
Statistics and Computing (2021) 31:77
https://doi.org/10.1007/s11222-021-10052-4

Penalized Cox’s proportional hazards model for high-dimensional
survival data with grouped predictors

Xuan Dang1 · Shuai Huang2 · Xiaoning Qian1

Received: 8 July 2020 / Accepted: 13 September 2021 / Published online: 30 September 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The rapid development of next-generation sequencing technologies has made it possible to measure the expression profiles
of thousands of genes simultaneously. Often, there exist group structures among genes manifesting biological pathways
and functional relationships. Analyzing such high-dimensional and structural datasets can be computationally expensive and
results in the complicated models that are hard to interpret. To address this, variable selection such as penalized methods are
often taken. Here, we focus on the Cox’s proportional hazardsmodel to deal with censoring data.Most of the existing penalized
methods forCox’smodel are the group lassomethods that showdeficiencies, including the over-shrinkage problem. In addition,
the contemporary algorithms either exhibit the loss of efficiency or require the group-wise orthonormality assumption. Hence,
efficient algorithms for general design matrices are needed to enable practical applications. In this paper, we investigate and
comprehensively evaluate three group penalized methods for Cox’s model: the group lasso and two nonconvex penalization
methods—group SCAD and group MCP—that have several advantages over the group lasso. These methods are able to
perform group selection in both non-overlapping and overlapping cases. We have developed the fast and stable algorithms
and a new package grpCox to fit these models without the initial orthonormalization step. The runtime of grpCox is improved
significantly over the existing packages, such as grpsurv (for the non-overlapping case), grpregOverlap (overlapping), and
SGL. In addition, grpCox is better than grpsurv and comparable with SGL in terms of variable selection performances.
Comprehensive studies on both simulation and real-world cancer datasets demonstrate the statistical properties of our grpCox
implementations with the group lasso, SCAD, and MCP regularization terms.

Keywords Penalized method · High-dimensional · Survival analysis · Group-wise descent · Majorization-minimization
(MM) approach

1 Introduction

The Cox’s proportional hazards model (Cox 1972) is com-
monly used to study the relationship between survival time
and a set of covariates in high-dimensional space as potential
predictors for survival time. To tackle the curse of dimen-
sionality and construct robust and interpretable models that
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generalize well, variable selection approaches, including
penalization-based methods, are often taken.

Variable selection for the Cox’s proportional hazards
model has been extensively studied, including implemen-
tations based on lasso (Tibshirani 1996; Gui and Li 2005;
Park and Hastie 2006), adaptive lasso (Zhang and Lu 2007;
Zou 2008), the smoothly clipped absolute deviation (SCAD)
(Fan and Li 2002), to name a few. These methods can auto-
matically select the important covariates by shrinking the
coefficients of unimportant covariates to be exactly zero.
However, these methods fail to produce good results when
there exist group structures in covariates. A common group
structure example is where each categorical covariate is
expressed through a set of dummyvariables.Group structures
can also be introduced by integration of prior knowledge that
is scientifically meaningful. For example, in gene expression
analysis, genes belonging to the same biological pathway
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have similar functions and act together in regulating a bio-
logical system. These genes can be considered as a group.

Group selection in various statistical modeling problems
has been considered in literature. Yuan and Lin (2006) intro-
duced the group lasso for linear regression with the l2−norm
of the coefficients for a group of covariates in the penalty
function. Meir et al. (2008) extended it to logistic regres-
sion. Zhao et al. (2009) used a general composite absolute
penalty, which treats the group lasso as a special case. Wang
et al. (2007) introduced group SCAD to linear regression.
The group minimax concave penalty (MCP) was presented
in Huang et al. (2012). Breheny and Huang (2015) intro-
duced nonconvex penalties for linear and logistic regression.
These works require the group-wise orthonormal condition
to implement their algorithms. The solutions of the group
lasso with non-orthonormal matrices for linear regression,
logistic regression and SVM classifiers have been developed
in literature (Puig et al. 2011; Simon et al. 2013; Yang and
Zou 2015).

There are, however, few extensions to the Cox’s model.
Ma et al. (2007) applied the supervised group lasso to select
both significant gene clusters and significant genes within
these clusters for both logistic binary classification andCox’s
survival model, for which the lasso and group lasso methods
were implemented separately. In the first step, it identified
important genes within each group based on the lasso for-
mulation. In the second step, it selected important groups
using the group lasso formulation. Simon et al. (2013) intro-
duced the sparse group lasso method combining the lasso
with group lasso formulations to yield sparsity at both the
group and individual levels for the Cox’s proportional haz-
ards model. Wu and Wang (2013) introduced the doubly
regularized Cox regression that can deal with a mixture of
individual sparsity and group sparsity with the extension to
an overlapping case. Very recently, Belhechmi et al. (2020)
presented a statistical approach that can handle sparse group
lasso cases with superior variable selection performance.

In these existing penalized Cox’s model with group struc-
tures, only the group lasso formulation has been considered
because the group lasso penalty is convex for relatively
straightforward optimization solutions. However, the group
lasso penalty has deficiencies. Namely, large penalties are
imposed on large coefficients, which leads to over-shrinking
of large coefficients. As a result, the estimates of model
coefficients are biased. To avoid over-shrinkage, the group
lasso implementations often tend to reduce the penalty lev-
els, which in turn results in selecting many variables. With
the “oracle” property in SCAD andMCP penalty, the estima-
tions having the same limiting distribution as the true model,
both the group SCAD and group MCP formulations have
been studied (Wang et al. 2008; Huang et al. 2012; Breheny
and Huang 2015). However, to the best of our knowledge,

there is no effort to apply either the group SCAD or group
MCP formulation in the Cox’s model.

In this paper, we investigate and comprehensively evalu-
ate the group lasso, the group SCAD, and the group MCP
penalized Cox’s models. More critically, these three group
penalty formulations with different mathematical structures,
we would like to derive scalable and efficient optimization
algorithms and open-access packages formore general group
penalized Cox’s models.

The existing group lasso based Cox’s model implemen-
tations have used different algorithms to solve the corre-
sponding optimization problem. Ma et al. (2007) used a
blockwise coordinate descent algorithm (Kim et al. 2006) to
solve the group lasso problem. Wu and Wang (2013) used
the cyclic coordinate descent algorithm and Simon et al.
(2013) used Nesterov’s method. More recently, a group-wise
descent algorithmwas implemented in the R package grpreg,
whose grpsurv function for the group penalized Cox’s model
as an extension of the methods presented in Breheny and
Huang (2015). We will focus on developing and evaluating
the group-wise descent algorithm for three group penalized
Cox’s models for its simplicity, speed, and stability. We
have tried the cyclic coordinate descent algorithm, and found
it inferior in both timing and accuracy to the group-wise
descent algorithm. Specifically, while the group-wise algo-
rithm can produce exact solutions for a single group in one
step, the cyclic coordinate descent algorithm requires multi-
ple iterations to converge to the same solution that leads to
a loss of efficiency. Although Nesterov’s method is a more
general optimization method than the group-wise descent
algorithm, it appears to be empirically slower than the group-
wise descent algorithm for the specific problemof optimizing
the group penalized Cox’s models as shown in our running
time comparison. The existing group-wise descent algorithm
implemented in grpreg requires the group-wise orthonormal
condition. Specifically, it needs to do an initial orthonormal-
ization step, which leads to a different problem that is not
equivalent to the original group lasso formulation (Simon
and Tibshiran 2011; Huang et al. 2012). In particular, the new
problem is to apply the l2−penalty on the linear predictors
instead of the original coefficients. Moreover, even though
we can do orthonormalization for each group to make the
observed data satisfy the group-wise orthonormal condition,
the group-wise orthonormal condition can be easily violated
when removing a fraction of the data or perturbing the dataset
in bootstrap or sub-sampling as pointed out in Yang and Zou
(2015). Therefore, it is more favorable to solve the design
matrices without the group-wise orthonormal condition. Our
aim is to use the group-wise descent algorithm to handle
the general design matrices of the three group penalized
Cox’s models. To achieve it, we adopt the majorization-
minimization approach (Lange et al. 2000; Hunter and Lange
2004) to derive the majorizing (surrogate) function of the
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objective function with closed-form expressions for a sin-
gle group in gradient computation. We demonstrate that this
algorithm is fast and efficient, and provide an open-access
R package grpCox. Both simulation studies and real-world
case studies provide comprehensive evaluation of our devel-
oped optimization algorithm for the three group penalized
Cox’s models.

The remainder of the article is organized as follows. Sec-
tion 2 formulates the non-overlapping group penalized Cox’s
proportional hazards model. We introduce the majorization-
minimization approach and group-wise descent algorithm for
solving the group penalized Cox’s model. Section 3 presents
the extension with overlapping group penalty. Simulation
results are reported in Sect. 4. The illustrations of our meth-
ods with real-world survival datasets are presented in Sect. 5.
Section 6 concludes the article with discussion.

2 Non-overlapping groups

In this section, we present the Cox’s model with non-
overlapping groups of covariates as potential survival pre-
dictors, i.e. each potential predictor belongs to one and only
one group.We first describe the general framework for group
selection via the penalized partial likelihood of the Cox’s
model. We then derive the group-wise descent algorithms
combining with the majorization-minimization approach for
model inference.

2.1 Model formulation

Consider the standard survival data set of N subjects repre-
sented by the triplets {(Yi , X (i), δi )}Ni=1, where Yi denotes the
survival time, X (i) a P−dimensional covariate vector, and δi
the censoring indicator. With Ti and Ci denoting the survival
time and the censoring time for subject i , the survival time Yi
is defined by Yi = min{Ti ,Ci } and the censoring indicator
is defined as δi = ITi≤Ci . Suppose that P covariates belong
to J non-overlapping groups I j ’s such that {1, 2, . . . , P} =
∪J

j=1 I j where the number of covariates in group I j is p j

and I j ∩ I j ′ = ∅ for j �= j ′. The P−dimensonal covariate

vector for subjet i is X (i) = (X (i)
1 , . . . , X (i)

J ), where X (i)
j is

a p j−dimensional covariate vector of the j th group for sub-
ject i . The corresponding coefficients of the covariates in the
j th group are β j . The standard Cox’s proportional hazards
model of the hazard for patient i at time t can be written as
Cox (1972):

h(t |X (i)) = h0(t) exp
(
X (i)fi

) = h0(t) exp
( J∑

j=1

X (i)
j fi j

)
, (1)

where h0(t) is the baseline hazard function.

Assume there is no ties in the observed times, and the
censoring is non-informative. Let t1 < t2 < · · · < tD be
the distinct observed times where D is the number of unique
observed failures. Ri is the set of indices of the subjects who
are at risk at time ti . The partial likelihood function is given
by

L(β) =
D∏

i=1

exp
( ∑J

j=1 X
(i)
j fi j

)

∑
l∈Ri exp

(∑J
j=1 X

(l)
j fi j

) , (2)

Penalization is one of the important variable selection
methods, which can be applied to the Cox’s model for better
understanding survival predictors when P is large by mini-
mizing the penalized partial likelihood function

L(β) = − 1

N
log

(
L(β)

) + Pλ,γ (β) = �(β) + Pλ,γ (β), (3)

where

�(β) = − 1

N

D∑

i=1

[( J∑

j=1

X (i)
j fi j

) − log

( ∑

l∈Ri

exp
( J∑

j=1

X (l)
j fi j

))]
,

and the penalty term Pλ,γ (β) can take different forms.

– Group lasso (Yuan and Lin 2006): Pλ(β) = λ
∑

j
√
p j

‖β j‖ = ∑
j λ j‖β j‖, where λ j = λ

√
p j , j = 1, . . . , J .

– Group smoothly clipped absolute deviation (SCAD)
(Wang et al. 2007): Pλ,γ (β) = ∑

j Sλ,γ

(‖β j‖
)
with

Sλ,γ

(‖β j‖
) =

⎧
⎪⎪⎨

⎪⎪⎩

λ j‖β j‖, if ‖β j‖ ≤ λ j ,

γ λ j ‖β j ‖−0.5(‖β j ‖2+λ2j )

γ−1 , if λ j < ‖β j‖ ≤ γ λ j ,

λ2j (γ
2−1)

2(γ−1) , if ‖β j‖ > γλ j .

(4)

– Group minimax concave penalty (MCP) (Huang et al.
2012): Pλ,γ (β) = ∑

j Mλ,γ

(‖β j‖
)
with

Mλ,γ

(‖β j‖
) =

{
λ j‖β j‖ − ‖β j‖2

2γ if ‖β j‖ ≤ γ λ j ,

1
2γ λ2j if ‖β j‖ > γλ j .

(5)

Here ‖ · ‖ denotes the Euclidean vector norm. We scale by a
factor of 1

N for convenience.
Given the survival data, the Cox’s model inference is to

learn β that minimizes the penalized partial likelihood func-
tion. Specifically,

βopt = argmin
β

[
�(β) + Pλ,γ (β)

]
= argmin

β

L(β). (6)
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2.2 Majorization-minimization (MM) approach

The negative log partial likelihood �(β) is convex and twice
continuously differentiable. We adopt the majorization-
minimization (MM) approach Lange et al. (2000), Hunter
and Lange (2004) that involves majorizing the negative log
partial likelihood �(β). We derive the upper bound of �(β) as
the majorizing/surrogate objective function through its Hes-
sian matrix.

Denote η = Xβ, then η is a N−dimensional vector whose
i th element is ηi = X (i)β. We have

�(η) = − 1

N

D∑

i=1

[
ηi − log

( ∑

l∈Ri

exp(ηl)

)]
,

We can calculate the first- and second-order derivatives of
�(β); in particular, via the chain rule: �

′
(β) = X�

′
(η) and

�
′′
(β) = XT �

′′
(η)X . Let U = �

′
(η) and H = �

′′
(η)

denote the corresponding gradient vector andHessianmatrix,
respectively. We can write

Ud = ∂�

∂ηd
= − 1

N

[
Id −

∑

i∈Cd

exp(ηd)∑
l∈Ri exp(ηl)

]
,

where Cd is the set of subjects i’s with td ≥ ti .
For the Hessian matrix H :

– If d �= k, then

Hd,k = − 1

N

[ ∑

i∈Cd

exp(ηd )∑
l∈Ri exp(ηl )

][ ∑

i∈Ck

exp(ηk)∑
l∈Ri exp(ηl )

]
,

where Ck is the set of subjects i’s with tk ≥ ti .
– If d = k, e.g. the diagonal element,

Hd,d = 1

N

∑

i∈Cd

[
exp(ηd )∑
l∈Ri exp(ηl )

− exp(ηd )
∑

i∈Cd
exp(ηd )

( ∑
l∈Ri exp(ηl )

)2

]
,

Let wd = 1√
N

[
∑

i∈Cd

exp(ηd )∑
l∈Ri

exp(ηl )

]
, then −Hd,k = wdwk ,

and Hd,d = 1√
N

wd − w2
d .

Let z∗ = (z∗1, z∗2, . . . , z∗P ) be a P−dimensional vector, and
B be a P × P matrix defined by B = sXT X where s =
max
d

( 1√
N

wd
)
. We have

(z∗)T (B − �
′′
(β))z∗ = (Xz∗)T (sIN − �

′′
(η))(Xz∗),

where IN is a N × N identity matrix. Let Xz∗ = z =
(z1, z2, . . . , zN ) be a N−dimensional vector, then

(z∗)T (B − �
′′
(β))z∗ = zT (sIN − �

′′
(η))z

=
N∑

d=1

zd

(
zd

(
s − Hd,d

) +
N∑

k �=d

zk
( − Hd,k

))

=
N∑

d=1

(
s − Hd,d

)
z2d +

N∑

d=1

zd

N∑

k �=d

zk
( − Hd,k

)

=
N∑

d=1

(
s − Hd,d

)
z2d +

N∑

d=1

zd

N∑

k �=d

zk
(
wdwk

)

=
N∑

d=1

(
s − Hd,d

)
z2d +

N∑

d=1

(wd zd)
N∑

k �=d

(wk zk)

=
N∑

d=1

(
s − Hd,d − w2

d

)
z2d + ( N∑

d=1

wd zd
)2

≥
N∑

d=1

(
s − Hd,d − w2

d

)
z2d

≥
N∑

d=1

(
s − 1√

N
wd

)
z2d ≥ 0

Therefore, (B − �
′′
(β)) is nonnegative definite. It is worth

nothing that without loss of generality, we may standard-
ize the covariates first, as the estimated coefficients of the
covariates can always be transformed back to the original
scales for the sake of interpretation. We have B = sXT X ≈
s
(
s

′
NIP

) = τ IP , where τ = s
′
Nmax

d

( 1√
N

wd
)
and IP is a

P × P identity matrix. Here s
′ = N

P , if N ≥ P , and P
N , if

N < P .
Let β∗ be the current solution of β, we can define the

majorizing (surrogate) function of the negative log partial
likelihood �(β) as

M(β|β∗) = �(β∗) + �
′
(β∗)T (β − β∗) + τ

2
(β − β∗)T (β − β∗),

We further write the majorizing function of the objective
function for the group penalized Cox’s model in (6) as

Q(β|β∗) = �(β∗) + �
′
(β∗)T (β − β∗)

+ τ

2
(β − β∗)T (β − β∗) + Pλ,γ (β). (7)

2.3 Group-wise descent algorithm

Nowthe estimator basedon themajorizing function is defined
as

β̂ = argmin
β

Q(
β|β∗). (8)

The asymptotic properties of this estimator have been inves-
tigated with the corresponding theorem and proofs given in
“Appendix” 1. Here we focus on the optimization algorithm.
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To solve the minimization problem, we use the group-wise
descent algorithm. This algorithm is essentially the same
as the algorithm in Yuan and Lin (2006) though we solve
for general design matrices of the Cox’s model. The idea
behind it is that the algorithm optimizes the objective func-
tionwith respect to a single group at a time, iteratively cycling
through all groups until convergence conditions are satisfied.
The overall structure of the group-wise descent algorithm is
shown in Algorithm 1. In this algorithm, β∗ refers to the cur-
rent value of the Cox’s model coefficients while β̂ j , β̂ are the
updated values. This algorithm is suitable for fitting group
lasso, group SCAD, and group MCP models since all three
have closed-form expressions for a single-group update β̂ j .
These three group models have different mathematical for-
mulations, so the closed-form expressions of a single-group
updates for three models are different. The following parts
present the derivations of β̂ j for three models. We prove that
the algorithm possesses the descent property. Furthermore,
we employ techniques to speed up the implementations of the
corresponding algorithms considerably. Let us beginwith the
group lasso.

Algorithm 1 Group-wise descent algorithm for the group
penalized Cox’s model.
Initialize β∗
repeat

for j = 1, 2, . . . , J do
Update β̂ j according to (10) for group lasso, (11) for group
SCAD, or (12) for group MCP

end
Update β∗ = β̂

until Convergence of β∗ ;

2.3.1 Group lasso

The majorizing function (7) for the group lasso Cox’s model
can be written as

Q(β|β∗) = �(β∗) + �
′
(β∗)T (β − β∗)

+ τ

2
(β − β∗)T (β − β∗) +

∑

j

λ j‖β j‖,

Let Q′
j (β) be the partial derivative of Q(β) with respect to

the group j . We have

Q′
j (β) = �

′
j (β

∗) + τ(β j − β∗
j ) +

{
λ j

β j
‖β j‖ , if β j �= 0

λ j‖v‖, if β j = 0.
(9)

where v is any vector satisfying ‖v‖ ≤ 1. Denote β̂ j is the
solution to (9). It has the following closed-form expression

β̂ j =
(
1 − λ j

τ‖r‖
)

+
r, (10)

where r = β∗
j − �

′
j (β

∗)
τ

and (x)+ = max{x, 0}.

2.3.2 Group SCAD

Themajorizing function (7) for the groupSCADCox’smodel
can be written as

Q(β) = �(β∗) + �
′
(β∗)T (β − β∗) + τ

2
(β − β∗)T (β − β∗)

+
∑

j

Sλ,β

(‖β j‖
)
,

The optimal solution is characterized by the partial deriva-
tive equation.

– If ‖β j‖ ≤ λ j , then

{
�

′
j (β

∗) + τ(β j − β∗
j ) + λ j

β j
‖β j‖ = 0, if β j �= 0

�
′
j (β

∗) − τβ∗
j + λ j‖v‖ = 0, if β j = 0.

– If λ j < ‖β j‖ ≤ γ λ j , then

�
′
j (β

∗) + τ(β j − β∗
j ) +

γ λ j
β j

‖β j‖ − β j

γ − 1
= 0

– If ‖β j‖ > γλ j , then

�
′
j (β

∗) + τ(β j − β∗
j ) = 0

where v is any vector satisfying ‖v‖ ≤ 1. By solving these
equations, we find the final solutions

β̂ j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
1 − λ j

τ‖r‖
)

+
r, if ‖r‖ ≤ (

λ j + λ j
τ

)
,

τ(γ−1)
τ (γ−1)−1

(
1 − γ λ j

τ(γ−1)‖r‖
)
r, if

{
τ(γ − 1) − 1 > 0,
(
λ j + λ j

τ

)
< ‖r‖ ≤ γ λ j ,

r, if ‖r‖ > γλ j .

(11)

where r = β∗
j − �

′
j (β

∗)
τ

and (x)+ = max{x, 0}.
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2.3.3 Group MCP

The majorizing function (7) for the groupMCP Cox’s model
can be written as

Q(β) = �(β∗) + �
′
(β∗)T (β − β∗) + τ

2
(β − β∗)T (β − β∗)

+
∑

j

Mλ,β

(‖β j‖
)
,

The optimal solution is characterized by the partial deriva-
tive equation.

– If ‖β j‖ ≤ γ λ j , then

{
�

′
j (β

∗) + τ(β j − β∗
j ) + λ j

β j
‖β j ‖ − 1

γ
β j = 0, if β j �= 0

�
′
j (β

∗) − τβ∗
j + λ j‖v‖ = 0, if β j = 0.

– If ‖β j‖ > γλ j , then

�
′
j (β

∗) + τ(β j − β∗
j ) = 0.

where v is any vector satisfying ‖v‖ ≤ 1. By solving these
equations, we find the final solutions

β̂ j =

⎧
⎪⎨

⎪⎩

τγ
τγ−1

(
1 − λ j

τ‖r‖
)

+
r, if ‖r‖ ≤ γ λ j , τγ − 1 > 0

r, if ‖r‖ > γλ j .

(12)

where r = β∗
j − �

′
j (β

∗)
τ

and (x)+ = max{x, 0}.

2.4 The descent property of group-wise descent
algorithm

The surrogate function Q have two properties

Q(β∗
j |β∗) = L(β∗

j ),

Q(β j |β∗) ≥ L(β j ) for all β j .

From that we can prove the descent property of the group-
wise descent algorithm. The descent property is stated as
follows. At every iteration of the proposed group-wise
descent algorithms, let β∗ and β̂ denote the current value and
the updated value of the coefficient estimator, respectively.
Then the value of the objective functionL(β) decreases, i.e.,
L(β̂) ≤ L(β∗).

Proof From the second property of the surrogate functionQ
we have L(β̂ j ) ≤ Q(β̂ j ). In addition, according to (8) we
haveQ(β̂ j ) ≤ Q(β∗

j ). Therefore,L(β̂ j ) ≤ Q(β∗
j ) = L(β∗

j ),
which justifies the descent property of the group-wise descent
algorithm. In other words, the objective function decreases
after updating all groups in a cycle. ��

Lemma 1 The objective function Q(β j ) is strictly convex
with respect to β j for the group lasso with τ > 0, for the
group SCAD with τ(γ − 1) > 1, and for the group MCP
with τγ > 1.

Proof Although Q(β j ) is not differentiable, it does possess
twice directional derivatives everywhere. Let �2

dQ(β j ) be
the second order directional derivatives along the direction
d, and denote ε∗ = min

β j ,d
�2
dQ(β j ). Then, we have

– ε∗ = τ for group lasso
– ε∗ = τ − 1

γ−1 for group SCAD

– ε∗ = τ − 1
γ
for group MCP.

These are positive under the conditions specified in the
lemma. In other words, �2

dQ(β j ) for all β j and d, which
means that the function Q(β j ) is strictly convex. ��
Remark The objective function for the group lasso penalty
is convex, thus the descent property of the algorithm implies
the unique solution. However, the objective functions for the
group SCAD and groupMCP penalty are sums of convex and
nonconvex components, thus it is possible that the algorithms
converge to a local minimum.

2.5 Active set updates

To improve the computational speed, we have constructed an
active set A = {β̂ j �= 0} that takes advantage of the sparsity
of β. As shown in Algorithm 1, we only need to update the
nonzero coefficients β̂ j in A after a complete cycle has run
through all the groups, i.e., when β∗ = 0, β̂ j will stay zero

if ‖ − �
′
j (0)
τ

‖ ≤ λ j
τ

or ‖�′
j (0)‖ ≤ λ j ; otherwise, β̂ j will

be updated and stored in the active set if ‖�′
j (0)‖ > λ j .

Therefore, the number of updates is reduced significantly
and the rate of convergence of the algorithm is improved. The
algorithmwill stop if another complete cycle does not change
this set.Note that the active set A can only become larger after
each update, so the algorithm will always stop after a finite
number of updates. More details of its convergence property
can be found in Meir et al. (2008).

2.6 Pathwise solution

The above procedure is just for one fixed value ofλ. However,
in general, it is of interest to be able to compute the optimal
solution for a range of λ values. Thus, we aim to compute
the regularization path (denoted as β̂(λ)) where λ ∈ [0,∞].
It can be shown that β̂(λ) turns out to be a piecewise lin-
ear, continuous function of λ Mairal and Yu (2012). In other
words, we only need to compute the solutions on the change
points in this path, denoted λmax ≥ λ1 ≥ · · · ≥ λmin ≥ 0.
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We can start with λmax that is any value sufficiently large
for which the entire coefficients β∗ = 0. Notice that when
β∗ = 0, β̂ j will stay zero if ‖ − �

′
j (0)‖ ≤ λ j = λ

√
p j .

Hence, we can set

λmax = max
j

(‖ − �
′
j (0)‖√
p j

)
.

Following the suggestions made by Simon (2012), we can
ignore solutions that are close to 0 and set λmin = ελmax ,
then, compute the solutions over m + 1 values defined as

λi = λmax
(

λmin
λmax

) i
m , for i = 0, 1, . . . ,m. We set ε = 0.05, if

N < P , and 0.001, if N ≥ P . In doing this, the algorithm
usually converges well because we could use the preceding
solution (i.e., for λi ) as the initial values to obtain the solu-
tion for λi−1. It is worth noting that when N < P and λ

is small, the log likelihood estimates can be ∞. Therefore,
when implementing our grpCox package, we terminates the
regularization path if it occurs.

2.7 Selection of the tuning parameters

With a path of solutions, we need to select an optimal one.
The natural choice is by cross validation.However, the partial
likelihood of the Cox’s model is not as well defined as the
Gaussian log likelihood or any exponential family on the
left out samples using the traditional cross-validation, which
leads to poor results. To tackle it, we have used the cross-
validation method as described in Verweij and Houwelingen
(1993) proposed for the Cox’s model, in which data are split
into k parts, use k − 1 parts to train the model, and then,
validate the learned model on the whole data set. The cross-
validated log-partial likelihood for a given part i and λ is
ĈVi (λ) = L(

β̂−i
) − L−i

(
β̂−i

)
, which can be used as the

goodness-of-fit estimate of the solution. Here, β̂−i and L−i

are the optimal coefficients and its corresponding log-partial
likelihood for data excluding part i . The total goodness-of-
fit, ĈV(λ), is the sum of all ĈVi (λ). We find the optimal λ̂cvl
that maximizes ĈV(λ).

Thismethod alone produces high true positive rates (TPR)
but often also with high false positive rates (FPR) for group
lasso. We have implemented another approach proposed in
Ternes et al. (2016) to reduce FPR without significant reduc-
tion of TPR. Let pλ be the number of non-zero coefficients
in the model for a given λ, the optimal λ maximizes

ĈV(λ) − ĈV(λ̂cvl ) − ĈV(λmax )

p
λ̂cvl

∗ pλ, for λ ∈
[
λ̂cvl , λmax

]
.

Intuitively, it reduces the sparsity of the model pλ without
decreasingmuch the goodness-of-fit of themodel ĈV(.). The
simulation studies for the second approach are presented in
“Appendix” 2.

3 Overlapping groups

We have considered the non-overlapping group structure in
the previous sections. In practice, however, a predictor can
belong to several groups. For example, one gene can be
shared bymany different pathways. In this section, we extend
the proposedmethods for problemswith overlapping groups.
Note that the sparse group selection,which yields group-wise
and within-group sparsity, can be considered as a special
case of an overlapping group. Specifically, in this case, many
groups would be of size 1.

Let us modify the notations and rewrite the penalty func-
tions. Let G = {g1, . . . , g|G|} denote a set of groups as a
partition of {1, . . . , P}, βg ∈ R|g| a subvector of β, and
pg the number of covariates in each group g. The objective
function becomes

L(β) = − 1

N
log

(
L(β)

) + Ωλ,γ (β), (13)

where

– Overlapping group lasso: Ωλ(β) = λ
∑

g∈G
√
pg‖βg‖

= ∑
g∈G λg‖βg‖ with λg = λ

√
pg .

– Overlapping group smoothly clipped absolute deviation
(SCAD): Ωλ,γ (β) = ∑

g∈G Sλ,γ

(‖βg‖
)
with

Sλ,γ

(‖βg‖
) =

⎧
⎪⎪⎨

⎪⎪⎩

λg‖βg‖, if ‖βg‖ ≤ λg,

γ λg‖βg‖−0.5(‖βg‖2+λ2g)

γ−1 , if λg < ‖βg‖ ≤ γ λg,

λ2g(γ
2−1)

2(γ−1) , if ‖βg‖ > γλg .

– Overlapping group minimax concave penalty (MCP):
Ωλ,γ (β) = ∑

g∈G Mλ,γ

(‖βg‖
)
with

Mλ,γ

(‖βg‖
) =

{
λg‖βg‖ − ‖βg‖2

2γ if ‖βg‖ ≤ γ λg,

1
2γ λ2g if ‖βg‖ > γλg.

where ‖ · ‖ is the Euclidean vector norm.
Also, it is worth clarifying about how the overlapping

group works. For example, consider P = 3 and G = 2,
two groups sharing one covariate, and only the first group
affecting the survival outcome. When the second group is
not selected, all of its coefficients are shrunk to zeros. On
the other hand, as the first group is selected, all of its coeffi-
cients are nonzeros. One approach, presented in Jacob et al.
(2009), Obozinski et al. (2011), considered unions of groups:
the shared covariates are selected in the final model. Another
approach, presented in Jenatton et al. (2011), considered
intersections of groups: the shared covariates are not selected.
In our paper, we consider the union approach.

The main difficulty in solving (13) is from the non-
separable {βg}g∈G in the non-smooth penalty Ωλ,γ (β). The
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Xβ = X ∗ + X ∗ + X ∗ =
(

Xg1 , Xg2 , Xg3

)
∗ � X̃ν

Fig. 1 The coefficient decomposition of overlapping groups

overlapping character makes the computation of the subgra-
dient with respect to βg in the group-wise descent algorithm
challenging. To tackle this problem, we have adopted the
latent group approach Jacob et al. (2009), Obozinski et al.
(2011) that replicates a variable in whatever group it appears;
thenfits the non-overlappinggroupmodels.Note that “latent”
here does not imply the case that the group structure is unob-
servable - we consider the cases where the group structure is
known in advance, which is called predefined group struc-
ture. Rather, “latent” implies the set of latent variables, which
are formed as linear combinations of predefined groups.
Next, we discuss with more details.

Let νg ∈ RP be a vector that is zero everywhere except
in those positions corresponding to the elements of group g,
and let Vg ⊆ RP be the subspace of these possible vectors

νg . Hence, β = ∑|G|
g=1 νg . Figure 1 illustrates the idea how

to transform Xβ = X̃ν, where ν is the latent variable, and X̃
is the replicated variable matrix.

We can reformulate the objective function (13) in the latent
variable space as

L(ν) = − 1

N
log

(
L(ν)

) + Ωλ,γ (ν), (14)

Three penalty formulations can be similarly defined:

– Overlapping group lasso: Ωλ(ν) = λ
∑

g∈G
√
pg‖νg‖

= ∑
g∈G λg‖νg‖ with λg = λ

√
pg .

– Overlapping group smoothly clipped absolute deviation
(SCAD): Ωλ,γ (ν) = ∑

g∈G Sλ,γ

(‖νg‖
)
with

Sλ,γ

(‖νg‖
) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λg‖νg‖, if ‖νg‖ ≤ λg,

γ λg‖νg‖−0.5(‖νg‖2+λ2g)

γ−1 , if λg < ‖νg‖ ≤ γ λg,

λ2g(γ
2−1)

2(γ−1) , if ‖νg‖ > γλg .

– Overlapping group minimax concave penalty (MCP):
Ωλ,γ (ν) = ∑

g∈G Mλ,γ

(‖νg‖
)
with

Mλ,γ

(‖νg‖
) =

{
λg‖νg‖ − ‖νg‖2

2γ if ‖νg‖ ≤ γ λg,

1
2γ λ2g if ‖νg‖ > γλg.

where ‖ · ‖ is the Euclidean vector norm.

Here, L(ν) is analogous to L(β), but it is worth noting that
L(β) is computed in the original β space using the design
matrix X while L(ν) is computed in the latent ν space using
the replicated variable matrix X̃ . In the latent (expanded and
non-overlapping) space of dimension

∑
g∈G |g|, the formu-

lation has the same structure as the non-overlapping group
formulations discussed previously. This allows us to apply
the same solution procedure presented in the previous sec-
tions.

4 Simulation studies

In this section, we first show the efficiency of our proposed
algorithms and package grpCox (Dang 2020) by comparing
the running time to fit the entire path of solutions with other
publicly available R packages. We also compare these pack-
ages in term of variable selection. Then, we illustrate the
similarities and differences between three group regulariza-
tion methods: group lasso, group SCAD, and group MCP in
both the non-overlapping group and overlapping group set-
tings. Finally, we compare the performance of three methods
in terms of variable selection and model accuracy in both the
non-overlapping group and overlapping group cases.

4.1 Setup

We generate data with N observations and P covariates from
the following model:

Y true = exp
(
Xβ

)
,

where Y true is the true survival time. The censoring time C
is generated from a exponential distribution with the mean
Uexp

(
Xβ

)
, where U is randomly generated from a uni-

form distributionU (0, c). The recorded survival time is Y =
min{Y true,C}. The observation is censored ifC < Y true.We
choose different c to achieve different censoring rates. The
original covariates X are generated from a multivariate nor-
mal distribution with a zero mean vector and the correlation
matrixC as an autoregressive matrix whereCi j = ρ|i− j | and
0 ≤ ρ ≤ 1. The reason to use an autoregressive correlation
matrix is that we could flexibly tune the correlation between
covariates by setting ρ values: ρ = 0 means no correlation
between covariates, while ρ = 1 means that the covariates
are perfectly correlated as duplicates of each other. In all the
simulations, we fix γ = 3.7 for the group SCAD formulation
as suggested in Fan and Li (2001), and γ = 3 for the group
MCP formulation as suggested in Zhang (2010).

We evaluate the variable selection performance of these
methods by presenting the model sizes, true positive rate
(TPR), and false positive rate (FPR). These measures are
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defined as

TPR = TP

TP + FN
and FPR = FP

FP + TN
,

where TP, FP, FN, TN are the number of true positives, false
positives, false negatives and false negatives, respectively.
For all simulations, we create a path of 50 λ values, apply
10-fold cross-validation described above to select the optimal
λ for variable selection.

We evaluate model accuracy by root mean square error
(RMSE) that is given by

RMSE =
√√√√ 1

P

P∑

p=1

(βp − β̂p)2.

Recall that P is the number of covariates.

4.2 Time and quality comparison with other
packages

In this section, we compare the running time of our R pack-
age, grpCox, in whichwe implement ourmethods, with other
publicly available R packages for fitting models. We also
compare them in term of variable selection using TPR and
FPR measurement.

4.2.1 Non-overlapping groups

We consider two other R packages SGL Simon et al. (2013)
and grpsurv, which is a part of the grpreg package Breheny
and Huang (2015). Note that SGL package is not for the
overlapping group case.

We consider three high-dimensional settings (N , P) =
{(50, 1000), (100, 3000), (150, 4500)}. In this set of exper-
iments, β is sparse including 100 nonzero elements and
(P − 100) zero elements. Each group includes 10 covari-
ates, and the corresponding numbers of groups J are set to
100, 300, 450. No censoring, and ρ = 0.5. We set α = 0 for
the group lasso penalty when implementing the SGL pack-
age. We compute the 50 λ value solution paths of the group
penalized Cox models for 100 independent data sets, and
report the average running time. The 10-fold cross-validation
is used for model selection. The results are shown in Table 1.

The running time results show that grpCox is faster than
grpsurv, and both of them run much faster than SGL. Among
different methods, group lasso is the fastest that followed by
the group SCAD and groupMCP. It can be explained that the
upper bound for group lasso is sufficiently tight and convex,
which leads to faster convergence.

FromTable 1, it can be seen that the TPR values of grpCox
aremuchhigher thangrpsurvwhile theFPRvalues ofgrpCox
are a bit higher than grpsurv. In other words, grpCox gives

better results than grpsurv in term of variable selection. In
addition, grpCox is comparable with SGL in term of variable
selection. It can be explained that both grpCox and SGL can
handle general design matrices while grpsurv does an initial
orthonormalization step, which can be easily violated when
applying cross-validation to select models. Even worse, it
may cause the significant differences in TPR and FPR for
group SCAD and group MCP from group lasso in grpsurv
results.

In addition, we would like to show how these methods
scale with N and P . We run simulations with ρ = 0, 20%
censoring rate fixed and different setups for the number of
subjects N and the number of covariates P . For each (N , P)

pair, we solve for a path of 50 λ values. Figure 2 shows the
corresponding runtime for fixed P as N changes, and for
fixed N as P changes. We can see that all three methods are
scalable to both N and P and handle large N and large P
well. The presented setups arewith themaximum N at 50000
and the maximum P at 450000.

4.2.2 Overlapping groups

We consider one available R package grpregOverlap Zeng
and Breheny (2016). Here, we show the running time of three
high-dimensional overlapping settings with N = 50 sam-
ples for each. 20% censoring, and ρ = 0.5. Firstly, the equal
group case includes P = 802 covariates with 100 groups
of 10 covariates with two of them overlapping between two
successive groups, and there are 81 nonzero covariates. Sec-
ondly, the unequal group case includes P = 835 covariates
with 30 groups of 8 covariates with two of them overlapping
between two successive groups, 30 groups of 11 covari-
ates with three of them overlapping between two successive
groups, and 40 groups of 15 covariateswith five of themover-
lappingbetween two successive groups. There are 98nonzero
covariates. Lastly, the sparse case includes P = 1000 covari-
ates with 100 groups of 10 covariates. There are 10 sparse
groups.We also include the running time of the SGL package
with α = 0.5 for the sparse group case. Note that grpregOv-
erlap does not include the model selection for Cox’s model,
so we choose not to report the TPRs and FPRs for all pack-
ages. The running time results are summarized in Table 2. It
can be seen that for group lasso, grpCox is faster than grpre-
gOverlap that followed by SGL. For group SCAD and group
MCP,grpCox is faster thangrpregOverlap in the sparse group
setting, but a bit slower in the equal and unequal settings.

4.2.3 N ≥ P problems

We show that grpCox also can deal with large datasets by
considering the running time results for three combinations
of (N , P) = {(100, 50), (300, 100), (6000, 1000)}. The cor-
responding numbers of equal groups J are set to 10, 10,
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Table 1 Comparison of grpCox with publicly available packages in the non-overlapping settings

Package Method {N = 50, P = 1000} {N = 100, P = 3000} {N = 150, P = 4500}
time TPR FPR time TPR FPR time TPR FPR

grpCox Group lasso 0.05 0.50 0.10 0.15 0.97 0.15 0.26 1 0.15

Group SCAD 0.30 0.54 0.10 0.33 0.99 0.06 0.52 1 0.13

Group MCP 0.28 0.47 0.08 0.31 0.99 0.04 0.50 1 0.12

grpsurv Group lasso 0.08 0.10 0.05 0.28 0.59 0.06 0.52 0.98 0.08

Group SCAD 0.18 0.09 0.03 0.72 0.46 0.04 1.31 0.86 0.04

Group MCP 0.14 0.01 0.01 0.48 0.16 0.01 0.85 0.56 0.02

SGL Group lasso 7.55 0.33 0.06 38.73 1 0.10 87.84 1 0.10

The mean time, average TPRs, and average FPRs, over 100 independent data sets and a 50 λ values path, are reported. The time is in seconds

Table 2 Comparison of grpCox with publicly available packages in the overlapping and N > P settings

Package Method Equal group Unequal group Sparse group

Overlapping N < P {N = 50, P = 802} {N = 50, P = 835} {N = 50, P = 1000}
grpCox Group lasso 0.17 0.17 1.46

Group SCAD 0.34 0.30 1.63

Group MCP 0.33 0.31 1.65

grpregOverlap Group lasso 0.28 0.29 2.57

Group SCAD 0.27 0.26 2.52

Group MCP 0.26 0.26 2.52

SGL Group lasso - - 8.14

Non-overlapping N ≥ P {N = 100, P = 50} {N = 300, P = 100} {N = 6000, P = 1000}
grpCox Group lasso 0.03 0.06 5.97

Group SCAD 0.03 0.06 5.75

Group MCP 0.02 0.06 5.53

grpsurv Group lasso 0.05 0.20 35.59

Group SCAD 0.03 0.19 16.42

Group MCP 0.02 0.11 15.71

SGL Group lasso 2.06 9.84 -

The mean time, over 100 independent data sets and a 50 λ values path, is reported in seconds

100. In this set of experiments, β is sparse with P/10 ele-
ments are nonzero. We set α = 0 for the group lasso penalty
when implementing the SGL package. We compute the 50
λ value solution paths of the group penalized Cox models
for 100 independent data sets, and report the average run-
ning time. However, we could run the SGL package with
reasonable running time on small data sets only. The results
are shown in Table 2. The results are consistent with high-
dimensional cases: grpCox is faster than grpsurv, and both
of them run much faster than SGL. However, group SCAD
and groupMCP are a bit faster than group lasso especially in
the (N , P) = (6000, 1000) case of grpsurv implementation
that are presumably because their solution paths tend to be
more sparse Breheny and Huang (2015).

Note: Group SCAD and MCP models depend on an addi-
tional parameter γ . In particular, small changes of γ can lead

the implementations terminate at different λ values along
the regularization path, which results in big running time
changes. Here we used the fix γ values suggested in Fan and
Li (2001) for group SCAD and Zhang (2010) for groupMCP
that gave good results in term of variable selection andmodel
accuracy (more details presented the following parts.) How
to determine the optimal γ value, however, definitely needs
further investigation.

4.3 Comparison of three group penalized Cox’s
models

In this section, we illustrate the similarities and differences
between three group regularization methods: group lasso,
group SCAD, and group MCP in both the non-overlapping
and overlapping group settings using simulated data.
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Fig. 2 Plots of average runtime over 100 trials for 50 λ-value paths. The runtime is in seconds

4.3.1 Non-overlapping groups

We consider a simple example with five primary covariates
that are generated from a multivariate normal distribution
with the zero mean vector and the correlation matrix C with
Ci j = ρ|i− j | andρ = 0.5. The true survival time is generated
as follows:

Y true = exp(X1 + X2
1 + X3

1 − 0.7X5 − 0.95X2
5 − 0.8X3

5).

In otherwords, thismodel includes nine covariates that can be
divided into three groups: the first group is {X1, X2

1, X
3
1}, the

secondgroup {X2, X3, X4}, and the third group {X5, X2
5, X

3
5}.

Note that the first and third groups have nonzero coefficients
while the second group has zero coefficients. The sample size
N is 50, and the censoring rate is 20%.We create a path of 50
values of λ. The resulting solution paths are shown in Fig. 3.

It is easy to see that the group selection selects a group of
covariates in an “all-in-or-all-out” fashion. In other words,
once one covariate of a group is selected, the whole group
will be selected. In addition, the groupSCADandgroupMCP
methods eliminate some of the bias towards zero among the
true nonzero groups. In particular, when log(λ) is between

-1.17 and -1.88, they produce the estimated model including
only the nonzero covariates (the “oracle” model).

4.3.2 Overlapping groups

We also consider a simple example with six covariates that
are generated fromamultivariate normal distributionwith the
zero mean vector and the correlation matrix C with Ci j =
ρ|i− j | and ρ = 0.5. There are five groups defined as g1 =
{X1, X2, X3}, g2 = {X1, X4}, g3 = {X2, X4, X5}, g4 =
{X3, X5}, g5 = {X6}. The true survival time is generated as
follows:

Y true = exp(0.8X1 + X2 + 2X3 + X5).

The sample size N is 100, and the censoring rate is 20%. We
create a path of 50 λ values. The resulting solution paths are
shown in Fig. 3. The results are consistent with the results
of the non-overlapping group cases. The group SCAD and
group MCP methods again reduce the bias towards zero
among the true nonzero groups. In particular, when log(λ)

is between -1.5 and -2.76, they produce the estimated model
including only the nonzero covariates.

123



77 Page 12 of 27 Statistics and Computing (2021) 31 :77

Fig. 3 Solution paths for the group lasso, group SCAD, and group MCP models. The solid lines are for signal variables while the dashed lines are
for noise variables

4.4 Comparison of three group penalized Cox’s
models with non-overlapping groups

In this section, we compare the performance of three group
regularization methods in terms of variable selection and
model accuracy using simulated data. In here, the model size
is given in terms of the number of groups. Clearly, the true
model size is the number of nonzero groups. The group size
is the number of covariates of each group.

4.4.1 Effect of the coefficient magnitude

We focus on high dimensional cases, therefore, we generate
N = 100 observations with P = 400 covariates that include
100 groups, each with 4 elements. There are five nonzero
groups whose coefficient magnitudes are ±β where β is a
scalar, and ninety-five other groups are zero groups. We vary
|β|between0.25 and1.5.Wealso investigate the effects of the
censoring setting by considering two scenarios: no censoring
and right censoring with 20% censoring rate.

The results in terms of estimation accuracy and model
sizes are shown in Fig. 4. The results show that when the
coefficient values are small, all three methods have the same
RMSE values. However, group SCAD and groupMCPmeth-
ods perform better with decreasing RMSE values, while the

group lasso method performs increasingly poorly. Moreover,
group SCAD and groupMCPmethods always select smaller
models and approach the true model size while the group
lasso method often selects too many covariates. Comparing
group SCAD and group MCP, the two are nearly identical
in terms of estimation accuracy. However, the group MCP
method selects smaller models than the group SCADmethod
does.

The TPR and FPR results are summarized in Table 3.
They illustrate that when the coefficients are small, group
lasso does variable selection better than group SCAD and
group MCP. However, group MCP begins doing better vari-
able selection than group SCAD that produces better variable
selection than group lasso.

4.4.2 Effect of the group size

Weuse the same setting as itwas described previously, but the
group sizes are different. We consider two different cases. In
the first case, the group size is 10, and the number of groups
is 40. The first two groups are nonzero groups; other groups
are zero groups. These results are shown in Fig. 5 and Table
4. In the second case, the group size is 20, and the number of
groups is 20. Only the first group was nonzero group; other
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Fig. 4 The impact of the coefficient magnitude and censoring rate on group regularization methods when the group size is 4. The black line is the
true model size (5)

groups were zero groups. The results are shown in Fig. 5 and
Table 4.

Figure 5 shows the same pattern as in Fig. 4. However,
when the group size increases, the RMSE values decrease.
Comparing Tables 3 and 4 , it can be seen that when the group
size increases, group lasso performs worse with much higher
FPR values. The group SCAD gives higher TPR values, but
a little bit higher FPR values when the coefficient magnitude
increases. The group MCP gives better performance when
the group size increases.

4.4.3 Effect of censoring

We investigate the performance of threemethodswith respect
to the censoring rate. We use the same setting, in which the
group size is 4with the higher censoring rate 50%.The results
are summarized inFig. 4 andTable 3. FromFig. 4 andTable 3,
on one hand, it can be seen that there is no big difference in
terms of RMSE, model size, and variable selection (TPR
and FPR) between no censoring and 20% censoring. On the
other hand, 50% censoring affects slightly on group lasso and
group SCAD, but strongly on group MCP especially when
the coefficients are small. It may be explained by the fact that
the presence of censoring reduces the available sample size,
which leads to inconsistent estimation.

4.4.4 Effect of covariate correlation

In all the above simulations, we set the population correlation
ρ = 0. In other words, covariates are generated indepen-
dently from the standard normal distribution. In this section,
we still set the group size to be 4, no censoring, but the values
of ρ at 0.2, 0.5 and 0.9. The results are shown in Fig. 6 and
Table 5. It can be seen that when the population correlation is
mild, e.g. not larger than 0.5, all the three models work fine.
In particular, the group MCP formulation performs the best
while the group lasso performs the worst in terms of TPR
and FPR values. The model with the group MCP penalty
also leads to smaller models that approach the true model
sizes compared to much bigger models from the group lasso
model. When the population correlation is high at 0.9, all
three models have bigger RMSE and smaller TPR values.
The group MCP and group SCAD formulations still derive
models with similar size as in themild population correlation
cases. The group lasso formulation becomes more conserva-
tive, which leads to smaller selected models whose sizes are
close to the true size.
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Table 3 Average true positive
rate (TPR) and false positive
rate (FPR) values of three group
regularization methods over 100
replications for different
coefficient magnitude values and
different censoring scenarios
when the group size is 4

|β| Group lasso Group SCAD Group MCP
TPR FPR TPR FPR TPR FPR

No censoring 0.25 0.95 0.09 0.73 0.02 0.71 0.00

0.50 1 0.12 0.91 0.04 1 0.01

0.75 1 0.15 1 0.02 1 0.01

1.00 1 0.21 1 0.01 1 0.01

1.25 1 0.24 1 0.03 1 0.01

1.50 1 0.27 1 0.04 1 0.03

20% censoring 0.25 0.54 0.09 0.50 0.04 0.50 0.01

0.50 1 0.13 0.84 0.04 1 0.05

0.75 1 0.17 1 0.07 1 0.03

1.00 1 0.22 1 0.05 1 0.01

1.25 1 0.23 1 0.03 1 0.02

1.50 1 0.22 1 0.04 1 0.02

50% censoring 0.25 0.75 0.12 0.65 0.04 0.33 0.01

0.50 1 0.19 0.91 0.04 0.33 0.00

0.75 1 0.19 0.93 0.07 0.66 0.00

1.00 1 0.19 1 0.05 0.92 0.02

1.25 1 0.23 1 0.04 0.98 0.02

1.50 1 0.24 0.96 0.04 0.97 0.04

Fig. 5 The impact of increasing coefficient magnitude on group regularization methods when the group size is 10 (first row) and 20 (second row).
The black line on the right is the true model size

4.5 Comparison of three group penalized Cox’s
models with overlapping groups

In this section, we compare the performance of three group
regularization methods in terms of variable selection and
model accuracy using simulated data. In here, the model size
is the number of nonzero covariates.

.

4.5.1 Equal group size

We generate N = 50 observations with P = 162 covari-
ates X1, . . . , X162. There are 20 groups of 10 covariates
with two of them overlapping between two successive
groups: {1, . . . , 9, 10}, {9, . . . , 17, 18}, . . . , {153, . . . , 162}.
The nonzero covariates are X25, X26, . . . , X42.
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Table 4 Average true positive
rate (TPR), and false positive
rate (FPR) values of three group
regularization methods over 100
replications for different
coefficient magnitude values and
different censoring scenarios

Group size |β| Group lasso Group SCAD Group MCP
TPR FPR TPR FPR TPR FPR

10 No censoring 0.25 1 0.15 0.78 0.08 0.51 0.03

0.50 1 0.21 1 0.06 1 0.00

0.75 1 0.30 1 0.01 1 0.00

1.00 1 0.33 1 0.01 1 0.01

1.25 1 0.37 1 0.04 1 0.00

1.50 1 0.38 1 0.06 1 0.01

20% censoring 0.25 1 0.16 1 0.10 0.97 0.03

0.50 1 0.19 1 0.03 1 0.00

0.75 1 0.20 1 0.03 1 0.00

1.00 1 0.24 1 0.03 1 0.01

1.25 1 0.28 1 0.06 1 0.03

1.50 1 0.32 1 0.05 1 0.01

20 No censoring 0.25 1 0.10 1 0.00 1 0.00

0.50 1 0.10 1 0.00 1 0.00

0.75 1 0.31 1 0.00 1 0.00

1.00 1 0.39 1 0.00 1 0.01

1.25 1 0.45 1 0.06 1 0.02

1.50 1 0.50 1 0.08 1 0.02

20% censoring 0.25 1 0.21 1 0.16 1 0.07

0.50 1 0.24 1 0.01 1 0.00

0.75 1 0.37 1 0.02 1 0.00

1.00 1 0.45 1 0.04 1 0.01

1.25 1 0.52 1 0.11 1 0.01

1.50 1 0.52 1 0.12 1 0.01

Fig. 6 The impact of increasing the coefficient magnitude and the population correlation on group regularization methods when the size is 4. The
black line is the true model size (5)
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Table 5 Average true positive rate (TPR), and false positive rate (FPR)
values over 100 replications for three group regularization models with
different coefficient magnitude and population correlation values when
the group size is 4

ρ |β| Group lasso Group SCAD Group MCP
TPR FPR TPR FPR TPR FPR

0 0.25 1 0.10 1 0.00 1 0.00

0.50 1 0.10 1 0.00 1 0.00

0.75 1 0.31 1 0.00 1 0.00

1.00 1 0.39 1 0.00 1 0.01

1.25 1 0.45 1 0.06 1 0.02

1.50 1 0.50 1 0.08 1 0.02

0.2 0.25 0.07 0.01 0.04 0.01 0.02 0.01

0.50 1 0.01 0.99 0.11 0.99 0.02

0.75 1 0.14 1 0.05 1 0.02

1.00 1 0.15 1 0.04 1 0.01

1.25 1 0.14 1 0.06 1 0.02

1.50 1 0.16 1 0.06 1 0.02

0.5 0.47 1 0.09 0.52 0.07 0.47 0.04

0.50 0.97 0.10 0.80 0.09 0.78 0.05

0.75 1 0.13 1 0.08 1 0.06

1.00 1 0.16 1 0.08 1 0.03

1.25 1 0.16 1 0.09 1 0.02

1.50 1 0.20 1 0.06 1 0.02

0.9 0.25 0.25 0.05 0.25 0.05 0.26 0.06

0.50 0.50 0.03 0.49 0.07 0.27 0.04

0.75 0.51 0.04 0.50 0.12 0.44 0.09

1.00 0.53 0.07 0.50 0.13 0.38 0.08

1.25 0.53 0.07 0.50 0.09 0.38 0.06

1.50 0.51 0.08 0.51 0.11 0.27 0.06

4.5.2 Effect of the number of overlapping covariates among
groups

We continue considering the settingwith the equal group size
but set the varying number of overlapping covariates between
two successive groups to 3, 4, 5, 6, 7, and 8. The results are
shown in Table 6. It shows clearly that group SCAD and
groupMCP select smaller models with smaller RMSE values
than group lasso does. In terms of variable selection perfor-
mances, group SCAD and group MCP produce better results
than group lasso. Overall the change of overlap covariates
among groups does not affect performances by group SCAD
and group MCP. On the other hand, it has strong effect upon
group lasso.

4.5.3 Unequal group size

We generate N = 50 observations with P = 185 covariates
X1, . . . , X185. There are 11 groups: 5 groups with 8 covari-

ates per group, 10 groups with 11 covariates per group, and 6
groupswith 15 covariates per group. There are two covariates
overlapping between two successive groups. The nonzero
covariates are X1, X2, . . . , X14.

4.5.4 Sparse group example

As we mentioned above, the sparse group selection is a
special case of the overlapping group. Here, we provide
one example. We generate N = 50 observations with
P = 60 covariates X1, . . . , X60. Each covariate is treated
as a group whose size is 1. In addition, there are 15
groups whose size was 4. The nonzero covariates include
X1, X2, X9, X10, X11, X12, X21. In other words, out of fif-
teen 4-covariate groups, there are two groups that have sparse
group effects.

4.5.5 Results

For all three settings above, we consider the population cor-
relation ρ = 0.5 with 20% right censoring. We create a path
of 50 λ values and use 10-fold cross-validation to select the
final model. The results of 100 replications are summarized
in Table 7. The results in terms of TPR, FPR, model size,
and RMSE values are consistent with the results of the non-
overlapping group cases presented above: group SCAD and
group MCP give better results in term of variable selection
and model accuracy.

4.6 Misspecification of group structures

As described above, our methods need pre-defined group
structures. We would like to investigate the effects of erro-
neous specification of groups. We consider an example with
N = 100, P = 80, and the “correct” underlying group struc-
ture:

1, . . . , 10︸ ︷︷ ︸
group1

11, . . . , 20︸ ︷︷ ︸
group2

21, . . . , 26︸ ︷︷ ︸
group3

25, . . . , 30︸ ︷︷ ︸
group4

31, . . . , 40︸ ︷︷ ︸
group5

41, . . . , 50︸ ︷︷ ︸
group6

51, . . . , 57︸ ︷︷ ︸
group7

55, . . . , 60︸ ︷︷ ︸
group8

61, . . . , 70︸ ︷︷ ︸
group9

71, . . . , 80︸ ︷︷ ︸
group10

,

in which there are non-overlapping groups and overlapping
groups. Notice that groups 3 and 4 have two overlapped
covariates, and groups 7 and 8 have three overlapped covari-
ates. We set the population correlation ρ = 0.5 with 50%
censoring rate. The corresponding coefficients are

0, . . . , 0︸ ︷︷ ︸
group1−2

1.5, 0, 1.5, 0,−2, 0︸ ︷︷ ︸
group3

−2, 0, 0,−2,−1,−2︸ ︷︷ ︸
group4

0, . . . , 0︸ ︷︷ ︸
group5−6

1.4, 0, 1, 0, 1.8, 0, 0︸ ︷︷ ︸
group7

1.8, 0, 0, 1, 1.6, 1.2︸ ︷︷ ︸
group8

0, . . . , 0︸ ︷︷ ︸
group9−10

.
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Table 6 Results for overlapping
group settings with different
overlapping covariates between
two successive groups over 100
replications

No. of overlap-
ping covariates

TPR FPR Model size RMSE

Truth 18

2 Group lasso 1 0.36 70.58 0.42

Group SCAD 1 0 18 0.36

Group MCP 1 0 18 0.36

Truth 17

3 Group lasso 1 0.53 83.47 0.43

Group SCAD 1 0 17 0.30

Group MCP 1 0 17 0.30

Truth 16

4 Group lasso 1 0.50 70.68 0.47

Group SCAD 1 0 16 0.29

Group MCP 1 0.07 23.22 0.31

truth 15

5 Group lasso 1 0.62 71.35 0.46

Group SCAD 1 0.36 47.4 0.23

Group MCP 1 0.03 17.9 0.20

truth 14

6 Group lasso 1 0.63 59.36 0.58

Group SCAD 1 0.06 19.2 0.26

Group MCP 1 0.03 16.2 0.23

Truth 13

7 Group lasso 0.96 0.86 58.76 0.58

Group SCAD 0.96 0.10 18.24 0.46

Group MCP 0.90 0.08 15.98 0.40

Truth 12

8 Group lasso 1 0.81 41.24 0.61

Group SCAD 1 0.35 24.80 0.35

Group MCP 1 0.30 21.72 0.29

Table 7 Results for overlapping
group settings over 100
replications

TPR FPR Model size RMSE

Equal group Truth 18

Group lasso 1 0.36 70.58 0.42

Group SCAD 1 0 18 0.36

Group MCP 1 0 18 0.36

Unequal group Truth 14

Group lasso 1 0.43 87.52 0.37

Group SCAD 1 0.01 16.05 0.25

Group MCP 1 0 14.55 0.25

Sparse group Truth 7

Group lasso 1 0.27 21.61 0.29

Group SCAD 1 0.05 9.56 0.24

Group MCP 1 0.02 7.83 0.24
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Thenwe consider two exampleswith themisspecified groups
for inference. In the first example, the number of groups are
incorrect because the overlapping groups are collapsed:

1, . . . , 10︸ ︷︷ ︸
group1

11, . . . , 20︸ ︷︷ ︸
group2

21, . . . , 30︸ ︷︷ ︸
group3

31, . . . , 40︸ ︷︷ ︸
group4

41, . . . , 50︸ ︷︷ ︸
group5

51, . . . , 60︸ ︷︷ ︸
group6

61, . . . , 70︸ ︷︷ ︸
group7

71, . . . , 80︸ ︷︷ ︸
group8

.

In the second example, there are no overlapping covariates
because the overlapping covariates are put into one group.

1, . . . , 10︸ ︷︷ ︸
group1

11, . . . , 20︸ ︷︷ ︸
group2

21, . . . , 26︸ ︷︷ ︸
group3

27, . . . , 30︸ ︷︷ ︸
group4

31, . . . , 40︸ ︷︷ ︸
group5

41, . . . , 50︸ ︷︷ ︸
group6

51, . . . , 57︸ ︷︷ ︸
group7

58, . . . , 60︸ ︷︷ ︸
group8

61, . . . , 70︸ ︷︷ ︸
group9

71, . . . , 80︸ ︷︷ ︸
group10

.

The results are shown in Table 8. It can be seen that our meth-
ods are quite robust and not affected by the group structure
misspecification.

We consider additional settings with a large number of
overlapping covariates and the number of zero groups being
more than the number of non-zero groups in “Appendix” 3.

5 Real-world case studies

An important motivation for developing our methods is to
perform gene selection for biomarker discovery from gene
expression data using the prior knowledge about group struc-
tures. We apply our methods to analyze both ovarian cancer
and breast cancer data as detailed below. The grouping of
genes into predefined gene sets is based on the curated
database, MSigDB (MSi 2021).

5.1 Data

The ovarian cancer data are downloaded from The Can-
cer Genome Atlas (TCGA, http://cancergenome.nih.gov). It
includes gene expression data for 12,043 genes in 593 sam-
ples. We first map gene probes to gene symbols and remove
the duplicated genes.We use the 15 KEGG subsets of canon-
ical pathways suggested in Jones et al. (2008). The subsets
include apoptosis, cell adhesion molecules, cell cycle, base
excision repair, nucleotide excision repair, mismatch repair,
non-homologous end joining, Hedgehog signaling pathway,
mTOR signaling pathway, Jak-STAT signaling pathway,
Notch signaling pathway, Phosphatidylinositol signaling sys-
tem,MAPKsignaling pathway, TGF-beta signaling pathway,
and Wnt signaling pathway. These gene sets include 1,347
genes in total. After removing the samples without survival
information, 580 samples remain.

We use the breast cancer dataset compiled by Van de Vijer
et al. (2002), which includes gene expression data for 21,463
genes in 295 breast cancer samples. Out of 295 samples
there are 216 censoring samples.We first map gene probes to
gene symbols and remove the duplicated genes, with the final
expression data consisting of 9,950 genes. We use the gene
sets fromSubramanian et al. (2005) containing 427 gene sets.
We restrict the analysis to the 2,663 genes that are in at least
one gene set.

5.2 Methods

We apply our methods (group lasso, group SCAD, and group
MCP) with 5-fold cross validation.

In addition, we run univariate test to select genes and path-
ways for evaluation. For gene-level analysis,where each gene
is tested one at a time, we use the RegParallel function of the
RegParallel package (Blighe and Lasky-Su 2021) with the
embedded coxph function of the survival package Therneau
(2021) to compute the adjusted p-values for multiple com-
parisons with multiple FDR and FWERmethods (7 methods
in total (Holm 1979; Hochberg 1988; Hommel 1988; Ben-
jamini and Hochberg 1995; Benjamini and Yekutieli 2001)).
For pathway-level analysis, where each pathway is tested
one at a time, we first convert the gene-level expression data
matrix into pathway-level variables using theGSVA package
(Hänzelmann et al. 2013), then apply the coxph function and
compute the adjusted p-values. The significance threshold
0.05 is used to select the genes or pathways.

5.3 Results and discussion

5.3.1 Analysis of ovarian cancer data

In univariate test, there is no gene or pathway selected
using the significance level 0.05, which shows that it is
often subjective relying on (adjusted) p-values for biomarker
identification depending on univariate tests. This again moti-
vates why we would like to develop our penalized survival
model with different group regularization terms to consider
candidate covariates together. For comparison purpose, we
consider 54 genes selected based on the raw p-values at the
significance 0.05 and top four pathways with the smallest p-
values. Its results and the results using our methods (group
lasso, group SCAD, and group MCP) are summarized in
Table 9. More details about genes and pathways selected by
univariate test and our methods are provided in Tables 3, 4,
5 in the Supporting Information.

First, comparing different models using grpCox, the
results are consistent with the simulation results when group
lasso selects a relatively larger model than group SCAD and
group MCP do.
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Table 8 Results for
misspecified group structures
over 100 replications

TPR FPR Model size RMSE

truth 12

Correct Group lasso 1 0.70 59.8 0.45

specification Group SCAD 1 0.34 35.5 0.18

Group MCP 1 0.17 24.1 0.16

truth 12

First Group lasso 1 0.70 59.8 0.45

misspecification Group SCAD 1 0.28 31.3 0.17

Group MCP 1 0.13 21.4 0.15

truth 12

Second Group lasso 1 0.71 61.8 0.46

misspecification Group SCAD 1 0.30 32.8 0.18

Group MCP 1 0.17 24.2 0.16

Table 9 Pathways and genes selected by different methods for ovarian cancer data

Methods Selected path-
ways

No. of unique
genes No. of
genes

No. of
selected
unique genes

Group lasso KEGG_NON_HOMOLOGOUS_END_JOINING,
KEGG_HEDGEHOG_SIGNALING_PATHWAY,
KEGG_TGF_BETA_SIGNALING_PATHWAY,
KEGG_WNT_SIGNALING_PATHWAY

252/304 208

grpCox Group SCAD KEGG_NON_HOMOLOGOUS_END_JOINING,
KEGG_TGF_BETA_SIGNALING_PATHWAY,
KEGG_WNT_SIGNALING_PATHWAY

232/248 194

Group MCP KEGG_NON_HOMOLOGOUS_END_JOINING,
KEGG_TGF_BETA_SIGNALING_PATHWAY,
KEGG_WNT_SIGNALING_PATHWAY

232/248 194

Univariate test Gene-level - 1098/1347 54

Pathway-level KEGG_BASE_EXCISION_REPAIR,
KEGG_TGF_BETA_SIGNALING_PATHWAY,
KEGG_WNT_SIGNALING_PATHWAY,
KEGG_MISMATCH_REPAIR

271/293 271

Table 10 Pathways and genes selected by different methods for breast cancer data. Note that 293 selected pathways using univariate tests are listed
in the Supporting Information

Methods No. of selected
pathways

No. of unique
genes No. of
genes

No. of selected
unique genes

Group lasso GCM_ATM,
GCM_BCL2L1,
GNF2_CDH11,
GNF2_CEBPA,
GCM_PPP1CC,
GNF2_PTX3,
GNF2_TPT1,
GNF2_GLTSCR2,
GNF2_CYP2B6

289/361 151

grpCox Group SCAD GCM_ATM, GNF2_CDH11, GNF2_TPT1 90/90 43

Group MCP GNF2_CDH11 25/25 20

Univariate test Gene-level - 2663/42526 5

Pathway-level 293 2197/35517 2197
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Fig. 7 Survival curves for the high and low risk groups of the independent testing samples of ovarian cancer (first row) and breast cancer (second
row)

Second, we compare the results of univariate tests and
our grpCox package using the group lasso penalty since the
results selected by group lasso include all the selections using
group SCAD and MCP. At gene-level, among 15 overlap-
ping selected genes, there are 6 genes have been reported
in the literature as ovarian cancer biomarkers. Among non-
overlapping genes identified by our grpCox, there are 38
genes showing biologically meaning. In contrast, among 54
genes by univariate tests, there are only additional 6 genes
showing biological relevance.

At pathway-level, all selected pathways using ourmethods
are biologically meaningful. The identified pathways appear
to be biologically meaningful in ovarian cancer. Non homol-
ogous end joining (NHEJ) pathway is known to repair double
strand breaks. Defective NHEJ has been found in up to 50%
of ovarian cancers (McCormick et al. 2017; Gee et al. 2018).
Overexpression or pathway activation by gene mutations
among genes of the Hedgehog signaling in ovarian tumorige-
nesis play the crucial role in the development and progression
of ovarian cancer (Szkandera et al. 2013; Otsuka et al. 1981).
Wnt signalingpathway iswell-known toplay a role in tumori-
genesis. Gatcliffe et al. (2008) demonstrated the difference in
Wnt signaling pathway between normal ovarian and cancer
cell lines. They also pointed out that those differences impli-
cate that Wnt signaling leads to ovarian cancer development
despite the fact that gene mutations are uncommon. TGF-
β signaling pathway behaves as both a tumor suppressor in
ovarian physiology as well as acting as a tumor promoter that

controls proliferation in ovarian cancer (Alsina-Sanchis et al.
2016, 2017). Two other pathways selected by univariate test
are also biologically meaningful. It is clear again that consid-
ering genes together can help understand underlying cellular
processes. However, the results in Table 9 show that when
univariate test selects pathway, it selects all genes in this
pathway, which is less flexible compared to the group penal-
ized survival models. In fact, grpCox naturally takes care
of the gene-pathway relationships in the model formulations
and results in simultaneous selection of relevant genes and
pathways. In other words, grpCox jointly considers potential
effects, which may lead to better biomarker identification
results.

5.3.2 Analysis of breast cancer data

Similarly, in univariate test results, very few genes, either
one or five genes depending on the adopted multiple testing
adjustmentmethod, are selected. Five genes are selectedwith
the significance level 0.05 based on the FDR and Benjamini-
Hochberg correction. There are 293 pathways out of 427
pathways are selected. Its results and the results using our
methods (group lasso, group SCAD, and group MCP) are
summarized in Table 10. More details about genes and
pathways selected by univariate tests and our methods are
provided in Tables 6, 7, 8, 9 in the Supporting Information.

Similarly, the results of different models using grpCox
are consistent with the simulation results when group lasso
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selects a relatively larger model than group SCAD and group
MCP do.

Next, we compare the results of univariate tests and
grpCox package. At gene-level, among three overlapping
selected genes, TBCB gene has been reported as breast can-
cer biomarker. Among non-overlapping genes using grpCox,
there are 33 genes showingbiological relevance.Amongnon-
overlapping genes by univariate test, the other selected genes
have not been reported to be relevant to breast cancer specif-
ically.

At pathway-level, there are three overlapping pathways in
which GCM_ATM and GCM_PPP1CC pathways all being
biologically relevant. For example, the gene ATM in the
GCM_ATM pathway associated with increased breast can-
cer risk (Ahmed and Rahman 2006; Goldgar et al. 2011).
In addition, the gene CDH11 in the GNF2_CDH11 pathway
has been found to be overexpressed in breast cancer (Sar-
rio et al. 2008; Li et al. 2014; Assefnia et al. 2014). The
collagen genes COL1A2, COL3A1, COL6A1 are correlated
significantly during breast cancer development and progres-
sion (Sengupta et al. 2003; Loss et al. 2010; Brisson et al.
2015; Xiong et al. 2014; Bertucci et al. 2002; Lin et al. 2018).

All non-overlapping pathways using grpCox are biolog-
ically meaningful. Among 290 non-overlapping pathways
using univariate test, consider top 6 pathways with smallest
adjusted p-values, there are five among them showing bio-
logical relevance. However, univariate test at pathway-level
again shows less flexible when selecting relevant genes than
grpCox.

5.3.3 Validation of results

The results that are selected by our methods are further ana-
lyzed.

For the ovarian cancer data,weuse the independent dataset
described in Etemadmoghadam et al. (2009) as a test set. This
dataset contains 285 samples and 53,433 genes. After remov-
ing the samples without survival information, there are 276
samples in total. We first compute the estimated coefficients
β̂, and the risk scores X β̂. Their median value is used as
the threshold for the high and low risk groups. The samples
are assigned into the high and low risk groups by comparing
with the threshold. The survival curves of these two groups
are shown in Fig. 7. These two curves of all methods are well
separated with a p−value of the log-rank test is smaller than
0.0001.

For the breast cancer data, we use the independent dataset
described in Miller et al. (2005) as a test set. This dataset
contains 251 samples and 24,712 genes. After removing the
samples without survival information and selecting genes
appearing in the selected genes in Table 10, there are 236
samples with 181 censoring samples. We first compute the
estimated coefficients β̂, and the risk scores X β̂. Their

median value is used as the threshold for the high and low
risk groups. The samples are assigned into the high and low
risk groups by comparing with the threshold. The survival
curves of these two groups are shown in Fig. 7. It shows
that the p−values of the log-rank tests for three models are
much smaller than 0.01: the p−value of the group lasso is
the smallest, followed by the group SCAD and the group
MCP. In other words, the selected genes sets of group SCAD
and group MCP are much smaller than the selected genes set
of group lasso, and still classify the patients in independent
breast cancer dataset into high risk and low risk groups well.

6 Discussion

The high-dimensional problems for survival data, in which
P exceeds N , are increasingly common thanks to our
advancing data collection and storage capability. Introduc-
ing the additional structures into these problems especially
group structures, is natural for incorporating prior knowl-
edge to achieve robust and interpretable survival models.
This paper has presented three group selection methods for
high-dimensional data with censoring in the framework of
the Cox’s proportional hazards model. The proposed meth-
ods have been demonstrated in solving problems of both
non-overlapping group and overlapping group cases. Since
the sparse group lasso that can yield both individual and
group sparsity is a special case of overlapping group lasso,
our methods can effectively select important groups as well
as identifying the important covariates within the selected
groups.

The group-wise descent algorithms combining with the
MM approach have been developed to solve the correspond-
ing optimization problems. Thanks to the MM approach, the
proposed algorithms have a proven descent property. Sev-
eral computational tricks have been implemented to speed
up the group-wise descent algorithms, including the screen-
ing, active set, and warm-start approaches. An open-access
implementation can be found in our R package grpCox. Our
experiments have demonstrated that grpCox is faster than
grpsurv, grpregOverlap and much faster than SGL. In addi-
tion, grpCox is better than grpsurv and comparable with SGL
in term of variable selection.

We have studied the group lasso, group SCAD, and group
MCP Cox’s models. These methods perform well in sev-
eral simulation settings. The group lasso enjoys its convexity
but it tends to select a model that is more complicated than
the underlying model. It leads to relatively high false posi-
tive group selection rates. On the other hand, the nonconvex
penalties, including group SCAD and group MCP, show
the promising grouped variable selection results with ora-
cle properties. We have analyzed the TCGA ovarian cancer
data and breast cancer data using available pathway infor-
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Fig. 8 Plot of the cross-validation log-partial likelihood against the log
of λ values along the regularization path

mation to construct gene groups. The selected genes have
been tested on independent ovarian cancer and breast cancer
datasets. The results show that the high and low risk groups
are well separated. In other words, group SCAD and group
MCP methods are powerful alternatives to the group lasso
Cox’s model for grouped variable selection. It is worth men-
tioning that we have used fixed γ parameters (γ = 3.7 for
group SCAD as suggested in Fan and Li (2001) and γ = 3
for group MCP as suggested in Zhang (2010)) in this paper.
However, by adjustingγ values, groupMCPcan resemble the
group lasso with γ = ∞ and group SCAD as well. Clearly,
the choice of γ has a big impact. Therefore, how to determine
the values of additional tuning parameters of group SCAD
and groupMCP for the Cox’s model is an important research
question for further investigation.
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Appendix 1

We have studied the statistical properties of the estimators:
consistency and convergence rate as follows.

The partial likelihood

�n(β) = − 1

n

D∑

i=1

[
( J∑

j=1

X (i)
j fi j

) − log

( ∑

l∈Ri

exp
( J∑

j=1

X (l)
j fi j

)
)]

,

where the penalty term Pλ,γ (β) can be denoted as Pλn (β)

since γ for group SCAD and group MCP are fixed. Here,
�n(β), λn denote the partial likelihood and tuning parameter
changing with the sample size n, respectively.

Let the true parameter be β0 = (
βT
01, β

T
02

)T where β01

consists of all nonzero groups and β02 consists of all remain-
ing zero groups. The objective function is

Qn(β, λn) = �n(β0) + �
′
n(β0)

T (β − β0)

+ τ

2
(β − β0)

T (β − β0) + Pλn (β).

Correspondingly, the minimizer of Qn(β, λn) is βn =(
βT
n1, β

T
n2

)T where βn = argmin
β

Qn(β, λn).

Define an = max{P ′
λn

(‖β j0‖) : ‖β j0‖ �= 0} and bn =
max{P ′′

λn
(‖β j0‖) : ‖β j0‖ �= 0}.

Theorem 1 (Consistency and convergence rate) If Pλn (‖β‖)
simultaneously satisfies two conditions: an = Op(n−1/2)

and bn → 0, then βn is a root-n consistent estimator for β0

with rate n−1/2, i.e. ‖βn − β0‖ = Op(n−1/2).

Proof According toTheorem3.2 inAndersen andGill (1982)
two results hold

− �
′
(β0)

p→ n−1/2N (0, �)

�′′(β∗) p→ n� for any random β∗ p→ β0

Then, �′′(β∗) = n(� + Op(1)),

where � is the positive definite Fisher information matrix.
Consider a constant ball, B(C) = {β0 + αnu : ‖u‖ ≤ C}
and its boundary ∂B(C) where C > 0 and αn = n−1/2 +
an . Therefore, Op(αn) = Op(an) = Op(n−1/2). To prove
‖βn −β0‖ = Op(n−1/2), it is sufficient to prove that for any
ε > 0, there exists a large constant C such that

P

(
sup

β∈∂B(C)

Qn(β, λn) < Q(β0, λn)

)
≥ 1 − ε. (15)

This implies that with probability at least 1−ε (or goes to 1),
Qn(β, λn) has a local minimum in the ball B(C) for a given
λn .
Denote Dn(u) = Qn(β, λn) − Q(β0, λn), we have

Dn(u) = �
′
(β0)

T (β − β0) + τ

2
(β − β0)

T (β − β0)

+ Pλn (β) − Pλn (β0) = D1 + D2.
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Table 11 Results for group
lasso using different
cross-validation methods to
select hyperparameters over 100
replications

Censoring rate ρ First CV method Second CV method
Model size TPR FPR Model size TPR FPR

No censoring 0 95.8 1 0.19 30 1 0.02

0.2 79.5 1 0.15 20 1 0

0.5 119.6 1 0.26 30 1 0.02

20% censoring 0 102 1 0.21 33.2 1 0.03

0.2 94.1 1 0.19 25.1 1 0.01

0.5 122.6 1 0.27 32.2 1 0.03

Table 12 Results for group
SCAD using different
cross-validation methods to
select hyperparameters over 100
replications

Censoring rate ρ First CV method Second CV method
Model size TPR FPR Model size TPR FPR

No censoring 0 20 1 0 20 1 0

0.2 40 1 0.05 39 1 0.04

0.5 58.1 1 0.10 23.1 1 0.01

20% censoring 0 80 1 0.15 30.9 1 0.02

0.2 40.4 1 0.05 29.7 1 0.02

0.5 83.7 1 0.17 27.6 0.91 0.02

Table 13 Results for group
MCP using different
cross-validation methods to
select hyperparameters over 100
replications

Censoring rate ρ First CV method Second CV method
Model size TPR FPR Model size TPR FPR

No censoring 0 20 1 0 20 1 0

0.2 20 1 0 20 1 0

0.5 20.4 1 0.00 19.5 0.98 0

20% censoring 0 29.5 1 0.02 20 1 0

0.2 32 1 0.03 20 1 0

0.5 36.9 1 0.04 16.2 0.65 0.01

Consider that

D1 = �
′
(β0)

T (β − β0) + τ

2
(β − β0)

T (β − β0)

= Op(n
−1/2)αnu + τ

2
α2
nu

Tu

= Op(Cα2
n) + Op(C

2α2
n).

Consider D2 using Taylor expansion, we have

D2 = Pλn (β) − Pλn (β0)

=
∑

j

P
′
λn

(‖β j0‖)(‖β j0 + αnu j‖ − ‖β j0‖) + 1

2
(‖β j0+

αnu j‖ − ‖β j0‖)T
(
P ′′

λn
(‖β j0‖)(‖β j0 + αnu j‖ − ‖β j0‖)

≤
∑

j

anαn‖u j‖ + bnα
2
n‖u j‖2

≤
∑

j

α2
nC + bnα

2
nC

2 = J (α2
nC + bnα

2
nC

2).

Because bn → 0, D2 → Op(Cα2
n). By choosing a suf-

ficiently large C , D1 dominates D2. Thus, inequality (15)
holds.

Appendix 2

We present the simulation studies of the second cross-
validation approach described in Section 2.7 to select the
tuning parameters λ and evaluate its variable selection per-
formance.

In Fig. 8, each dot represents the logarithm of the λ

values along the solution path, and the error bars provide
the confidence intervals for the cross-validation log-partial-
likelihood. The left vertical bar indicates the maximum
cross-validation partial-log-likelihood using the first method
Verweij and Houwelingen (1993) while the right one shows
the maximum cross-validation log-partial-likelihood using
the second method Ternes et al. (2016).

We continue considering N = 100 observations and P =
400 covariates with 40 groups, each with 10 elements. There
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Table 14 Results for
misspecified group structures
over 100 replications

TPR FPR Model size RMSE

truth 4

Correct Group lasso 1 0.70 40 0.24

specification Group SCAD 1 0.52 31 0.14

Group MCP 1 0.35 22.2 0.12

truth 4

First Group lasso 1 0.71 40.5 0.26

misspecification Group SCAD 1 0.53 31.2 0.14

Group MCP 1 0.50 29.3 0.15

truth 4

Second Group lasso 1 0.71 40.3 0.26

misspecification Group SCAD 1 0.50 29 0.13

Group MCP 1 0.40 25 0.13

truth 4

Third Group lasso 1 0.70 40.2 0.26

misspecification Group SCAD 1 0.50 29.5 0.13

Group MCP 1 0.41 25.6 0.13

truth 4

Fourth Group lasso 1 0.75 42.2 0.25

misspecification Group SCAD 1 0.42 26 0.12

Group MCP 1 0.35 21.9 0.12

are two non-zero groups. The coefficient magnitude |β| =
0.5, the values of the population correlation ρ are 0, 0.2 and
0.5, the censoring rates are 0% and 20%. The results are
summarized in Tables 11, 12, and 13 . It can be seen that
using the second cross-validation method always results in
smaller models than using the first cross-validation method.
For group lasso, it produces better variable selection results
with much smaller FPR values. For group SCAD and MCP,
it often gives better results, but sometimes suppresses too
much, e.g., in group MCP case with 20% censoring, ρ =
0.5. Therefore, the second cross-validation method should
be used with caution.

Appendix 3

We present additional settings based on the reviewer’s
suggestions: settings with a large number of overlapping
covariates and the number of zero groups beingmore than the
number of non-zero groups. More specifically, we have per-
formed an additional experiment using the simulated data
with N = 100, P = 55, in which there are 10 groups of
size 10 and 50% covariates overlap between two successive
groups. The “correct” underlying group structure is given by

1, . . . , 10︸ ︷︷ ︸
group1

6, . . . , 15︸ ︷︷ ︸
group2

11, . . . , 20︸ ︷︷ ︸
group3

16, . . . , 25︸ ︷︷ ︸
group4

21, . . . , 30︸ ︷︷ ︸
group5

26, . . . , 35︸ ︷︷ ︸
group6

31, . . . , 40︸ ︷︷ ︸
group7

36, . . . , 45︸ ︷︷ ︸
group8

41, . . . , 50︸ ︷︷ ︸
group9

46, . . . , 55︸ ︷︷ ︸
group10

.

We set the population correlation ρ = 0.5 with 30% censor-
ing rate. The corresponding coefficients are

0, . . . , 0︸ ︷︷ ︸
group1−2

0, 0, 0, 0, 0, 1.5, 0, 0,−2, 0︸ ︷︷ ︸
group3

1.5, 0, 0,−2, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸
group4

0, . . . , 0︸ ︷︷ ︸
group5−6

0, 0, 0, 0, 0, 1.4, 0, 0, 0, 1.8︸ ︷︷ ︸
group7

1.4, 0, 0, 0, 1.8, 0, 0, 0, 0, 0︸ ︷︷ ︸
group8

0, . . . , 0︸ ︷︷ ︸
group9−10

.

Then we consider four setups with the misspecified group
structures for inference. In the first setup, the number of
groups are incorrect because the overlapping groups are col-
lapsed as follows:

1, . . . , 10︸ ︷︷ ︸
group1

6, . . . , 15︸ ︷︷ ︸
group2

11, . . . , 25︸ ︷︷ ︸
group3

21, . . . , 30︸ ︷︷ ︸
group4

26, . . . , 35︸ ︷︷ ︸
group5

31, . . . , 45︸ ︷︷ ︸
group6

41, . . . , 50︸ ︷︷ ︸
group7

46, . . . , 55︸ ︷︷ ︸
group8

.

In the second setup, themisspecified group structure deviates
from the ground truth more significantly will all the overlap-
ping covariates put into one group:
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1, 3, 5, 7, 9, 11, 13, 15︸ ︷︷ ︸
group1

2, 4, . . . , 12, 14, 16, 17, 18, 19, 20, 21, 22︸ ︷︷ ︸
group2

16, . . . , 25︸ ︷︷ ︸
group3

21, . . . , 30︸ ︷︷ ︸
group4

26, . . . , 35︸ ︷︷ ︸
group5

31, . . . , 45︸ ︷︷ ︸
group6

41, . . . , 50︸ ︷︷ ︸
group7

46, . . . , 55︸ ︷︷ ︸
group8

.

Similar as the first setup, the third and fourth setups are
defined as follows:

1, . . . , 20︸ ︷︷ ︸
group1

16, . . . , 25︸ ︷︷ ︸
group2

21, . . . , 30︸ ︷︷ ︸
group3

26, . . . , 35︸ ︷︷ ︸
group4

31, . . . , 45︸ ︷︷ ︸
group5

41, . . . , 50︸ ︷︷ ︸
group6

46, . . . , 55︸ ︷︷ ︸
group7

and

1, . . . , 10︸ ︷︷ ︸
group1

6, . . . , 20︸ ︷︷ ︸
group2

16, . . . , 25︸ ︷︷ ︸
group3

21, . . . , 30︸ ︷︷ ︸
group4

26, . . . , 40︸ ︷︷ ︸
group5

36, . . . , 45︸ ︷︷ ︸
group6

41, . . . , 50︸ ︷︷ ︸
group7

46, . . . , 55︸ ︷︷ ︸
group8

The results shown in Table 14 confirm our expectation: the
setup with the collapsed groups including several non-zero
(active) groups producesworse results than the caseswith the
collapsed groupswith none or only one non-zero group.More
clearly, the first setup in the table including two collapsed
groups (group3 and group5), where each of them consists of
two non-zero groups, has the worst variable selection per-
formance. Both the second and third misspecification setups
including only one group (group5) that is collapsed from two
non-zero groups have almost the same performance, better
than the first misspecification setup. The fourth mispecifi-
cation setup with no misspecified group collapsed from two
non-zero groups has the best performance. We hypothesize
that the probability of variables being incorrectly selected
increases due to the ignorance of the overlapping property of
active elements in the collapsed groups and the larger group
sizes of these collapsedgroups. In otherwords, FPR increases
and then corresponding RMSE increases.
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