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Invited Discussion

Xiaodong Yang∗ and Jun S. Liu†

1 Introduction

We congratulate Professors Giacomo Zanella and Gareth Roberts for their path-breaking
work in analyzing Gibbs sampling algorithms for a class of highly practical Bayesian
hierarchical models. Together with their previous work, Papaspiliopoulos and Roberts
(2003) and Papaspiliopoulos et al. (2020), their multigrid decomposition strategy el-
egantly reduces a high-dimensional Gibbs sampling algorithm to independent low-
dimensional components so that the convergence rate of the Gibbs sampler can be deter-
mined analytically. These are extremely interesting and encouraging results. Throughout
of the article, we will refer to this work of Zanella and Roberts (2021) as “Z&R” for
simplicity.

The multigrid decomposition serves a central role in the whole theory established
in the aforementioned series of papers. An intuition behind this decomposition is that
lower-level mean statistics are sufficient for posterior inference on upper-level parame-
ters, with lower-level parameters practically marginalized out. For example, Papaspilio-
poulos and Roberts (2003) show that, for model (1.1) below, the posterior distribution
of (μ, ā) is independent of that of (a1 − ā, · · · , aI − ā).

At the first glance, we cannot help notice that the intuition behind Z&R’s multigrid
decomposition is quite different from that of either the classical deterministic multi-
grid methods (McCormick, 1987) or multigrid Monte Carlo methods (Goodman and
Sokal, 1989; Liu and Sabatti, 2000). These latter multigrid strategies, as originally mo-
tivated by the design of efficient numerical partial differential equation (PDE) solvers,
are typically constructed artificially to accelerate the convergence of the algorithms by
iterating between finer-grid and coarser-grid updates. In contrast, Z&R’s multigrid de-
composition is a decomposition of the given parameter space implied by the algorithm
itself (under a specific parametrization). Furthermore, Z&R show that Gibbs sampling
for the upper level of their multigrid decomposition converges slower than that for the
lower level (Theorem 11), whereas in classical multigrid methods the upper levels are
so constructed that their associated MCMC samplers converge faster than those of the
lower levels (Goodman and Sokal, 1989; Liu and Sabatti, 2000).

Despite these fundamental differences between the multigrid decomposition and
multigrid Monte Carlo, we are very much inspired by Z&R’s insightful formulation
and will discuss some potential extensions of their work in the rest of the article. To
illustrate our main ideas, we start by focusing on the simplest model:

yij = μ+ ai + εij , i ∈ [1 : I], j ∈ [1 : J ], (1.1)
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which can be seen as either a two-level hierarchical model or a one-factor crossed-effects
model. In the rest of the article, we use notation �a to represent a vector. For example,
�ai used in Section 2 is an �-dimensional vector. Boldface letters are used to represent
collections of effects. For example, we write aaa = (a1, · · · , aI), and ā for its mean. We
also denote 1k = (1, · · · , 1)� ∈ R

k×1 and Ik for k× k identity matrix. For a matrix M ,
‖M‖2 =

√
σmax(M�M) denotes its spectral norm.

2 Vector hierarchical models

Our main goal here is to extend the framework of (1.1) to consider the vector-version of
the model, as shown in (2.1). This type of models is not uncommon in practice and is a
prototype of more complex realistic models. For example, the observed vector �yij may
represent several types of medical measurements (e.g., blood pressure, cholesterol level,
weight, height, etc) of individual j in group i, and these measurements are certainly
correlated within each individual. After presenting results for (2.1), we will comment
on its potential extensions.

2.1 Non-centering model and convergence rate

Let us begin with an extension of model (1.1) by replacing the scalars with vectors to
arrive at the following model.

Model S2m (Symmetric two-level model with non-centering parametrization). Sup-
pose

�yij = �μ+ �ai + �εij , i ∈ [1 : I], j ∈ [1 : J ], (2.1)

where �yij , �μ,�ai,�εij ∈ R
�, and �εij

i.i.d.∼ N (0,Σe) (i.e., i.i.d. multivariate Gaussian). We
impose a flat prior on �μ and another multivariate Gaussian N (0,Σa) on each �a. Here
Σe and Σa are two positive definite �× � matrices.

For this model, we can write down the joint posterior distribution as

p(�μ,�aaa | �y) ∝ exp

⎡
⎣−1

2

∑
i,j

(�yij − �μ− �ai)
�Σ−1

e (�yij − �μ− �ai)− 1

2

∑
i

�a�i Σ
−1
a �ai

⎤
⎦ . (2.2)

A standard Gibbs Sampler to sample from the posterior distribution p(�μ,�aaa | �yyy) is defined
as follows.

Sampler GS(0). Initialize �μ(0) and �aaa(0) and then iterate

1. Sample �μ(s+ 1) from p(�μ | �aaa(s),�yyy);
2. Sample �ai(s+ 1) from p(�ai | �μ(s+ 1),�yyy) for i = 1, . . . , I, independently.

Using the same notations as in Z&R, we define �̄a =
∑

i �ai/I to be mean and

δ�ai = �ai − �̄a, δ�aaa = (δ�a1, · · · , δ�aI)
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as the residual. Given this notation, we derive the following factorization

p(�μ,�aaa | �yyy) = p(�μ, �̄a | �yyy)× p(δ�aaa | �yyy). (2.3)

This factorization paves the way for the following multigrid decomposition.

Before stating and proving our result, we introduce a lemma without proof to com-
pute the L2 convergence rate of some two-component Gaussian Gibbs sampler.

Lemma 2.1. Let the target distribution π(q1, q2), where q1, q2 ∈ R
�, be a 2�-dimensional

Gaussian distribution with var(q1) = Σ11, var(q2) = Σ22, and cov(q1, q2) = Σ12. The
convergence rate of the Gibbs sampler that iterates between conditional sampling [q1 | q2]
and [q2 | q1] is equal to the squared spectral norm ‖Σ−1/2

11 Σ12Σ
−1/2
22 ‖22.

Remark. This lemma is an easy consequence of Theorem 1 in Roberts and Sahu (1997),
in which the generated Markov chain is recognized as a multivariate AR(1) process. See
also Section 5.1, Liu et al. (1994), for an elementary proof based onmaximal correlations,
as this quantity can also be interpreted as the maximal correlation between q1 and q2.

Theorem 2.1. Let {�μ(t),�aaa(t)} be the Markov chain generated by either the standard
Gibbs sampler. Then the functionals {δ�aaa(t)} and {�μ(t), �̄a(t)} evolve as two independent
Markov chains. Furthermore, the L2-convergence rate of the sampler is

ρ0 =
∥∥∥(JΣ−1

e

)1/2 (
Σ−1

a + JΣ−1
e

)−1/2
∥∥∥2
2
. (2.4)

Proof. The decomposition directly follows from the following two identities

p [�μ(s+ 1) | �aaa(s),�yyy] = p
[
�μ(s+ 1)|�̄a(s),�yyy] , (2.5)

p
[
�̄a(s+ 1), δ�aaa(s+ 1) | �μ(s+ 1),�yyy

]
= p

[
�̄a(s+ 1)|�μ(s),�yyy]× p [δ�aaa(s+ 1) | �y] . (2.6)

Moreover, the latter identity further implies that {δ�aaa(t)} carries out exact sampling. So
the convergence rate of {�μ(t),�aaa(t)} is actually determined by the rate of {�μ(t), �̄a(t)}.
The latter chain converges to the following joint-normal stationary distribution

p(�μ, �̄a | �y) ∝ exp

[
−IJ

2
�μ�Σ−1

e �μ− 1

2
�̄a�

(
IΣ−1

a + IJΣ−1
e

)
�̄a

]
× exp

[−IJ�μ�Σ−1
e �̄a+ IJ�̄y�Σ−1

e (�μ+ �̄a)
]
,

where we write �̄y �
∑

i,j �yij/IJ . This is a Markov chain in a 2�-dimensional space
induced by the block-wise two-component Gibbs sampler. In contrast, the original chain
is of dimension (I + 1)�. The final result then follows from Lemma 2.1.

Remark. If we choose dimension � = 1 and replace Σe and Σa with σ2
e and σ2

a, respec-
tively, the convergence rate becomes

ρ0 =
Jσ−2

e

σ−2
a + Jσ−2

e

,

which coincides with Proposition 3 in Papaspiliopoulos et al. (2020).
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2.2 Convergence rate for centering model

Inspired by Z&R, we seek to give a theoretical guidance towards centering (2.1) or
non-centering (2.7) parametrizations.

Model S2m (Symmetric two-level model with centering parametrization). Suppose

�yij ∼ N (�αi,Σe), �αi ∼ N (�μ,Σa), i ∈ [1 : I], j ∈ [1 : J ], (2.7)

where �yij , �μ, �αi ∈ R
�. Same as before, a flat prior is imposed on �μ. Here Σe and Σa are

two positive definite �× � matrices.

Sampler GS(1). Initialize �μ(0) and �ααα(0) and then iterate

1. Sample �μ(s+ 1) from p(�μ | �ααα(s),�yyy);
2. Sample �αi(s+ 1) from p(�αi | �μ(s+ 1),�yyy) for i = 1, . . . , I independently.

Almost in the same manner, we offer the following theorem.

Theorem 2.2. Let {�μ(t), �ααα(t)} be the Markov chain generated by the sampler GS(1).
Then the functionals {δ�ααα(t)} and {�μ(t), �̄α(t)} evolve as two independent Markov chains.
Furthermore, the L2-convergence rate of {�μ(t), �ααα(t)} is

ρ1 =
∥∥∥(Σ−1

a

)1/2 (
Σ−1

a + JΣ−1
e

)−1/2
∥∥∥2
2
. (2.8)

Optimal Parameterization Strategy: If ρ0 ≤ ρ1, then choose the non-centering
parameterization (2.1); otherwise, choose the centering parameterization (2.7).

When dimension � = 1, (2.8) becomes ρ1 = σ−2
a /(σ−2

a + Jσ−2
e ). This strategy can

be adaptively used when the variances are unknown. Specifically, in one iteration, after
sampling σ̂2

a, σ̂
2
e , we compare Jσ̂−2

e /(σ̂−2
a + Jσ̂−2

e ) and σ̂−2
a /(σ̂−2

a + Jσ̂−2
e ), and choose

the optimal parameterization accordingly. Back to the case of known variances, a direct
benefit is that we can always achieve a convergence rate bounded by 1/2 since ρ0+ρ1 = 1,
regardless of what values σ2

a, σ
2
e are (Papaspiliopoulos and Roberts, 2003). Corollary 2

in Z&R proposes an optimal parametrization strategy for 3-level models and gives a
constant rate upper bound 2/3 therein.

However, in a multi-dimensional case with � > 1, the rates found in Theorem 2.1
and Theorem 2.2 do not necessarily sum up to 1. Though the parameterization strategy
still applies, it does not necessarily give a constant rate upper bound. If both covariance
matrices are diagonal, i.e., Σa = diag(1/τa1 , · · · , 1/τa� ) and Σe = diag(1/τ e1 , · · · , 1/τe� ),
then we have

ρ0 = max
1≤i≤�

[
Jτ ei

τai + Jτ ei

]
, ρ1 = max

1≤i≤�

[
τai

τai + Jτ ei

]
.

Applying the optimal parametrization strategy component-wise is of interest in this
non-correlated case. That is, we may introduce a “centering” indicator variable C of
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dimension �, indicating which of the � components use centering and which use non-
centering parameterization. In this way, we may still be able to obtain the rate bound
1/2.

When Σa and Σe become general non-diagonal covariance matrices, the picture
becomes more complicated. It will be of great interest to develop some methodological
guidance on how to approach this problem. The constant rate bound 1/2 as discussed
above is no longer guaranteed, and it is entirely possible that both rates are close to 1.
We speculate that one may extend the “centering” indicator C to be a continuous vector
to allow “partial-centering” (more about this issue in Section 4).

It is also not too difficult to extend these results to more complex structures such
as three-level vector hierarchical models and vector crossed-effects models, although the
formulae would grow more complicated and the design of the optimal parameterization
may no longer be possible. The authors’ insights and suggestions along this direction
would be very much welcome.

3 Incorporating regression covariates

Zanella and Roberts mainly focus on hierarchical models with certain symmetry condi-
tions for data without individual-level covariates. Mixed-effects models, which accom-
modate individual-level variability and are very commonly used in practice, seem to
have not been directly covered by Z&R. Our goal here is to consider possible ways to
extend the authors’ multigrid decomposition technique to this more complex class of
models.

3.1 Linear mixed effects models

To extend and see the limits of multigrid decomposition, we consider the following
simple extension, which just replaces the intercept term μ with a linear combination of
p covariates with a fixed coefficient vector. Previously, Gao and Owen (2019) attempted
to tackle the computational efficiency of this model (3.1). But their results give loose
bounds while requiring mild conditions.

Model SR (Symmetric two-level mixed-effect model). Suppose

yij = X�
ijβ + ai + εij , i ∈ [1 : I], j ∈ [1 : J ], (3.1)

where εij is i.i.d. normal random variables with mean 0 and variance σ2
e . Moreover,

Xij , β ∈ R
p (column vectors) are known covariates and unknown coefficients respec-

tively. We then impose a standard Bayesian model specification assuming ai ∼ N (0, σ2
a)

and β ∼ N (0,Σ0).

Essential full-rank conditions should be imposed on the design matrix. Requiring
p < I, we denote the I × p matrix as

X̄ � (X̄1, . . . , X̄I)
�,
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where X̄i = J−1
∑

j Xij ∈ R
p. A further natural requirement is that X̄ is of rank p.

Then, we can define a p × I matrix P = (X̄�X̄)−1/2X̄�. We also introduce another
(I − p)× I matrix L such that L�L+P�P = II (i.e., the identity matrix of dimension
I). Note that P�P = X̄(X̄�X̄)−1X̄� and PP� = Ip. Let XXX = {Xij}.
Sampler GS (Regression). Initialize β(0) and aaa(0) and then iterate

1. Sample β(s+ 1) from p(β | aaa(s),XXX,yyy);

2. Sample ai(s+ 1) from p(ai | aaa(s+ 1),XXX,yyy) for all i.

Theorem 3.1. Let {β(t), aaa(t)} be the Markov chain generated by the standard Gibbs
sampler. Then the two functionals {Laaa(t)} and {β(t), X̄�aaa(t)} evolve as two indepen-
dent Markov chains. Furthermore, the L2-convergence rate of {β(t), aaa(t)} is

ρ =
J2σ−4

e

σ−2
a + Jσ−2

e

∥∥∥∥∥∥∥
(
X̄�X̄

)1/2 ⎛⎝Σ−1
0 +

∑
i,j

XijX
�
ijσ

−2
e

⎞
⎠

−1/2
∥∥∥∥∥∥∥
2

2

. (3.2)

Proof. It is easy to write down the likelihood function and prior:

p(yyy |XXX,β,aaa) ∝
I∏

i=1

J∏
j=1

exp

[
− 1

2σ2
e

(yij −X�
ijβ − ai)

2

]
,

p(β,aaa) ∝ exp

[
−1

2
β�Σ−1

0 β − 1

2σ2
a

I∑
i=1

a2i

]
.

The posterior distribution is

p(β,aaa | yyy,XXX) ∝ exp

⎡
⎣−1

2
β�Σ−1

0 β − 1

2σ2
a

∑
i

a2i −
1

2σ2
e

∑
i,j

(yij −X�
ijβ − ai)

2

⎤
⎦

∝ exp

⎡
⎣−1

2
β�

⎛
⎝Σ−1

0 +
∑
i,j

XijX
�
ijσ

−2
e

⎞
⎠β − 1

2

(
1

σ2
a

+
J

σ2
e

)∑
i

a2i

⎤
⎦

× exp

⎡
⎣− 1

σ2
e

∑
i,j

aiX
�
ijβ

J

σ2
e

∑
i

aiȳi +
1

σ2
e

∑
ij

yijX
�
ijβ

⎤
⎦ .

We should especially focus on the cross term∑
ij

aiX
�
ijβ =

∑
i=1

ai(JX̄
�
i )β = Jaaa�X̄β.

Furthermore, we also find that∑
i

a2i = aaa�aaa = ‖Paaa‖2 + ‖Laaa‖2 = aaa�X̄
(
X̄�X̄

)−1
X̄�aaa+ ‖Laaa‖2.
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The distribution of aaa is actually equivalent to the joint distribution of (X̄�aaa, Laaa), since
(X̄, L�) is an invertible I × I matrix. Hence, we derive the following factorization

p(β,aaa | yyy,XXX) = p(β, X̄�aaa | yyy,XXX)× p(Laaa | yyy,XXX). (3.3)

We shall also deduce the following identities

p [β(s+ 1) | aaa(s), yyy,XXX] =p
[
β(s+ 1) | X̄�aaa(s), yyy,XXX

]
, (3.4)

p
[
X̄�aaa(s+ 1), Laaa(s) | β(s), yyy,XXX]

=p
[
X̄�aaa(s+ 1) | β(s), yyy,XXX]

p [Laaa(s) | yyy,XXX] , (3.5)

which imply the multigrid decomposition. Again, convergence rate ρ is controlled by
the convergence rate of {β(t), X̄�aaa(t)}. The joint target distribution of {β, X̄�aaa} is

p(β, X̄�aaa | yyy,XXX) ∝ exp

⎡
⎣−1

2
β�

⎛
⎝Σ−1

0 +
∑
i,j

X�
ijXijσ

−2
e

⎞
⎠β − J

σ2
e

aaa�X̄β

⎤
⎦

exp

[
−1

2

(
1

σ2
a

+
J

σ2
e

)
aaa�X̄

(
X̄�X̄

)−1
X̄�aaa

]

By Lemma 2.1, the L2 convergence rate is equal to the squared maximal correlation
between β and X̄�aaa.

Remark 1. If we set p = 1, Xij ≡ 1, then X̄i = 1, X̄�X̄ = I and
∑

ij X
�
ijXij = IJ . By

placing a flat prior on μ, we just replace Σ−1
0 with 0 in (3.2). Henceforth, Theorem 3.1

reduces to ρ = Jσ−2
e /(σ−2

a + Jσ−2
e ), in this case.

Remark 2. Theorem 3.1 implies that p summary statistics X̄�aaa of the lower level param-
eters are sufficient for the inference of upper level parameters β, with Laaa marginalized
out.

Remark 3. Further note that (3.2) is invariant if the variance terms are scaled simulta-
neously. Specifically, (3.2) remains the same if we replace

(
Σ0, σ

2
a, σ

2
e

)
by

(
rΣ0, rσ

2
a, rσ

2
e

)
where r > 0. Moreover, another common rotation invariance in Bayesian linear regres-
sion applies to our result: (3.2) remains the same if the pair (Σ0, Xij) is replaced with(
R�Σ0R,RXij

)
, where R is a p× p orthogonal matrix.

We further note that the multigrid decomposition techniques do not naturally extend
to more complex structures. Roughly speaking, both nested structures (such as yijk =
X�

ijkβ + ai + bij + εijk) and crossed structures (such as yijk = X�
ijkβ + ai + bj + εijk)

would bring in a new cross term “aaa�bbb”, which is hard to handle. Can we still obtain an
elegant decomposition for these models?

Indeed, many researchers have studied the general linear mixed-effects model:

y = X�β + Z�u+ ε, (3.6)

where, in the first part, β is common to all individuals as in a typical linear regression
framework, and u represents random effects (e.g., Z can be dummy variables). For exam-
ple, if Z represents one categorical variable with I categories (using a dummy variable
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representation), this general form (3.6) reduces to the simple model (3.1) considered
before.

Model (3.6) with arbitrary Z, however, has an identical mathematical representation
as a standard linear regression model (i.e., one can simply treat (X,Z) as covariates)
although the prior distributions for β and u may differ substantially. Compared with
the models handled in Z&R, a key thing we have lost in the general model (3.6) seems
to be the strong symmetry that can be used to decompose the involved variables into
meaningful levels. A curious question is: how far we can push so that we can still have
certain meaningful decomposition?

3.2 Implications for general linear regression models

Linear model formulation of two-level hierarchical model

We can recast the multigrid decomposition of Z&R for both centering and non-centering
parameterizations of model (1.1) in the context of general Bayesian linear regression via
covariate orthogonalization.

Non-centering parametrization By setting β = (a1, · · · , aI)� and

y = (y11, y12, · · · , y1I , y21, · · · , yIJ )� ∈ R
IJ×1, X = (II ⊗ 1J)

� (Kronecker product),
(3.7)

the simple linear model y = μ1IJ +X�β + ε is equivalent to model (1.1). The decom-
position can be seen as imposing a linear transformation by replacing β with Aβ, where
the first row of A is 1√

I
1�
I and A is I × I orthogonal. In the following, we omit the

terms involving y when dealing with the posterior, cause these terms do not affect the
covariance of unknown parameters. With flat prior on μ and independent N (0, 1/τa) on
each ai, the posterior is

p(β, μ | y,X) ∝ exp

(
−1

2
β�(τeXX� + τaI)β − τeμ1

�
IJX

�β − IJτe
2

μ2

)

=exp

(
−1

2
(Aβ)�(τeAXX�A� + τaI)(Aβ)− τeμ[Aβ]1 − IJτe

2
μ2

)
.

Moreover, [AXX�A�]i1 = [AXX�A�]1i = 0 for any i ≥ 2, which means that the first
column of X�A� is orthogonal to the other columns. Thus, (μ, [Aβ]1) and [Aβ]2:I are
independent a posteriori. The first component corresponds to (μ, ā) and the latter one is
a representation of the residual δa. The multigrid decomposition is then built upon this
orthogonalization. To investigate the potential of this orthogonalization-based view, we
consider the following general linear regression model.

Centering parametrization Model (1.1) can also be written as

yij ∼ N (αi, 1/τe), αi ∼ N (μ, 1/τa), i ∈ [1 : I], j ∈ [1 : J ]. (3.8)
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Set y, X, and β exactly the same way as (3.7), we have an equivalent model:

y = X�β + ε, β ∼ N (μ1I , 1/τaII), ε ∼ N (0, 1/τeIIJ). (3.9)

Intuitively, we use a new prior on β with a latent variable μ. With flat prior on μ, the
posterior is

p(β, μ | y,X) ∝ exp

[
−1

2
β� (

τeXX� + τaI
)
β + τaμ1

�
I β − Iτa

2
μ2

]
.

We can apply the same linear transformation A as before.

Extension to general linear models

Model LM. Suppose X1 ∈ R
p1×n, X2 ∈ R

p2×n are two sets of covariates and consider

y = X�
1 β1 +X�

2 β2 + ε, (3.10)

where βi ∈ R
pi , (i = 1, 2) are unknown coefficients. Error ε ∈ R

n is modeled as i.i.d.
N (0, 1/τe). Independent priors N (0, 1/τ1Ip1) and N (0, 1/τ2Ip2) are imposed on β1 and
β2 respectively.

Assume r = rank(X1X
�
2 ), we conduct SVD to find Bi ∈ R

r×pi , (i = 1, 2) with
orthonormal rows and diagonal Q = diag(λ1, · · · , λr) such that

X1X
�
2 = B�

1 QB2. (3.11)

By constructing orthogonal matrices Ai ∈ R
pi×pi , i = 1, 2, as completions of B1 and

B2, respectively, i.e., Ai and Bi share the same r first rows, we have the following result.

Theorem 3.2. Consider a Markov chain {β1(s), β2(s)} generated by a systematic Gibbs
sampler alternating between conditional sampling [β1 | β2] and [β2 | β1]. Define θi =(
θ
(1)
i , · · · , θ(pi)

i

)�
= A1βi. Then, the evolution of {θ1(s), θ2(s)} is equivalent to that of

{β1(s), β2(s)}. If the first r columns of X�
i A�

i are orthogonal to the rest pi− r columns

[X�
i A�

i ]1:n,k1 ⊥ [X�
i A�

i ]1:n,k2 , ∀k1 ≤ r < k2, (3.12)

the evolutions of {θ(1:r)1 (s), θ
(1:r)
2 (s)}, {θ((r+1):p1)

1 (s)} and {θ((r+1):p2)
2 (s)} are indepen-

dent.

Proof. We start by writing out the joint posterior

p(β | y,X) ∝ exp

[
−τeβ

�
1 X1X

�
2 β2 − 1

2

2∑
i=1

β�
i

(
τeXiX

�
i + τiIpi

)
βi

]
(3.13)

= exp

[
−τe

(
θ
(1:r)
1

)�
Qθ

(1:r)
2 − 1

2

2∑
i=1

θ�i
(
τeA

�
i XiX

�
i Ai + τiIpi

)
θi

]
(3.14)
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= p
(
θ
(1:r)
1 , θ

(1:r)
2 | y,X

) 2∏
i=1

p
(
θ
((r+1):pi)
i | y,X

)
, (3.15)

where the last equality follows from the condition (3.12). Based on these identities,

p
(
θ
((r+1):p1)
1 (s+ 1) | y,X, θ2(s)

)
= p

(
θ
((r+1):p1)
1 (s+ 1) | y,X

)
,

p
(
θ
((r+1):p2)
2 (s+ 1) | y,X, θ1(s+ 1)

)
= p

(
θ
((r+1):p2)
2 (s+ 1) | y,X

)
,

p
(
θ
(1:r)
1 (s+ 1) | y,X, θ2(s)

)
= p

(
θ
(1:r)
1 (s+ 1) | y,X, θ

(1:r)
2 (s)

)
,

p
(
θ
(1:r)
2 (s+ 1) | y,X, θ1(s+ 1)

)
= p

(
θ
(1:r)
2 (s+ 1) | y,X, θ

(1:r)
1 (s+ 1)

)
,

the conclusion of the theorem is thus proved.

One implication of the result is that the multigrid decomposition developed for (1.1)
is non-trivial in the sense that condition (3.12) must be imposed on the covariate matrix.
Recall that we have written out the dummy variables X explicitly for (1.1), and thus
verified this condition implicitly for the linear model form of (1.1).

Centering for linear models Model (3.10) with its priors can be rewritten as

y = X�
2 β2 + ε, β2 ∼ N (Mβ1, 1/τ2Ip2), β1 ∼ N (0, 1/τ1Ip1), ε ∼ N (0, 1/τeIn),

(3.16)

to mimic the centering parametrization, where M ∈ R
p2×p1 such that X�

1 = X�
2 M ,1

assuming that M exists.

Now the posterior distribution is

p(β | y,X) ∝ exp

[
τ2β

�
1 M�β2 − 1

2
β�
2

(
τeX2X

�
2 + τ2Ip2

)
β2

]
(3.17)

× exp

[
−1

2
β�
1

(
τ2M

�M + τ1Ip1

)
β1

]
. (3.18)

Let the SVD of M be
M = B�

1 QB2, (3.19)

where Q ∈ R
r, r = rank(M). Again we denote the complement of Bi as Ai. Then we

require the following condition

[X�
2 A�

2 ]1:n,k1 ⊥ [X�
2 A�

2 ]1:n,k2 , ∀k1 ≤ r < k2. (3.20)

to validate a similar multigrid decomposition. Again, this condition automatically holds
for the two-level hierarchical model, but do not hold in general.

1For the simplest model (1.1), we actually use M = 1I .
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3.3 Thoughts and speculations

In both the non-centering and centering formulations, conditions (3.12) and (3.20) most
likely do not hold for an arbitrary design matrix X. Thus, a multigrid decomposition
similar to that of Z&R seems difficult to come by. Some natural questions arise: Does
a useful multigrid decomposition exist for a general linear regression model in some
other ways? If so, what would be a correct construction? If not, how can we gain more
insights on the Gibbs sampler for a general Bayesian regression model (3.10)? Can we
find a good matrix M so that the convergence rate of the Gibbs sampler corresponding
to (3.17) is faster than that based on (3.13)? What if the Gibbs sampler has more than
two components?

Besides the Gaussian prior we have studied here, many other prior distributions
have been proposed to accommodate both sparsity and biases in coefficient estimations,
including spike-and-slab priors (Mitchell and Beauchamp, 1988), horseshoe priors (Car-
valho et al., 2010), neuronized priors (Shin and Liu, 2021), and so on. Can one extend
Z&R’s and our results to accommodate other priors that are more appropriate for high-
dimensional problems? The Gaussian spike-and-slab prior may be a most likely solvable
case?

4 Partial centering for improving convergence

4.1 Partial-centering for two-level models

Partial centering provides a continuous trade-off between centering and non-centering.
With these parametrizations (e.g., centering, non-centering, partial centering) sharing
almost the same mathematical formulation, can we derive the most efficient algorithm
by optimizing over various parametrizations including not only parametrizations covered
by Z&R, but also those dictating partial centering?

Inspired by an example in Liu and Wu (1999) to demonstrate the power of parameter
expansion, Papaspiliopoulos and Roberts (2003) proposed the following partial centering
parametrization in by introducing a constant 0 ≤ A ≤ 1:

Model S2 (Symmetric two-level model with partial centering parametrization). Sup-
pose

yij ∼ N ((1−A)μ+ ai, σ
2
e), ai ∼ N (Aμ, σ2

a), i ∈ [1 : I], j ∈ [1 : J ], (4.1)

where yij , μ, aiinR. Same as before, a flat prior is imposed on μ.

A similar standard Gibbs sampler as GS(0) and GS(1) can be easily implemented.
With A = 0, (4.1) reduces to non-centering parametrization; whereas with A = 1, (4.1)
reduces to centering parametrization. For a general A, Papaspiliopoulos and Roberts
(2003) also offered the convergence rate of the standard Gibbs sampler as

ρA =

(
Aσ−2

a − (1−A)Jσ−2
e

)2(
σ−2
a + Jσ−2

e

) (
A2σ−2

a + (1−A)2σ−2
e

) . (4.2)
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One surprising fact is that ρA∗ = 0 for A∗ = Jσ−2
e /(σ−2

a + Jσ−2
e ), implying that we

achieve exact sampling in one step via this optimal partial centering parameterization.
Note that this A∗ also results in the fact that μ and ā are independent a posteriori.

4.2 Partial-centering for three-level models

It is of great interest to extend this flexible parametrization scheme to other models.
We here provide an illustration via a slightly more complex model.

Model S3 (Symmetric three-level model with partial centering parametrization).
With constants A,B,C ∈ R, suppose

yijk ∼ N ((1−A− C)μ+ (1−B)ai + bij , σ
2
e),

bij ∼ N (Bai + Cμ, σ2
b ), ai ∼ N (Aμ, σ2

a), (4.3)

where yij , μ, ai, εij ∈ R and i, j, k range from 1 to I, J,K respectively. Same as before,
a flat prior is imposed on μ.

Sampler GS (A,B,C). Initialize μ(0), aaa(0), bbb(0) and then iterate

1. Sample μ(s+ 1) from p(μ | aaa(s), bbb(s), yyy);
2. Sample ai(s+ 1) from p(ai | μ(s+ 1), bbb(s), yyy) for all i;

3. Sample bij(s+ 1) from p(bij | μ(s+ 1), aaa(s+ 1), yyy) for all i, j.

If we select (A,B,C) from {0, 1}2 × {0}, (4.3) reduces to the four parametrizations
considered in Sections 2 and 3 of Z&R, respectively. Defining hierarchical models as
trees, Section 7 of Z&R develop an abstract theory to deal with various parametriza-
tions including the partial ones here, but they do not provide more insights for cases
(A,B,C) /∈ {0, 1}2 × {0}. Let τa = Iσ−2

a , τb = IJσ−2
b , τe = IJKσ−2

e be the rescaled
precisions. We have the following result.

Theorem 4.1. If (τb + τe)
2τa + τbτe(τb − τe) �= 0, the prescribed Gibbs sampler can

achieve exact sampling in one step via suitable scalings of A,B,C.

Proof. First, we define δβββ =
(
δ(0)βββ, δ(1)βββ, δ(2)βββ

)
exactly the same as equation (3.1) in

Z&R, where δ(0)βββ =
(
μ, ā, b̄

)
, ā =

∑
i ai/I, b̄ =

∑
ij bij/IJ . Apply Theorem 9 in Z&R

to conclude that {δ(0)βββ}, {δ(1)βββ}, {δ(2)βββ} evolve independently for the prescribed Gibbs
sampler.

Then, applying Theorem 11 of Z&R, we derive the following ordering

ρ(A,B,C) = ρ
(
δ(0)βββ

)
≥ ρ

(
δ(1)βββ

)
≥ ρ

(
δ(2)βββ

)
= 0.

At last, we have to deal with the posterior distribution of δ(0)βββ, which is a 3-dim
Gaussian. The evolution of {δ(0)βββ(t)} is simply characterized by a systematic scan Gibbs
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sampler, scanning according to μ → ā → b̄ → μ. By Liu et al. (1995), to obtain the
convergence rate of a systematic scan Gibbs sampler, it suffices to know about pairwise
correlations

r1 = corr(μ, ā) =
BCτb +Aτa − (1−A− C)(1−B)τe√

C2τb +A2τa + (1−A− C)2τe
√
B2τb + τa + (1−B)2τe

,

r2 = corr(μ, b̄) =
Cτb − (1−A− C)τe√

C2τb +A2τa + (1−A− C)2τe
√
τb + τe

,

r3 = corr(ā, b̄) =
Bτb − (1−B)τe√

τb + τe
√
B2τb + τa + (1−B)2τe

.

By Liu et al. (1995) and Roberts and Sahu (1997), we find that ρ(A∗,B∗,C∗) = 0 for

A∗ =
τbτe(τb − τe)

(τb + τe)2τa + τbτe(τb − τe)
, B∗ =

τe
τb + τe

, C∗ =
τaτe(τb + τe)

(τb + τe)2τa + τbτe(τb − τe)
,

due to vanishing correlations r1 = r2 = r3 = 0.

An analytical formula is available for the convergence rate of the standard Gibbs
sampler GS(A,B,C) even for general A,B,C. But this general formula is a little com-
plicated and out of the scope of this article. We believe that this formula may help us
understand the experimental phase transitions depicted in Figure 4 of Z&R, and fur-
ther enhance our understanding towards different parametrizations. A direct question is
whether exact sampling in one step is possible for less symmetric 2, 3-level hierarchical
models.

We end this section by raising more questions. Does the partial centering trick gener-
alize to more complex structures with more confounding factors and deeper hierarchies?
How do we develop partial centering for vector hierarchical models discussed in Section 2
to design a better Gibbs sampler? Can we go beyond Gaussian priors to perform it in
other cases, like the Poisson example in Section 5 of Z&R?

5 Concluding remarks

Although Z&R’s multigrid decomposition has little to do with the classical multigrid
idea for both numerical PDEs and Monte Carlo simulations, their decomposition pro-
vides a key insight to the understanding of the convergence of Gibbs sampling for
Bayesian hierarchical models. This insight naturally leads to a constructive strategy
for designing better Gibbs sampling algorithms via reparametrization for such models.
Our article centers on the possibilities of extending this decomposition strategy to more
complex, yet structured, Bayesian models, and to include more options (e.g., parameter
expansion) for algorithmic optimization. We specifically analyzed a few concrete exam-
ples, one in each direction. Our results are both encouraging and challenge-revealing.
On one hand, we have obtained some analytical expressions of the convergence rates
of various Gibbs samplers, from which we may derive an optimal parameterization; on
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the other hand, we find that situations become much more complex and the optimal
parameterization may not exist or computable in high-dimensional cases, such as vector
hierarchical models and mixed effects models. In summary, we find that the decomposi-
tion framework established by Z&R is both elegant and practical, and that much future
endeavor is warranted for exploring and exploiting their framework.

References
Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010). “The horseshoe estimator for
sparse signals.” Biometrika, 97(2): 465–480. MR2650751. doi: https://doi.org/10.
1093/biomet/asq017. 1367

Gao, K. and Owen, A. B. (2019). “Estimation and inference for very large linear mixed
effects models.” Statist. Sinica. MR4260743. doi: https://doi.org/10.5705/ss.

202018.0029. 1361

Goodman, J. and Sokal, A. D. (1989). “Multigrid Monte Carlo method. conceptual
foundations.” Physical Review D , 40(6): 2035. 1357

Liu, J. S. and Sabatti, C. (2000). “Generalised Gibbs sampler and multigrid Monte Carlo
for Bayesian computation.” Biometrika, 87(2): 353–369. MR1782484. doi: https://
doi.org/10.1093/biomet/87.2.353. 1357

Liu, J. S., Wong, W. H., and Kong, A. (1994). “Covariance structure of the Gibbs sam-
pler with applications to the comparisons of estimators and augmentation schemes.”
Biometrika, 81(1): 27–40. MR1279653. doi: https://doi.org/10.1093/biomet/81.
1.27. 1359

Liu, J. S., Wong, W. H., and Kong, A. (1995). “Covariance structure and convergence
rate of the Gibbs sampler with various scans.” Journal of the Royal Statistical Society:
Series B (Methodological), 57(1): 157–169. MR1210432. 1369

Liu, J. S. and Wu, Y. N. (1999). “Parameter expansion for data augmentation.”
Journal of the American Statistical Association, 94(448): 1264–1274. MR1731488.
doi: https://doi.org/10.2307/2669940. 1367

McCormick, S. F. (1987). Multigrid methods. SIAM. MR0972752. doi: https://doi.
org/10.1137/1.9781611971057. 1357

Mitchell, T. J. and Beauchamp, J. J. (1988). “Bayesian variable selection in linear
regression.” Journal of the American Statistical Association, 83(404): 1023–1032.
MR0997578. 1367

Papaspiliopoulos, O. and Roberts, G. O. (2003). “Non-centered parameterisations for
hierarchical models and data augmentation.” In Bayesian Statistics 7: Proceedings
of the Seventh Valencia International Meeting , volume 307. Oxford University Press,
USA. MR2003180. 1357, 1360, 1367

Papaspiliopoulos, O., Roberts, G. O., and Zanella, G. (2020). “Scalable infer-
ence for crossed random effects models.” Biometrika, 107(1): 25–40. MR4064138.
doi: https://doi.org/10.1093/biomet/asz058. 1357, 1359



X. Yang and J. S. Liu 1371

Roberts, G. O. and Sahu, S. K. (1997). “Updating schemes, correlation structure, block-
ing and parameterization for the Gibbs sampler.” Journal of the Royal Statistical So-
ciety: Series B (Statistical Methodology), 59(2): 291–317. MR1440584. doi: https://
doi.org/10.1111/1467-9868.00070. 1359, 1369

Shin, M. and Liu, J. S. (2021). “Neuronized priors for Bayesian sparse linear regression.”
Journal of the American Statistical Association, (just-accepted): 1–43. MR3375874.
doi: https://doi.org/10.1214/15-AOS1334. 1367

Zanella, G. and Roberts, G. (2021). “Multilevel linear models, Gibbs samplers and
multigrid decompositions.” Bayesian Analysis . 1357


