A Performance Evaluation of Pairing-Based
Broadcast Encryption Systems

Arush Chhatrapati', Susan Hohenberger?*, James Trombo?, and
Satyanarayana Vusirikala®t

! Henry M. Gunn High School, Palo Alto, CA, USA, arush.chhatrapati@gmail.com
2 Johns Hopkins University, Baltimore, MD, USA susan@cs. jhu.edu
3 George Mason High School, Falls Church, VA, USA, jamestrombo@gmail.com
4 University of Texas at Austin, Austin, TX, USA, satya@cs.utexas.edu

Abstract. In a broadcast encryption system, a sender can encrypt a
message for any subset of users who are listening on a broadcast chan-
nel. The goal is to leverage the broadcasting structure to achieve better
efficiency than individually encrypting to each user; in particular, re-
ducing the ciphertext size required to transmit securely, although other
factors such as public and private key size and the time to execute setup,
encryption and decryption are also important.

In this work, we conduct a detailed performance evaluation of eleven
public-key, pairing-based broadcast encryption schemes offering differ-
ent features and security guarantees, including public-key, identity-based,
traitor-tracing, private linear and augmented systems. We implemented
each system using the MCL Java pairings library, reworking some of
the constructions to achieve better efficiency. We tested their perfor-
mance on a variety of parameter choices, resulting in hundreds of data
points to compare, with some interesting results from the classic Boneh-
Gentry-Waters scheme (CRYPTO 2005) to Zhandry’s recent generalized
scheme (CRYPTO 2020), and more. We combine this performance data
with data we collected on practical usage scenarios to determine which
schemes are likely to perform best for certain applications, such as video
streaming services, online gaming, live sports betting and distributor-
limited applications. This work can inform both practitioners and future
cryptographic designers in this area.

1 Introduction

In a broadcast encryption system [FN93], a sender can encrypt a message for any
subset of users who are listening on a broadcast channel. We focus on public-key
systems, where there is a public system key that allows anyone to encrypt a
message to any set S of his choice out of an established set of N users. The

*Susan Hohenberger was supported by NSF CNS-1908181, the Office of Naval Re-
search N00014-19-1-2294, and a Packard Foundation Subaward via UT Austin.

fSatyanarayana Vusirikala was supported by a UT Austin Provost Fellowship, NSF
CNS-1908611, and the Packard Foundation.



public system key is established by a master authority, who also distributes
individualized secret keys to each user in the system. If a user is in the set S
for a particular broadcast, then she can decrypt that broadcast using her secret
key. A critical security property for these systems is collusion resistance, which
guarantees that users not in S learn nothing about the broadcast message. Some
schemes offer a traitor-tracing functionality that protects against digital piracy;
specifically, it guarantees that if one or more malicious users work together to
release piracy information (e.g., software or a key) that decrypts on the broadcast
channel, then this piracy information can be traced back to at least one of them.

The goal of broadcast encryption is efficiency. In particular, the goal is to
leverage the broadcasting structure to achieve better efficiency than individu-
ally encrypting to each user. This can result in huge practical savings. To mea-
sure the concrete performance benefits offered by various broadcast encryption
systems, for several different sizes of system users N and encryption subsets
S C N, we will compare each broadcast encryption scheme in terms of cipher-
text size, public and private key size, and the setup, key generation, encryption
and decryption times. We focus on pairing-based broadcast systems, since this
is the most promising algebraic setting for reducing ciphertext size and obtain-
ing fast runtimes (see [CHTV21] for more on pairings). We also compare the
broadcast schemes to an optimized “baseline” scheme® derived from ElGamal
encryption [Gam85] with shared parameters (see Section 2) that individually
encrypts to each user in the broadcast set S.

Our Contributions and Results. To the best of our knowledge, this work is the
only current detailed performance study of public-key, pairing-based broadcast
encryption systems. Although schemes can be loosely grouped and compared at
the asymptotic level for performance purposes, the tradeoffs, underlying con-
stant factors, scalability and differing system features could significantly impact
various applications. To provide the community with a solid foundation for com-
parisons, this work includes the following:

— We collected eleven public-key, pairing-based broadcast encryption systems,
which are detailed in Table 2 of Section 3 and which we thought were likely
to perform the best. In some cases, we made efficiency-focused alterations
to the schemes, such as creating a separate setup and key generation func-
tion or finding the most efficient asymmetric pairing implementation for a
scheme presented symmetrically. Any change from the original publication
is documented herein, with details in the full version [CHTV21].

— We implemented the eleven broadcast systems using the MCL pairings li-
brary (currently employed by some cutting-edge cryptocurrency companies)
and the baseline ElGamal system using OpenSSL. These implementations
will be made publicly available. We ran hundreds of tests on these systems
for various parameter choices, reporting on those results in Section 3. This

®Because the Section 2 baseline scheme will not require the pairing operation, it
is implemented using an elliptic curve group, whose elements are even smaller; thus
requiring real performance gains from the broadcast systems to overtake it.



is a contribution in terms of providing the community with data and public
reference implementations; additionally careful implementation is also im-
portant for rooting out any potential issues in prior publications. In the
course of our study, we discovered a technical issue in a prior publication;
we communicated it to the author(s) and they updated their scheme accord-
ingly. (Details are removed for submission anonymity, but we will be explicit
in the final version.) Thus, this implementation effort has also been useful
as an additional verification process for prior work.

— In Tables 7 and 8, we document that individual encryption is more efficient
than broadcast encryption for systems with 100 users or less. The 100 <
N < 10,000 range is a gray area where there are tradeoffs to be made. But
once a system’s users exceed 10,000, broadcast encryption dominates the
individual encryption (baseline) in overall performance.

— To understand which broadcast system offers the “best” performance, we
researched the yearly reports and shareholder letters of companies such as
Nvidia [Nvi20], Disney [Com19] and Netflix [Cor20] to understand the per-
formance demands of some interesting applications for broadcast encryption.
We summarize our findings in Section 4. We start with the classic applica-
tion of video streaming and then explore the emerging applications of online
gaming, live sports betting and more. In a nutshell, if traitor tracing is not
required, we found that the classic Boneh-Gentry-Waters system [BGWO05,
83.2] provides the best tradeoffs for video streaming and is strong for online
gaming too, with [Wat09] also strong for gaming. Zhandry’s generalized non-
risky system (see [CTITV21] for details) can be tuned to optimize a parameter
of interest (e.g., ciphertext size), although this usually results in another pa-
rameter (e.g., decryption time) becoming infeasible. For live sports betting,
the smaller number of users and the importance of encryption speed make
Gentry-Waters [GW09] the preferred choice. We found the private tracing
system of Gentry, Kumarasubramanian, Sahai and Waters [GKSW09] to
provide the best overall system performance when tracing is needed, but it
may not be fast enough for live streaming applications. For peer-to-many
applications, we favored Boneh-Gentry-Waters [BGWO05, §3.1] when many
keys must be generated. Finally, we discovered that none of the identity-
based broadcast systems (IBBE) were practical for large user applications,
so a practical IBBE remains an interesting open research problem.

The schemes we implemented (as taken from their respective publications),
including the ElGamal baseline, achieve security against chosen plaintext at-
tacks [GM&41] (CPA), while NIST recommends that deployed systems achieve a
stronger notion of security against chosen ciphertext attacks [NY90,RS91,DDN00]
(CCA). While efficient general transformations from CPA to CCA exist for public
key encryption [FO99], it is not clear if these can be applied to broadcast en-
cryption systems without compromising some of their functionality (e.g., traitor
tracing). This is an exciting area for future research.



We believe this timely implementation study will inform practitioners as
they look to harness the performance savings of broadcast encryption, while
also providing context for future broadcast encryption designs.

2 An ElGamal Baseline and Other Related Works

We construct a baseline system, which encrypts the same message individually to
each privileged user, so that we can contrast its performance with the broadcast
systems. This CPA-secure system uses ElGamal encryption [Gam85] with shared
parameters. Private key sizes are constant, but the public key size grows linearly
with the number of system users.

Setup(\, N): Let G be an elliptic curve group of prime order p for which the
DDH assumption holds true. Pick a random generator g € G. Fori =1,2,...,n
pick a random z; € Z, and compute h; = g**. The master public key is PK =
(g, h1, ..., hy) and the private key for user i is x;. Output the public key PK and
the N private keys z1,29,...,znN.

Enc(PK, S, m): To encrypt a message m to a set of users S, first pick a random
y € Zp. For each user i € S, compute z; = (h;)¥ - m. Output the ciphertext
CT =(gY%,21,...,25).

Dec(i, CT): Parse the ciphertext as CT = (¢, 21,...,2s). User i decrypts by
computing m = z; / (¢**).

We implement this baseline scheme and tested it in OpenSSL over the curves
NIST P-192, NIST P-224, NIST P-256, NIST P-384, and NIST P-521. Based on
the results from our implementation, we use the results over the curve NIST P-
256 as a basis of comparison to the pairing-based scheme runtimes over BN254.
The runtimes are the fastest over this curve and the 128 bit security provided
by NIST P-256 is very close to the 110 bit security provided by BN254.

Curve Security | Setup Time | Encrypt Time | Decrypt Time

NIST P-192| 96 bits 39.27 s 3.78 s 0.51 ms
NIST P-224| 112 bits 5.51 s 515.13 ms 0.09 ms
NIST P-256 | 128 bits 240 s 248.08 ms 0.05 ms
NIST P-384 | 192 bits 145.82 s 14.66 s 2.67 ms
NIST P-521 |260.5 bits 37.04 s 3.62 s 0.73 ms

Table 1: Runtimes for the ElGamal baseline over different curves when N = 100K
and |S| = 10K. Let s denote seconds and ms denote milliseconds.

Additional related works are discussed in the full version [CHTV21].



3 Broadcast Encryption Implementations and Analysis

We refer to the following for the definitions of broadcast encryption [FN93], and
the identity-based [Del07,5F07], trace-and-revoke [GICW17], augmented [BSW07],
traitor-tracing [BSWO06,GIKRW 18], and private-linear [BSWO06] variants.

We provide a reference implementation® and comparison of eleven broadcast
encryption systems. All schemes are implemented in the asymmetric pairing
setting using the MCL pairings library” with a Barreto-Naehrig BN254 curve.
This curve is conjectured to have approximately 100-bit security. Group elements
in G1, G2, and G occupy 32 bytes, 64 bytes, and 381 bytes of space in memory,
respectively. Elements in Z, occupy 254 bits of space. We also compare all of the
systems to an ElGamal baseline system in Section 2, which was implemented
using prime-order elliptic curve groups in OpenSSL since it does not require
pairings. The baseline system was implemented using C++ but all the others
are in Java. We chose Java for the pairing-based broadcast schemes because
the MCL Java library possessed a remarkably simple, flexible software interface
which allowed us to easily implement and compare these systems to each other.

We compare the setup, encryption, key generation, and decryption times in
each of our systems. The runtimes are tested by setting the size of the subset of
privileged users S to be equal to some percent of the total number of users in
the system. This ensures that the subset size scales with the number of users in
the system. All of the runtimes were tested on a 2014 Macbook Air with a 1.4
GHz Dual-Core Intel Core i5 processor and 4GB RAM.

We also compare the sizes of the public key, private key, and ciphertext for
each of the systems. Table 2 shows how the sizes scale asymptotically. It also
provides an overview of the systems that we implement.

3.1 Boneh-Gentry-Waters Scheme Using Asymmetric Pairings

The Boneh-Gentry-Waters-Scheme, [BGWO05], refers to a fully collusion resistant
public key broadcast system for stateless receivers. In the paper, two schemes are
described, and both are secure against static adversaries. In the “special case®,
[BGWO5, 83.1], the public key grows linearly with the total number of users
in the broadcast system. Ciphertext sizes and private key sizes are constant. In
the general construction [BGWO05, §3.2], the public key and ciphertext are both
of size O(X\ - v/N), and private key sizes are constant. We rewrite both of these
schemes using Type-III pairings, strategically placing certain group elements
in G; and Gy to optimize the efficiency of our construction. We also add a
KeyGen function instead of generating the private keys for all N users in the
Setup phase. This facilitates the comparison of this scheme to other public-key
broadcast encryption schemes in Section 3.4.

In Table 3, we present the encryption times for the BGW special case con-
struction for varying subset sizes. We define the subset size to be some percent
of the total number of users in the system. Notice a general trend that as the

Shttps://github.com/ArushC/broadcast
"https://github.com /herumi,/mcl


https://github.com/ArushC/broadcast
https://github.com/herumi/mcl

Ciphertext |Private Key|Public Key .
Scheme Type . ) . Security
Size Size Size
ElGamal baseline| Public Key | O(X - |S]) o) O(X-N) | CPA-secure
[BGWO05, §3.1] | Broadcast o) o) O(X-N) static
[BGWO05, §3.2] | Broadcast | O(\-VN) o) O\ -VN) static
[Wat09] Broadcast O(N) OAX-N) | OA-N) adaptive
[GW09, 83.1] | Broadcast O(N) OA\X-N O(A-N) semi-static
[CW09, S4.1] IBBE O\ 0) o) O 0) adaptive
[GW09, §4.3.1] IBBE O(N) o) oY1) semi-static
[GW19, §3.1] IBBE O(N) OA-N) | OA-N) adaptive
[Zha20, 8§9.3] |Risky Trace| O(\-N) o) o) adaptive
(CKSW10,85.2]|  Trace | OO- V)| OO - VA |O(x - v | 2daptive and
public tracing
[Zha20, §9.3] Trace |O(A-N'"")|O(\-N'")| O(A- N%) adaptive
[GKSWO09] PLBE O\ -VN) o) O(X\-V/'N) |private tracing

Table 2: A summary of pairing-based broadcast encryption systems. Let N be
the number of users in the broadcast system, ¢ be the maximal size of the subset
of users S such that |S| < ¢, and A be the security parameter. Note that for the
broadcast and trace system [Zha20, §9.3], a € [0, 1].

subset size percentage increases, so does the encryption time. This is because
even though the ciphertext sizes are constant, O(|.S|) multiplications over G are
required to compute the product v - Hje g(hny1—;4) during encryption.

We implement the general construction by setting B = |y/n| as the authors
of [BGWO5] suggest. In this case, B is an arbitrary parameter that scales the
public key and ciphertext to the desired size, and setting B to the specified value
enables us to achieve the optimal public key and ciphertext sizes of O(\ - VN ).
Again, we modify this system to include a KeyGen function instead of generating
the private keys for all NV users in the Setup phase.

We notice that runtimes increase when we read the table from left to right.
However, when we read the table from top to bottom, we see mixed results. To
understand the context for the discussion that follows, we ask readers to refer
to the bottom of page 7 of [BGWO05].

In the encryption algorithm, runtimes are determine by two significant steps.
First is the computation of Sy, which is dominated by the number of operations
required to calculate Sy = S N {{B—B+1,(B—B+2,...,{B}. In order to
compute the intersection of two sets, for each item in the latter set, the system
must check if there is a corresponding item in S. Since we use hash sets to
compute this intersection, the time that it takes to lookup an item in S is O(1).
But we still need to iterate over each item in the original set of size B, so this
step will take time O(B). The computation of the subset Sy is an intermediate



Subset Size | Encryption time when number of system users N =
10 | 1K | 10K | 100K M

1% 1.24 ms | 0.88 ms | 1.29 ms| 6.08 ms 87.24 ms
5% 0.71 ms |1.31 ms|2.16 ms|14.06 ms| 340.73 ms
10% 1.26 ms|1.32 ms|2.40 ms|16.35 ms| 664.76 ms
20% 1.51 ms|1.69 ms | 3.27 ms | 30.89 ms 1.13 s
50% 0.75 ms | 2.19 ms | 8.60 ms | 67.59 ms 1.62 s

Table 3: Encryption times for the Boneh-Gentry-Waters Special Case scheme.
Let s denote seconds and ms denote milliseconds.

step which dominates the computation of Sy for £ = 1,2,..., A. Therefore, the
total time to compute all of these subsets is O(A - B) = O(N). After computing
these subsets, there is a second step. The system still has to calculate the product
vi - [Les, (hp+1-5) for i € {1,2,..., A}. According to our implementation, this
takes a total of |\S| group multiplications. Hence, the overall time complexity for
the encryption algorithm is given by O(N + X - |S]). The O(N) operations in
computing the Sy subsets are individually much less costly than each of the |S|
group multiplications, but they still influence runtimes to an extent. Reading
the table from top to bottom, we keep the total number of users in the system
N constant while increasing the subset size |S|. For the smaller values of | S| (i.e.
N = 100, 1K, 10K), the slight increase in the value of |.S| does not significantly
affect runtimes to an extent that it can be explained by the big-O notation. But
reading the table from left to right, we increase both |S| AND the value of N,
which causes runtimes to increase as expected.

Subset Size | Encryption time when number of system users N =
100 1K 10K 100K 1M

1% 3.67 ms| 9.59 ms |29.62 ms| 77.61 ms | 288.11 ms
5% 3.62 ms| 8.14 ms |24.68 ms| 83.09 ms | 297.83 ms
10% 3.08 ms| 8.61 ms |26.60 ms| 86.36 ms | 306.96 ms
20% 2.77 ms| 6.90 ms |30.41 ms|134.18 ms| 548.08 ms
50% 4.43 ms | 13.09 ms [ 47.39 ms | 145.08 ms | 897.48 ms

Table 4: Encryption times for the Boneh-Gentry-Waters general scheme. Let ms
denote milliseconds.




3.2 Gentry-Waters: A Semi-Static Variant of the BGW System

In [GWO09], Gentry and Waters introduce the notion of semi-static security, which
is between static security and adaptive security. They construct a semi-statically
secure variant of [BGWO5]. In their system, the public key and private key both
grow linearly with the total number of system users, but the ciphertext sizes are
constant. We implemented their semi-static scheme in the asymmetric (Type-
IIT) pairing setting and optimized it for efficiency, with details in the full version.
In Table 5, we give the encryption times. We notice a general trend that reading
the table from left to right, encryption times increase. For the larger values of
N, encryption times also generally increase when reading the table from top to
bottom. In both of these scenarios, the subset size is increasing dramatically,
which is why we see such a great increase in encryption times. Encryption time
is dominated by the time required to calculate Cy = ([];.g k)¢, which requires

jes
O(|S|) group multiplications over Gj.

Subset Size | Encryption time when number of system users N =
100 | 1K | 10K | 100K 1M

1% 0.64 ms |0.59 ms|1.51 ms| 1.97 ms 13.00 ms
5% 0.65 ms|1.11 ms|1.53 ms| 6.21 ms 62.30 ms
10% 1.18 ms|1.37 ms|1.99 ms|12.63 ms| 153.56 ms
20% 0.80 ms | 0.80 ms|2.95 ms|20.99 ms| 200.77 ms
50% 1.04 ms|1.59 ms|5.46 ms|65.02 ms| 486.97 ms

Table 5: Encryption times for the Gentry-Waters semi-static variant of the
Boneh-Gentry-Waters scheme. Let ms denote milliseconds.

3.3 Waters Dual System Broadcast Encryption System

We implement a broadcast encryption system that is secure against adaptive
adversaries, described in [Wat09]. We remind readers that the adaptive security
provided by this scheme is stronger than the static and semi-static security of
the schemes implemented in Sections 3.1 and 3.2, respectively. In this system,
the ciphertext sizes are constant, but the public key and private key sizes grow
linearly with the total number of system users. This system, like the others,
was originally written in the symmetric pairing setting. In the full version, we
describe how we implemented it in the Type-III pairing setting, strategically
choosing which group elements to place in G; and G5 to maximize efficiency.

In Table 6, we show the encryption times from our implementation, which
are dominated by the computation of Ey = ([];cqu:)* , which requires O(|S])
group multiplications over Gj.



Subset Size | Encryption time when number of system users N =
10 | 1K | 10K | 100K M

1% 2.01 ms|2.23 ms|2.97 ms| 3.35 ms 14.22 ms
5% 2.02 ms | 2.57 ms | 4.39 ms| 7.70 ms 73.20 ms
10% 2.03 ms|2.38 ms|3.44 ms | 14.55 ms| 131.80 ms
20% 2.06 ms|3.26 ms|4.49 ms |22.90 ms| 239.53 ms
50% 2.61 ms|3.37 ms|8.22 ms | 79.07 ms| 494.90 ms

Table 6: Encryption times for the Waters Dual Broadcast System. Let ms denote
milliseconds.

3.4 Comparison of General Broadcast Encryption Systems

We now compare the broadcast encryption systems that we describe in Sec-
tions 3.1, 3.2, and 3.3 to each other, and to the baseline scheme which we de-
scribe in Section 2. We perform a runtime evaluation based on experimental
values for setup, encryption, key generation (when applicable), and decryption.
Based on these values, we then count individual operations and construct asymp-
totic runtime tables for each of the functions in each scheme. We only compare
the runtimes based on the runtime tables that we construct in this paper, but
we refer the reader to our implementation to view all of the runtimes. We also
do a size evaluation based on the actual sizes of the group elements in G, Go,
and Gp over the curve BN254, given in Table 8. We have already given the
theoretical sizes of the public key, private key, and ciphertext for each scheme
at the beginning of this section in Table 2.

Setup Times We start by analyzing the setup times presented in Table 7. For all
the pairing-based schemes, the setup phase requires computing a public key PK
and master secret key M .S K. Computing the master secret key takes a negligible,
constant amount of time, but the time that it takes to compute the public key
varies. The baseline scheme setup phase requires O(N) exponentiations over
the elliptic curve group G to calculate a linear-sized PK. On the other hand,
[BGWO05, 83.2] requires O(v/N) exponentiations over G to calculate a public
key of size O(\ - v/N). All the other pairing-based schemes require on the order
of O(N) operations over G; to calculate a linear-sized public key. From our
implementation, individual group operations over the elliptic curve group G
(NIST P-256) used for the baseline were found to be faster than operations over
G1 used in the pairings-based schemes. This explains why the baseline setup
times are faster than those for all of the pairings-based schemes except [BGWO05,
S3.2].

Setup times for [BGWO05, §3.2] appear to be faster than those for the baseline
when N >= 1K, but not when N = 100. This is because when N = 100, the
difference in the total number of exponentiations computed during setup for
the baseline and [BGWO05, §3.2] is negligible. Hence, faster setup times for the



baseline can be attributed the faster time for individual exponentiations over
G compared to G;. When N >= 1K, though, [BGWO05, §3.2] has faster setup
times because calculating the public key requires much fewer exponentiations
than for the baseline. Even though individual exponentiations are still faster
over G in the baseline scheme, the sheer number of exponentiations required to
calculate the public key has increased to an extent that it results in slower setup
times.

Encryption Times On a first glance, it might seem surprising that the encryp-
tion times for most of the pairing-based schemes appear to be consistently faster
than those for the baseline. But then if we look at the baseline construction from
Section 2, we notice that during encryption, we have to calculate z; = (h;)¥-m for
each ¢ € S, in addition to g¥. Overall, this takes |S| + 1 group exponentiations
and |.S| multiplications. Just like the baseline, ALL of the pairing-based schemes
compute a part of the ciphertext with with O(|S]) group multiplications. But
for all of the pairing-based schemes except [BGW05, §3.2], the total number of
exponentiations computed during encryption is constant. In [BGW05, §3.1] and
[GW09, 83.1], we only need one group exponentiation each time to compute
Co = (g2)t. In [Wat09], we have exactly six exponentiations over G; and size
over Go every time we compute the ciphertext. This makes the total time for
encryption for these schemes less than that for the baseline as the value of NV
increases. We better explain the results in a series of observations:

— When N = 100, the baseline encryption is the most efficient, even though it
requires computing more group exponentiations than the other schemes. This
is because the efficient group operations over the elliptic curve group G used
for the baseline are outweighed by the slower group operations in the pairing-
based schemes. However, the number of exponentiations required for the
baseline encryption increases linearly with N. So when N >= 1K, despite
the faster group operations over G, the number of exponentiations increases
sharply for the baseline, while it stays constant for all the pairing-based
schemes except [BGWO05, §3.2]. Hence, all of the pairing-based schemes ex-
cept [BGWO05, §3.2] have faster encryption times when N >= 1K.

— If we compare the baseline to [BGWO05, §3.2], we notice that [BGWO5,
§3.2] is only more efficient than the baseline when N > 100K . We recall
that encryption in [BGWO05, §3.2] requires a total of |S| group multipli-
cations over G, one exponentiation over Go, and A exponentiations over
G1, where A ~ /N. We also recall that in encryption for [BGW05, S3.2],
we need to compute Sy for ¢ € {1,2,..., A} by computing the intersec-
tion of integer subsets. This technically takes O(N) time to run, but since
iterating over and adding integers to subsets is much faster than multiply-
ing/exponentiating group elements, this step in encryption is fairly rapid.
When N = 100, 1K, 10K, the baseline scheme’s faster encryption times can
be attributed to the efficiency of group operations over the elliptic curve
group G. Combined with the time to compute S, for £ € {1,2,..., A},
the O(v/N) exponentiations in encryption for [BGW05, S3.2] take longer

10



to compute than the O(N) exponentiations for the baseline. This changes
when N > 100K. Now, the sheer number of exponentiations required for
the baseline encryption has increased so greatly that the baseline encryption
takes longer than that for [BGWO05, §3.2].

— When we compare the pairing-based schemes to each other, we see that
[GW09, 83.1] consistently has the fastest encryption times. For the smaller
values of IV, the only other scheme that has encryption times nearly as fast is
[BGWO05, 83.1]. As N grows larger, the encryption times for [Wat09] grows
closer to those for [GW09, §3.1] and [BGWO05, §3.1]. We recall that [GW09,
S83.1] is actually a semi-static variant of [BGWO05, 8§3.1]. The encryption
algorithms for both of these schemes are very similar. Hence the similar run-
times. What is significant, though, is that a semi-statically secure broadcast
encryption system achieved faster encryption times that its static counter-
part. So far, we see that the [GW09, §3.1] appears to be a well-performing
system. It has the fastest encryption times, very fast setup times, and a
moderately strong level of security. For adaptive security, [Wat09] seems to
be a very good option. The only downside to both of these schemes, as we
will shortly see, is their large private key sizes.

Key Generation Times The baseline scheme, [BGW05, §3.1], and [BGWO05,
S83.1] are all secure against static adversaries. Private key sizes are constant, and
therefore, single-user key generation times are constant. In order to achieve semi-
static and adaptive security, though, the private key size must be expanded. The
key generation algorithms for [GW09, §3.1] and [Wat09] generate much larger
private keys of size O(\- N). The problem that we found in our implementation
is that these key generation algorithms take very long to run. In both [GW09,
83.1] and [Wat09], it takes more than 1.5 minutes to generate a key for a single
user when the total number of system users N = 1M. For these two schemes,
reading the key generation runtimes from left to right, we see that they increase
linearly with the number of users in the system. This makes sense because it
require O(N) operations over Gy to generate a single user’s linear-sized private
key. In [GW09, §3.1], we need N + 1 exponentiations over G to calculate the
private key for a single user. Key generation for [Wat09] is similar, but slightly
slower. In addition to the N + 1 exponentiations over G, the system needs to
calculate Dy, Do, ..., D7. It would take up a lot of time and space to generate
and store the private keys for a large subset of privileged users. The keys for all
the privileged users in S would take up O(\- N - |S]) space.

Decryption Times The only two schemes for which the decryption times re-
mained relatively constant as the total number of system users increased were
the baseline scheme and [BGWO05, 8§3.2]. For the baseline scheme, decryption
does not require any pairings. The decryption algorithm runs in constant time
because only a single division needs to be computed (m = z; / (¢*)), regardless
of the value of N. In [BGWO05, §3.2], since we break up our broadcast encryption

11



Item Scheme Time when number of system users N =
100 1K 10K 100K 1M

baseline 2 4.46 ms | 27.39 ms |252.65 ms| 2.40 s 2321 s
[BGWO05, §3.1] 3.1|[51.47 ms|456.97 ms| 4.94 s 40.06 s | 7.06 min
Setup ||[BGWO05, §3.2] 3.1{|14.09 ms| 15.75 ms | 58.81 ms |158.08 ms|762.45 ms
[GW09, §3.1] 3.2 ||35.00 ms| 69.40 ms |321.98 ms| 2.80 s 29.44 s

[Wat09] 3.3 32.39 ms| 34.45 ms |297.71 ms| 3.05 s 29.71 s

baseline 2 — — — — —
[BGWO05, 83.1] 3.1|| 0.19 ms | 0.18 ms | 0.09 ms | 0.11 ms | 0.12 ms
KeyGen||[BGWO05, §3.2] 3.1/ 0.11 ms | 0.10 ms | 0.14 ms | 0.12 ms | 0.16 ms
[GW09, §3.1] 3.2 ||11.07 ms|164.14 ms|954.00 ms| 9.75 s | 1.77 min

[Wat09] 3.3 11.05 ms|104.49 ms|954.14 ms| 9.78 s | 1.60 min

baseline 2 0.39 ms | 2.85 ms |25.52 ms (248.08 ms| 2.81 s
[BGWO05, §3.1] 3.1|| 1.26 ms | 1.32 ms | 2.40 ms | 16.35 ms [664.76 ms
Enc ||[BGWO05, §3.2] 3.1]| 3.58 ms | 8.61 ms | 26.60 ms | 86.36 ms |306.96 ms
[GW09,83.1] 3.2 || 1.18 ms | 1.37 ms | 1.99 ms | 12.63 ms |153.56 ms

[Wat09] 3.3 2.03ms| 2.38 ms | 3.44 ms | 14.55 ms |131.80 ms

baseline 2 0.04 ms| 0.03 ms | 0.03 ms | 0.05 ms | 0.07 ms
[BGWO05, §3.1] 3.1|| 2.60 ms | 1.92 ms | 2.78 ms | 15.36 ms [349.52 ms
Dec |[[BGWO05, 83.2] 3.1{|2.13 ms | 1.49 ms | 2.12 ms | 2.46 ms | 1.63 ms
[GW09, §3.1] 3.2 || 2.82 ms | 2.82 ms | 2.93 ms | 16.56 ms |261.98 ms

[Wat09] 3.3 6.37 ms| 6.44 ms | 7.49 ms | 23.05 ms |157.66 ms

Table 7: Time evaluation for general public key broadcast encryption systems.
The baseline scheme was implemented using NIST P-256 in OpenSSL, while the
pairing-based schemes used curve BN254 in MCL. The KeyGen and Dec times
represent the cost for a single user, while the Setup is the cost to initialize the
entire system and Enc is the cost to encrypt to an arbitrary 10% of the system
users. Let ms denote milliseconds, s denote seconds, and min denote minutes.

system into v/N instances, we only have to use a single one of those instances —
which we created during encryption — to decrypt the message. It is a tradeoff:
slower encryption times to calculate each of the instances, but approximately
constant decryption times. All of the pairing-based schemes except [Wat09] re-
quired only two pairings to be computed during decryption. [Wat09] required
nine pairings. This large number of pairings explains why the decryption times
are consistently the slowest for this system for N <= 100K. We again see that
the decryption times for [BGWO05, §3.1] are similar to those of its semi-static
counterpart, [GW09, §3.1]. And this makes sense. For both, decryption times
are dominated by a step that requires |S| — 1 group multiplications over Gy.

12



Ttem Scheme Space when number of system users N =
100 1K 10K 100K 1M

baseline 2 3.23 KB | 32.03 KB |320.03 KB| 3.20 MB | 32.00 MB
[BGWO05, §3.1] 3.1{|12.90 KB|128.10 KB| 1.28 MB |12.80 MB |128.00 MB
pk [|[[BGWO05, §3.2] 3.1]| 1.66 KB | 5.09 KB | 16.06 KB | 50.66 KB |160.06 KB
[GW09, §3.1] 3.2 || 3.68 KB | 32.48 KB [320.48 KB| 3.20 MB | 32.00 MB
[Wat09] 3.3 4.19 KB | 32.99 KB |320.99 KB| 3.20 MB | 32.00 MB
baseline 2 32.00 B| 32.00 B | 32.00 B | 32.00B | 32.00 B
[BGWO05, 83.1] 3.1|| 32.00 B | 32.00 B | 32.00 B | 32.00 B | 32.00 B
sk |[[BGWO05, §3.2] 3.1|| 32.00 B | 32.00 B | 32.00 B | 32.00 B | 32.00 B
[GW09, §3.1] 3.2 || 3.26 KB | 32.06 KB {320.06 KB| 3.20 MB | 32.00 MB
[Wat09] 3.3 3.49 KB | 32.29 KB |320.29 KB| 3.20 MB | 32.00 MB
baseline 2 352.00 B| 3.23 KB | 32.03 KB |320.03 KB| 3.20 MB
[BGWO05, §3.1] 3.1|| 96.00 B | 96.00 B | 96.00 B | 96.00 B | 96.00 B
ct [|[[BGWO05, 8§3.2] 3.1{]384.00 B| 1.12 KB | 3.26 KB | 10.21 KB | 32.06 KB
[GW09, §3.1] 3.2 || 96.00 B | 96.00 B | 96.00 B | 96.00 B | 96.00 B
[Wat09] 3.3 861.00 B| 861.00 B | 861.00 B | 861.00 B | 861.00 B

Table 8: Space evaluation for general public key broadcast encryption systems.
In the above, we set |S|, the size of the set of users a ciphertext is encrypted
to, to be an arbitrary 10% of the total number of system users. The baseline
scheme was implemented using NIST P-256 in OpenSSL, while the pairing-based
schemes used curve BN254 in MCL. Let B denote bytes, KB denote kilobytes,
and MB denote megabytes.

Overall Runtime Comparison If we consider key generation a step in the
decryption process, then [GW09, §3.1] and [Wat09] by far have the slowest
runtimes. But recall that these are the only two systems that are secure against
non-static adversaries. It is a tradeoff: in order to achieve the higher level of
security, the decryption will be slower.

The encryption times for [GW09, §3.1] and [Wat09] were comparable, if not
better, than the encryption times for the systems which were secure against
static adversaries. The setup times were faster because the n private keys were
not computed during the setup phase. The only other downside with both of
these systems are the long key generation times and the large private key sizes.

Looking at Table 8, we argue that if the primary goal of the broadcast system
is to achieve short public and private key sizes and efficient decryption times,
then we recommend using [BGWO05, §3.2]. This is the only scheme that achieves
public key and ciphertext sizes of O(\- VN ). The private key sizes are constant.
Even though the setup times for this scheme are not more efficient than those
for [GW09, §3.1] and [Wat09], they are still very fast in comparison to [BGWO05,
S83.1]. Additionally, the public key and private keys in [GW09, §3.1] and [Wat09]

13



are all of size O(A-N). This is very large. But we recall that while [BGW05, §3.1]
and [BGWO05, 8§3.2] are secure only against static adversaries, [GW09, §3.1] is
secure against semi-static adversaries and [Wat09] is secure against adaptive ad-
versaries. If we judge these schemes only by the efficiency of their decryption
times and public/private key sizes, and we desire a stronger level of security,
then we recommend [GW09]. In general, the decryption times for [GW09, §3.1]
are much faster because they only require two applications of the pairing algo-
rithm, while [Wat09] requires nine pairings in decryption. Nevertheless, as the
total number of system users N grows larger, the decryption times for [Wat09]
approach the times for [GW09, 83.1]. So if we have a small total number of
users in our system, we recommend [GW09, §3.1]. But if the value of N is very
large, then [Wat09] will perform equally well during decryption. And because
the adaptive security provided by [Wat09] is stronger than the semi-static se-
curity provided by [GW09, §3.1], we especially recommend [Wat09] when the
total number of system users N > 1M.

If the primary goal of our broadcast system is to achieve efficient encryption
times, then we recommend any pairing-based system except [GW09, §3.2]. Then,
depending on the desired level of security, we would choose either the statically
secure [BGWO05, 8§3.1], the semi-statically secure [GW09, §3.1], or the adaptively
secure [Wat09] broadcast system.

Further Theoretical Analysis For further theoretical analysis, we denote \;
and Ao as a single group multiplication operation over G; and G, respectively.
Exponentiations are denoted by A\;® and Xo®. We let e denote a single pairing
operation. For the baseline scheme, we simply use Ao and Xo® to represent a
single multiplication and exponentiation over the elliptic curve group G, respec-
tively. Here, we assume the time taken for a single group multiplication is O()\)
and the time for a single exponentiation is O(A\?). As an example, if we write
O(X 4+ A -Y), then we mean that the runtime for this algorithm is dominated
by O(Y) group multiplications (over Gy or Gz) and X miscellaneous O(1) op-
erations that individually take much less time than single group multiplications
or exponentiations.

In Table 9, there are a few operations that we did not count. We did not
count multiplications or exponentiations over G because they did not signifi-
cantly impact runtimes in any of the schemes. We also did not count any ad-
dition/subtraction operations over Z, because they were only used to compute
s = 81+ 82 and r = r1 + 7o in the [Wat09] broadcast system. Additionally,
runtimes for the setup phase for [Wat09] and [GW09, §3.1] were dominated by
choosing N random generators € 1. Since we did not define a symbol for choos-
ing a random generator as an “operation”, this is not shown in Table 9. When
we use big-O notation to describe the time that the setup phase took for these
two schemes (see Table 10), we use d; to denote the time required to choose a
single random generator in G;1. Other than for these two setup functions, all of
the time complexities for the schemes can easily be derived from Table 9. The
big-O notation is best to refer to if we want to know which operation(s) are
dominating runtimes, but for total runtime details Table 7 is better.

14



Scheme

Operation Count

Setup | KeyGen | Enc | Dec
baseline 2 )\03 - N — )\03~(|S|+1)+)\0~ 2 - )\03 + Xo
||
[BCWO05, 8§3.1] 3.1| A% - (2N — 1)| A® A S AP A3 A (IS] - 1) +
X2 N +e 2-e
[BCWO05, 8§3.2] 3.1| M3 (2B+A—|\® M3 A+ N M |Se +2-e
42 -B+e IS] 4+ X2?
[GW09, 83.1] 3.2 [2-e+ A+ X2® (A2 - N4+ X2 (A [S[+ AP+ X3 | A - (]S —1) +
2-e
AP (N 48 i - (IS] +2
[Wat00] 83 |7A 46 agt| M NS TP ASIF2 + |y g gy
et 2.0 | 2AES A 6T H6 X7 g,

Table 9: Operation counts, where N is the total number of users in the system.

Scheme Theoretical Runtime
Setup | KeyGen | Enc | Dec
baseline 2 O(\® - N) — O\ -S| +X-19)) o)
[BCWO05, 83.1] 3.1 OX*-N) | O(\®) O(X-19)) O(X-19])
[BGWO05, 8§3.2] 310N - VN) | O\) [ON +X-vVN+X-[S])|O\-|Sa])
[GW09, 83.1] 3.2 | O(6:-N) [0\ - N) O\ -19)) O(x-18))
[Wat09] 3.3 O(61-N) |O(\*-N) o\-|9)) o\-|9))

Table 10: Theoretical runtimes, where N is the total number of users in the
broadcast system.

On Identity-Based and Tracing Broadcast Encryption Systems In the
full version [CHTV21], we compare the identity-based broadcast encryption sys-
tems from [GW09, §4.1], [GW09, §4.3.1], and [GW 19, §3.1]. We also compare a
wide-range of systems that support tracing, including a private-linear broadcast
encryption (PLBE) system from [GKSWO09], an augmented broadcast encryption
(ABBE) system from [GIXSW10], and a risky broadcast and trace multi-scheme
from [Zha20]. We defer these details to [CHITV21] for space reasons.

4 Applications of Broadcast Encryption

Online Video Streaming The most commonly referenced use case for broadcast
encryption is online video streaming services like Disney+, Netflix, and Hulu.
This category can also include content streamed by individuals on platforms
like Twitch and YouTube, online conferencing services like Zoom and Microsoft
Teams and even many social media platforms like Facebook, Instagram and
TikTok. Users with permission are given access to a myriad of different videos,

15



and ideally bandwidth usage and client side decryption processing requirements
need to be minimized so that users can watch the videos in real time and can
watch those videos on any device, regardless of processing capability. The user
numbers for these services are vast. During the second quarter of 2020 [Cor20],
Netflix and Hulu had at least 190 million and 30 million users respectively. For
these media streaming cases, we would recommend using the classic Boneh-
Gentry-Waters [BGWO05] scheme as it provides the best combination of short
ciphertexts and fast decryption times even for large user sets. For NV = 1 million
users, the [BGW05, §3.1] variant provides the best ciphertext size at 96B per ci-
phertext while decryption takes 350ms and the [BGW05, §3.2] variant provides
the fastest decryption at 1.6ms with a 32KB ciphertext. Either of these are rea-
sonable choices, although if the ciphertext size isn’t a problem, we’d recommend
[BGWO5, 8§3.2] due to its smaller public key size (of 160KB, where as [BGWO05,
83.1] requires 128 MB for 1 million users). For very large user datasets (e.g., in
the 190 million range), using [BGWO05, §3.2] instead of [BGW05, §3.1] becomes
even more important, as the former’s public keys scale with v/N while the latter
scale with N. Both [BGWO05] schemes were proven secure in the static security
model; if one wants the stronger adaptive security, Waters [Wat09] offers this
and small 861B ciphertexts, although the public key sizes grow to 32MB for IV
= 1 million. Both of the identity-based systems [GW09,GW19] require hours to
decrypt a single ciphertext when N is 1 million, so they are not contenders.

The performance hit from [GIKSWO09] (the best performing traitor tracing
scheme) vs. [BGWO05] could be worth it for the chance to combat revenue reduc-
ers like piracy. For N = 1 million users, the decryption time of [GISWO09] doubles
(over [BGWO05, §3.2]) to 3.2ms while the ciphertext size grows by a factor of 19
to 605KB — larger, but reasonable on fast networks. The public key size roughly
triples to 477TKB. Zhandry’s risky traitor tracing scheme [Zha20, §9.3] provides
the best ciphertext size for tracing schemes at only 384B, but the decryption
time explodes to an infeasible 19 hours (for N = 1 million). Zhandry’s nonrisky,
post-user expansion compiler version of his scheme (see [CHTV21] for details)
has decryption times that are comparable to those for [GIXSW09] and [GIKSW10)]
for N = 1 million, but the encryption time balloons to over 1 minute and the
ciphertext size jumps from roughly 600KB to almost 4MB (details in [CHTV21]
when a = 2/3.) One potential benefit is that the public/private key sizes of
Zhandry’s scheme are smaller, but that likely won'’t offset the additional encryp-
tion and space overhead.

Constraint Summary: Needs to scale to 1 million users or more, with small ciper-
text size overhead and fast (client side) decryption times. Encryption times less
of a concern, but traitor tracing may be needed.

Recommendation: Use [BGW05, §3.2] (for fastest decryption and scalable public
key size). See Section 3.1. If traitor tracing is required, use [GKSWO09)].

Online Game Streaming Online game streaming is another form of media stream-
ing that is becoming increasingly prevalent. Users receive high quality (resolution
and frames per second) game data and give the server data like their keystrokes

16



and mouse clicks in game. This system allows users to play games that have
a performance requirement beyond what their client side device is capable of.
Currently the way that online game streaming is done is that a server runs the
game program remotely for each individual user. However, if adapted a multi-
player game could feasibly send the same stream out to every user maximizing
both server-side and client side efficiency.

In comparison to video streaming, online game streaming has a more strin-
gent data speed requirement, as any wasted time could result in a subpar player
experience. The most popular service, Nvidia GeForce Now, has around a million
users [Nvi20], but it is a growing industry and the ceiling for game streaming
services could be having user numbers on par with video streaming services. For
this case, we would recommend [BGW05, §3.2] or [Wat09]. Both schemes have
ciphertexts under 1KB even for 1 million users, but the primary cost for both is
a jump in public key size of 128MB and 32MB respectively. The [Wat09] offers
stronger provable security and low encryption/decryption times, while [BGWO05,
83.2] offers decryption times that are two orders of magnitude faster but en-
cryption time is roughly triple that of [Wat09].

While the live traitor tracing functionality could be useful, the difference in
performance could make a notable difference for users. Perhaps [GIKXSWO09] could
be used in situations where most of the game data is preloaded on the client side,
and the live data is sent out live and unencrypted or from a faster performing
scheme like [BGWO05]. This could be a hybrid combination, allowing usage of the
traitor tracing functionality, and ensuring fast enough performance. We note that
the baseline ElGamal scheme takes almost 3 seconds to encrypt the payload for 1
million users, which likely rules this out for live gaming applications, highlighting
the power of broadcast encryption for this setting.

Constraint Summary: Needs to scale to 1 million users or more, with a combi-
nation of ciphertext size overhead and (client side) encryption and decryption
times that support live interactions. Need to balance benefits of tracing with
impact on user experience.

Recommendation: Use [Wat09] (for strong overall balance of security, low size
overhead and fast encryption/decryption times) or if more speed in one compo-
nent is needed, use [BGWO05, §3.2] (for fastest decryption) or [BGWO05, 8§3.1]
(for fastest transmission). See Tables 7 and 8. The overhead required for traitor
tracing may frustrate the live gaming experience, but if it is needed, a hybrid
approach using [GIKSWO09] may work. See [CHTV21] for more details.

Live Sports Betting A novel use case for broadcast encryption arrives with the
emergence of live sports betting. Due to the new developments in wireless data
speeds with the emergence of 5G technologies, some major companies are devel-
oping capabilities for in-person spectators to make bets on their mobile phones
throughout a game, utilizing continually updating betting lines given the events
happening within the game. Broadcast encryption could be used to quickly send
out information to users about how much current bets are worth to cash out
and the current betting lines, all in realtime. Additionally, some of these ser-

17



vices may include a live broadcast, which could be different from the public
broadcast (i.e. a bettors specific broadcast). In this use case, the total speed is
the most important factor (making the encryption time more relevant here), and
the total number of users is within a pretty regular range (N = 30,000 to 70,000),
which is much smaller than the user amounts in some other use cases. In this use
case, the total speed is the most important factor (making the encryption time
more relevant here), and the total number of users is within a pretty regular
range (N = 30,000 to 70,000), which is much smaller than the user amounts
in some other use cases. Like with online game streaming, broadcast encryp-
tion offers real performance savings over individually encrypting with ElGamal;
when N = 100,000 the encryption plus decryption time of ElGamal is roughly
10 times that of [GW09] or [BGWO05, §3.1]. For the N < 100,000 range, the
public keys of [BGWO05, §3.1] are 13MB, while the public keys of [GW09] are
a more tolerable 3MB. Systems [GW09] and [BGWO05, §3.1] tie for the shortest
ciphertexts at 96B. The fastest encryption plus decryption time is [GW09] for
this user level (and this holds over a range of sizes of allowed decrypter sets S
from 10% to 50% of N), although the difference (a few milliseonds) isn’t likely
to be observable by a human.

Constraint Summary: Looking for a sweet spot in the 10,000 to 100,000 user
range, with a combination of ciphertext size overhead and (server side) encryp-
tion and (client side) decryption times that support real-time interactions.

Recommendation: Use [GW09] (for best ciphertext size, best sum of encryption
and decryption time, and public key size tolerable for N < 100, 000). See Sec-
tions 3.2. The overhead required for traitor tracing may frustrate the live betting
experience, but if needed, a hybrid approach using [GIKSW09] and [GW09] may
work.

Distributor Limited Applications In the above applications, we assume that the
distributor (e.g., Netflix, YouTube) has large computing resources at its disposal.
However, we also anticipate use cases where distributor performance becomes a
bottleneck (e.g., where a person is streaming video from their smartphone to
a group). A distributor limited implementation could be relevant in both the
private and public sector. Within the private sector, a company manager who
wants to broadcast a specific message to his employees could do so using broad-
cast encryption. With the presumed post-social-distancing increase in online
work, consistent, secure communication between manager and employees could
be increasingly important with a decline in face-to-face communication.

Within the public and military sector, these same benefits apply. In the
public sector, however, having differing levels of access and the ability to revoke
access to messages and live communications is more important. For example, if
a broadcast encryption system is used to send out orders to a group, and one
of the recipient devices is captured then revocation is necessary. Additionally,
traitor tracing functionality could be especially valuable.

Thus, in the case of a direct peer-to-many-peer type of communication, the
performance of the distributor system becomes relevant, thus making the times

18



for the Setup, KeyGen and Encrypt function times more critical. In this situa-
tion, a simple recommendation is harder to make. [BGWO05, §3.2] for example,
performs the best in the case of online video streaming, but if one person was
streaming video from their smartphone directly to many peers, the encryption
performance of [BGW05, §3.2] is much worse than [BGW05, §3.1] and [GW09,
83.1]. Due to that constraint, if there are limited resources for the distributor,
using [BGWO05, 83.2] isn’t a good choice. If peers are less than 100K, in a sit-
uation with a distributor bottleneck we’d recommend either [BGW05, §3.1] or
[GW09, §3.1]. The latter has much better performance in terms of encryption
times, but the prior is orders of magnitude faster during KeyGen. In a situation
where many keys are regularly generated, [BGWO05, §3.1] would be preferable,
but in cases where keys are generated less often [GW09, §3.1] will have the best
performance, allowing the fastest encryption.

The same consideration can be made for the traitor tracing schemes. When
the amount of users is around 1,000, [GKSW10] slightly outperforms [GKSW09)
in both setup times and encryption times, with roughly the same decryption
times and notably worse KeyGen times. In a situation with distributor per-
formance restraints, where many keys are regularly generated, [GKSWO09] will
perform better. In a situation where keys are generated less often and there are
less than 1,000 users, [GIXSW10] can perform better. However, both of these
schemes are outperformed by the baseline (individual encryption to each peer)
until about about the 10,000 user level.

Constraint Summary: For N < 100,000 user range, looking to optimize the
distributor functions without sacrificing much data transfer time or client per-
formance.

Recommendation: Use [BGW05, §3.1] (if need to generate keys often) or [GW09,
S83.1] (otherwise). See Tables 7 and 8. If traitor tracing is required for under
10,000 users, the baseline (individual encryption) will likely outperform any of
the tracing broadcast schemes. If traitor tracing is required for over 10,000 users,
use [GKSWO09]. See [CHTV21] for more details.

5 Acknowledgments

The authors are grateful to Mark Zhandry for helpful interactions regarding his
work [Zha20] and Brent Waters for helpful discussions regarding prior work in
broadcast encryption.

References

BGWO05. Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast
encryption with short ciphertexts and private keys. In CRYPTO, pages
258-275. Springer, 2005.

BSWO06. Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor
tracing with short ciphertexts and private keys. In EUROCRYPT, pages
573-592, 2006.

19



BSWO07.

CHTV21.

Com19.
Cor20.
DDNOO0.
Del07.

FNO93.
FO99.

Gam85.

GKRW18.

GKSWO09.

GKSW10.

GKW17.

GMs4.

GWO09.

GW19.

Nvi20.
NY90.

RS91.

SFO07.

Wat09.

Zha?20.

John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy
attribute-based encryption. In IEEE Symposium on Security and Privacy,
pages 321-334, 2007.

Arush Chhatrapati, Susan Hohenberger, James Trombo, and Satya-
narayana Vusirikala. A performance evaluation of pairing-based broadcast
encryption systems. Cryptology ePrint Archive, Report 2021/1526, 2021.
https://ia.cr/2021/1526.

The Walt Disney Company. Fiscal year 2019 annual financial report, 2019.
Netflix Corporation. Netflix Q2 2020 shareholder letter, July 16, 2020.
Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography.
SIAM J. Computing, 30(2):391-437, 2000.

Cécile Delerablée. Identity-based broadcast encryption with constant size
ciphertexts and private keys. In ASTACRYPT, 2007.

Amos Fiat and Moni Naor. Broadcast encryption. In CRYPTO, 1993.
Eiichiro Fujisaki and Tatsuaki Okamoto. How to enhance the security of
public-key encryption at minimum cost. In PKC, pages 53-68, 1999.
Taher El Gamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Trans. Inf. Theory, 31(4):469-472, 1985.
Rishab Goyal, Venkata Koppula, Andrew Russell, and Brent Waters. Risky
traitor tracing and new differential privacy negative results. In CRYPTO
2018, 2018.

Sanjam Garg, Abishek Kumarasubramanian, Amit Sahai, and Brent Wa-
ters. Building efficient fully collusion-resilient traitor tracing and revocation
schemes. TACR Cryptol. ePrint Arch., 2009:532, 2009.

Sanjam Garg, Abishek Kumarasubramanian, Amit Sahai, and Brent Wa-
ters. Building efficient fully collusion-resilient traitor tracing and revocation
schemes. In ACM CCS, pages 121-130. ACM, 2010.

Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation.
In FOCS, pages 612—621, 2017.

S. Goldwasser and S. Micali. Probabilistic encryption. Jour. of Computer
and System Science, 28(2):270-299, 1984.

Craig Gentry and Brent Waters. Adaptive security in broadcast encryp-
tion systems (with short ciphertexts). In Advances in Cryptology - EURO-
CRYPT, volume 5479, pages 171-188. Springer, 2009.

Aijjun Ge and Puwen Wei. Identity-based broadcast encryption with effi-
cient revocation. In Public-Key Cryptography, pages 405-435, 2019.
Nvidia. 2020 NVIDIA CORPORATION ANNUAL REVIEW, 2020.

Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In STOC, pages 427437, 1990.

Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof
of knowledge and chosen ciphertext attack. In Advances in Cryptology -
CRYPTO, pages 433-444, 1991.

Ryuichi Sakai and Jun Furukawa. Identity-based broadcast encryption.
TACR Cryptol. ePrint Arch., 2007.

Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe
under simple assumptions. In CRYPTO, pages 619-636. Springer, 2009.
Mark Zhandry. New techniques for traitor tracing: Size n'/3 and more from
pairings. In CRYPTO, volume 12170 of LNCS, pages 652-682, 2020. See
full version at https://eprint.iacr.org/2020/954.pdf.

20


https://ia.cr/2021/1526
https://eprint.iacr.org/2020/954.pdf

	A Performance Evaluation of Pairing-Based Broadcast Encryption Systems

