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Abstract—It is time-consuming and expensive to take
high-quality or high-resolution electron microscopy (EM)
and fluorescence microscopy (FM) images. Taking these
images could be even invasive to samples and may dam-
age certain subtleties in the samples after long or intense
exposures, often necessary for achieving high-quality or
high-resolution in the first place. Advances in deep learning
enable us to perform various types of microscopy image-
to-image transformation tasks such as image denoising,
super-resolution, and segmentation that computationally
produce high-quality images from the physically acquired
low-quality ones. When training image-to-image transfor-
mation models on pairs of experimentally acquired mi-
croscopy images, prior models suffer from performance
loss due to their inability to capture inter-image dependen-
cies and common features shared among images. Existing
methods that take advantage of shared features in image
classification tasks cannot be properly applied to image
transformation tasks because they fail to preserve the
equivariance property under spatial permutations, some-
thing essential in image-to-image transformation. To ad-
dress these limitations, we propose the augmented equiv-
ariant attention networks (AEANets) with better capability
to capture inter-image dependencies, while preserving the
equivariance property. The proposed AEANets captures
inter-image dependencies and shared features via two aug-
mentations on the attention mechanism, which are the
shared references and the batch-aware attention during
training. We theoretically derive the equivariance property
of the proposed augmented attention model and exper-
imentally demonstrate its consistent superiority in both
quantitative and visual results over the baseline methods.

Index Terms— Deep learning, attention networks, equiv-
ariance, microscopy images, image transformation, deep
denoising, super-resolution, image transformation

. INTRODUCTION

Icroscopy images of high quality in terms of resolution
or noise level are desired to conduct research in various
fields such as biomedical science and nanomaterial. However,
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the capture of high-quality microscopy images is usually
at a high cost in budget and time, and may be infeasible
under certain circumstances. This is especially critical for
the observation of temporal dynamic or processes of live
cells and organics, where exposure time and intensity enable
more precise imaging but may reduce the temporal resolution
and be harmful to the live cells [1]. To overcome these
drawbacks but yet to produce higher quality images, studies
such as microscopy image super-resolution or denoising, aims
at computationally producing high-quality microscopy images
from the physically acquired low-quality images.

Deep learning approaches consider the microscopy image
super-resolution and denoising as image-to-image transforma-
tion tasks, in the sense that pairs of images, of the same
size but different noise levels or resolutions, are used to
train a deep neural network. One can then apply the trained
deep neural network to the low-quality images for predicting
their high-quality counterparts. Deep learning approaches have
shown success in microscopy image transformation applica-
tions on both electron microscopy (EM) and fluorescence
microscopy (FM) images, such as content-aware denosing [1],
virtual refocusing [2], and super-resolution [3]—[5]. In partic-
ular, deep learning approaches that involve the self-attention
mechanism [6] achieve even more promising performance on
microscopy image transformation tasks, benefitting from its
capability to perform non-local information aggregations and
capture long-range dependencies [7].

Recently, several studies [8]-[10] have shown or indicated
the importance of capturing the inter-images dependencies and
shared features among images, due to the uniqueness of mi-
croscopy images. For example, [8] contemplate the question of
what training strategy is the best for their EM super-resolution
model and compare two strategies. The pooled-training uses
all training image-pairs to train a single model and perform
prediction on all testing areas, whereas the self-training trains
a dedicated model for each unique testing area with the train-
ing image-pair from the same samples of the corresponding
training area. For each model trained, the self-training uses
far fewer image pairs than those used in pooled-training, yet
[8] showed that the models trained with self-training generally
yield higher performance than pooled-training, which on the
surface appears to contradict the conventional wisdom in deep
learning that a model trained with more data should generally
perform no worse than that with fewer data. We attribute
the reduced performance of pooled-training to the models’
inability to fully utilize the additional information provided in
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pooled-training. More importantly, we observe that this lack
of capability is not unique to the deep learning methods tested
by [8], but rather common among most existing deep learning
methods. The methods are inadequate in terms of capturing
inter-image dependencies and shared features among training
image-pairs, which are prerequisite for ensuring the pooled-
training strategy to do better.

To address the above issue, an existing attention-based
approach has been proposed to endow neural networks with the
capability to capture shared features among training instances.
That is, to include the attention mechanism with learnable
query as an augmentation to the original self-attention mech-
anism. Such an approach has been explored and commonly
used in natural language processing (NLP) [11] and graph
neural networks (GNNs) [12]. In the image domain, [9], [10]
have also attempted to include the attention mechanism with
learnable query to capture the inter-image dependencies and
the common features shared among images.

However, we argue that the attention mechanism with
learnable query can be inappropriate in the image-to-image
transformation tasks, leading to potential performance reduc-
tion of the model due to the lacking of an essential property,
the spatially permutation equivariant. When we perform spatial
permutation such as rotation to an input image, the output
image is desired to be permuted accordingly. For typical
convolution-based deep models, such an equivariant property
can be naturally learned or enforced by performing data aug-
mentation such as rotation and flipping. However, involving
the attention mechanism with learnable query makes such
a property unsatisfied in an image-to-image transformation
model and unable to be learned, unless constant values are
output by the attention operator at all spatial locations. Con-
sequently, although shared features can be captured, image-to-
image transformation models involving the attention mecha-
nism with learnable query suffers from performance loss due
to the lack of permutation equivariance.

Motivated by both the desire to utilize inter-image depen-
dencies and overcome the limitations of attention mechanisms
with learnable query, we propose the augmented attention
models with two components, the attention mechanism with
shared references and the batch-aware attention applied in
training. The resulting new attention model is referred to as
the Augmented Equivariant Attention Networks (AEANets),
whose attention block preserves the equivariance to any spatial
permutations and can capture the inter-image dependencies
and common features among images. We conduct experiments
to evaluate the performance and effectiveness of the proposed
AEANets. Quantitative results show that our AEANets signif-
icantly outperform the baselines on three microscopy image
transformation tasks, i.e., super-resolution, denoising, projec-
tion, and segmentation, for both various types of biomedical
images. We also demonstrate visually that AEANets produce
better 3D-to-2D projection and super-resolution images com-
pared to the respective baseline methods.

[I. PRELIMINARIES AND RELATED STUDIES

In this section, we introduce the self-attention mechanism
and related studies that apply the self-attention mechanism or

its variations with learned query.

A. The Self-Attention Mechanism

The self-attention mechanism [6] has been widely applied
to deep learning models in natural language processing (NLP)
[13] and computer vision [14]. Compared to local operations
such as convolutions that can only aggregate information
locally, the self-attention mechanism is able to incorporate
global information. Given an input feature map, the self-
attention mechanism computes the relevance between every
two locations on the feature map and aggregations information
from one location to another according to the relevance. The
self-attention mechanism hence endows neural networks the
capability to capture long-range dependencies.

The self-attention mechanism can be applied to feature maps
X € Re1> %86 X¢ with any k > 1 where k denotes the number
of spatial dimensions, s; denotes the spatial size along the i-th
dimension and ¢ denotes the number of features. For example,
in a 2D image case, the self-attention mechanism is applied on
the input X € R*"*¢ where w and h denote the width and
height of the image. Without loss of generality, we describe
how the self-attention operator is performed in the 1D case
(k = 1), where there is only one spatial dimension. For higher-
dimensional cases, the spatial dimensions can be unfolded into
one dimension s = s1S2 - - - 5} before being given to the self-
attention operator. The output of the self-attention operator can
then be folded back to the original shape as the final output.

In the 1D case, the self-attention operator takes as input
a matrix X € R**¢ representing the features of a sequence,
where s denotes its spatial dimension (i.e., the length of the
sequence or the spatial dimensions of unfolded images) and
c denotes its feature dimension. The self-attention operator
firstly computes three matrices, i.e., the query Q, the key K
and the value V', by performing convolutions with kernel size
of 1, to the input matrix X . Formally, @ = ¢(X) € Rs*<,
K = k(X) € R*? and V = v(X) € R**, where
q(),k(-),v(-) are three independent projections. Then, the
output Y of the attention operator is computed by

Y = Normalize(Q - K7) -V € R¥*“2, (1)

The function Normalize(-) performs a normalization on the
attention map @Q - K7 so that the values on the output Y will
not scale with the spatial size. Commonly used Normalize(-)
functions includes Softmax(-) and the division by the spatial
size of K, i.e.,

Normalize(Q - KT) = %(Q -KT). 2)

In this work, we use the normalization function in Equa-
tion (2). For clear comparisons, we use this type of nor-
malization when describing all variations of the self-attention
mechanisms in the rest of the paper.

Note that although the spatial sizes of Q, K, V are the same
in the self-attention mechanism, the spatial size s of the output
is determined by the spatial size of query Q. In addition, the
feature size cy of the output is determined by the feature size
of value V.
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B. Attention Mechanism with Learned Query

A common variation of the attention mechanism is to
directly learn the values in the query matrix Q. In this
case, the query @ does not depend on the input X. The
attention mechanism with a learnable query is commonly used
in NLP [11] and graph neural networks (GNNs) [12]. In certain
domains such as biomedical image and nanoparticles, different
images from one dataset usually share similar patterns and
common features, such as microscopy images captured from
different parts of tissue or tissues of the same type. The power
of the learnable query has also been explored by previous
studies in the biomedical image domain [9], [10]. In these
cases, such a variation of the attention mechanism allows the
networks to capture common features from all input images
during training since the query is independent of the input and
is shared by all input images.

Instead of computing the query from X, the attention
mechanism can learn a matrix Q € R®*“1 independently
of X. The other computations in the attention mechanism
with learnable query is then the same as the self-attention
mechanism. Formally, with K = K(X) € R¥*c V =
V(X) € R**°2 and a directly learned matrix Q € R¥«*¢1,

Y = Normalize(Q - KT) -V € RS«*¢2, (3)

Since the spatial size of the output Y is determined by the
spatial size of @, the output size of the attention mechanism
with learned query is no longer related to the spatial size of
X. As a result, when the attention mechanism with learned
query is included in the neural network, the size of the output
of the network is usually fixed.

[1l. MODEL AUGMENTATION WITH SHARED REFERENCES

Previous studies [9], [10] have explored different approaches
to include a learnable query in the attention operator to
capture common features among different images. Such at-
tention operators with learnable query have been shown to
bring a promising performance boost, especially in NLP and
image classification tasks. However, the attention operators
with learnable query can, on the contrary, limit the perfor-
mance of models for image-to-image transformation tasks
such as image super-resolution, as such operators are not able
to preserve an essential property required by the image-to-
image transformation models, i.e., the equivariance to spatial
permutations. Note that such properties are not changed by
increasing network depth, modifying architectures other then
the attention operator, or simply applying data augmentations.
Therefore, the issue cannot be addressed by these approaches.

In this section, we analyze the equivariance property in sub-
section III-A, and show that such property is violated when the
attention mechanism includes learned query in subsection III-
A. Based on our analysis, we propose in subsection III-C
the attention operator with shared references that are able to
capture common features among images without violating the
equivariance property.

A. Equivariance and Invariance to Spatial Permutations

The spatial permutation includes a group of transformations
to be applied to images. It is performed by permuting the
spatial locations of any number of pixels or voxels in an
image. Some common examples of spatial permutation include
the rotation, the flipping and the shifting of an image. The
equivariance to the spatial permutation is a property of an
operator or a model such that applying a spatial permutation
to the input of the operator or the model results in an
equivalent effect of applying the same spatial permutation
to the output. On the contrary, if an operator is invariant to
spatial permutations, then its output remains unchanged when
permuting the input. We provide formal definitions of the
spatial permutation, the equivariance and invariance property
below.

Definition 1: Consider an image or feature map X &
R#*¢, where s denotes the spatial dimension and ¢ denotes
the number of features. Let w denote a permutation of s
elements. We call a transformation 7, : R%*¢ — RS%¢ a
spatial permutation if 7,(X) = P.X, where P, € R%**
denotes the permutation matrix associated with 7, defined as
Py = [exq), €x2), - ,eﬂ(s)]T, and e; is a one-hot vector
of length s with its i-th element being 1.

Definition 2: We call an operator A : R%*¢1 — R5%2 to be
spatially permutation equivariant if 7, (A(X)) = A(7-(X))
for any X and any spatial permutation 7. In addition, an
operator A : R®*¢1 — R5*2 ig gpatially permutation invariant
if A(T-(X)) = A(X) for any X and any spatial permutation
Tr.
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Fig. 1. Examples that compare the invariance property with the equiv-
ariance property. Tasks such as classification require spatial permuta-
tion (e.g., rotation) invariant models, where applying the permutation to
the input does not change the output of the model. On the contrary, the
image transformation tasks require spatial permutation (e.g., rotation)
equivariant models, where applying the permutation to the input leads
to the same permutation applied to the output of the model.

We argue that while the image classification models could
benefit from the invariance to spatial permutations according to
previous studies [15], [16], and an image-to-image transforma-
tion model requires the equivariance to spatial permutations,
as shown in Figure 1. Detailed discussions about the properties
are provided in Appendix L.

B. Spatial Permutation Properties of Attention Operators

We now analyze the properties of the two types of attention
operators regarding the spatial permutation using the same
notations as in Section II-A and Section II-B. Intuitively, when
a spatial permutation is performed on the input of an attention
operator, the corresponding permutation made on the key K
and the value V' does not result in any difference in the output,
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as long as the same permutation is applied to both K and V.
In fact, the order of spatial locations on the output feature map
is determined by the spatial locations on the query ). Hence
the attention operator is permutation equivariant as long as Q
is obtained from X.

For simplicity, we denote A a self-attention operator and
Ag an attention operator with learned query. The outputs Y of
the two operators are therefore equal to A4(X) and Ag(X).
We show that the following theorem holds.

Theorem 1: A self-attention operator Ag is permutation
equivariant while an attention operator with learned query Ag
is permutation invariant. In particular, letting X denote the
input matrix and 7 denotes any spatial permutation, we have

As(Tr(X)) = T (As(X)),

and
AQ(To(X)) = Ag(X).

The proof of Theorem 1 is provided in Appendix II. Note
that we prove the above theorem with the normalization of
division by spatial size of K. The theorem still holds when
the Softmax is applied for normalization, the proof of which
can be found in [17].

C. Augmented Attention with Shared References

We have shown that an image-to-image transformation
model requires equivariance to spatial permutations while the
attention operator with learned query is permutation invariant.
Although the attention operator with learned query endows
models the capability to capture common features among
images, the invariance property makes it inappropriate to be
applied in image-to-image transformation tasks. In order to
endow the attention operator the capability to capture com-
mon features among images without losing the equivariance
property, we propose an attention operator augmented with
learnable shared references, as opposed to shared query. The
shared references are represented by a matrix consisting of
learnable variables and are augmented to the key and value
matrices along the spatial dimensions.

To be concrete, given the flattened input feature map X €
R®h>¢ where the width w and height h are flattened into one
dimension and ¢ is the number of features, the shared refer-
ences are represented by a learnable matrix R € R"*¢, where
r is the size of the shared references as a hyper-parameter.
The learned shared references is projected by k(-) and v(-)
into the same space of key and value. The computation of an
attention operator augmented with shared references Ag can
be formally expressed as

X = { R
X
1

r 4+ wh

where k7 (X) denotes the transposed key k(X). Note that
the key K = k(X) and value V = v(X) are computed from
X, while the query Q is computed from X. The operator
with shared references is illustrated in Figure 2. We now show

:| c R(r+wh) ><c,
“4)

Ar(X) = (a(X) - kT(X)) - v(X),

the property of the proposed attention operator Agr in the
following theorem.

Theorem 2: The proposed augmented attention operator
with shared references Ag is spatially permutation equivariant,
ie.,

Ar(TH(X)) = Ta (Ar(X)).

The proof of Theorem 2 is provided in Appendix III.

Compared with the original self-attention operators in which
the key and value matrices are fully based on the input, the
key and value of Ag contain additional information about
the features shared by all images in the dataset. The learning
process of the shared reference is to distill common features
from images in the entire training data. Each spatial location
on an input instance aggregates information not only globally
from the input instance itself, but also from the distilled
references shared by all the input images.

IV. MODEL AUGMENTATION WITH BATCH-AWARE
TRAINING

A common strategy to train a deep model is to feed a mini-
batch of images to the network at each training step. The mini-
batch is referred to as batch in the following paragraphs for
short. When a self-attention operator is included, the operator
processes the batch at an instance level. Given an input batch
of feature maps { X1, -, Xy}, where N is the batch size,
the self-attention operator computes the outputs individually
for each instance in the batch, ie., Y; = A (X;) for i =
1,---,N.

In the case where images in a dataset share similar patterns,
the performance of a deep model can further benefit by
incorporating cross-images dependencies. In this case, the
learning of such dependencies across images in a batch can
be of great importance. Due to the non-local property, the
attention operators can be extended from the instance level to
a batch level in order to learn the correlations across images
in a batch. Formally, we define an augmented batch-aware
operator Apqtcn such that

E:Abatch(Xi;Xh'" aXN)»i:L"' vN'

In this case, the computation of each output instance is aware
of the other instances in the current batch. In order to realize
such an augmentation, we propose a training strategy with this
batch-aware attention, where the key and value cover all the
images in the training batch. That is,

Apaten(Xi; X1, , X§) =
X3 X3
ok el ] ]
XN XN

1
Nuwh?

(&)

where k(-) and v(-) are the projections defined in the original
self-attention.

The proposed batch-aware attention aggregates information
from the entire batch based on the correlation across images
for each input location. Since each batch is uniformly sampled
from the entire dataset, the aggregation from batches can
estimate the information aggregation from the entire dataset.
The weights of the projections ¢(-), k(-),v(-) in batch-aware
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Fig. 2. Comparison between the original self-attention (top) and proposed attention operator with shared references (bottom). Given the flattened
input matrix X of shape [width X height, channels], the proposed attention operator train a reference matrix of shape [reference size, channels],
which is used to compute the key and value. The highlighted parts in the key and value are related to the shared references and the rest parts are
related to the input image. The spatial size of the output is the same as the spatial size of the query.

attention and the attention with shared references are shared
during training. The purpose of including the batch-aware
attention in training is to help the distill of shared references
and learn better projections in attention by using cross-image
dependencies. In our experiments, we empirically show that
additional performance improvements can be achieved by
including the augmented batch-aware attention in training.

V. AUGMENTED EQUIVARIANT ATTENTION NETWORKS
A. The Augmented Equivariant Attention Block

The proposed augmented equivariant attention block con-
sists of a branch for the attention operator Ar with shared
references and a branch for the batch-aware attention Apqtcr,.
In the attention block, the weights in each projection of
q(+),k(-) and v(-) are shared by the two attention operators
Agr and Apgicn- As the attention block performs differently
during training and prediction, we individually describe how
it works during training and prediction.

During training, both the Ar and Apqicn are used. Given
an input batch {Xi,---,Xy} to the block, the batch
is evenly split into two groups {Xi, -, X |n/2} and
{X|n/2j+1, -+, X} as the inputs to the two branches. The
outputs of the two branches are then merged back into a
complete batch. While the batched data in the two branches
are separate, the parameters of the two branches are shared.

Once the network is trained, the parameters in the two
operators are fixed and are used by the attention operation with
shared references during prediction. The batch-aware attention
is excluded during prediction since there is not necessarily a
batch input during prediction. In other words, the branch that
contains the batch-aware attention operator is disabled, and all
input data flow into the Ag branch. In spite of the exclusion
of the batch-aware attention, the existence of shared references
distilled from training images allows the model to still utilize
the dependencies between training images and the given input
image for prediction. Figure 3 illustrates how the block works
during training and prediction.

Two branches

Training 'éb;r’e}{;[e?g’h}; ””””””
__,;| Batch-augmented
Attention Op
N
N /
—> Self-Attention Op )—‘—»
Input |
Feature M: Shared OutPuts’
s ogs [N%"aefv%] Werw | NN
Prediction Shared References branch only
Shared
Input [?, h*w, c] Fieferences [2, h*w, c]
Feature Maps [’IOlqut‘wtz‘]
[?, h*w, c] . ’
Fig. 3.  The proposed attention block. During training (top), both

branches are used. The input batch are splitted into two groups and
passed to the two operators. The outputs of the two operators are then
merged together. For prediction (bottom), only the branch with shared
references is used.

B. Network Architecture

Recent studies have shown that the U-Net [18] architecture
achieves promising performance in many image transforma-
tion tasks, especially for microscopy images [9], [19], [20]. In
this work, we use the U-Net as the base network architecture
of our model. To be specific, we use a U-Net with a depth of
3 (including two down-sampling operations and up-sampling
operations, respectively). The skip-connections in the U-Net
are merged into the up-sampling path by concatenation.

To enable the use of the proposed augmented attention
within the U-Net architecture, we follow [7] to (1) include
a residual connection in the attention block by addition and
(2) substitute the bottom block in the original U-Net with our
proposed attention block. In addition, the proposed attention
blocks can be also applied as up-sampling blocks by perform-
ing up-sampling to the query @ [7]. The overall architecture



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

of the proposed network is shown in Appendix IV.

Note that although we use the augmented attention blocks
in the U-Net architecture in this study, it can be inserted into
any other deep architectures, thereby capturing non-local and
cross-image dependencies and the common features shared by
the entire dataset.

VI. EXPERIMENTAL RESULTS

We evaluate the proposed AEANet for different mi-
croscopy image transformation tasks on three microscopy
image datasets captured by different instruments. The datasets
are the Paired Electron Microscopy (EM) Image Dataset [8],
the Planaria dataset for 3D image denoising; and the Flywing
dataset for 3D image projection—the latter two datasets are
from CARE [1] and captured by fluorescence microscopy.
For all the three datasets, the low-quality images and their
high-quality counterparts are physically captured. For each
of the three datasets, we follow baseline methods for their
experimental settings including training-test split and basic
neural network configurations for fair comparisons. For all
microscopy image transformation tasks, we use two evaluation
metrics, the structural similarity index measure (SSIM) and
peak signal-to-noise ratio (PSNR), calculated between the
prediction and the high-quality images (ground truth). We
additionally conduct experiments on the 3D segmentation task
with brain Magnetic Resonance Images (MRI) to demonstrate
broader application scenarios for the proposed methods. We
summarize the implementation details and configurations of
our methods for individual experiments in Appendix V.

A. The Paired EM Image Dataset

We first train and evaluate our model on the publicly
available! paired EM images dataset [8]. The paired image
dataset consists of 22 pairs of LR and HR nanoimages of size
1,280 x 944. The LR and HR nanoimages are captured by
the same scanning electron microscope (SEM) at two different
magnifications. Specially, the HR image is two times zoomed-
in from the LR image and the field of view (FOV) of the
HR image is covered by the FOV of the LR image, i.e., the
HR image corresponds to a 1/4 sub-area of the LR image.
Several preprocessing steps are performed on the original LR
and HR images to build our dataset for training and testing. We
first perform the Random Sample Consensus [21] (RANSAC)
algorithm to register the HR images in the corresponding
areas in the LR images, based on the ORB features [22]. We
select the registered area in each LR image and use a bicubic
interpolation to upsample the selected LR subareas to be of
the same size of the HR images, i.e., 1,280 x 944. Through
the preprocessing, the resulting LR and HR images refer to
the same area but are in different resolutions.

1) Training-Test Split and Training Strategies: As described
in Section I, [8] studied two training strategies, self-training
and pooled-training, for the EM image super-resolution. While
both self-training and pooled-training are practical in real

IThe paired EM images dataset is available for public access at
https://aml.engr.tamu.edu/2001/09/01/publications/ (then go to J74).

scenarios of super-resolution, we only focus on the pooled-
training, which is more common in machine learning studies,
in our evaluation. In particular, the pooled-training trains a
single model on all the 22 image pairs. With the splitting
of the original images into 3 x 4 smaller sub-images, in the
pooled-training, the 22 image pairs become a total of 198 sub-
image pairs for training and 66 sub-image pairs for test. The
evaluation metrics are computed on each testing sub-image
and then averaged.

2) Evaluation Results: We evaluate our method and com-
pare it with an array of deep learning-based baselines. In
addition to three deep learning methods compared in [8], i.e.,
VDSR [23], RCAN [24], and EDSR [25], we further include
the original U-Net [18] and GVTNets [7], the current state-
of-the-art model for microscopy image transformation, in this
comparison study. The U-Net, GVTNets, and our proposed
AEANets use the same network architecture setting except
for the attention blocks. We also include the SOTA non-deep-
learning-based method, which is the paired LB-NLM [8] in
our baselines. We show in Table I the averaged improvements
in terms of the two metrics, as compared to the input LR
image (i.e., after bicubic interpolation). The improvements in
the two metrics are denoted as APSNR and ASSIM.

The results show that the AEANets model with pooled-
training significantly outperforms the baselines with the
same training strategy. More importantly, the performance
of AEANets with pooled-training is better than the baseline
models with self-training, indicating that the self-training is no
longer required for our proposed AEANets. In other words,
AEANets can be used more efficiently, leading to better
performance, and can be applied in broader scenarios where
self-training may not be applicable.

While the improvement in terms of PNSR is moderate, the
improvement in terms of SSIM is much more remarkable,
a 70% increase as compared to the best of the three deep
learning methods originally used in [8]. Recall that SSIM
measures how far away an image is from the HR image and
a higher SSIM suggests a better capability of the resulting
image to show finer details. The improvement in SSIM bears
important practical implication for material characterization.

To see the implication from a different angle, consider
the image quality improvement only in the foreground of
the images. Not surprisingly, material scientists are more
interested in the nanomaterial clusters (foreground) than the
host material (background) in their applications. To separate
the foreground and background, we follow [8] and perform
Otsu’s algorithm on each testing patch. We compute the
improvements in PSNR on the foreground and background for
the following methods: VDSR, SRSW, Paired LB-NLM and
AEANets. The outcome is shown in Table I (right). The results
demonstrate that although VDSR with self-training achieves
a higher PSNR in the background, AEANets outperform
the three aforementioned methods for the foreground. This
outcome reinforces the advantage of AEANets shown in the
SSIM comparison.

In terms of the foreground-background difference, [8] in
fact commented that “It is apparent that all these methods
[those included in their paper] denoise the background much
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Input LR Image Ours HR Image

__U-Net

Fig. 4. Visualization of the output of super-resolution models on four
testing patches. From left to right, the columns are input LR images,
outputs of the U-Net, outputs of our model and the ground truth HR
images). We select some areas to zoom in for a better view. From top
to bottom, smaller patches on the right are zoomed-in from U-Net, our
model and the HR images.

more than they enhance the foreground.” While AEANets
still see a greater PSNR improvement over its background,
its foreground-background performance gap is the smallest
among the four alternatives in Table I (right). The practical
implication is that AEANets are a better tool for material
characterization.

We also include some visualization results to compare the
super-resolution performance of AEANets with that of U-Net.
The visualization shows that the predictions from AEANets
have clearer edges of the nanomaterial clusters. It is also worth
mentioning that the deep learning-based methods, including
U-Net and AEANets, have an additional denoising effect in
the background. We believe that the effect is due to the noise
in the LR image and HR image belongs to the same noise
distribution but are independently sampled, which satisfies
the requirements of the Noise2Noise [26] denoising. The
denoising effect could be less likely to occur in synthetic
super-resolution datasets. Compared to U-Net, AEANets can
perform better denoising, as shown in Figure 4.

B. The 3D FM Image Datasets

We further evaluate our methods on Planaria and Flywing,
two 3D microscopy transformation datasets from CARE [1].
The Planaria dataset evaluates the model performance on the
content-aware 3D image denoising task. It includes 17,005
pairs of noisy-clean 3D image patches of shape 64 x 64 x 16 for
training. The test data consists of 20 larger 3D images of size
1024 x 1024 x 95. For each test image, the ground truth image
and noisy images at three different noise levels captured under
different lighting conditions (C1, C2, and C3) are provided. We
evaluate our model on all the three noise levels. The Flywing
dataset evaluates the model performance on the content-aware

3D-to-2D image projection. Given a noisy 3D image, the
projection task requires the transformation model to predict
the surface of an organism in the 3D image and project it into
a 2D images, excluding the noise along the depth dimension.
The Flywing dataset consists of 16,891 pairs of noisy 3D and
clean 2D patches for training and 26 test images. Similar to
the Planaria dataset, each test image contains the ground truth
version and the noisy version at three different noise levels.

Following the baseline configuration [7], we apply our
augmented attention operators to both the bottom block and
up-sampling blocks for CARE datasets. For the 3D-to-2D pro-
jection task, we follow [1], [7] for the base model consisting
of a 3D U-Net for surface projection followed by a 2D U-
Net that further performs denoising on the projected image.
Augmented attention blocks are included in both 3D and 2D
U-Nets. As the 3D images for training are already large enough
in their spatial size due to the additional depth dimension, we
only apply the shared references and omit the batch-aware
attention during training to avoid memory issue. In particular,
the computational cost of an attention operator for a 3D input
of spatial size w x h x d can be O(d?) times the cost of a 2D
input of spatial size w X h.

The evaluation results in terms of PSNR and SSIM are
shown in Table II and Table III. We include the evaluation
metrics computed on the input images, and the predictions
of the baseline methods, the U-Net and the GVTNet. We
also include visualizations of the prediction results of three
methods on the Flywing dataset in Figure 5. The shown pre-
dictions are performed on noisy images with the worst lighting
condition (C3). Both quantitative and visual results show that
the proposed AEANet further consistently outperforms the cur-
rent state-of-the-art methods on a wider range of microscopy
image transformation tasks, indicating the effectiveness of the
proposed augmented attention blocks.

C. 3D Brain MRI Segmentation

To demonstrate the effectiveness of AEANets on medical
images and additional tasks, we further perform the evaluation
on the 3D multimodality isointense infant brain MR image
(MRI) dataset [27]. The MRI segmentation task aims to
segment given MR images by identifying different regions
including cerebrospinal fluid (CSF), gray matter (GM), and
white matter (WM) regions. The MRI segmentation is also
considered as an image transformation task as it performs
pixel-wise classification and hence requires the model to be
spatially permutation equivariant.

We follow [28] for the network, training configuration, and
evaluation setting only except for the AEA block. In particular,
we perform the leave-one-subject-out cross-validation on the
ten public MRI subjects and compute the Dice ratio as the
evaluation metric. The results shown in Table IV indicate that
AEANets achieve consistently better performance compared
to the close baseline Non-local U-Net.

D. Verification of Equivariance Properties

To better support our theroy and claims, we empirically ver-
ify the spatial permutation equivariance property of AEANets
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TABLE |
Left: COMPARISON OF PERFORMANCE QUANTIFIED BY IMAGE QUALITY IMPROVEMENT IN TERMS OF PSNR AND SSIM, AMONG OUR METHODS
AND THE BASELINE MODELS. BOLD NUMBERS ARE THE HIGHEST COMPARED AMONG RESULTS IN BOTH TRAINING STRATEGIES. Right:
IMPROVEMENTS IN PSNR ON FOREGROUND (NANOMATERIAL CLUSTERS) AND BACKGROUND (HOST MATERIAL) INDIVIDUALLY. “SELF” IN THE
BRACKETS AFTER METHOD NAMES REFERS TO SELF-TRAINING.

Pooled-training Self-training

Methods APSNR (dB) ASSIM  APSNR (dB) ASSIM
VDSR [23] 1.25 0.047 2.07 0.051 Methods Foreground  Background
RCAN [24] 1.59 0.051 2.07 0.050 VDSR (Self) 0.97 2.83
EDSR [25] 1.35 0.051 2.06 0.052 SRSW (Self) -0.25 2.15
Paired LB-NLM [8] 0.78 0.031 1.67 0.037 Paired LB-NLM (Self) 0.23 2.65
U-Net [18] 1.46 0.074 - - Learned Query (Pooled) 0.75 1.95
GVTNet [7] 1.87 0.086 - - AEANet (Pooled) 1.15 2.42
Learned Query 1.64 0.084 - -
AEANet (Ours) 2.10 0.087 - -

TABLE Il

EVALUATION RESULTS ON THE PLANARIA DATASET FOR 3D IMAGE DENOISING. FOR ALL THE THREE NOISE LEVELS (C1, C2, AND C3), MODEL
PERFORMANCE IN TERMS OF SSIM AND PSNR ARE PROVIDED. THE STANDARD ERRORS ARE COMPUTED AMONG TEST SAMPLES FOLLOWING
PREVIOUS STUDIES. THE AVERAGED SCORES OVER THE THREE LEVELS ARE ALSO PROVIDED.

C3 (SSIM) C3 (PSNR)  C2 (SSIM) C2 (PSNR)  Cl1 (SSIM) C1 (PSNR) | Avg (SSIM)  Avg (PSNR)
Input 0.1561 21.43 0.1827 21.73 0.2260 2222 0.1883 21.79
Unet 0.6441£0.1207  28.13+1.37  0.739740.0885  30.15+1.66  0.7707+0.0889  31.57£1.71 0.7182 29.95
GVTNet  0.6972+0.1177  28.63+1.42  0.7745+0.0886  30.88+1.65 0.7929+0.0824  31.95+1.64 0.7549 30.49
AEANet  0.7073£0.0994  28.64+1.39  0.7764+0.0897 30.95+1.84 0.7933+0.0838  32.08+1.70 0.7590 30.56
TABLE IlI

EVALUATION RESULTS ON THE FLYWING DATASET FOR 3D-T0O-2D IMAGE PROJECTION. FOR ALL THE THREE NOISE LEVELS (C1, C2, AND C3),
MODEL PERFORMANCE IN TERMS OF SSIM AND PSNR ARE PROVIDED. THE STANDARD ERRORS ARE COMPUTED AMONG TEST SAMPLES
FOLLOWING PREVIOUS STUDIES. THE AVERAGED SCORES OVER THE THREE LEVELS ARE ALSO PROVIDED.

C3 (SSIM) C3 (PSNR)  C2 (SSIM) C2 (PSNR)  Cl (SSIM) C1 (PSNR) | Avg (SSIM)  Avg (PSNR)
Input 0.0241 16.62 0.0795 1723 0.1902 1838 0.0979 1741
Unet 0.5592+0.0403  21.96+0.48  0.5971£0.0705 22.55+1.14  0.6067+0.0216  23.66+0.26 0.5877 2272
GVTNet  0.5908-£0.0465 2236043  0.6954+0.0248  24.284+0.38  0.751140.0257  25.81:0.33 0.6791 24.15
AEANet  0.6008:£0.0452  22.50+0.43  0.7074:20.0305  24.54+0.41  0.7600-0.0195  26.03+0.31 0.6894 24.36

Inputs . U-Net Error hvaps . GVTNet

Error maps - AEANet Error maps GT

Fig. 5. Visualization of the predicted 2D surface projections from the Flywing dataset. From left to right, the columns are the projection from
input noisy volume, the predictions and error maps of U-Net, GVTNet, AEANet (ours), respectively, and the ground truth images. The images are
predicted from noisy images with the worst lighting condition (C3). We zoom in some subareas for a better view.

and attention with learned query. In particular, we visualize
the first two channels of the query tensor and attention
outputs when the raw patch and a rotated patch are input
to the model. The visualizations are shown in Figure 6. For
the attention block with learned query, the values in both

query and attention output tensor reduce to nearly constant
among spatial locations (according to the histograms) and
do not rotate accordingly with the input patch. This is due
to the permutation invariance nature of attention block with
learned query, who becomes permutation equivariance if and
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TABLE IV
EVALUATION RESULTS IN TERMS OF DICE RATIOS ON THE 3D BRAIN MRI SEGMENTATION TASK. THE 10-FOLD CROSS-VALIDATION IS ADOPTED TO
COMPUTE THE SCORES.

Model CSF Dice Ratio  GM Dice Ratio WM Dice Ratio | Avg. Dice Ratio
CC-3D-FCN [29] 0.9250+0.0118 0.9084+0.0056 0.8926+0.0119 0.9087+0.0066
Non-local U-Net [28]  0.9530+0.0074 0.9245+0.0049 0.9102+0.0101 0.9292+0.0050
AEANet 0.9556+0.0062 0.9279+0.0052 0.9136+0.0117 0.9324+0.0052
TABLE V Query Tensor Attention Output

QUANTITATIVE EVALUATION OF THE EQUIVARIANGE TO SPATIAL
PERMUTATIONS . SHOWN ARE MEAN ABSOLUTE ERRORS (MAES)
BETWEEN OUTPUTS FOR RAW AND PERMUTED INPUT PATCHES.

Methods Rot. 90  Rot. 180  Rot. 270  Traspose
Self-attention 0.01529  0.02035  0.01518  0.00810
Learned query  0.01322  0.01757  0.01369  0.00712
AEA block 0.01351  0.01689  0.01358  0.00506

only if the learned query reduces to constant values at all
locations. However, in this case, the learned query is unable
to capture common features among the dataset and hence
becomes meaningless. The results also indicate the issue
related to the invariance property cannot be addressed by
data augmentations. In contrast, the AEA block is able to
remain spatially permutation equivariance according to the
visualization while capturing common features.

On the model level, we quantitatively evaluate the equivari-
ant property by computing the difference, in terms of mean
absolute error, between the outputs of raw and permuted
input patches. We evaluate models with the self-attention
block, the attention with learned query, and the proposed
AEA block under rotations and transpose permutations. MAE
scores in Table V demonstrate that the proposed AEA block
can achieve even better permutation equivariance compared
the self-attention block. Note that although the attention with
learned query can also achieve a similar level of equivariance,
it is unable to learn meaningful query tensors or outputs as the
query tensor reduces to constant values over spatial locations.

E. Ablation Studies

We conduct an ablation study to analyze (1) how the shared
references and the Batch-aware Attention mechanism help
improve the performance of attention-based models and (2)
how AEANets benefit from a larger input image size. For a
fair comparison, all the models in this subsection are trained
with pooled-training.

We first evaluate the performance of AEANets with the
following options: Batch-aware Attention excluded, shared
references excluded, and shared references with different sizes
(16, 32 and 64). The results in terms of APSNR and ASSIM
are shown in Table VI. Compared to the original attention-
based model, GVTNets, applying Batch-aware Attention and
shared references renders a performance gain of 0.09 dB and
0.17 dB, respectively. When increasing the size of the shared
references, the performance of AEANets also increases.

Regarding the size of input images, we evaluate AEANets
on the same testing images but with different input sizes. In
particular, we crop each image into patches of a given size,

o

Learned Q.7 Learned Q

e [ | | b [ 4

Fig. 6. Visualization of query tensors and attention output tensors of
AEANEets and Attention with learned queries. Each row corresponds to
one channel (out of many) of the tensors. At the bottom are the distribu-
tions of values in the tensors with raw and rotated input, respectively.

input the patches to the network and then stitch the predicted
patches together as the prediction of the entire image. We
evaluate the improvement in PSNR for each size and show
the results in Supplementary Figure 9. Among the evaluated
alternative, both GVTNet and AEANets benefit from a larger
patch size since both are attention-based models. It is inter-
esting to see that the performance of GVTNet with full-sized
input can be achieved by AEANets with much smaller input
patch sizes. Specifically, the AEANet with shared references of
size 64 and the input size 256 reaches the similar performance
of the GVTNet with full-sized input.

VIl. CONCLUSION

High-quality microscopy images in terms of resolution or
noise level are usually desired for better Biomedical and
Nanomaterial researches. Computational methods that perform
super-resolution and denoising on microscopy images make
it possible to obtain high-quality microscopy images more
efficiently with lower cost. In this work, we consider the
microscopy image-to-image transformation and focus on chal-
lenges in the case where both high-quality and low-quality
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TABLE VI
PERFORMANCE OF AEANETS WHEN BATCH-AWARE ATTENTION IS
EXCLUDED OR THE SIZE OF SHARED REFERENCES ARE DECREASED.
THREE BASELINE METHODS ARE ALSO GIVEN FOR COMPARISON.

Methods APSNR (dB) ASSIM
RCAN 1.59 0.051
U-Net 1.46 0.074
GVTNets 1.87 0.086
Shared Reference (SR) only 2.04 0.085
Batch-Aware (BA) only 1.96 0.084
BA + SR (16) 1.98 0.085
BA + SR (32) 2.02 0.085
BA + SR (64) 2.10 0.087

images in the training dataset are physically captured. To
address the challenges, we have introduced the Augmented
Equivariant Attention Networks (AEANets), which is able to
utilize shared features among images and inter-image depen-
dencies, and preserve the spatially permutation equivariant
property for image-to-image transformation. We have theoret-
ically analysed the property of the proposed attention operator
augmented by shared references and the property of existing
attention operators as comparisons. And we have conducted
experiments to show the effectiveness of AEANets.
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APPENDIX |
DISCUSSION OF THE INVARIANCE AND EQUIVARIANCE
PROPERTIES

We consider the properties under three common spatial
permutation cases, i.e., rotation, flipping and shifting.

In a natural image classification task, when the input image
is rotated, flipped or shifted, we expect the classification result
to remain the same as long as the object to be classified is
still in the image, as shown in Figure 1 (left). In this case, the
model can benefit from its invariance property and an operator
that is spatially permutation invariant can help the model
realize such property and hence improve its generalization
capability.

On the contrary, when performing the rotation, flipping or
shifting on the input of an image-to-image transformation
model, we expect the output image of the model to be rotated,
flipped or shifted correspondingly, as shown in Figure 1 (right).
Hence the equivariance to spatial permutation is desired by
the model. In this case, if a spatially permutation invariant
operator is included, the equivariance will be violated, since
the operator outputs a constant tensor while the input image
is rotated, flipped or shifted. Hence, operators with such an
invariant property can be inappropriate in image-to-image
transformation models and may lead to a performance reduc-
tion. It is desirable to use a spatially permutation equivariant
operator to preserve the equivariance of the model.

APPENDIX Il
PROOF OF THEOREM 1

Proof: When applying a spatial permutation 7 to the
input X of a self-attention operator A, we have

(;7@ (mm)7) v

S

As(T=(X))

1
-P.QK"(P'P,)V
S

=P, ( QKT>
= T=(As(X)).

Note that PP, = I since P, is an orthogonal matrix.
Since convolutions with a kernel size of 1 are permutation
equivariant, the projected Q = ¢(X), K = k(X),V =
v(X) are spatially permutation equivariant with respect to the
input X. By showing A, (7:(X)) = T-(As(X)) we have
shown that A, is spatial permutation equivariant according to
Definition 2.

In comparison, when applying 7 to the input of an attention
operator A¢g with a learned query @, which is independent of
the input X, we have

(6)
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Since Ag(7-(X)) = Ag(X), we have shown that Ag is
spatial permutation invariant according to Definition 2. [ ]

APPENDIX Il
PROOF OF THEOREM 2

Proof: We let ]57T = (f; 1977 ) , where P is the permuta-
tion matrix applied to X. Then we have

1 . N\T -
(WE(Q»(PWK) )-Pﬂv
_ 1 T (DT B \X)
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=1 <r+ hQK )
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This shows that the proposed attention operator augmented
with shared references is spatially permutation equivariant. B

ARr(T(X))

APPENDIX IV
NETWORK ARCHITECTURE

The overall architecture of the proposed network is shown
in Figure 7.
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Fig. 7. Network Architecture. We chip our proposed attention block into
a U-Net architecture with depth of 3. The skip-connections in the U-Net
use concatenation. The down-sampling applies the stride convolution
and the up-sampling applies either the transposed convolution or the
augmented attention block.

Attention Block

APPENDIX V
IMPLEMENTATION DETAILS AND CONFIGURATIONS

For all three learning tasks on the four datasets, we imple-
ment our methods using TensorFlow 1.14 and perform training
and testing on a single NVIDIA GeForce RTX 2080 Ti GPU.
Below are specific configurations for individual datasets.

For image super-resolution on the Paired 2D EM dataset, we
adopt a U-Net with depth of 3 (including 2 down-sampling and
2 up-sampling) as the base structure and replace the bottom
block by the proposed AEA block with batch-aware training.
The training patches are randomly sampled from training
subimages and cropped into a size of 256 x 256. We adopt a
mini-batch size of 8, where 4 samples go through the attention
with shared references and the other 4 samples go through the
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batch-augmented attention. The two attention operators have
their parameters, i.e., projection weights for query, key, and
value, shared by setting reuse=True at implementation. The
model adopts the mean absolute loss as the learning objective
and is optimized with Adam optimizer under a base learning
rate of 0.0004 with an exponential learning rate decay by 0.5
for every 10,000 steps. The model is trained for a total of
120,000 training steps.

For 3D FM image restoration and MR image segmentation,
we follow previous works, [7] and [28], respectively, for most
model configurations and training settings including the depth
of network, type of convolutions, training patch sizes, etc.
Models for Planaria restoration and Flywing projection are
trained for 80 epochs with batch sizes of 16. As the previous
work [7] adopts self-attention blocks at both bottom block
and up-sampling blocks, we replace all self-attention blocks
by the proposed AEA block for a fair comparison and to better
show the effectiveness of the AEA block. For the MR image
segmentation, the only difference with the previous work Non-
local U-Nets [28] is to replace the attention block by our AEA
block. Other network configurations and training settings are
kept the same. Models for all ten folds are trained for 300, 000
steps.

According to a recent study [30], the scores computed
by different implementations of the SSIM metric may vary.
For fair comparisons, we closely follow individual baseline
works for the SSIM implementations of each experiment. In
particular, for the CARE 3D FM experiments, we use the
original evaluation code [1] based on the scikit-image imple-
mentation. For the 2D EM experiments, we adopt a matched
implementation of Wang et al. [31] (with gaussian weights,
sigma=1.5, and covariance sampling disabled) following the
previous study [8].

APPENDIX VI
EFFECTS OF SHARED REFERENCES

This subsection provides a discussion on the effects o
shared references. Recall that in the learned shared references
R = [fi,--,f]7 € R"™¢ of size r, we call each row
vector f; € R*¢ the feature vector of an abstract pixel
distilled from the training images. To illustrate the effects
of the shared references, we select three input images and
randomly select the feature vectors of four abstract pixels. We
visualize how much the Query matrix @ of the three images
is correlated to the four abstract pixels. Provided the Query
matrix Q; € R¥"*¢1 of an input image and the feature vector
f; of an abstract pixel, we visualize

Q- kT (f;) e R i€ {1,2,3}, j € {1,2,3,4},

where k(-) projects the feature vector into the Key space and
the dot product indicates the relevance between each pixel
in the input image and the learned abstract pixel. We fold
Q. - kT (f;) back to the original 2D spatial shape w x h and
visualize it in Figure 8 for each (4, j) in the form of a heatmap.
The visualization shows which pixels (or segments) in the
input image are tightly related to a given abstract pixel in
the shared references.

The four columns on the right show different patterns,
suggesting that the abstract pixels in the shared references
contain different types of features and are related to different
segments of the input images. The abstract pixels in the same
column show similar patterns, indicating that features captured
by the abstract pixels are shared across images. These two
observations tell us that the effect of the shared references
matches our expectation.

APPENDIX VII
RESULTS OF ABLATION ON TRAINING PATCH SIZES

Change of performance over different training patch sizes
is shown in Figure 9.
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Fig. 9. The output image quality APSNR over different input patch

sizes. Results are computed on testing images. Numbers inside the
brackets in models, i.e., 16, 32 and 64, refer to the sizes of shared
references. For all attention-based methods (GVTNet and ours), the
output image quality increases when larger input patches are given.

APPENDIX VIII
DISCUSSIONS ON LIMITATIONS AND FUTURE
DIRECTIONS

a) Temporal Super-resolution: When capturing a series of
microscopy images as a temporal sequence, one has to trade-
off between the spatial resolution or quality of each frame
and the temporal resolution (fps). Such limitation can be also
addressed by extending the advanced image transformation
approaches. Besides capturing the sequence in high temporal
resolution and computationally obtain high-quality frames,
one can also perform temporal super-resolution to directly
improve the temporal resolution. The latter case is also an
image-to-image transformation problem when considering the
temporal dimension as an additional spatial dimension. In
both cases, the transformation can benefit from additional
information along the temporal dimension, e.g., by aggregating
temporal information with attention operators. However, the
attention operators requires careful design to enable efficient
computation as the temporal dimension brings significantly
higher computational cost.

b) Transformation Equivariance with Anisotropic Images: For
3D microscopy, it is common that anisotropic images are
captured, where the resolution along the Z-axis (depth) is
inconsistent with the other axes. In this case, it is more
challenging to achieve spatial transformation equivariance. We
do not include experiments related to the anisotropic problem
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Input LR image Relevance between input pixels and four abstract pixels in Shared References

Fig. 8. The visualization of the relevance between pixels in the input image and four randomly selected abstract pixels from shared references on
the Paired EM Image dataset. From top to bottom, rows are the visualizations of different input images. From left to right, the first column shows the
input images and the rest four columns are the visualizations for the four selected abstract pixels. A higher value in the heatmap indicates stronger
relevance.

as it is not part of our claims or conclusions. While our work
does not aim at addressing the anisotropic issue of 3D images,
the attention-based operators (including the AEA block) can be
a promising solution to the anisotropic issue. As the attention-
based operators perform non-local aggregation among voxels,
a permutation on the input such as transpose that exchanges the
resolution of two axes (or spatial distortions) does not change
the final output value at corresponding spatial locations. How-
ever, the bottleneck of addressing the anisotropic issue lies
in the convolutional operators, who rely on preset resolutions
along different axes, and performing transpose to the input
of such operators will change its outputs. Potential solutions
on this issue include cooperating with gating mechanisms to
identify inconsistency in resolutions or to adopt fully attention-
based networks.
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