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We derive basic scaling equations for relativistic magnetic reconnection in the general case of
asymmetric inflow conditions and obtain predictions for the outflow Lorentz factor and the reconnection
rate. Kinetic particle-in-cell simulations show that the outflow speeds as well as the nonthermal spectral
index are constrained by the inflowing plasma with the weaker magnetic energy per particle, in agreement
with the scaling predictions. These results are significant for understanding nonthermal emission from
reconnection in magnetically dominated astrophysical systems, many of which may be asymmetric in
nature. The results provide a quantitative approach for including asymmetry on reconnection in the
relativistic regime.
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Introduction.—Magnetic reconnection is a fundamental
plasma process through which energy stored in magnetic
fields is converted into thermal and nonthermal particle
energy. This process is a candidate for explaining impulsive
nonthermal emission from magnetically dominated astro-
physical objects such as gamma-ray bursts (GRBs) [1,2],
pulsar winds [3,4], and jets from active galactic nuclei
[5,6]. As the magnetic energy density becomes larger than
the rest mass energy density of the plasma, reconnection
generates power law distributions of energetic (> MeV)
leptons [7–10].
There have been significant efforts to understand the

basics of relativistic reconnection including: (i) its dynam-
ics and scaling [11–14], (ii) the rate at which magnetic
energy is dissipated, i.e., the reconnection rate [15–17], and
(iii) nonthermal particle acceleration [16,18–32]. These
works have shown that relativistic reconnection efficiently
accelerates nonthermal particles. However, such studies
have assumed that the magnetic field strength, temperature,
and density of the reconnecting plasma regions are equal
(symmetric case). Nevertheless, systems in which the

inflowing parameters differ, i.e., asymmetric reconnection,
is not an odd or rare event, with in situ observations of
asymmetric reconnection frequently reported in the helio-
sphere [33–37]. Because of the prevalence of asymmetric
reconnection in near-Earth systems, asymmetric reconnec-
tion has been thoroughly detailed [38–41]. Albeit exten-
sive, this body of work is limited to nonrelativistic systems,
and, presently, the description for asymmetric reconnection
has not been extended to relativistic plasma, i.e., systems
where the magnetic energy density is larger than the rest
mass energy density of the plasma. The ubiquity of
asymmetric reconnection in the heliosphere suggests that
asymmetric reconnection can be as important to astro-
physical environments. Likely examples include the boun-
dary layer between the jet and accretion flow in active
galactic nuclei (AGN) or shear flow boundaries warped by
Kelvin-Helmholtz instabilities in AGN jets [4,6,42].
With this in mind, we present the first step in under-

standing asymmetric reconnection in the relativistic regime.
We derive basic scaling predictions for relativistic asym-
metric reconnection which reproduce both the symmetric

PHYSICAL REVIEW LETTERS 128, 145101 (2022)

0031-9007=22=128(14)=145101(6) 145101-1 © 2022 American Physical Society

https://orcid.org/0000-0001-9475-5292
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.145101&domain=pdf&date_stamp=2022-04-06
https://doi.org/10.1103/PhysRevLett.128.145101
https://doi.org/10.1103/PhysRevLett.128.145101
https://doi.org/10.1103/PhysRevLett.128.145101
https://doi.org/10.1103/PhysRevLett.128.145101


relativistic and nonrelativistic asymmetric limits. We show
that for asymmetric inflow density and magnetic fields, the
reconnection rate and the outflow speed are set by the
inflow with the weaker ratio of magnetic energy density to
rest mass energy density, i.e., the magnetization σ. The
predictions are tested with a survey of two-dimensional
(2D) particle-in-cell (PIC) simulations, and show good
agreement. Finally, we examine the effects of inflowing
asymmetry on nonthermal particle acceleration, and show
that the efficiency of particle acceleration is again con-
trolled by the weaker-magnetization region.
Scaling of asymmetric reconnection.—If reconnection is

occurring at a steady state, the characteristics of the
outflowing plasma can be related to the inflowing proper-
ties by enforcing the conservation of mass and energy
around a given X line. (Note that the conservation of
momentum flux only provides a pressure balance con-
straint, and does not connect the inflow properties to the
outflow one.) To this end, we consider an asymmetric
diffusion region, with two distinct plasmas flowing in from
below and above the current sheet; each with its own
density and magnetic field strength flowing into a side with
length L and with bulk velocities v1 and v2 (the 1 and 2
subscripts denote the distinct regions below and above the
current sheet, respectively). The two populations mix as the
magnetic energy is dissipated and the plasma is accelerated
out of either side of the diffusion region with width δ. For
simplicity, we assume that the temperature of the inflowing
plasma is nonrelativistic and the inflowing magnetic fields
are antiparallel, i.e., the guide field is negligible.
The field on both sides of the current sheet is charac-

terized by the magnetization, defined in this Letter as
σ ≡ B02=4πρ0c2, where B0 is the magnetic field strength, ρ0
is the mass density, and c is the speed of light. Note that
throughout the Letter, unless otherwise stated, unprimed
variables are measured in the X line (or simulation) frame
and primed variables are measured in the rest frame, i.e., the
frame comoving with the fluid velocity v with Lorentz
factor γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðv=cÞ2

p
.

The equation governing the conservation of mass in the
X-line frame is

Lðγ1ρ01v1 þ γ2ρ
0
2v2Þ ¼ 2γoutρ

0
outvoutδ: ð1Þ

The conservation of energy density flux [43,44] yields

L

��
w0
1 þ

B02
1

4π

�
γ21v1 þ

�
w0
2 þ

B02
2

4π

�
γ22v2

�

¼ 2δ

�
w0
out þ

B02
out

4π

�
γ2outvout; ð2Þ

where w0 ¼ ρ0c2 þ ΓP0
0=ðΓ − 1Þ is the enthalpy density, Γ

is the adiabatic index of the plasma, and P0 is the pressure.
We take the reconnection region to be in steady state and

apply Stokes’s theorem to Faraday’s law to obtain

∇⃗ × E⃗ ¼ 0; as a result, the inductive electric field driving
reconnection Ez is uniform. The inflowing velocities are
expressed as vi=c ¼ jE⃗ × B⃗ij=B2

i ≈ E=Bi, implying that
γ1v1B0

1 ¼ γ2v2B0
2, since Ez is the same on both sides of

the current sheet.
Using these considerations, assuming that B0

out is neg-
ligible compared to B0

1 and B0
2, and dividing Eq. (2) by

Eq. (1), we obtain,

�
1þ ΓP0

out

ðΓ− 1Þρ0outc2
�
γout ¼

γ1ð1þ σ1Þþ ξγ2ð1þ σ2Þ
1þ ξ

; ð3Þ

where ξ≡ ðB0
1ρ

0
2=B

0
2ρ

0
1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðσ1ρ02=σ2ρ01Þ
p

and the inflow-
ing initial temperatures are assumed to be nonrelativistic,
w0
1;2 ≈ ρ01;2c

2. This equation provides a prediction for the
Lorentz factor of the outflowing plasma γout, provided we
know the outflowing pressure and density. Previous works
on the scaling of reconnection have made diverging
assumptions about the role of the thermal pressure in the
exhaust: some works have assumed the pressure is negli-
gible compared to the outflowing bulk kinetic energy
density [13,38], while others take the pressure to be
relativistically hot and comparable to the outflowing energy
density [12,30]. For completeness, in this work we present
both cases and show that simulations agree with the hot
exhaust scenario.
In the limit of negligible pressure in the exhaust,

w0
out ≈ ρ0outc2, i.e., the magnetic energy is fully utilized to

accelerate the plasma, Eq. (3) becomes

γout ¼
γ1ð1þ σ1Þ þ γ2ξð1þ σ2Þ

1þ ξ
: ð4Þ

This equation can be verified by considering the limiting
behavior. For the symmetric relativistic case, as σ1 ¼ σ2 ¼
σin and ξ → 1, Eq. (4) becomes γout ≈ γinð1þ σÞ, identical
to the super-Alfvénic prediction in Lyutikov and Uzdensky
[44]; in the nonrelativistic limit, we obtain the familiar
vout ∼ vA ¼ Bin=

ffiffiffiffiffiffiffiffiffiffiffi
4πρin

p
. Next, we consider the nonrela-

tivistic asymmetric limit. Expanding Eq. (4) in the vout ≪ c
limit, we find v2out ≈ 2c2ðσ1 þ ξσ2Þ=ð1þ ξÞ, which can be
rewritten in terms of the magnetic fields and densities:
v2out≈B1B2=ð2πρtotÞ, where ρtot¼ðρ1B2þρ2B1Þ=ðB1þB2Þ,
in agreement with the well-established predictions for
nonrelativistic asymmetric outflows [45,46].
In the alternative case, in which the outflowing pressure

is much larger than the rest mass energy density and cannot
be neglected in the scaling derivation, an expression is
needed for the exhaust pressure. In nonrelativistic magnetic
reconnection, the energy per particle in the bulk flow is
found to be comparable with the exhaust temperature in
simulations, observations and experiments [37,47–51].
Motivated by this and by results from the simulations
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preformed for this work, the exhaust pressure is taken to be,
P0
out ∼ ρ0outγoutv2out ∼ ρ0outγoutc2, and in this limit, the left-

hand side of Eq. (3) is equal to 4γ2out, where we have used
the relativistic adiabatic index of Γ ¼ 4=3. Applying this to
Eq. (3) yields

γout ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ1ð1þ σ1Þ þ γ2ξð1þ σ2Þ

4ð1þ ξÞ

s
: ð5Þ

Taking this equation in the symmetric case, we recover the
scaling relation of γout ∝

ffiffiffi
σ

p
, consistent with the Alfvénic

outflow predictions of Lyubarsky [12] and Liu et al. [16].
Next we consider the limiting behavior of Eq. (5) for

σ2 ≫ σ1 ≫ T=mc2. In this limit, balancing magnetic and
thermal pressure requires that ρ01=ρ

0
2 ∼ σ2=σ1, B0

2 ∼ B0
1

(hence γ1 ∼ γ2), and ξ ∼ σ1=σ2 ≪ 1, the prediction for
the outflowing Lorentz factor [Eq. (5)] becomes

γout ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ1ð1þ 2σ1Þ

p
2

: ð6Þ

Thus, for σ2 ≫ σ1, the outflow speed is set by the weaker-σ
side, or, equivalently, the larger density side. This pre-
diction should hold for both relativistic and non-relativistic
values of σ1.
Finally, we can use the outflow prediction to estimate

the reconnection rate R≡ v1=vout, which is ≈v2=vout, for
systems where the upstream thermal energy is much
smaller than the magnetic energy per particle. In such
systems, v1 ∼ v2 since B0

2 ∼ B0
1 and ξ ∼ σ1=σ2, and hence,

we can rewrite Eq. (1) in terms of the reconnection rate. In
the limit where the inflow velocity is not ultrarelativistic
(σ < 100 and γin ≳ 1), we find an approximation for the
asymmetric reconnection rate by taking the exhaust density
as ρout ∼ ðρ1 þ ρ2Þ=2 following Cassak and Shay [46]:

R ≈
δ

2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2σ1σ2

σ1 þ σ2

s
: ð7Þ

This prediction is again only valid for mildly relativistic
cases (γin ≳ 1); nevertheless, considering that the weaker-σ
side sets the reconnection rate, such a scaling is pertinent
for asymmetric environments with min(σ1; σ2Þ≲ 100, and
consequently for symmetric environments with σ ≲ 100.
Simulation setup.—To test the scaling predictions out-

lined above, we perform 2.5D (2D real space, 3D velocity
space) particle-in-cell (PIC) simulations of electron-
positron (pair-plasma) reconnection with TRISTAN-MP
[52,53]. The plasma is comprised of electron-positron
pairs, typical of high-energy astrophysical environments
such as pulsar winds and AGN jets [54,55]. Both electrons
and positrons are initialized with a constant temperature,
Δγ ≡ kBT 0=mc2 ¼ 0.25. Throughout the simulations, no
notable differences between electron and positron proper-
ties are observed.

Initializing a single stable current sheet in the simula-
tions requires balancing pressure across the current
sheet; and thus the density and magnetic field on the
two sides are uniquely determined for a fixed tempera-
ture and a particular combination of σ1 and σ2. (The ratio
of the magnetic fields across the exhaust is given by
B0
2=B

0
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 4Δγ=σ1=1þ 4Δγ=σ2Þ
p

.) Note that pres-
sure balance stipulates that the magnetic field is roughly
similar across the sheet if the initial temperature is
relatively low as discussed above. For additional details
on the simulations, the setup and the normalization see the
Supplemental Material [56].
Simulation results.—We study relativistic asymmetric

reconnection by performing a survey of simulations where
the upper magnetization scans between σ2 ¼ 10−1 and 103;
the lower is fixed at σ1 ¼ 10. Figure 1 compares the mass
density (ρ) and outflow velocities (vx) for the σ2 ¼ 10 case
(i.e., symmetric) and the σ2 ¼ 0.25 case (i.e., asymmetric),
at tωp ≈ 400 for positrons. Note, that for the latter asym-
metric case the assumption σ2 ≫ T=mc2 is not satisfied;
however, we include this limit to show the effect two
reconnecting regions with σ’s that differ by orders of
magnitude. The most notable difference between the
symmetric and asymmetric cases is the shape of the exhaust
that morphs from round islands to a more elongated shape,
preferentially protruding into the inflow region with the
weaker magnetic field strength because it has a faster
inflow velocity. The island bulges into this side to replace
the higher volume of plasma that has reconnected [46,57].
Additionally, more plasmoids are present in the symmetric

FIG. 1. Reconnection layer at tωp ∼ 400 for both symmetric
and asymmetric reconnection. The magnetization σ is specified in
the plot on both sides of the current sheet. Contour maps of the
magnetic scalar potential are also shown for reference. Top
panels: Mass density map normalized to the mass density in
the lower region ρ1. Bottom panels: Outflow speed vx in units
of c.
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simulation compared to the asymmetric case, which may be
due to a combination of the apparent broader asymmetric
exhaust and the documented reduction of plasmoids for
weaker σ in symmetric reconnection [58]. Finally, the area
of the islands suggest that less magnetic flux has been
reconnected in the asymmetric simulation, consistent with
the scaling predictions associated with Eq. (5). For the
σ2 ≫ σ1 case (not shown), the shape of the exhaust looks
similar to symmetric reconnection, with the island expand-
ing both inflow regions equally.
To further verify the scaling predictions, the reconnec-

tion rates in the survey of symmetric and asymmetric
simulations are measured and shown in Fig. 2 as a function
of σ2. The teal dots and crosses show vin=vout, where vout is
a spatially averaged absolute value in the center of the
exhaust (y ∼ 0) and vin is the absolute value of the average
of both sides within 5c=ωp away from the X line in the
inflow region. The blue dots and crosses show a similar
value, but with the outflow velocity assumed to be c
(appropriate for σ1, σ2 ≫ 1); The dashed green line shows
the prediction for the reconnection rate from Eq. (5) of Liu
et al. [16]. [For Eq. (3) from Liu et al. [16], we use
rn0δ=L ¼ 0.1 and include the thermal contribution to
enthalpy with kBT 0 ¼ mc2=4.] The black dashed and solid
lines show the expected reconnection rate based on Eq. (7)
for δ=L ¼ 0.15 (the best fit for our simulation results),
which is comparable with Liu et al.’s [16] favored aspect
ratio. Finally, the edges of the corresponding shaded
regions are defined by the values measured on either
upstream regions, e.g., the upper extent will be the average
reconnection rate determined from the upper half of the

current sheet (σ2 region) and the lower extent of the shaded
region will be the averaged value below the current sheet
(σ1 region). Considering that v1 ∼ v2 for small values of
kBT=mc2 ≪ σ1; σ2, we expect the shaded regions to have a
limited extent especially as σ2 → σ1. The simulation
measurements were taken at 400ω−1

p . This is not the longest
timescale for all runs, but we choose this time as a
representative steady-state snapshot, well after reconnec-
tion has started, but before island size inhibits efficient
reconnection.
Symmetric simulations in Fig. 2 yield results consistent

with predictions from previous studies; the reconnection
rate increases from the standard nonrelativistic 0.1 value,
up to almost nearly 1 for simulations with σ ≫ 1 [14,16].
For the asymmetric simulations, σ1 is fixed to 10 and σ2 is
varied over ∼4 orders of magnitude. For the asymmetric
simulations, the reconnection rates are set by the weaker-σ
regions. For σ2 < σ1, asymmetric reconnection rates are
comparable to the symmetric σ2 counterparts, and for
σ2 > σ1, the rate becomes insensitive to increases in σ2.
This can primarily be attributed to the exhaust field lines
becoming mass loaded by the weaker σ1 (i.e., larger
density) inflow. From these considerations, our simulations
verify that the reconnection rate is quenched by the side of
the exhaust with the weaker magnetization parameter, as
predicted by Eq. (6), even in the extreme limit where
n02 → 0 or vacuum, i.e., σ2 → ∞ (as shown in the
Supplemental Material [56]).
Nonthermal particle spectra.—To examine particle

acceleration, we show the energy distribution functions
in Fig. 3 for different symmetric and asymmetric conditions
at different times, averaged over the entire domain, with the
time stamp of representative distributions, color coded
based on the color bar shade. We show the distributions
for five different characteristic example simulations in
Fig. 3 that exhibit nonthermal, extended tails reaching
ultrarelativistic energies. The spectra with the red, blue, and
green color correspond to σ2 ¼ 0.25, 10, and 100, respec-
tively, with σ1 fixed to 10 and are fitted at tωp ∼ 450 with a
spectral slope q≡−d logN= log γ. We also show the
spectra for the symmetric cases σ ¼ 0.25 and σ ¼ 100
(the purple and orange lines, respectively) at tωp ∼ 450

with their power law fit.
Asymmetric simulations develop power-law spectral

slopes between those of their symmetric counterparts.
Following similar trends, we find that the spectra associated
with σ2 ¼ 0.25 (red curves) are much steeper than those
with a symmetric σ ¼ 10 prescription, and can conclude
that a power law distribution essentially does not form. The
symmetric σ ¼ 0.25 case has the steepest distribution as
expected.
The inset of Fig. 3 shows the power law slopes for

symmetric and asymmetric (σ1 ¼ 10 for asymmetric cases)
simulations over a range of σ’s and exhibits the same trend
for a range of different magnetizations. Overall, it appears

FIG. 2. Reconnection rate for different magnetization param-
eters in simulations of symmetric and asymmetric cases. The
green dashed curve shows the expected symmetric reconnection
rate based on the prediction of Liu et al. [16], including the
plasma thermal pressure. The teal and blue dots (crosses) show
the averaged measured values of hvini normalized to hvouti and c,
respectively, for symmetric (asymmetric) reconnection. The
averages are determined over a 5de window just upstream of
the X line. The black dashed (solid) line shows the prediction for
the for symmetric (asymmetric) reconnection rate determined by
Eq. (7); such a prediction is only valid for environments with
minðσ1; σ2Þ≲ 100 as explained in the text. For the asymmetric
cases, σ1 ¼ 10 is fixed and the reconnection rate is controlled by
the weaker σ.
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from these simulations that for asymmetric reconnection,
the accelerated particle spectra are steepened relative to the
larger σ side, and hardened relative to the weaker σ side.
Finally, for spectra associated with asymmetric recon-

nection, we separately present the spectra of positrons
coming from either the upper or lower half of the domain;
dotted lines correspond to particles initialized on the lower
half of the current sheet (σ1), and dashed lines for particles
from the upper domain (σ2). We note that particles starting
in the higher σ regions have a flatter slope and tend towards
higher energies as can be seen in more detail in Fig. 3.
Conclusions.—In this Letter we present the first exami-

nation of relativistic, magnetic reconnection, with asym-
metric inflowing conditions. We consider systems with
asymmetric densities and magnetic fields but with a
constant, nonrelativistic temperature for simplicity. Using
conservation of mass and energy, we derive a scaling
prediction for the outgoing bulk flow Lorentz factor, and
show that the prediction is consistent with standard limiting
cases. For systems with a large asymmetry in magnetiza-
tion, the evolution of reconnection is determined by the
smaller σ value (Fig. 2).
The predictions are tested using a survey of 2.5D fully

kinetic particle-in-cell simulations performed with
TRISTAN-MP [52,53]. The scaling relations are found
to accurately predict the outflow and reconnection rate of
simulations. We anecdotally find that asymmetric simu-
lations generate less plasmoids than their symmetric
counterparts.

We also consider the production of nonthermal particles
in the simulations, finding that extended power-law dis-
tributions can be produced by asymmetric reconnection,
with a slope that depends on the magnetization of both
inflowing plasmas. Each asymmetric simulation develops a
power-law distribution where the spectral slope falls
between the slopes of the two symmetric counterparts.
While we anticipate these results to extend to fully 3D

systems—as has been shown for the scaling in nonrelativistic
simulations [59,60] and the acceleration in relativistic
simulations [7,29]—it should be noted that reconnection
in three dimensions is susceptible to other instabilities that
can potentially affect the scaling properties and particle
acceleration [61–63]. This work makes the first step towards
understanding asymmetric relativistic magnetic reconnec-
tion, but future work is needed to characterize the full 3D
nature of the problem.
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