D × D → R such that

||G||Cs,0(D,D) ≡ max

{
sup

x1,x2∈D
|G(x1, x2)| ,

sup
x1,x2,x3∈D,x1 
=x2

|G(x1, x3) − G(x2, x3)|
||x1 − x2||s2

}
< ∞.

(14)

The following proposition is a direct corollary of Kühn (1987).

Proposition 2. For any compact setX ⊂ R
d with any probability

measure μ and any positive definite kernel K : X × X → R,
if there exists b such that (i) X ⊂ X ≡ [−b, b]d, (ii) the kernel
function K can be extended to domain X × X , and (iii) K ∈
Cs,0(X ,X ), then the corresponding eigenvalues of K, {λk}k≥1,
satisfy that λk = O(k−1−s/d).

From Proposition 2 and by the definition in (14), if a sym-
metric and positive definite kernel function is continuously
differentiable onR×R and the covariate supportX is compact,
then the eigenvalue λk of the kernel must decay at least in an
order of k−1−1/d, underwhich the condition in Theorem4holds
with ρ = 1 + 1/d. Two examples of continuously differentiable
kernels are the Gaussian kernel and rational quadratic kernel,
which have the following forms:

KG(x, x′) = exp

{
−

d∑
k=1

ωk(xk − x′
k)

2

}
,

KR(x, x′) =
{
1 +

d∑
k=1

ωk(xk − x′
k)

2

}−η

, (15)

where ωj’s and η are arbitrary positive numbers.
Moreover, both kernels in (15) are also universal (Micchelli,

Xu, and Zhang 2006). Thus, if we use any of them for model
(8) and let the smoothness parameter be any constant between
between 0 and min{1/4, 1/(d+ 1)}, then the conditions in both
Proposition 1 and Theorem 4 hold. Consequently, we are able
to conduct asymptotically valid partial permutation test under
the GPRmodel, with a certain regularized but still flexible prior
for the underlying functional relationship. As discussed shortly
in the next subsection, the choice of γ is not crucial in practice.
However, the choice of parameters for the kernel function, for
example, the ωj’s for the Gaussian kernel in (15), does play an
important role.

Parameters in the kernel function play an important role in
controlling the smoothness of the underlying functional rela-
tionship. For instance, for the Gaussian kernel in (15), smaller
ωj’s imply wider, flatter kernels and a suppression of wiggly and
rough functions (Hastie and Zhu 2006). In contrast, larger ωj’s

indicate a more wiggly functional relation and thus generally
lead to a smaller permutation size. Theoretical investigation
for the optimal choice of kernel parameters for testing is chal-
lenging, and it may differ from that for the optimal estimation
(Shang and Cheng 2013; Xing et al. 2020). In the literature, var-
ious approaches have been proposed to choose kernel param-
eters, or more generally kernel functions, adaptively based on
the data, such as cross validation and maximizing marginal
likelihood (Rasmussen and Williams 2006). We here opt to
use the maximum marginal likelihood approach, choosing the
kernel parameter to be the one that maximizes the marginal
likelihood of Y given X and Z under the GPR model H̃0 in (8).

When the data follow an alternative hypothesis model in
which the functional relationships for different groups are dif-
ferent, the marginal likelihood for the null, which is based on
a common model built using the pooled data, tends to suggest
kernels that can tolerate more erratic functions, that is, large
values of ωj’s for the Gaussian kernel. This may be due to the
fact that, when the data contain multiple functional relation-
ships between the response and covariates, enforcing a common
functional relationship necessarily results in an overly volatile
function, which then reduces the partial permutation size and
damages the power of the test. To avoid this potential power loss,
we also obtain kernel parameters that maximize the marginal
likelihood using samples from each group separately. If all of
them suggest smoother functional relationships (e.g., smaller
ωj’s for Gaussian kernels) than the pooled data, we require the
smoothness of the shared functional relationship to be no worse
than the most non-smooth one among those obtained within
each group (e.g., choosing the maximum ωj’s estimated from
individual groups).

5.2. Choice of Permutation Size

Both Theorems 3 and 5 provide us with guidance on the choice
of permutation size bn: we want bn to be large and the correction
terms v in (6) (or ṽ in (10)) and α0 to be small in order to
have a good power for the test. Note that either v(bn, σ−1

0 f0,α0)
in (6) or ṽ(bn, ξn,α0) in (10) depends on unknown functional
relation f0 and noise level σ0 or the unknown variance ratio ξn.
Therefore, we first estimate f0 and σ0 (or ξn) and then use a plug-
in approach to compute v or ṽundermodelH0 or H̃0. To bemore
specific, we choose α0 and bn in the following way:

1. for model (1) of H0, α0 = 10−4α, and bn = max{bn :
v(bn, σ̂−1

0 f̂0,α0) + α0 ≤ 10−3α};
2. For model (8) of H̃0, α0 = 10−4α, and bn = max{bn :

ṽ(bn, ξ̂n,α0) + α0 ≤ 10−3α}.
There is a tradeoff for the choice of α0 and bn: a larger permu-
tation size bn can lead to a larger power for detecting violation
of the null hypothesis while at the same time requires a larger
correction to avoid Type I error inflation. Here we consider
an intuitive scheme that requires only a small correction for
the partial permutation p-value. For model (8), the estimate ξ̂n
can be obtained by using the maximum likelihood estimates
for δ20/n1−γ and σ 2

0 . For model (1), we can estimate f0 based
on the penalized regression of form (9) or other regularization
method such as early stopping (Raskutti, Wainwright, and Yu



10 X. LI, B. JIANG, AND J. S. LIU

2014; Liu and Cheng 2018). Here, for simplicity, we first obtain
the posterior mean of f under H̃0, denoted by f̂ , after plugging
in the maximum likelihood estimates, and then use f̂ as an
estimator for f0 and n−1 ∑n

i=1(Yi − f̂ (Xi))2 as an estimator for
the variance of noise. Finally, the corrected p-value is simply
the p-value from partial permutation plus the correction term
10−3α.

5.3. Choice of the Test Statistic

One advantage of the permutation test is that it allows for a
flexible choice of test statistics, for which we can use permuta-
tions, instead of a complicated and often unreliable asymptotic
analysis, to get its reference null distribution. Moreover, we can
choose the test statistic tailored to the alternative hypothesis of
interest so as to gain power.

For a general kernel function, we first consider test statistics
based on kernel regression of form (9). Specifically, we per-
form kernel regression both to fit a common function using all
samples and to fit group-specific functions using samples from
each group separately, with, say, cross-validation or marginal
likelihoodmaximization for choosing the regularization param-
eter τn in (9). Motivated by the likelihood ratio test for nested
regression models, we compare the mean squared errors from
the pooled and group-specific kernel regressions to construct
test statistics. For example, we can consider test statistic of the
following form:

T(X,Y ,Z) = n log(MSE) −
H∑
h=1

nh log(MSEh), (16)

where n1, . . . , nH are the group sizes, MSE = n−1 ∑n
i=1(Yi −

f̂ (Xi))2 with f̂ being the kernel regression estimate using all the
samples, and MSEh = n−1

h
∑

i:Zi=h(Yi − f̂h(Xi))2 with f̂h being
the kernel regression estimate using only the samples in group h.
Due to the flexibility of the permutationmethod, we can use loss
functions other than the squared loss in (9) to conduct kernel
regression, such as the epsilon-intensive loss and Huber loss
(see, e.g., Wang 2005; Cavazza and Murino 2016).

We then consider test statistics based on GPR models. We
introduce two general alternative models and compute their
likelihood ratios against H̃0. Specifically, we model functions
in different groups as dependent Gaussian processes under the
alternative hypothesis, and decompose each function into two
components, a shared component and a group-specific com-
ponent, assuming that these components follow independent
Gaussian processes with the same general kernel but different
variances:

H̃1 :Yi = fZi(Xi) + εi, εi|Xi,Zi
iid∼ N (0, σ 2

0 ), fh = f + f̄h,

(17)

f ∼ GP
(
0,

δ20
n1−γ

K
)
, f̄h ∼ GP

(
0,

δ2h
n1−γ

K

)
,

where f , f̄1, . . . , f̄H and {(Xi,Zi, εi)}ni=1 are jointly independent.
We can further extend the above homoscedastic model to allow

noises to have different conditional variances in different groups
as follows:

H̃′
1 : same as H̃1 in (17) except that εi|Xi,Zi ∼ N (0, σ 2

Zi).
(18)

We define the test statistic based on the likelihood ratio of H̃1 in
(17) (or H̃′

1 in (18)) versus H̃0 in (8), that is,

T(X,Y ,Z) =max f (Y|X,Z, H̃1)

max f (Y|X,Z, H̃0)

(
or

max f (Y|X,Z, H̃′
1)

max f (Y|X,Z, H̃0)

)
.

(19)

In the supplementary material, we discuss different ways to
compute (19) including the EM algorithm (Dempster, Laird,
and Rubin 1977), Newton’s method, the Fisher scoring, and
quadratic programming.

Here we briefly comment on hypothesis testing of H̃0 against
H̃1 or H̃′

1. Note that under H̃0, the variance parameters δ2h’s
are zero and thus are at their boundaries. Therefore, the clas-
sical likelihood ratio testing procedure using the chi-squared
approximation for the null distribution does not work here. This
also suggests the importance and nontriviality of Theorem 4.
To reduce the computational cost, we further introduce the
following “pseudo” alternative model, which may not contain
the null model H̃0 as a submodel:

H̃pseudo : Yi = fZi(Xi) + εi, εi|Xi,Zi ∼ N (0, σ 2
Zi),

fh ∼ GP

(
0,

δ2h
n1−γ

K

)
. (20)

As discussed in the supplementary material, the likelihood ratio
of H̃pseudo versus H̃0 can be efficiently computed using the EM
algorithm.

6. Extension to Correlated Noises

In the following discussion, we assume that the noises εi’s are
correlated instead of iid as in models H0 in (1) and H̃0 in (8),
and the covariance matrix of ε = (ε1, . . . , εn)� is known up
to a certain positive scale, unless otherwise stated. For example,
when the residuals have equal variance, we essentially require
that the correlationmatrix of ε is known. In practice, we suggest
to first estimate the covariance matrix for ε based on all the
structure information we have (e.g., equal correlations or block-
wise independence), and then plug in the estimate to conduct
the partial permutation tests described below.

We extend the regression modelH0 in (1) to allow for corre-
lated noises:

HC
0 : Yi = f0(Xi) + εi, (1 ≤ i ≤ n) (21)

ε = (ε1, ε2, . . . , εn)� ∼ N (0, σ 2
0 �),

where we use the supscript in HC
0 to emphasize that the noises

under model (21) are allowed to be correlated. Moreover, we
assume that � is known and positive definitive but σ 2

0 can be
unknown, that is, the covariance matrix of ε is known up to
a positive scale. Recall that Y = (Y1, . . . ,Yn)� and f 0 =
(f0(X1), . . . , f0(Xn))�. Under HC

0 in (21), we have �−1/2Y =
�−1/2f 0 + �−1/2ε, where �−1/2 is the inverse of the positive

https://doi.org/10.1080/01621459.2021.2000867
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definitive square root of �. By our model assumption, it is
easy to see that the elements of �−1/2ε are iid Gaussian with
mean zero and variance σ 2

0 . This then motivates us to consider
a partial permutation test based on response vector YC ≡
�−1/2Y and sample “kernel” matrix KC

n ≡ �−1/2Kn�
−1/2.

More precisely, in Algorithm 1, we replace Y and Kn by YC and
KC
n , and denote the resulting p-value by p(X,Y ,Z,�), which

depends crucially on the noise covariance structure �.
By the same logic as Theorem 3, we can derive a finite-sample

valid partial permutation test with a certain correction on the
permutation p-value. For 1 ≤ bn ≤ n and 0 < α0 < 1, we define
ωC(bn, σ−1

0 f0,�) = σ−2
0

∑n
i=n−bn+1(γ

�
i �−1/2f 0)2 to denote

the LOSP for the components used for partial permutation, and

vC(bn, σ−1
0 f0,�,α0) = 1

2
exp

{
2
√
2ωC(bn, σ−1

0 f0,�) ·
√
Qbn(1 − α0) + ωC(bn, σ−1

0 f0,�)

}

− 1
2
, (22)

whereQbn denotes the quantile function of the χ2
bn-distribution.

Theorem 8. Let {(Xi,Yi,Zi)}1≤i≤n denote samples from model
HC
0 in (21). Given 1 ≤ bn ≤ n and α0 ∈ (0, 1), we define the

corrected partial permutation p-value as
pc(X,Y ,Z,�) = p(X,Y ,Z,�) + vC(bn, σ−1

0 f0,�,α0) + α0,
where p(X,Y ,Z,�) is the p-value from either the discrete or
continuous partial permutation test based on kernel K, permu-
tation size bn, any test statistic T, and covariance matrix �, and
vC(bn, σ−1

0 f0,�,α0) is as defined in (22). Then the corrected
partial permutation p-value is valid under model HC

0 , that is,∀α ∈ (0, 1), PrHC
0
{pc(X,Y ,Z,�) ≤ α|X,Z} ≤ α.

Again, it is generally difficult to show the asymptotic validity
of the p-value p(X,Y ,Z,�) for a general kernel under gen-
eral underlying function and noise covariance structure, and
its correction term in (22) depends on the unknown f0 and
σ0. In practice, we can adopt similar strategies as discussed in
Section 5. Below we consider four special cases, in parallel to
Sections 3.2–3.5, under which we can demonstrate the exact or
asymptotic validity of the partial permutation test that takes into
account the noise covariance structure.

6.1. Special Case: Kernels with Finite-Dimensional Feature
Space

When the kernel has a finite-dimensional feature space and the
underlying function is linear in features mapped to this space,
the partial permutation test is exactly valid.

Corollary 4. Let {(Xi,Yi,Zi)}1≤i≤n denote samples from model
HC
0 in (21). Suppose kernel function K has the decomposition

K(x, x′) = φ(x)�φ(x′) with φ(x) ∈ R
q for some q < ∞,

and the underlying function f0(x) is linear in φ(x). Then, the
p-value obtained by either the discrete or continuous partial
permutation test with kernel K, permutation size bn ≤ n − q,
any test statistic T, and covariance matrix � is valid, that is,
∀α ∈ (0, 1), PrHC

0
{p(X,Y ,Z,�) ≤ α|X,Z} ≤ α.

6.2. Special Case: KernelsWith Diverging-Dimensional
Feature Space

Similar to Sections 3.3 and 4.2, we consider kernels with
diverging-dimensional feature space, that is, Kq(x, x′) =
φq(x)�φq(x′) for q ≥ 1 with φq(x) = (e1(x), e2(x), . . . , eq(x))�
and {ej}∞j=1 being a series of basis functions. We assume that
the covariates are identically distributed from some probability
measure μ, and use r(f ; q) = minb∈Rq

∫
(f − b�φq)2dμ to

denote the squared error for the best linear approximation of f
using the first q basis functions. The following corollary shows
that the partial permutation test is asymptotically validwhen the
underlying functional relationship can be well approximated by
the basis functions and the smallest eigenvalue of the noise
covariance matrix λmin(�) decays not too fast.

Corollary 5. Let {(Xi,Yi,Zi)}1≤i≤n denote samples from model
HC
0 in (21), and assume that Xi’s are identically distributed from

some probability measure μ. Suppose that the kernel function
Kq has the form Kq(x, x′) ≡ φq(x)�φq(x′) ≡ ∑q

j=1 ej(x)ej(x′)
for q ≥ 1 and some series of basis functions {ej}∞j=1. If there
exists a sequence {qn}∞n=1 such that qn < n for all n and
n(n − qn)r(f0; qn)/λmin(�) → 0 as n → ∞, then the resulting
p-value obtained by either the discrete or continuous partial
permutation test with kernelKqn , permutation size bn ≤ n−qn,
any test statistic T, and covariance matrix � is asymptotically
valid, that is, ∀α ∈ (0, 1), lim supn→∞ PrHC

0
{p(X,Y ,Z,�) ≤

α} ≤ α.

6.3. Special Case: Exactly Balanced Covariates across All
Groups

In the case that the covariates are exactly balanced across all
groups as in (7) and the kernel matrix for distinct covariates
within each group is of full rank (which generally holdswhen the
kernel has an infinite-dimensional feature space, for example,
the Gaussian kernel), the following corollary shows that the par-
tial permutation test is exactly valid under a general functional
relationship.

Corollary 6. Let {(Xi,Yi,Zi)}1≤i≤n denote samples from model
HC
0 in (21). If the design matrix is exactly balanced in the sense

that (7) holds and the kernel matrix for the r ≤ n/H distinct
covariates within each group is of full rank (or equivalently
rank(Kn) = r), then the partial permutation p-value from
either the discrete or continuous partial permutation test with
kernel K, permutation size bn ≤ n − r, any test statistic T, and
covariance matrix � is valid under model HC

0 , that is, ∀α ∈
(0, 1), PrHC

0
{p(X,Y ,Z,�) ≤ α|X,Z} ≤ α.

Furthermore, if all covariates within each group are distinct
and the covariance among noises enjoys the following structure:
(i) the noises have equal variances, (ii) the noises for samples
with different covariates are uncorrelated, and (iii) the noises
for samples with the same covariates are equally correlated with
correlation ρ, then the partial permutation test is always valid
even if we use a correlation matrix with incorrect correlation
ρ̃ 
= ρ. This means that, with this special covariance structure,
we are able to conduct valid permutation tests even if the true
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correlation matrix is unknown. Such covariance structure is
reasonable when the same covariate corresponds to the same
individual and the response within each group corresponds to
measurement at different time periods. As a side note, the usual
permutation test that switches group indicators of samples with
the same covariates is valid inmore general setting, as long as the
noises for samples with different covariate values are mutually
independent and the noises for samples with the same covariate
values are exchangeable. The partial permutation test allows
for more general permutation or rotation, but with a stronger
Gaussianity assumption on the noises.

6.4. Special Case: Gaussian Process RegressionModel

Finally we extends the GPR model H̃0 in (8) to allow for corre-
lated noises:

H̃C
0 : Yi = f (Xi) + εi, ε|X,Z ∼ N (0, σ 2

0 �),

f ∼ GP
(
0,

δ20
n1−γ

K(·, ·)
)
. (23)

The following theorem extends Theorem 4 and demonstrates
the asymptotic validity of the partial permutation test after
taking into the account the noise covariance structure.

Theorem 9. Let {(Xi,Yi,Zi)}1≤i≤n denote samples from model
H̃C
0 in (23). If the covariates Xi’s are iid from a compact support

X with probability measure μ, the eigenvalues {λk} of kernel
K on (X ,μ) satisfy λk = O(k−ρ) with ρ > 1, the smallest
eigenvalue of � for the noises satisfies λmin(�) ≥ cn−ζ for
some positive c and ζ < 1 − ρ−1, and γ is a constant less than
1−ρ−1 − ζ , then for sequence {bn} satisfying bn = O(nκ) with
0 < κ < 1−ρ−1−ζ −γ , the partial permutation p-value from
either the discrete or continuous partial permutation test with
kernelK, permutation size bn, any test statisticT, and covariance
matrix � is asymptotically valid under H̃C

0 , that is, ∀α ∈ (0, 1),
lim supn→∞ PrH̃C

0
{p(X,Y ,Z,�) ≤ α} ≤ α.

Theorem 4 proves the large-sample validity of the partial
permutation test. Below we investigate its finite-sample perfor-
mance. Analogous to Theorem 5, let ξn = (δ20/n1−γ )/σ 2

0 denote
the variance ratio, and ω̃C(bn, ξn,�) = ξn · ζn−bn+1 denote
the LOSP, where ζn−bn+1 denotes the (n − bn + 1)th largest
eigenvalue of KC

n . We then define

ṽC(bn, ξn,�,α0) = 1
2
exp

[
1
2
ω̃C(bn, ξn,�) · Qbn(1 − α0)

]
− 1

2
,

(24)

recalling thatQbn is the quantile function of theχ2
bn-distribution.

The following theorem shows that the partial permuta-
tion p-value can be finite-sample valid under H̃C

0 after an
adjustment.

Theorem 10. Let {(Xi,Yi,Zi)}1≤i≤n denote samples frommodel
H̃C
0 in (23). Given 1 ≤ bn ≤ n and 0 < α0 < 1, we define the

corrected partial permutation p-value as follows,

p̃c(X,Y ,Z,�) = p(X,Y ,Z,�) + ṽ(bn, ξn,�,α0) + α0,

where p(X,Y ,Z,�) is the p-value from either the discrete or
continuous partial permutation test with kernel K, permuta-
tion size bn, any test statistic T, and covariance matrix �, and
ṽ(bn, ξn,�,α0) is as defined in (10). Then the corrected partial
permutation p-value is valid under model H̃C

0 , that is, ∀α ∈
(0, 1), PrH̃C

0
{p̃c(X,Y ,Z,�) ≤ α|X,Z} ≤ α.

By the same logic as Section 5.2, we can then use Theorem 10
to guide the choice of permutation size in finite samples.

7. Simulation Study

In this section, we present simulation results based on various
choices of the kernels and discrete partial permutation tests
described in Algorithm 1. Specifically, in Sections 7.1–7.3, we
investigate Type I error control under the null hypothesis, and in
Sections 7.4 and 7.5 we compare powers of the partial permuta-
tion test and some other methods. We also conduct simulations
with non-Gaussian or correlated noises, which are relegated to
supplementary material. Moreover, for simulation under the
null hypothesis, we focus mainly on the Gaussian kernel and
choose the tuning parameters, permutation size bn and test
statistic T, as follows: (i) we standardize both the response and
covariates, and consider Gaussian kernel KG in (15) with the
maximum marginal likelihood estimates for parameters ωk’s as
discussed in Section 5.1; (ii) we choose the permutation size bn
as suggested in Section 5.2 based onmodel H̃0 with significance
level α = 0.05; (iii) we choose the likelihood ratio of H̃pseudo
versus H̃0 as the test statisticT due to its lower computation cost,
unless otherwise stated.

7.1. Simulation Under the Null HypothesisWith Scalar
Covariate

Wefirst consider partial permutation test underH0 with a scalar
covariate and two groups. We generate data as iid samples from
the following model:

Scenario 1: Y = f0(X) + ε, ε|X,Z ∼ N (0, σ 2
0 ),

X|Z ∼ aZ · Unif(−1, 0) + (1 − aZ) · Unif(0, 1),
Pr(Z = h) = ph, h = 1, 2, (25)

where Unif(−1, 0) and Unif(0, 1) refer to uniform distributions
on (−1, 0) and (0, 1), (a1, a2) control the mixture weights for
covariate distributions in two groups, and (p1, p2) denote the
fractions of observations (in expectation) from two groups. We
consider the five cases in Table 1 that vary both the proportions
of units and the covariate distributions in two groups. Specifi-
cally, in case (e), covariates from the two groups do not overlap
at all. Therefore, case (e) resembles the regression discontinuity
design, under which we can interpret the null hypothesis H0 in
(1) as that the underlying functions for the two groups can be
smoothly connected at the boundary. Finally, we fix σ 2

0 = 0.1
for all cases in Table 1, and consider the following six choices of
the underlying function f0, all in the range of [−1, 1]:

(i) f0 = x, (ii) f0 = 2x2 − 1,
(iii) f0 = 4x3/3 − x/3, (iv) f0 = 4/(1 + x2) − 3,
(v) f0 = sin(4x), (vi) f0 = sin(6x).

(26)
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Table1. Caseswith varyingbalancedness of group sizes and covariate distributions
between the two groups in comparison.

Case Groups Covariates (p1, p2) (a1, a2)

(a) Balanced Balanced (0.5, 0.5) (0.5, 0.5)
(b) Unbalanced Balanced (0.2, 0.8) (0.5, 0.5)
(c) Balanced Unbalanced (0.5, 0.5) (0.8, 0.2)
(d) Unbalanced Unbalanced (0.2, 0.8) (0.8, 0.2)
(e) Balanced Non-overlap (0.5, 0.5) (1, 0).

Figure 1 shows the empirical distribution functions of the
partial permutation p-values under all cases with sample size
n = 200, showing that all are very close to Unif(0, 1) and
demonstrating the validity of the partial permutation test.

7.2. Simulation Under the Null HypothesisWith
Two-Dimensional Covariates

We generate data as iid samples from the following two-
dimensional covariates model:

Scenario 2: Y = f0(X1,X2) + ε, ε|X,Z ∼ N (0, σ 2
0 ),

X1|Z ∼ aZ · Unif[−1, 0] + (1 − aZ) · Unif[0, 1],

X2|Z ∼ aZ · Unif[−1, 0] + (1 − aZ) · Unif[0, 1],
X1 ⊥⊥ X2|Z, P(Z = h) = ph, h = 1, 2, (27)

where the choice of (a1, a2) and (p1, p2) is the same as in Table 1.
We again fix σ 2

0 = 0.1 and consider the following six choices of
the underlying function f0, all in the range of [−1, 1]:

(i) f0 = (x1 + x2)/2, (ii) f0 = x1x2,
(iii) f0 = 2(x1 + x2)3/15

−(x1 + x2)/30, (iv) f0 = 3/(1 + x21 + x22) − 2,
(v) f0 = sin(6x1) + x2, (vi) f0 = sin(6x1 + 6x2).

(28)
Figure 2 shows the empirical distribution functions of the

partial permutation p-values, which are close to Unif(0, 1) for
all cases.

7.3. Simulation Under the Null HypothesisWith
Non-Smooth Functions

In the previous two subsections, we focus on null hypothesis
with smooth functions. Here, we consider the following contin-

Figure 1. Empirical distributions of the partial permutation p-values when data are generated from Scenario 1 in (25) under all cases in Table 1 with sample size n = 200.
The six figures correspond to six choices of the underlying function f0 in (26).
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Figure 2. Empirical distributions of the partial permutation p-values when data are generated from Scenario 2 in (27) under all cases in Table 1 with sample size n = 200.
The six figures correspond to six choices of the underlying function f0 in (28).

Figure 3. (a) Plot of function g0(x) in (29). (b) and (c): Empirical distributions of the partial permutation p-valueswhendata are generated frommodels (25)with underlying
function g0(x), and model (27) with the underlying function g0(x1)g0(x2), respectively.

uous but non-differentiable univariate function:

g0(x) = 2 ∗ min{|3x − �3x�|, |3x − �3x� − 1|}
· (�3x� mod 2 + 1) − 1, (29)

where �3x� denotes the largest integer less than or equal to 3x
and (�3x� mod 2) denotes the remainder of �3x� divided by 2.
Figure 3(a) shows the shape of g0(x).
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We consider simulations from model (25) with a single
covariate and function f0(x) = g0(x), and from model (27)
with two covariates and function f0(x1, x2) = g0(x1)g0(x2),
with sample size n = 200. Figures 3(b) and (c) show the
empirical distributions of the partial permutation p-values, for
models (25) and (27), respectively, under the five cases with
varying imbalance in covariate distributions and group sizes as
shown in Table 1, which demonstrate that the Type I error is
still approximately controlled. Note that, with two-dimensional
covariates, the distributions of the partial permutation p-values
are quite different from Unif(0, 1), and the p-values appear to
be slightly conservative at significance levels higher than 0.3.
The reason is that, over all simulations, about 25% of the time
the partial permutation test has permutation size 1 and thus
results in p-value equal to 1. Such extreme permutation size
is due to the non-smoothness of the underlying functional
relationship, under which we lack enough permutation size
as well as power for rejecting the null hypothesis. This is also
intuitive as it is difficult to distinguish whether the multiple
groups in comparison share the same functional relation if
the underlying function is very nonsmooth. In such cases, a
conservative p-value is preferred so as to avoid inflating the
Type I error.

7.4. Power ComparisonWith the Classical F-Test Under the
Alternative Hypotheses

We generate iid samples from the following two data generating
scenarios (under alternative hypotheses) with one- and two-
dimensional covariates:

Scenario 3: Y = fZ(X) + ε, ε|X,Z ∼ N (0, σ 2
0 ),

X|Z ∼ Unif(−1, 1),
P(Z = h) = ph, h = 1, 2, (30)

and

Scenario 4: Y = fZ(X1,X2) + ε, ε|X,Z ∼ N (0, σ 2
0 ),

Xk|Z ∼ Unif(−1, 1), k = 1, 2,
X1 ⊥⊥ X2|Z, P(Z = h) = ph, h = 1, 2. (31)

For Scenario 3,we consider the following three choices of (f1, f2):

(i) f1 = 1 + x, f2 = 2 + 3x,
(ii) f1 = 1/3 + x/2, f2 = (x + 1)2/4,
(iii) f1 = 1/3 + x/2, f2 = 1/5 + x/2 − x4 + x2;

(32)
For Scenario 4, we consider the following three choices of

(f1, f2):

(iv) f1 = 1 + x1 + x2, f2 = 2 + 3x1 + x2,
(v) f1 = 1/3 + x1/2 + x2/2, f2 = (x1 + 1)2/4

+(x2 + 1)2/4 − 1/3,
(vi) f1 = 1/3 + x1/2 + x2/2, f2 = 1/3 + x1/2 + x2/2

+ sin(πx1) · sin(πx2).
(33)

We conduct partial permutation test using either the Gaus-
sian or polynomial kernels. For theGaussian kernel, we consider

three choices of test statistics, the likelihood ratio (19) of H̃1
against H̃0, the pseudo likelihood ratio of H̃pseudo against H̃0,
and (16) based on the mean squared errors from the pooled and
group-specific kernel regression, and choose the permutation
size based on H̃0 as discussed in Section 5.2. For polynomial ker-
nels, we consider degree p of 1, 2 and 3, use the likelihood ratio
of the model where the underlying functions are polynomial of
degree up to p and can vary across groups against that with the
same polynomial function of degree up to p across all groups,
and choose the permutation size based on Theorem 2. We also
consider the classical F-test or equivalently the likelihood ratio
test for whether the functions for different groups are the same
polynomial function of degree p, for p = 1, 2, 3. Here, the F-
test is considered to be most powerful as long as the polynomial
regressionmodel is true within each group and does not include
unnecessary higher order terms.

Figure 4 shows the power of different tests. Since the partial
permutation tests using polynomial kernels have almost the
samepower as the corresponding F-tests, which is not surprising
given Theorem 6, they are omitted in Figure 4. As shown in
Figures 4(i), (ii), (iv), and (v), when the underlying functions
are indeed polynomial, the F-test with the correct degrees of
freedom is themost powerful one.However, as suggested by Fig-
ures 4(ii) and (v), if we fail to include some higher order terms,
it is possible that the F-tests have almost no power to detect the
functional heterogeneity across two groups. Furthermore, the
powers of the partial permutation test using the Gaussian kernel
with either test statistic (16) or the pseudo likelihood ratio statis-
tic are similar and are also close to that of the corresponding
most powerful F-test, although the gap seems to increase with
the dimension of the covariates. They both performed better
than that with the likelihood ratio statistic of H̃1 versus H̃0,
partly because the former two consider different noise variances
in different groups. Finally, as shown in Figures 4(iii) and (vi),
when the underlying functions contain either higher-order or
non-polynomial terms, the partial permutation test using Gaus-
sian kernel can have a much higher power than the classical F-
test.

7.5. Power ComparisonWith Other Nonparametric
Methods Under Balanced Covariates

Our partial permutation test focuses on whether samples from
different groups share the same functional relationship. This is
closely related to the literature focusing on whether different
groups share parallel functional relationship (Degras et al. 2012;
Xing et al. 2020). Specifically, with exactly balanced covariates as
in (7) and centered response within each group (assuming the
true average function values within each group is known), the
groups in comparison shares parallel functional relation if and
only if they share the same functional relation. Following Xing
et al. (2020), we generate data from the following model:

Scenario 5: Yi = fZi(Xi) + εi, εi|Xi,Zi
iid∼ N (0, σ 2

0 ),

Xi ≡ Xn/2+i
iid∼ Unif(0, 1), (1 ≤ i ≤ n/2)

Z1 = · · · = Zn/2 = 1, Zn/2+1 = · · · = Zn = 2.
(34)
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Figure4. Power of the partial permutation testswhendata are generated fromScenario 3 in (30) and Scenario 4 in (31)with sample sizen = 200. The six figures correspond
to six choices of the underlying functions f1 and f2 in (32) and (33). The partial permutation tests here use Gaussian kernel with three choices of test statistics, the likelihood
ratio (19) of H̃1 against H̃0 (denoted by GP), the pseudo likelihood ratio of H̃pseudo against H̃0 (denoted by GP pseudo), and (16) based on themean squared errors (denoted
by GP reg). The F-tests test whether the functions for different groups are the same polynomial functions of degree p (denoted by F-test p), for p = 1, 2, 3.

Table 2. Comparison between the parallelism and partial permutation tests.

Result Method 0.01 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

Power Parallel 1.000 0.920 0.624 0.484 0.378 0.312 0.300 0.270 0.244 0.196
under PPT 1.000 0.824 0.482 0.342 0.280 0.216 0.200 0.156 0.172 0.152
H1 PPT + Parallel 1.000 0.836 0.490 0.352 0.256 0.188 0.206 0.168 0.162 0.114

Type I Parallel 0.146 0.130 0.138 0.090 0.112 0.070 0.110 0.092 0.112 0.078
error PPT 0.044 0.056 0.058 0.046 0.046 0.036 0.044 0.042 0.050 0.042
under H0 PPT + Parallel 0.062 0.062 0.054 0.040 0.064 0.040 0.036 0.040 0.040 0.032

Corrected Parallel 1.000 0.838 0.476 0.376 0.242 0.238 0.230 0.204 0.186 0.140
Power PPT 1.000 0.812 0.468 0.346 0.296 0.266 0.216 0.192 0.172 0.166
under H1 PPT + Parallel 1.000 0.798 0.484 0.394 0.242 0.248 0.230 0.202 0.176 0.150

NOTES: Data are generated frommodel in (34) with functions in (35) (i) and sample size n = 200. The heading row indicates various noise levels. PPT and PPT+Parallel refer
to the partial permutation tests using the pseudo likelihood ratio and the minus p-values from the parallelism test, respectively, as test statistics.

and consider the following two choices in which the two groups
share neither the same nor parallel functional relationships:

(i) f1 = 2.5 · sin(3πx) · (1 − x) − m1,
f2 = 3.5 · sin(3πx) · (1 − x) − m2,

(ii) f1 = 2.5 · sin(3πx) · (1 − x) − m1,
f2 = 2.5 · sin(3.4πx) · (1 − x) − m3,

(35)

To make the comparison fairer, we choose constants m1,m2
and m3 such that each function has mean zero, that is,

E(fk(X)) = 0 with X ∼ Unif(0, 1), which helps avoid the
partial permutation test to gain additional power by the mean
shift. Tables 2 and 3 show the power of the partial permutation
test using the pseudo likelihood ratio as the test statistic and
that of the minimax nonparametric parallelism test in Xing
et al. (2020), which was shown to be superior to other tests in
the literature under similar simulation settings. For Tables 2 and
3, we let the sample size n = 200, the noise level σ 2

0 vary in [0.01,
4.5], and the significance level be fixed at 0.05. Besides, we also
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Table 3. Comparison between the parallelism and partial permutation tests.

Result Method 0.01 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

Power Parallel 1.000 0.886 0.642 0.440 0.354 0.286 0.262 0.218 0.208 0.188
under PPT 1.000 0.764 0.482 0.288 0.202 0.160 0.178 0.098 0.122 0.092
H1 PPT + Parallel 1.000 0.764 0.486 0.290 0.232 0.170 0.156 0.122 0.126 0.102

Type I Parallel 0.144 0.128 0.140 0.092 0.108 0.076 0.112 0.096 0.110 0.082
error PPT 0.046 0.056 0.050 0.050 0.044 0.034 0.044 0.036 0.050 0.048
under H0 PPT + Parallel 0.062 0.062 0.056 0.042 0.058 0.042 0.036 0.040 0.038 0.038

Corrected Parallel 1.000 0.764 0.480 0.308 0.200 0.198 0.172 0.144 0.146 0.138
Power PPT 1.000 0.752 0.482 0.288 0.224 0.206 0.190 0.126 0.122 0.100
under H1 PPT + Parallel 1.000 0.730 0.474 0.320 0.192 0.210 0.176 0.136 0.142 0.156

NOTES: Data are generated from (34) with functions in (35)(ii) and sample size n = 200. The description of the table is the same as that of Table 2.

Table 4. Comparison between the parallelism and partial permutation tests with sample sizes n = 500 and 1000.

n Result Method 0.01 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

500 Power Parallel 1.000 1.000 0.958 0.838 0.688 0.624 0.534 0.452 0.392 0.384
under H1 PPT 1.000 1.000 0.892 0.718 0.580 0.492 0.424 0.350 0.300 0.262

Type I error Parallel 0.078 0.086 0.098 0.082 0.086 0.082 0.096 0.068 0.092 0.09
under H0 PPT 0.044 0.054 0.042 0.046 0.058 0.070 0.064 0.050 0.038 0.05

Corrected Power Parallel 1.000 0.998 0.936 0.786 0.612 0.500 0.462 0.35 0.290 0.322
under H1 PPT 1.000 0.998 0.898 0.732 0.542 0.442 0.402 0.35 0.336 0.282

1000 Power Parallel 1.000 1.000 1.000 0.988 0.946 0.886 0.836 0.724 0.716 0.634
under H1 PPT 1.000 1.000 1.000 0.964 0.892 0.812 0.752 0.652 0.604 0.494

Type I error Parallel 0.064 0.078 0.074 0.072 0.080 0.078 0.074 0.088 0.074 0.066
under H0 PPT 0.034 0.036 0.066 0.064 0.046 0.050 0.042 0.062 0.036 0.044

Corrected Power Parallel 1.000 1.000 1.000 0.982 0.918 0.858 0.820 0.652 0.674 0.586
under H1 PPT 1.000 1.000 1.000 0.962 0.894 0.812 0.786 0.604 0.648 0.520

NOTES: Data are generated from (34) with functions in (35)(i). The description of the table is the same as that of Table 2, except that here we do not consider “PPT+Parallel.”

consider cases where the functions in both groups are the same
as f1 to investigate the Type I error of these tests.

Tables 2 and 3 show that, although the parallelism test has a
better power, its Type I error is significantly inflated. In contrast,
the partial permutation test controls its Type I errors well at the
nominal level. After correcting the Type I error by using the
0.05 quantile of the null distribution (i.e., the functions in both
groups are the same as f1 in (35)) of the p-value as the threshold,
the power of the two tests becomes similar. We further increase
the sample size to n = 500 and 1000. As shown in Table 4, Type I
errors of the partial permutation test are always well controlled,
whereas those of the parallelism test are still inflated but are
closer to the nominal level as the sample size increases. The two
tests always have similar powers after theType I error correction.

Note that the partial permutation test allows for an arbitrary
choice of the test statistic. As shown inTables 2 and 3,we also use
the minus p-value from the parallelism test as our test statistic.
From Tables 2 and 3, the resulting Type I error is well con-
trolled and the power is similar to the original parallelism test
after correcting the inflated Type I error. In practice, however,
such Type I error corrections cannot be easily achieved since
the underlying true functions are unknown. We may use the
distribution from the partial permutation as a reference null
distribution to calibrate the p-value from the parallelism test.

Similar to other permutation-based method, our partial per-
mutation test relies on permutations to generate the reference
distribution instead of a closed-form asymptotic approxima-
tion, and thus requires more computation. Averaging over all
simulations for Tables 2 and 3 with n = 200, the parallelism
test, “PPT,” and “PPT+Parellel” took 0.39, 34.57, and 269.17

Table 5. Partial permutation test p-values for comparing relationships between the
expenditure on food and the total expenditure among households with different
numbers of members.

Test statistic Comparison Comparison after truncation

(2, 3, 4) (2, 3) (3, 4) (2, 4) (2, 3, 4) (2, 3) (3, 4) (2, 4)

(19) with H̃1 vs H̃0 0.002 0.050 0.908 0 0.006 0.048 0.780 0
(19) with H̃′

1 vs H̃0 0 0.030 0.664 0.002 0.004 0.064 0.860 0
(19) with H̃pseudo vs H̃0 0.002 0.006 0.498 0.002 0 0.006 0.532 0
(16) 0 0.002 0.346 0 0 0 0.440 0

seconds, respectively. For Table 4 with sample size n = 500
and 1000, on average, the parallelism test took 3.05 and 21.29
seconds, while the “PPT” took 61.23 and 404.22 seconds. The
issue of computational cost for the permutation method can be
mitigated by parallelizing the calculation of the test statistic over
permutations.

8. Application

We apply the partial permutation test to a dataset analyzed
in Pardo-Fernández, Van Keilegom, and González-Manteiga
(2007), which consists ofmonthly expenditures of several Dutch
households and the numbers of members in each households.
The dataset includes accumulated expenditures on food and
total expenditures over the year (October 1986 to September
1987) for households with two members (159 in total), three
members (45 in total) and four members (73 in total).

Let Y be the logarithm of the expenditure on food, X be
the logarithm of the total expenditure, and Z be the number
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of house members minus one (indicating the size of a family).
To compare the relationship between Y and X among the three
groups defined by Z, we use the partial permutation test with
Gaussian kernel after standardizing both covariates and out-
comes, and choose the permutation size based on model H̃0 as
suggested in Section 5.2 at the significance level α = 0.05. We
first test whether the same functional relationship between Y
and X holds across all three groups, and then perform pairwise
comparisons. Table 5 shows the resulting p-values using differ-
ent test statistics, including the likelihood ratio statistics in (19)
of H̃1, H̃′

1 and H̃pseudo against H̃0, and the test statistic (16) based
on mean squared errors from pooled and group-specific kernel
regression. It is very interesting to observe from Table 5 that
the relationship between X and Y differs significantly between
“no-kid” households (size=2) and larger-sized ones. However,
between the households of size 3 and those of size 4, the relation-
ships between X and Y are not significantly different. To avoid
potential sensitivity to heavy-tailed errors in the data, we also
conducted the tests after truncating extreme fitted residuals; see
the supplementary material for details. Table 5 shows that the
conclusions are consistent across different test statistics, and are
robust to the use of truncation. Our results confirm the findings
in Pardo-Fernández, Van Keilegom, and González-Manteiga
(2007).

9. Discussion

We developed a partial permutation test for comparing across
different groups the functional relationship between a response
variable and some covariates, and studied its properties under
null models (1) and (8) when the underlying function either is
fixed or follows aGaussian process. The key idea of the proposed
tests is to keep invariant the projection of the response vector
onto the space spanned by leading principle components of the
kernel matrix, and permute the remaining (residual) part. Prac-
tically, we can also accommodate multiple kernels by conduct-
ing a partial permutation test that retains the projections of the
response vector on the leading principle components ofmultiple
kernel matrices. For example, if we use both the polynomial
kernel of degree p and the Gaussian kernel, then the partial
permutation test is exactly valid when the underlying function
is polynomial up to degree p as implied by Theorem 2, and also
has nice properties with flexible underlying functions as implied
by Theorems 3, 4 and 5. Furthermore, based on the simulation
study, we suggest to use test statistics based on a comparison
between the null GPR model and its pseudo alternative as in
(20), or a comparison betweenmean squared errors frompooled
and group-specific kernel regressions. These test statistics are
easy to calculate and have a superior power.

Our testing procedure is also related to Bayesian model
checking, especially the conditional predictive p-value proposed
by Bayarri and Berger (1997, 1999, 2000). The authors generated
predictive samples from the model with parameters following
the prior distribution, but only kept those samples that have the
same value of a summary statisticU as the observed data. Then,
they compared the test statistic of predictive samples with that of
the observed samples. As pointed by Bayarri and Berger (1999),
the intuition behind a suitable choice of U is that U should
contain as much information about the unknown parameters

as possible. In the extreme case where U is chosen to be the
sufficient statistic for all parameters, the conditional predictive
p-value is valid under the model where the parameters are fixed
and unknown.

In our case, although we are considering a nonparamet-
ric model (1), the idea of conditional predictive p-value can
still be applied. Suppose the variance of residuals is fixed and
known and the underlying function follows a Gaussian process
prior. We can perform the conditional predictive checking by
choosing U to be (X,Sy,Z), where Sy is from either the dis-
crete or the continuous partial permutation test in Algorithm 1.
Such choice of U contains information about the smooth com-
ponents of the underlying function. However, it is generally
computationally challenging to generate the predictive samples.
From Theorem 4, under some regularity conditions on the
Gaussian process prior, the predictive samples can be asymp-
totically equivalent to the ones from partial permutation, and
the conditional predictive p-value can be approximated by the
partial permutation p-value given the same choice of the test
statistic.

In practice, we may face high-dimensional covariates,
under which the comparison of functional relation among
various groups becomes much more challenging. Generally,
the permutation size of our partial permutation test decreases
as the dimension of covariates increases, andwill eventually lose
power due to the lack of permutation size. This is intuitive due
to the nature of the problem: with high-dimensional covariates,
the underlying function can have a complex structure making
it hard to distinguish whether multiple groups share the same
functional relation or not, especially when there are limited
sample size and limited overlaps of covariates from different
groups. The issue may be mitigated by imposing additional
structural assumptions, such as sparsity, and we leave it for
future work.

Supplementary Material

The supplementary material contains computation details for maximizing
the likelihood under GPRmodels, additional simulations for non-Gaussian
or correlated noises and the choice of kernel parameters, and the proofs of
all theorems, corollaries and propositions.
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